lfs_accessors.h revision 1.45 1 1.45 dholland /* $NetBSD: lfs_accessors.h,v 1.45 2016/06/19 22:38:23 dholland Exp $ */
2 1.1 dholland
3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 1.45 dholland /* from NetBSD: dinode.h,v 1.24 2013/06/09 17:55:46 dholland Exp */
5 1.45 dholland /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */
6 1.1 dholland
7 1.1 dholland /*-
8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 1.1 dholland * All rights reserved.
10 1.1 dholland *
11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation
12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 1.1 dholland *
14 1.1 dholland * Redistribution and use in source and binary forms, with or without
15 1.1 dholland * modification, are permitted provided that the following conditions
16 1.1 dholland * are met:
17 1.1 dholland * 1. Redistributions of source code must retain the above copyright
18 1.1 dholland * notice, this list of conditions and the following disclaimer.
19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 dholland * notice, this list of conditions and the following disclaimer in the
21 1.1 dholland * documentation and/or other materials provided with the distribution.
22 1.1 dholland *
23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE.
34 1.1 dholland */
35 1.1 dholland /*-
36 1.1 dholland * Copyright (c) 1991, 1993
37 1.1 dholland * The Regents of the University of California. All rights reserved.
38 1.1 dholland *
39 1.1 dholland * Redistribution and use in source and binary forms, with or without
40 1.1 dholland * modification, are permitted provided that the following conditions
41 1.1 dholland * are met:
42 1.1 dholland * 1. Redistributions of source code must retain the above copyright
43 1.1 dholland * notice, this list of conditions and the following disclaimer.
44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 dholland * notice, this list of conditions and the following disclaimer in the
46 1.1 dholland * documentation and/or other materials provided with the distribution.
47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
48 1.1 dholland * may be used to endorse or promote products derived from this software
49 1.1 dholland * without specific prior written permission.
50 1.1 dholland *
51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 dholland * SUCH DAMAGE.
62 1.1 dholland *
63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 1.1 dholland */
65 1.1 dholland /*
66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc.
67 1.1 dholland * All rights reserved.
68 1.1 dholland *
69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall
70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security
71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 1.1 dholland * research program
74 1.1 dholland *
75 1.1 dholland * Copyright (c) 1982, 1989, 1993
76 1.1 dholland * The Regents of the University of California. All rights reserved.
77 1.1 dholland * (c) UNIX System Laboratories, Inc.
78 1.1 dholland * All or some portions of this file are derived from material licensed
79 1.1 dholland * to the University of California by American Telephone and Telegraph
80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 1.1 dholland * the permission of UNIX System Laboratories, Inc.
82 1.1 dholland *
83 1.1 dholland * Redistribution and use in source and binary forms, with or without
84 1.1 dholland * modification, are permitted provided that the following conditions
85 1.1 dholland * are met:
86 1.1 dholland * 1. Redistributions of source code must retain the above copyright
87 1.1 dholland * notice, this list of conditions and the following disclaimer.
88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
89 1.1 dholland * notice, this list of conditions and the following disclaimer in the
90 1.1 dholland * documentation and/or other materials provided with the distribution.
91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
92 1.1 dholland * may be used to endorse or promote products derived from this software
93 1.1 dholland * without specific prior written permission.
94 1.1 dholland *
95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 1.1 dholland * SUCH DAMAGE.
106 1.1 dholland *
107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 1.1 dholland */
109 1.1 dholland /*
110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993
111 1.1 dholland * The Regents of the University of California. All rights reserved.
112 1.1 dholland * (c) UNIX System Laboratories, Inc.
113 1.1 dholland * All or some portions of this file are derived from material licensed
114 1.1 dholland * to the University of California by American Telephone and Telegraph
115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 1.1 dholland * the permission of UNIX System Laboratories, Inc.
117 1.1 dholland *
118 1.1 dholland * Redistribution and use in source and binary forms, with or without
119 1.1 dholland * modification, are permitted provided that the following conditions
120 1.1 dholland * are met:
121 1.1 dholland * 1. Redistributions of source code must retain the above copyright
122 1.1 dholland * notice, this list of conditions and the following disclaimer.
123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
124 1.1 dholland * notice, this list of conditions and the following disclaimer in the
125 1.1 dholland * documentation and/or other materials provided with the distribution.
126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
127 1.1 dholland * may be used to endorse or promote products derived from this software
128 1.1 dholland * without specific prior written permission.
129 1.1 dholland *
130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 1.1 dholland * SUCH DAMAGE.
141 1.1 dholland *
142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 1.1 dholland */
144 1.1 dholland
145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_
147 1.1 dholland
148 1.17 dholland #if defined(_KERNEL_OPT)
149 1.17 dholland #include "opt_lfs.h"
150 1.17 dholland #endif
151 1.17 dholland
152 1.17 dholland #include <sys/bswap.h>
153 1.17 dholland
154 1.43 riastrad #include <ufs/lfs/lfs.h>
155 1.43 riastrad
156 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
157 1.11 dholland #include <assert.h>
158 1.43 riastrad #include <string.h>
159 1.11 dholland #define KASSERT assert
160 1.43 riastrad #else
161 1.43 riastrad #include <sys/systm.h>
162 1.11 dholland #endif
163 1.11 dholland
164 1.1 dholland /*
165 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work
166 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to
167 1.9 dholland * get accessors that work with struct clfs.
168 1.9 dholland */
169 1.9 dholland
170 1.9 dholland #ifndef STRUCT_LFS
171 1.9 dholland #define STRUCT_LFS struct lfs
172 1.9 dholland #endif
173 1.9 dholland
174 1.13 dholland /*
175 1.17 dholland * byte order
176 1.17 dholland */
177 1.17 dholland
178 1.17 dholland /*
179 1.17 dholland * For now at least, the bootblocks shall not be endian-independent.
180 1.17 dholland * We can see later if it fits in the size budget. Also disable the
181 1.17 dholland * byteswapping if LFS_EI is off.
182 1.17 dholland *
183 1.17 dholland * Caution: these functions "know" that bswap16/32/64 are unsigned,
184 1.17 dholland * and if that changes will likely break silently.
185 1.17 dholland */
186 1.17 dholland
187 1.17 dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
188 1.17 dholland #define LFS_SWAP_int16_t(fs, val) (val)
189 1.17 dholland #define LFS_SWAP_int32_t(fs, val) (val)
190 1.17 dholland #define LFS_SWAP_int64_t(fs, val) (val)
191 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) (val)
192 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) (val)
193 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) (val)
194 1.17 dholland #else
195 1.17 dholland #define LFS_SWAP_int16_t(fs, val) \
196 1.17 dholland ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
197 1.17 dholland #define LFS_SWAP_int32_t(fs, val) \
198 1.17 dholland ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
199 1.17 dholland #define LFS_SWAP_int64_t(fs, val) \
200 1.17 dholland ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
201 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) \
202 1.17 dholland ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
203 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) \
204 1.17 dholland ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
205 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) \
206 1.17 dholland ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
207 1.17 dholland #endif
208 1.17 dholland
209 1.17 dholland /*
210 1.22 dholland * For handling directories we will need to know if the volume is
211 1.22 dholland * little-endian.
