lfs_accessors.h revision 1.52 1 1.52 perseant /* $NetBSD: lfs_accessors.h,v 1.52 2025/09/15 04:14:59 perseant Exp $ */
2 1.1 dholland
3 1.1 dholland /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 1.46 dholland /* from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp */
5 1.45 dholland /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */
6 1.1 dholland
7 1.1 dholland /*-
8 1.1 dholland * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 1.1 dholland * All rights reserved.
10 1.1 dholland *
11 1.1 dholland * This code is derived from software contributed to The NetBSD Foundation
12 1.1 dholland * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 1.1 dholland *
14 1.1 dholland * Redistribution and use in source and binary forms, with or without
15 1.1 dholland * modification, are permitted provided that the following conditions
16 1.1 dholland * are met:
17 1.1 dholland * 1. Redistributions of source code must retain the above copyright
18 1.1 dholland * notice, this list of conditions and the following disclaimer.
19 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 dholland * notice, this list of conditions and the following disclaimer in the
21 1.1 dholland * documentation and/or other materials provided with the distribution.
22 1.1 dholland *
23 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 dholland * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 dholland * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 dholland * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 dholland * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 dholland * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 dholland * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 dholland * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 dholland * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dholland * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dholland * POSSIBILITY OF SUCH DAMAGE.
34 1.1 dholland */
35 1.1 dholland /*-
36 1.1 dholland * Copyright (c) 1991, 1993
37 1.1 dholland * The Regents of the University of California. All rights reserved.
38 1.1 dholland *
39 1.1 dholland * Redistribution and use in source and binary forms, with or without
40 1.1 dholland * modification, are permitted provided that the following conditions
41 1.1 dholland * are met:
42 1.1 dholland * 1. Redistributions of source code must retain the above copyright
43 1.1 dholland * notice, this list of conditions and the following disclaimer.
44 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 dholland * notice, this list of conditions and the following disclaimer in the
46 1.1 dholland * documentation and/or other materials provided with the distribution.
47 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
48 1.1 dholland * may be used to endorse or promote products derived from this software
49 1.1 dholland * without specific prior written permission.
50 1.1 dholland *
51 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 dholland * SUCH DAMAGE.
62 1.1 dholland *
63 1.1 dholland * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 1.1 dholland */
65 1.1 dholland /*
66 1.1 dholland * Copyright (c) 2002 Networks Associates Technology, Inc.
67 1.1 dholland * All rights reserved.
68 1.1 dholland *
69 1.1 dholland * This software was developed for the FreeBSD Project by Marshall
70 1.1 dholland * Kirk McKusick and Network Associates Laboratories, the Security
71 1.1 dholland * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 1.1 dholland * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 1.1 dholland * research program
74 1.1 dholland *
75 1.1 dholland * Copyright (c) 1982, 1989, 1993
76 1.1 dholland * The Regents of the University of California. All rights reserved.
77 1.1 dholland * (c) UNIX System Laboratories, Inc.
78 1.1 dholland * All or some portions of this file are derived from material licensed
79 1.1 dholland * to the University of California by American Telephone and Telegraph
80 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 1.1 dholland * the permission of UNIX System Laboratories, Inc.
82 1.1 dholland *
83 1.1 dholland * Redistribution and use in source and binary forms, with or without
84 1.1 dholland * modification, are permitted provided that the following conditions
85 1.1 dholland * are met:
86 1.1 dholland * 1. Redistributions of source code must retain the above copyright
87 1.1 dholland * notice, this list of conditions and the following disclaimer.
88 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
89 1.1 dholland * notice, this list of conditions and the following disclaimer in the
90 1.1 dholland * documentation and/or other materials provided with the distribution.
91 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
92 1.1 dholland * may be used to endorse or promote products derived from this software
93 1.1 dholland * without specific prior written permission.
94 1.1 dholland *
95 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 1.1 dholland * SUCH DAMAGE.
106 1.1 dholland *
107 1.1 dholland * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 1.1 dholland */
109 1.1 dholland /*
110 1.1 dholland * Copyright (c) 1982, 1986, 1989, 1993
111 1.1 dholland * The Regents of the University of California. All rights reserved.
112 1.1 dholland * (c) UNIX System Laboratories, Inc.
113 1.1 dholland * All or some portions of this file are derived from material licensed
114 1.1 dholland * to the University of California by American Telephone and Telegraph
115 1.1 dholland * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 1.1 dholland * the permission of UNIX System Laboratories, Inc.
117 1.1 dholland *
118 1.1 dholland * Redistribution and use in source and binary forms, with or without
119 1.1 dholland * modification, are permitted provided that the following conditions
120 1.1 dholland * are met:
121 1.1 dholland * 1. Redistributions of source code must retain the above copyright
122 1.1 dholland * notice, this list of conditions and the following disclaimer.
123 1.1 dholland * 2. Redistributions in binary form must reproduce the above copyright
124 1.1 dholland * notice, this list of conditions and the following disclaimer in the
125 1.1 dholland * documentation and/or other materials provided with the distribution.