212 1.22 dholland */
213 1.22 dholland #if BYTE_ORDER == LITTLE_ENDIAN
214 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
215 1.22 dholland #else
216 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
217 1.22 dholland #endif
218 1.22 dholland
219 1.22 dholland
220 1.22 dholland /*
221 1.22 dholland * directories
222 1.22 dholland */
223 1.22 dholland
224 1.31 dholland #define LFS_DIRHEADERSIZE(fs) \
225 1.31 dholland ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
226 1.31 dholland
227 1.22 dholland /*
228 1.22 dholland * The LFS_DIRSIZ macro gives the minimum record length which will hold
229 1.22 dholland * the directory entry. This requires the amount of space in struct lfs_direct
230 1.22 dholland * without the d_name field, plus enough space for the name with a terminating
231 1.22 dholland * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
232 1.22 dholland */
233 1.30 dholland #define LFS_DIRECTSIZ(fs, namlen) \
234 1.31 dholland (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
235 1.22 dholland
236 1.30 dholland /*
237 1.30 dholland * The size of the largest possible directory entry. This is
238 1.30 dholland * used by ulfs_dirhash to figure the size of an array, so we
239 1.30 dholland * need a single constant value true for both lfs32 and lfs64.
240 1.30 dholland */
241 1.30 dholland #define LFS_MAXDIRENTRYSIZE \
242 1.31 dholland (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
243 1.30 dholland
244 1.22 dholland #if (BYTE_ORDER == LITTLE_ENDIAN)
245 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
246 1.22 dholland (((oldfmt) && !(needswap)) ? \
247 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
248 1.22 dholland #else
249 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
250 1.22 dholland (((oldfmt) && (needswap)) ? \
251 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
252 1.22 dholland #endif
253 1.22 dholland
254 1.30 dholland #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
255 1.22 dholland
256 1.22 dholland /* Constants for the first argument of LFS_OLDDIRSIZ */
257 1.22 dholland #define LFS_OLDDIRFMT 1
258 1.22 dholland #define LFS_NEWDIRFMT 0
259 1.22 dholland
260 1.23 dholland #define LFS_NEXTDIR(fs, dp) \
261 1.31 dholland ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
262 1.23 dholland
263 1.42 christos static __inline char *
264 1.31 dholland lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
265 1.26 dholland {
266 1.31 dholland if (fs->lfs_is64) {
267 1.31 dholland return (char *)(&dh->u_64 + 1);
268 1.31 dholland } else {
269 1.31 dholland return (char *)(&dh->u_32 + 1);
270 1.31 dholland }
271 1.26 dholland }
272 1.26 dholland
273 1.42 christos static __inline uint64_t
274 1.31 dholland lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
275 1.23 dholland {
276 1.31 dholland if (fs->lfs_is64) {
277 1.31 dholland uint64_t ino;
278 1.31 dholland
279 1.31 dholland /*
280 1.31 dholland * XXX we can probably write this in a way that's both
281 1.31 dholland * still legal and generates better code.
282 1.31 dholland */
283 1.31 dholland memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
284 1.31 dholland memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
285 1.31 dholland &dh->u_64.dh_inoB,
286 1.31 dholland sizeof(dh->u_64.dh_inoB));
287 1.31 dholland return LFS_SWAP_uint64_t(fs, ino);
288 1.31 dholland } else {
289 1.31 dholland return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
290 1.31 dholland }
291 1.23 dholland }
292 1.23 dholland
293 1.42 christos static __inline uint16_t
294 1.31 dholland lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
295 1.23 dholland {
296 1.31 dholland if (fs->lfs_is64) {
297 1.31 dholland return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
298 1.31 dholland } else {
299 1.31 dholland return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
300 1.31 dholland }
301 1.23 dholland }
302 1.23 dholland
303 1.42 christos static __inline uint8_t
304 1.31 dholland lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
305 1.22 dholland {
306 1.31 dholland if (fs->lfs_is64) {
307 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
308 1.31 dholland return dh->u_64.dh_type;
309 1.31 dholland } else if (fs->lfs_hasolddirfmt) {
310 1.22 dholland return LFS_DT_UNKNOWN;
311 1.31 dholland } else {
312 1.31 dholland return dh->u_32.dh_type;
313 1.22 dholland }
314 1.22 dholland }
315 1.22 dholland
316 1.42 christos static __inline uint8_t
317 1.31 dholland lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
318 1.22 dholland {
319 1.31 dholland if (fs->lfs_is64) {
320 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
321 1.40 dholland return dh->u_64.dh_namlen;
322 1.31 dholland } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
323 1.22 dholland /* low-order byte of old 16-bit namlen field */
324 1.31 dholland return dh->u_32.dh_type;
325 1.31 dholland } else {
326 1.31 dholland return dh->u_32.dh_namlen;
327 1.22 dholland }
328 1.22 dholland }
329 1.22 dholland
330 1.42 christos static __inline void
331 1.31 dholland lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
332 1.23 dholland {
333 1.31 dholland if (fs->lfs_is64) {
334 1.31 dholland
335 1.31 dholland ino = LFS_SWAP_uint64_t(fs, ino);
336 1.31 dholland /*
337 1.31 dholland * XXX we can probably write this in a way that's both
338 1.31 dholland * still legal and generates better code.
339 1.31 dholland */
340 1.31 dholland memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
341 1.31 dholland memcpy(&dh->u_64.dh_inoB,
342 1.31 dholland (char *)&ino + sizeof(dh->u_64.dh_inoA),
343 1.31 dholland sizeof(dh->u_64.dh_inoB));
344 1.31 dholland } else {
345 1.31 dholland dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
346 1.31 dholland }
347 1.23 dholland }
348 1.23 dholland
349 1.42 christos static __inline void
350 1.31 dholland lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
351 1.23 dholland {
352 1.31 dholland if (fs->lfs_is64) {
353 1.31 dholland dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
354 1.31 dholland } else {
355 1.31 dholland dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
356 1.31 dholland }
357 1.23 dholland }
358 1.23 dholland
359 1.42 christos static __inline void
360 1.31 dholland lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
361 1.22 dholland {
362 1.31 dholland if (fs->lfs_is64) {
363 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
364 1.31 dholland dh->u_64.dh_type = type;
365 1.31 dholland } else if (fs->lfs_hasolddirfmt) {
366 1.22 dholland /* do nothing */
367 1.22 dholland return;
368 1.31 dholland } else {
369 1.31 dholland dh->u_32.dh_type = type;
370 1.22 dholland }
371 1.22 dholland }
372 1.22 dholland
373 1.42 christos static __inline void
374 1.31 dholland lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
375 1.22 dholland {
376 1.31 dholland if (fs->lfs_is64) {
377 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
378 1.31 dholland dh->u_64.dh_namlen = namlen;
379 1.31 dholland } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
380 1.22 dholland /* low-order byte of old 16-bit namlen field */
381 1.31 dholland dh->u_32.dh_type = namlen;
382 1.31 dholland } else {
383 1.31 dholland dh->u_32.dh_namlen = namlen;
384 1.22 dholland }
385 1.22 dholland }
386 1.22 dholland
387 1.42 christos static __inline void
388 1.25 dholland lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
389 1.25 dholland unsigned namlen, unsigned reclen)
390 1.25 dholland {
391 1.28 dholland unsigned spacelen;
392 1.28 dholland
393 1.31 dholland KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
394 1.31 dholland spacelen = reclen - LFS_DIRHEADERSIZE(fs);
395 1.28 dholland
396 1.25 dholland /* must always be at least 1 byte as a null terminator */
397 1.28 dholland KASSERT(spacelen > namlen);
398 1.25 dholland
399 1.25 dholland memcpy(dest, src, namlen);
400 1.28 dholland memset(dest + namlen, '\0', spacelen - namlen);
401 1.25 dholland }
402 1.25 dholland
403 1.42 christos static __inline LFS_DIRHEADER *
404 1.31 dholland lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
405 1.31 dholland {
406 1.31 dholland /* XXX blah, be nice to have a way to do this w/o casts */
407 1.31 dholland if (fs->lfs_is64) {
408 1.31 dholland return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
409 1.31 dholland } else {
410 1.31 dholland return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
411 1.31 dholland }
412 1.31 dholland }
413 1.31 dholland
414 1.42 christos static __inline char *
415 1.31 dholland lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
416 1.31 dholland {
417 1.31 dholland if (fs->lfs_is64) {
418 1.31 dholland return dt->u_64.dotdot_name;
419 1.31 dholland } else {
420 1.31 dholland return dt->u_32.dotdot_name;
421 1.31 dholland }
422 1.31 dholland }
423 1.31 dholland
424 1.22 dholland /*
425 1.13 dholland * dinodes
426 1.13 dholland */
427 1.9 dholland
428 1.9 dholland /*
429 1.1 dholland * Maximum length of a symlink that can be stored within the inode.
430 1.1 dholland */
431 1.20 dholland #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
432 1.20 dholland #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
433 1.1 dholland
434 1.20 dholland #define LFS_MAXSYMLINKLEN(fs) \
435 1.20 dholland ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
436 1.20 dholland
437 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
438 1.13 dholland
439 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \
440 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
441 1.13 dholland
442 1.42 christos static __inline void
443 1.14 dholland lfs_copy_dinode(STRUCT_LFS *fs,
444 1.14 dholland union lfs_dinode *dst, const union lfs_dinode *src)
445 1.14 dholland {
446 1.14 dholland /*
447 1.14 dholland * We can do structure assignment of the structs, but not of
448 1.14 dholland * the whole union, as the union is the size of the (larger)
449 1.14 dholland * 64-bit struct and on a 32-bit fs the upper half of it might
450 1.14 dholland * be off the end of a buffer or otherwise invalid.
451 1.14 dholland */
452 1.14 dholland if (fs->lfs_is64) {
453 1.14 dholland dst->u_64 = src->u_64;
454 1.14 dholland } else {
455 1.14 dholland dst->u_32 = src->u_32;
456 1.14 dholland }
457 1.14 dholland }
458 1.14 dholland
459 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
460 1.42 christos static __inline type \
461 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
462 1.13 dholland { \
463 1.13 dholland if (fs->lfs_is64) { \
464 1.17 dholland return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
465 1.13 dholland } else { \
466 1.17 dholland return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
467 1.13 dholland } \
468 1.13 dholland } \
469 1.42 christos static __inline void \
470 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
471 1.13 dholland { \
472 1.13 dholland if (fs->lfs_is64) { \
473 1.13 dholland type *p = &dip->u_64.di_##field; \
474 1.13 dholland (void)p; \
475 1.17 dholland dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
476 1.13 dholland } else { \
477 1.13 dholland type32 *p = &dip->u_32.di_##field; \
478 1.13 dholland (void)p; \
479 1.17 dholland dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
480 1.13 dholland } \
481 1.13 dholland } \
482 1.13 dholland
483 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
484 1.13 dholland LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
485 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
486 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
487 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
488 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
489 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
490 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
491 1.13 dholland LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
492 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
493 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
494 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
495 1.13 dholland LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
496 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
497 1.13 dholland LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
498 1.13 dholland
499 1.16 dholland /* XXX this should be done differently (it's a fake field) */
500 1.43 riastrad LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev);
501 1.16 dholland
502 1.42 christos static __inline daddr_t
503 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
504 1.13 dholland {
505 1.13 dholland KASSERT(ix < ULFS_NDADDR);
506 1.13 dholland if (fs->lfs_is64) {
507 1.37 dholland return LFS_SWAP_uint64_t(fs, dip->u_64.di_db[ix]);
508 1.13 dholland } else {
509 1.36 dholland /* note: this must sign-extend or UNWRITTEN gets trashed */
510 1.37 dholland return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_db[ix]);
511 1.13 dholland }
512 1.13 dholland }
513 1.13 dholland
514 1.42 christos static __inline daddr_t
515 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
516 1.13 dholland {
517 1.13 dholland KASSERT(ix < ULFS_NIADDR);
518 1.13 dholland if (fs->lfs_is64) {
519 1.37 dholland return LFS_SWAP_uint64_t(fs, dip->u_64.di_ib[ix]);
520 1.13 dholland } else {
521 1.36 dholland /* note: this must sign-extend or UNWRITTEN gets trashed */
522 1.37 dholland return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_ib[ix]);
523 1.13 dholland }
524 1.13 dholland }
525 1.13 dholland
526 1.42 christos static __inline void
527 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
528 1.13 dholland {
529 1.13 dholland KASSERT(ix < ULFS_NDADDR);
530 1.13 dholland if (fs->lfs_is64) {
531 1.37 dholland dip->u_64.di_db[ix] = LFS_SWAP_uint64_t(fs, val);
532 1.13 dholland } else {
533 1.37 dholland dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
534 1.13 dholland }
535 1.13 dholland }
536 1.13 dholland
537 1.42 christos static __inline void
538 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
539 1.13 dholland {
540 1.13 dholland KASSERT(ix < ULFS_NIADDR);
541 1.13 dholland if (fs->lfs_is64) {
542 1.37 dholland dip->u_64.di_ib[ix] = LFS_SWAP_uint64_t(fs, val);
543 1.13 dholland } else {
544 1.37 dholland dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
545 1.13 dholland }
546 1.13 dholland }
547 1.13 dholland
548 1.16 dholland /* birthtime is present only in the 64-bit inode */
549 1.42 christos static __inline void
550 1.16 dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
551 1.16 dholland const struct timespec *ts)
552 1.16 dholland {
553 1.16 dholland if (fs->lfs_is64) {
554 1.16 dholland dip->u_64.di_birthtime = ts->tv_sec;
555 1.16 dholland dip->u_64.di_birthnsec = ts->tv_nsec;
556 1.16 dholland } else {
557 1.16 dholland /* drop it on the floor */
558 1.16 dholland }
559 1.16 dholland }
560 1.16 dholland
561 1.16 dholland /*
562 1.16 dholland * indirect blocks
563 1.16 dholland */
564 1.16 dholland
565 1.42 christos static __inline daddr_t
566 1.16 dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
567 1.16 dholland {
568 1.16 dholland if (fs->lfs_is64) {
569 1.16 dholland // XXX re-enable these asserts after reorging this file
570 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
571 1.16 dholland return (daddr_t)(((int64_t *)block)[ix]);
572 1.16 dholland } else {
573 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
574 1.16 dholland /* must sign-extend or UNWRITTEN gets trashed */
575 1.16 dholland return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
576 1.16 dholland }
577 1.16 dholland }
578 1.16 dholland
579 1.42 christos static __inline void
580 1.16 dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
581 1.16 dholland {
582 1.16 dholland if (fs->lfs_is64) {
583 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
584 1.16 dholland ((int64_t *)block)[ix] = val;
585 1.16 dholland } else {
586 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
587 1.16 dholland ((int32_t *)block)[ix] = val;
588 1.16 dholland }
589 1.16 dholland }
590 1.16 dholland
591 1.1 dholland /*
592 1.1 dholland * "struct buf" associated definitions
593 1.1 dholland */
594 1.1 dholland
595 1.1 dholland # define LFS_LOCK_BUF(bp) do { \
596 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
597 1.1 dholland mutex_enter(&lfs_lock); \
598 1.1 dholland ++locked_queue_count; \
599 1.1 dholland locked_queue_bytes += bp->b_bufsize; \
600 1.1 dholland mutex_exit(&lfs_lock); \
601 1.1 dholland } \
602 1.1 dholland (bp)->b_flags |= B_LOCKED; \
603 1.1 dholland } while (0)
604 1.1 dholland
605 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \
606 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
607 1.1 dholland mutex_enter(&lfs_lock); \
608 1.1 dholland --locked_queue_count; \
609 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \
610 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \
611 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \
612 1.1 dholland cv_broadcast(&locked_queue_cv); \
613 1.1 dholland mutex_exit(&lfs_lock); \
614 1.1 dholland } \
615 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \
616 1.1 dholland } while (0)
617 1.1 dholland
618 1.1 dholland /*
619 1.1 dholland * "struct inode" associated definitions
620 1.1 dholland */
621 1.1 dholland
622 1.1 dholland #define LFS_SET_UINO(ip, flags) do { \
623 1.1 dholland if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
624 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
625 1.1 dholland if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
626 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
627 1.1 dholland if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
628 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
629 1.1 dholland (ip)->i_flag |= (flags); \
630 1.1 dholland } while (0)
631 1.1 dholland
632 1.1 dholland #define LFS_CLR_UINO(ip, flags) do { \
633 1.1 dholland if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
634 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
635 1.1 dholland if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
636 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
637 1.1 dholland if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
638 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
639 1.1 dholland (ip)->i_flag &= ~(flags); \
640 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
641 1.1 dholland panic("lfs_uinodes < 0"); \
642 1.1 dholland } \
643 1.1 dholland } while (0)
644 1.1 dholland
645 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \
646 1.1 dholland while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
647 1.1 dholland lfs_itimes(ip, acc, mod, cre)
648 1.1 dholland
649 1.1 dholland /*
650 1.1 dholland * On-disk and in-memory checkpoint segment usage structure.
651 1.1 dholland */
652 1.1 dholland
653 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs))
654 1.1 dholland #define SEGTABSIZE_SU(fs) \
655 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
656 1.1 dholland
657 1.1 dholland #ifdef _KERNEL
658 1.1 dholland # define SHARE_IFLOCK(F) \
659 1.1 dholland do { \
660 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \
661 1.1 dholland } while(0)
662 1.1 dholland # define UNSHARE_IFLOCK(F) \
663 1.1 dholland do { \
664 1.1 dholland rw_exit(&(F)->lfs_iflock); \
665 1.1 dholland } while(0)
666 1.1 dholland #else /* ! _KERNEL */
667 1.1 dholland # define SHARE_IFLOCK(F)
668 1.1 dholland # define UNSHARE_IFLOCK(F)
669 1.1 dholland #endif /* ! _KERNEL */
670 1.1 dholland
671 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */
672 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \
673 1.1 dholland int _e; \
674 1.1 dholland SHARE_IFLOCK(F); \
675 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
676 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
677 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
678 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
679 1.39 dholland panic("lfs: ifile read: segentry %llu: error %d\n", \
680 1.39 dholland (unsigned long long)(IN), _e); \
681 1.6 dholland if (lfs_sb_getversion(F) == 1) \
682 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
683 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \
684 1.1 dholland else \
685 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
686 1.1 dholland UNSHARE_IFLOCK(F); \
687 1.1 dholland } while (0)
688 1.1 dholland
689 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
690 1.1 dholland if ((SP)->su_nbytes == 0) \
691 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \
692 1.1 dholland else \
693 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \
694 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
695 1.1 dholland LFS_BWRITE_LOG(BP); \
696 1.1 dholland } while (0)
697 1.1 dholland
698 1.1 dholland /*
699 1.11 dholland * FINFO (file info) entries.
700 1.11 dholland */
701 1.11 dholland
702 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
703 1.11 dholland /* XXX: move to a more suitable location in this file */
704 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
705 1.11 dholland
706 1.12 dholland /* Size of an on-disk inode number. */
707 1.12 dholland /* XXX: move to a more suitable location in this file */
708 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
709 1.12 dholland
710 1.12 dholland /* size of a FINFO, without the block pointers */
711 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
712 1.12 dholland
713 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */
714 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \
715 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
716 1.11 dholland
717 1.11 dholland #define NEXT_FINFO(fs, fip) \
718 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
719 1.11 dholland
720 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
721 1.42 christos static __inline type \
722 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
723 1.12 dholland { \
724 1.12 dholland if (fs->lfs_is64) { \
725 1.12 dholland return fip->u_64.fi_##field; \
726 1.12 dholland } else { \
727 1.12 dholland return fip->u_32.fi_##field; \
728 1.12 dholland } \
729 1.12 dholland } \
730 1.42 christos static __inline void \
731 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
732 1.12 dholland { \
733 1.12 dholland if (fs->lfs_is64) { \
734 1.12 dholland type *p = &fip->u_64.fi_##field; \
735 1.12 dholland (void)p; \
736 1.12 dholland fip->u_64.fi_##field = val; \
737 1.12 dholland } else { \
738 1.12 dholland type32 *p = &fip->u_32.fi_##field; \
739 1.12 dholland (void)p; \
740 1.12 dholland fip->u_32.fi_##field = val; \
741 1.12 dholland } \
742 1.12 dholland } \
743 1.12 dholland
744 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
745 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
746 1.12 dholland LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
747 1.12 dholland LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
748 1.12 dholland
749 1.42 christos static __inline daddr_t
750 1.43 riastrad lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
751 1.12 dholland {
752 1.12 dholland void *firstblock;
753 1.12 dholland
754 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
755 1.43 riastrad KASSERT(idx < lfs_fi_getnblocks(fs, fip));
756 1.12 dholland if (fs->lfs_is64) {
757 1.43 riastrad return ((int64_t *)firstblock)[idx];
758 1.12 dholland } else {
759 1.43 riastrad return ((int32_t *)firstblock)[idx];
760 1.12 dholland }
761 1.12 dholland }
762 1.12 dholland
763 1.42 christos static __inline void
764 1.43 riastrad lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
765 1.12 dholland {
766 1.12 dholland void *firstblock;
767 1.12 dholland
768 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
769 1.43 riastrad KASSERT(idx < lfs_fi_getnblocks(fs, fip));
770 1.12 dholland if (fs->lfs_is64) {
771 1.43 riastrad ((int64_t *)firstblock)[idx] = blk;
772 1.12 dholland } else {
773 1.43 riastrad ((int32_t *)firstblock)[idx] = blk;
774 1.12 dholland }
775 1.12 dholland }
776 1.12 dholland
777 1.11 dholland /*
778 1.34 dholland * inode info entries (in the segment summary)
779 1.34 dholland */
780 1.34 dholland
781 1.34 dholland #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
782 1.34 dholland
783 1.34 dholland /* iinfos scroll backward from the end of the segment summary block */
784 1.34 dholland #define SEGSUM_IINFOSTART(fs, buf) \
785 1.34 dholland ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
786 1.34 dholland
787 1.34 dholland #define NEXTLOWER_IINFO(fs, iip) \
788 1.34 dholland ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
789 1.34 dholland
790 1.35 dholland #define NTH_IINFO(fs, buf, n) \
791 1.35 dholland ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
792 1.35 dholland
793 1.42 christos static __inline uint64_t
794 1.34 dholland lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
795 1.34 dholland {
796 1.34 dholland if (fs->lfs_is64) {
797 1.34 dholland return iip->u_64.ii_block;
798 1.34 dholland } else {
799 1.34 dholland return iip->u_32.ii_block;
800 1.34 dholland }
801 1.34 dholland }
802 1.34 dholland
803 1.42 christos static __inline void
804 1.34 dholland lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
805 1.34 dholland {
806 1.34 dholland if (fs->lfs_is64) {
807 1.34 dholland iip->u_64.ii_block = block;
808 1.34 dholland } else {
809 1.34 dholland iip->u_32.ii_block = block;
810 1.34 dholland }
811 1.34 dholland }
812 1.34 dholland
813 1.34 dholland /*
814 1.1 dholland * Index file inode entries.
815 1.1 dholland */
816 1.1 dholland
817 1.33 dholland #define IFILE_ENTRYSIZE(fs) \
818 1.33 dholland ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
819 1.33 dholland
820 1.1 dholland /*
821 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it
822 1.1 dholland * may not be mapped!
823 1.1 dholland */
824 1.1 dholland /* Read in the block with a specific inode from the ifile. */
825 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \
826 1.1 dholland int _e; \
827 1.1 dholland SHARE_IFLOCK(F); \
828 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
829 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
830 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
831 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
832 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
833 1.10 dholland if ((F)->lfs_is64) { \
834 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
835 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
836 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \
837 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
838 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
839 1.10 dholland } else { \
840 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
841 1.1 dholland (IN) % lfs_sb_getifpb(F)); \
842 1.10 dholland } \
843 1.1 dholland UNSHARE_IFLOCK(F); \
844 1.1 dholland } while (0)
845 1.15 mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
846 1.15 mlelstv if ((F)->lfs_is64) { \
847 1.15 mlelstv (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
848 1.15 mlelstv } else if (lfs_sb_getversion(F) > 1) { \
849 1.15 mlelstv (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
850 1.15 mlelstv } else { \
851 1.15 mlelstv (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
852 1.15 mlelstv } \
853 1.15 mlelstv } while (0)
854 1.1 dholland
855 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
856 1.42 christos static __inline type \
857 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
858 1.10 dholland { \
859 1.10 dholland if (fs->lfs_is64) { \
860 1.10 dholland return ifp->u_64.if_##field; \
861 1.10 dholland } else { \
862 1.10 dholland return ifp->u_32.if_##field; \
863 1.10 dholland } \
864 1.10 dholland } \
865 1.42 christos static __inline void \
866 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
867 1.10 dholland { \
868 1.10 dholland if (fs->lfs_is64) { \
869 1.10 dholland type *p = &ifp->u_64.if_##field; \
870 1.10 dholland (void)p; \
871 1.10 dholland ifp->u_64.if_##field = val; \
872 1.10 dholland } else { \
873 1.10 dholland type32 *p = &ifp->u_32.if_##field; \
874 1.10 dholland (void)p; \
875 1.10 dholland ifp->u_32.if_##field = val; \
876 1.10 dholland } \
877 1.10 dholland } \
878 1.10 dholland
879 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
880 1.10 dholland LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
881 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
882 1.32 dholland LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
883 1.10 dholland LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
884 1.10 dholland
885 1.1 dholland /*
886 1.1 dholland * Cleaner information structure. This resides in the ifile and is used
887 1.1 dholland * to pass information from the kernel to the cleaner.
888 1.1 dholland */
889 1.1 dholland
890 1.1 dholland #define CLEANSIZE_SU(fs) \
891 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
892 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
893 1.9 dholland
894 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
895 1.42 christos static __inline type \
896 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
897 1.9 dholland { \
898 1.9 dholland if (fs->lfs_is64) { \
899 1.9 dholland return cip->u_64.field; \
900 1.9 dholland } else { \
901 1.9 dholland return cip->u_32.field; \
902 1.9 dholland } \
903 1.9 dholland } \
904 1.42 christos static __inline void \
905 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
906 1.9 dholland { \
907 1.9 dholland if (fs->lfs_is64) { \
908 1.9 dholland type *p = &cip->u_64.field; \
909 1.9 dholland (void)p; \
910 1.9 dholland cip->u_64.field = val; \
911 1.9 dholland } else { \
912 1.9 dholland type32 *p = &cip->u_32.field; \
913 1.9 dholland (void)p; \
914 1.9 dholland cip->u_32.field = val; \
915 1.9 dholland } \
916 1.9 dholland } \
917 1.9 dholland
918 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
919 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
920 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
921 1.9 dholland LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
922 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
923 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
924 1.9 dholland LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
925 1.9 dholland
926 1.42 christos static __inline void
927 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
928 1.9 dholland {
929 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
930 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
931 1.9 dholland }
932 1.9 dholland
933 1.42 christos static __inline void
934 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
935 1.9 dholland {
936 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
937 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
938 1.9 dholland }
939 1.1 dholland
940 1.1 dholland /* Read in the block with the cleaner info from the ifile. */
941 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \
942 1.39 dholland int _e; \
943 1.1 dholland SHARE_IFLOCK(F); \
944 1.1 dholland VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
945 1.39 dholland _e = bread((F)->lfs_ivnode, \
946 1.39 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \
947 1.39 dholland if (_e) \
948 1.39 dholland panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \
949 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \
950 1.1 dholland UNSHARE_IFLOCK(F); \
951 1.1 dholland } while (0)
952 1.1 dholland
953 1.1 dholland /*
954 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree.
955 1.1 dholland */
956 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
957 1.1 dholland mutex_enter(&lfs_lock); \
958 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
959 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
960 1.1 dholland fs->lfs_favail) { \
961 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
962 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
963 1.9 dholland fs->lfs_favail); \
964 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \
965 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \
966 1.1 dholland } \
967 1.1 dholland mutex_exit(&lfs_lock); \
968 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
969 1.1 dholland } else { \
970 1.1 dholland mutex_exit(&lfs_lock); \
971 1.1 dholland brelse(bp, 0); \
972 1.1 dholland } \
973 1.1 dholland } while (0)
974 1.1 dholland
975 1.1 dholland /*
976 1.1 dholland * Get the head of the inode free list.
977 1.1 dholland * Always called with the segment lock held.
978 1.1 dholland */
979 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
980 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
981 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
982 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
983 1.1 dholland brelse(BP, 0); \
984 1.1 dholland } \
985 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \
986 1.1 dholland } while (0)
987 1.1 dholland
988 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
989 1.1 dholland lfs_sb_setfreehd(FS, VAL); \
990 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
991 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
992 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \
993 1.1 dholland LFS_BWRITE_LOG(BP); \
994 1.1 dholland mutex_enter(&lfs_lock); \
995 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
996 1.1 dholland mutex_exit(&lfs_lock); \
997 1.1 dholland } \
998 1.1 dholland } while (0)
999 1.1 dholland
1000 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
1001 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
1002 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
1003 1.1 dholland brelse(BP, 0); \
1004 1.1 dholland } while (0)
1005 1.1 dholland
1006 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
1007 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
1008 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \
1009 1.1 dholland LFS_BWRITE_LOG(BP); \
1010 1.1 dholland mutex_enter(&lfs_lock); \
1011 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
1012 1.1 dholland mutex_exit(&lfs_lock); \
1013 1.1 dholland } while (0)
1014 1.1 dholland
1015 1.1 dholland /*
1016 1.1 dholland * On-disk segment summary information
1017 1.1 dholland */
1018 1.1 dholland
1019 1.11 dholland #define SEGSUM_SIZE(fs) \
1020 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1021 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1022 1.11 dholland
1023 1.11 dholland /*
1024 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer
1025 1.11 dholland * to the first FINFO.
1026 1.11 dholland *
1027 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted.
1028 1.11 dholland */
1029 1.11 dholland #if 0
1030 1.42 christos static __inline FINFO *
1031 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1032 1.11 dholland {
1033 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1034 1.11 dholland }
1035 1.11 dholland #else
1036 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \
1037 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1038 1.11 dholland #endif
1039 1.11 dholland
1040 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1041 1.42 christos static __inline type \
1042 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
1043 1.11 dholland { \
1044 1.11 dholland if (fs->lfs_is64) { \
1045 1.11 dholland return ssp->u_64.ss_##field; \
1046 1.11 dholland } else { \
1047 1.11 dholland return ssp->u_32.ss_##field; \
1048 1.11 dholland } \
1049 1.11 dholland } \
1050 1.42 christos static __inline void \
1051 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1052 1.11 dholland { \
1053 1.11 dholland if (fs->lfs_is64) { \
1054 1.11 dholland type *p = &ssp->u_64.ss_##field; \
1055 1.11 dholland (void)p; \
1056 1.11 dholland ssp->u_64.ss_##field = val; \
1057 1.11 dholland } else { \
1058 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \
1059 1.11 dholland (void)p; \
1060 1.11 dholland ssp->u_32.ss_##field = val; \
1061 1.11 dholland } \
1062 1.11 dholland } \
1063 1.11 dholland
1064 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1065 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1066 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1067 1.11 dholland LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1068 1.11 dholland LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1069 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1070 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1071 1.11 dholland LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1072 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1073 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1074 1.11 dholland LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1075 1.11 dholland
1076 1.42 christos static __inline size_t
1077 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
1078 1.11 dholland {
1079 1.11 dholland /* These are actually all the same. */
1080 1.11 dholland if (fs->lfs_is64) {
1081 1.11 dholland return offsetof(SEGSUM64, ss_datasum);
1082 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ {
1083 1.11 dholland return offsetof(SEGSUM32, ss_datasum);
1084 1.11 dholland } /* else {
1085 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum);
1086 1.11 dholland } */
1087 1.11 dholland /*
1088 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1089 1.11 dholland * defined yet.
1090 1.11 dholland */
1091 1.11 dholland }
1092 1.11 dholland
1093 1.42 christos static __inline uint32_t
1094 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1095 1.11 dholland {
1096 1.11 dholland KASSERT(fs->lfs_is64 == 0);
1097 1.11 dholland /* XXX need to resort this file before we can do this */
1098 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
1099 1.11 dholland
1100 1.11 dholland return ssp->u_v1.ss_create;
1101 1.11 dholland }
1102 1.11 dholland
1103 1.42 christos static __inline void
1104 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1105 1.11 dholland {
1106 1.11 dholland KASSERT(fs->lfs_is64 == 0);
1107 1.11 dholland /* XXX need to resort this file before we can do this */
1108 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
1109 1.11 dholland
1110 1.11 dholland ssp->u_v1.ss_create = val;
1111 1.11 dholland }
1112 1.11 dholland
1113 1.1 dholland
1114 1.1 dholland /*
1115 1.1 dholland * Super block.
1116 1.1 dholland */
1117 1.1 dholland
1118 1.1 dholland /*
1119 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp.
1120 1.1 dholland */
1121 1.1 dholland
1122 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1123 1.42 christos static __inline type \
1124 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
1125 1.1 dholland { \
1126 1.7 dholland if (fs->lfs_is64) { \
1127 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1128 1.7 dholland } else { \
1129 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1130 1.7 dholland } \
1131 1.1 dholland } \
1132 1.42 christos static __inline void \
1133 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1134 1.1 dholland { \
1135 1.7 dholland if (fs->lfs_is64) { \
1136 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1137 1.7 dholland } else { \
1138 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1139 1.7 dholland } \
1140 1.1 dholland } \
1141 1.42 christos static __inline void \
1142 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1143 1.1 dholland { \
1144 1.7 dholland if (fs->lfs_is64) { \
1145 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1146 1.7 dholland *p64 += val; \
1147 1.7 dholland } else { \
1148 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1149 1.7 dholland *p32 += val; \
1150 1.7 dholland } \
1151 1.1 dholland } \
1152 1.42 christos static __inline void \
1153 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1154 1.1 dholland { \
1155 1.7 dholland if (fs->lfs_is64) { \
1156 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1157 1.7 dholland *p64 -= val; \
1158 1.7 dholland } else { \
1159 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1160 1.7 dholland *p32 -= val; \
1161 1.7 dholland } \
1162 1.1 dholland }
1163 1.1 dholland
1164 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1165 1.3 dholland
1166 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1167 1.42 christos static __inline type \
1168 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
1169 1.7 dholland { \
1170 1.7 dholland if (fs->lfs_is64) { \
1171 1.7 dholland return val64; \
1172 1.7 dholland } else { \
1173 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1174 1.7 dholland } \
1175 1.7 dholland }
1176 1.7 dholland
1177 1.6 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1178 1.3 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1179 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1180 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1181 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1182 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1183 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1184 1.18 dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1185 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1186 1.18 dholland LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1187 1.4 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1188 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1189 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1190 1.19 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1191 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1192 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1193 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1194 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1195 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1196 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1197 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1198 1.1 dholland LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1199 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1200 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1201 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1202 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1203 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1204 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1205 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1206 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1207 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1208 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1209 1.7 dholland LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1210 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1211 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1212 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1213 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1214 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1215 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1216 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1217 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1218 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1219 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1220 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1221 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1222 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1223 1.1 dholland LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1224 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1225 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1226 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1227 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1228 1.5 dholland LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1229 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1230 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1231 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1232 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1233 1.1 dholland LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1234 1.1 dholland
1235 1.1 dholland /* special-case accessors */
1236 1.1 dholland
1237 1.1 dholland /*
1238 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf
1239 1.1 dholland */
1240 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1241 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1242 1.1 dholland
1243 1.1 dholland /*
1244 1.1 dholland * lfs_sboffs is an array
1245 1.1 dholland */
1246 1.42 christos static __inline int32_t
1247 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1248 1.1 dholland {
1249 1.1 dholland #ifdef KASSERT /* ugh */
1250 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1251 1.1 dholland #endif
1252 1.7 dholland if (fs->lfs_is64) {
1253 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1254 1.7 dholland } else {
1255 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1256 1.7 dholland }
1257 1.1 dholland }
1258 1.42 christos static __inline void
1259 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1260 1.1 dholland {
1261 1.1 dholland #ifdef KASSERT /* ugh */
1262 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1263 1.1 dholland #endif
1264 1.7 dholland if (fs->lfs_is64) {
1265 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1266 1.7 dholland } else {
1267 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1268 1.7 dholland }
1269 1.1 dholland }
1270 1.1 dholland
1271 1.1 dholland /*
1272 1.1 dholland * lfs_fsmnt is a string
1273 1.1 dholland */
1274 1.42 christos static __inline const char *
1275 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
1276 1.1 dholland {
1277 1.7 dholland if (fs->lfs_is64) {
1278 1.44 riastrad return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1279 1.7 dholland } else {
1280 1.44 riastrad return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1281 1.7 dholland }
1282 1.7 dholland }
1283 1.7 dholland
1284 1.42 christos static __inline void
1285 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1286 1.7 dholland {
1287 1.7 dholland if (fs->lfs_is64) {
1288 1.44 riastrad (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1289 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1290 1.7 dholland } else {
1291 1.44 riastrad (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1292 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1293 1.7 dholland }
1294 1.1 dholland }
1295 1.1 dholland
1296 1.8 dholland /* Highest addressable fsb */
1297 1.8 dholland #define LFS_MAX_DADDR(fs) \
1298 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1299 1.8 dholland
1300 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */
1301 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1302 1.1 dholland
1303 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
1304 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1305 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */
1306 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1307 1.1 dholland
1308 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1309 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1310 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs)))
1311 1.1 dholland
1312 1.4 dholland /* XXX: lowercase these as they're no longer macros */
1313 1.4 dholland /* Frags to diskblocks */
1314 1.42 christos static __inline uint64_t
1315 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1316 1.4 dholland {
1317 1.1 dholland #if defined(_KERNEL)
1318 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1319 1.1 dholland #else
1320 1.4 dholland return b << lfs_sb_getfsbtodb(fs);
1321 1.1 dholland #endif
1322 1.4 dholland }
1323 1.4 dholland /* Diskblocks to frags */
1324 1.42 christos static __inline uint64_t
1325 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1326 1.4 dholland {
1327 1.4 dholland #if defined(_KERNEL)
1328 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1329 1.4 dholland #else
1330 1.4 dholland return b >> lfs_sb_getfsbtodb(fs);
1331 1.4 dholland #endif
1332 1.4 dholland }
1333 1.1 dholland
1334 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1335 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1336 1.1 dholland
1337 1.4 dholland /* Frags to bytes */
1338 1.42 christos static __inline uint64_t
1339 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1340 1.4 dholland {
1341 1.4 dholland return b << lfs_sb_getffshift(fs);
1342 1.4 dholland }
1343 1.4 dholland /* Bytes to frags */
1344 1.42 christos static __inline uint64_t
1345 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1346 1.4 dholland {
1347 1.4 dholland return b >> lfs_sb_getffshift(fs);
1348 1.4 dholland }
1349 1.1 dholland
1350 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1351 1.1 dholland ((loc) >> lfs_sb_getffshift(fs))
1352 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1353 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1354 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1355 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1356 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1357 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs))
1358 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1359 1.1 dholland ((blks) << lfs_sb_getfbshift(fs))
1360 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1361 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1))
1362 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1363 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1))
1364 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \
1365 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1366 1.1 dholland ? lfs_sb_getbsize(fs) \
1367 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1368 1.1 dholland
1369 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1370 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1371 1.1 dholland lfs_sb_getssize(fs))
1372 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */
1373 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1374 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1375 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1376 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1377 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1378 1.1 dholland
1379 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */
1380 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_
1381 1.42 christos static __inline uint32_t
1382 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1383 1.4 dholland {
1384 1.16 dholland if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1385 1.4 dholland return lfs_sb_getbsize(fs);
1386 1.4 dholland } else {
1387 1.16 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1388 1.4 dholland }
1389 1.4 dholland }
1390 1.4 dholland #endif
1391 1.4 dholland
1392 1.12 dholland /*
1393 1.12 dholland * union lfs_blocks
1394 1.12 dholland */
1395 1.12 dholland
1396 1.42 christos static __inline void
1397 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1398 1.12 dholland {
1399 1.12 dholland if (fs->lfs_is64) {
1400 1.12 dholland bp->b64 = p;
1401 1.12 dholland } else {
1402 1.12 dholland bp->b32 = p;
1403 1.12 dholland }
1404 1.12 dholland }
1405 1.12 dholland
1406 1.42 christos static __inline void
1407 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1408 1.12 dholland {
1409 1.12 dholland void *firstblock;
1410 1.12 dholland
1411 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
1412 1.12 dholland if (fs->lfs_is64) {
1413 1.12 dholland bp->b64 = (int64_t *)firstblock;
1414 1.12 dholland } else {
1415 1.12 dholland bp->b32 = (int32_t *)firstblock;
1416 1.12 dholland }
1417 1.12 dholland }
1418 1.12 dholland
1419 1.42 christos static __inline daddr_t
1420 1.43 riastrad lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
1421 1.12 dholland {
1422 1.12 dholland if (fs->lfs_is64) {
1423 1.43 riastrad return bp->b64[idx];
1424 1.12 dholland } else {
1425 1.43 riastrad return bp->b32[idx];
1426 1.12 dholland }
1427 1.12 dholland }
1428 1.12 dholland
1429 1.42 christos static __inline void
1430 1.43 riastrad lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
1431 1.12 dholland {
1432 1.12 dholland if (fs->lfs_is64) {
1433 1.43 riastrad bp->b64[idx] = val;
1434 1.12 dholland } else {
1435 1.43 riastrad bp->b32[idx] = val;
1436 1.12 dholland }
1437 1.12 dholland }
1438 1.12 dholland
1439 1.42 christos static __inline void
1440 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1441 1.12 dholland {
1442 1.12 dholland if (fs->lfs_is64) {
1443 1.12 dholland bp->b64++;
1444 1.12 dholland } else {
1445 1.12 dholland bp->b32++;
1446 1.12 dholland }
1447 1.12 dholland }
1448 1.12 dholland
1449 1.42 christos static __inline int
1450 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1451 1.12 dholland {
1452 1.12 dholland if (fs->lfs_is64) {
1453 1.12 dholland return bp1->b64 == bp2->b64;
1454 1.12 dholland } else {
1455 1.12 dholland return bp1->b32 == bp2->b32;
1456 1.12 dholland }
1457 1.12 dholland }
1458 1.12 dholland
1459 1.42 christos static __inline int
1460 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1461 1.12 dholland {
1462 1.12 dholland /* (remember that the pointers are typed) */
1463 1.12 dholland if (fs->lfs_is64) {
1464 1.12 dholland return bp1->b64 - bp2->b64;
1465 1.12 dholland } else {
1466 1.12 dholland return bp1->b32 - bp2->b32;
1467 1.12 dholland }
1468 1.12 dholland }
1469 1.12 dholland
1470 1.12 dholland /*
1471 1.12 dholland * struct segment
1472 1.12 dholland */
1473 1.12 dholland
1474 1.4 dholland
1475 1.1 dholland /*
1476 1.1 dholland * Macros for determining free space on the disk, with the variable metadata
1477 1.1 dholland * of segment summaries and inode blocks taken into account.
1478 1.1 dholland */
1479 1.1 dholland /*
1480 1.1 dholland * Estimate number of clean blocks not available for writing because
1481 1.1 dholland * they will contain metadata or overhead. This is calculated as
1482 1.1 dholland *
1483 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T
1484 1.1 dholland * or more simply
1485 1.1 dholland * E = (C * M) / T
1486 1.1 dholland *
1487 1.1 dholland * where
1488 1.1 dholland * C is the clean space,
1489 1.1 dholland * D is the dirty space,
1490 1.1 dholland * M is the dirty metadata, and
1491 1.1 dholland * T = C + D is the total space on disk.
1492 1.1 dholland *
1493 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T,
1494 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small.
1495 1.1 dholland */
1496 1.33 dholland #define LFS_EST_CMETA(F) (( \
1497 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1498 1.1 dholland (lfs_sb_getnseg(F))))
1499 1.1 dholland
1500 1.1 dholland /* Estimate total size of the disk not including metadata */
1501 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1502 1.1 dholland
1503 1.1 dholland /* Estimate number of blocks actually available for writing */
1504 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1505 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1506 1.1 dholland
1507 1.1 dholland /* Amount of non-meta space not available to mortal man */
1508 1.33 dholland #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
1509 1.1 dholland (u_int64_t)lfs_sb_getminfree(F)) / \
1510 1.1 dholland 100)
1511 1.1 dholland
1512 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1513 1.1 dholland #define ISSPACE(F, BB, C) \
1514 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1515 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \
1516 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1517 1.1 dholland
1518 1.1 dholland /* Can an ordinary user write BB blocks */
1519 1.1 dholland #define IS_FREESPACE(F, BB) \
1520 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1521 1.1 dholland
1522 1.1 dholland /*
1523 1.1 dholland * The minimum number of blocks to create a new inode. This is:
1524 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1525 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1526 1.1 dholland */
1527 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1528 1.1 dholland
1529 1.1 dholland
1530 1.1 dholland
1531 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1532