126 1.1 dholland * 3. Neither the name of the University nor the names of its contributors
127 1.1 dholland * may be used to endorse or promote products derived from this software
128 1.1 dholland * without specific prior written permission.
129 1.1 dholland *
130 1.1 dholland * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 1.1 dholland * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 1.1 dholland * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 1.1 dholland * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 1.1 dholland * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 1.1 dholland * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 1.1 dholland * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 1.1 dholland * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 1.1 dholland * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 1.1 dholland * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 1.1 dholland * SUCH DAMAGE.
141 1.1 dholland *
142 1.1 dholland * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 1.1 dholland */
144 1.1 dholland
145 1.1 dholland #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 1.1 dholland #define _UFS_LFS_LFS_ACCESSORS_H_
147 1.1 dholland
148 1.17 dholland #if defined(_KERNEL_OPT)
149 1.17 dholland #include "opt_lfs.h"
150 1.17 dholland #endif
151 1.17 dholland
152 1.17 dholland #include <sys/bswap.h>
153 1.17 dholland
154 1.43 riastrad #include <ufs/lfs/lfs.h>
155 1.43 riastrad
156 1.11 dholland #if !defined(_KERNEL) && !defined(_STANDALONE)
157 1.11 dholland #include <assert.h>
158 1.43 riastrad #include <string.h>
159 1.11 dholland #define KASSERT assert
160 1.43 riastrad #else
161 1.43 riastrad #include <sys/systm.h>
162 1.11 dholland #endif
163 1.11 dholland
164 1.1 dholland /*
165 1.9 dholland * STRUCT_LFS is used by the libsa code to get accessors that work
166 1.9 dholland * with struct salfs instead of struct lfs, and by the cleaner to
167 1.9 dholland * get accessors that work with struct clfs.
168 1.9 dholland */
169 1.9 dholland
170 1.9 dholland #ifndef STRUCT_LFS
171 1.9 dholland #define STRUCT_LFS struct lfs
172 1.9 dholland #endif
173 1.9 dholland
174 1.13 dholland /*
175 1.17 dholland * byte order
176 1.17 dholland */
177 1.17 dholland
178 1.17 dholland /*
179 1.17 dholland * For now at least, the bootblocks shall not be endian-independent.
180 1.17 dholland * We can see later if it fits in the size budget. Also disable the
181 1.17 dholland * byteswapping if LFS_EI is off.
182 1.17 dholland *
183 1.17 dholland * Caution: these functions "know" that bswap16/32/64 are unsigned,
184 1.17 dholland * and if that changes will likely break silently.
185 1.17 dholland */
186 1.17 dholland
187 1.17 dholland #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
188 1.17 dholland #define LFS_SWAP_int16_t(fs, val) (val)
189 1.17 dholland #define LFS_SWAP_int32_t(fs, val) (val)
190 1.17 dholland #define LFS_SWAP_int64_t(fs, val) (val)
191 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) (val)
192 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) (val)
193 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) (val)
194 1.17 dholland #else
195 1.17 dholland #define LFS_SWAP_int16_t(fs, val) \
196 1.17 dholland ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
197 1.17 dholland #define LFS_SWAP_int32_t(fs, val) \
198 1.17 dholland ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
199 1.17 dholland #define LFS_SWAP_int64_t(fs, val) \
200 1.17 dholland ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
201 1.17 dholland #define LFS_SWAP_uint16_t(fs, val) \
202 1.17 dholland ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
203 1.17 dholland #define LFS_SWAP_uint32_t(fs, val) \
204 1.17 dholland ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
205 1.17 dholland #define LFS_SWAP_uint64_t(fs, val) \
206 1.17 dholland ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
207 1.17 dholland #endif
208 1.17 dholland
209 1.17 dholland /*
210 1.22 dholland * For handling directories we will need to know if the volume is
211 1.22 dholland * little-endian.
212 1.22 dholland */
213 1.22 dholland #if BYTE_ORDER == LITTLE_ENDIAN
214 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
215 1.22 dholland #else
216 1.22 dholland #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
217 1.22 dholland #endif
218 1.22 dholland
219 1.22 dholland
220 1.22 dholland /*
221 1.50 riastrad * Suppress spurious warnings -- we use
222 1.50 riastrad *
223 1.50 riastrad * type *foo = &obj->member;
224 1.50 riastrad *
225 1.50 riastrad * in macros to verify that obj->member has the right type. When the
226 1.50 riastrad * object is a packed structure with misaligned members, this causes
227 1.50 riastrad * some compiles to squeal that taking the address might lead to
228 1.50 riastrad * undefined behaviour later on -- which is helpful in general, not
229 1.50 riastrad * relevant in this case, because we don't do anything with foo
230 1.50 riastrad * afterward; we only declare it to get a type check and then we
231 1.50 riastrad * discard it.
232 1.50 riastrad */
233 1.50 riastrad #ifdef __GNUC__
234 1.50 riastrad #if defined(__clang__)
235 1.50 riastrad #pragma clang diagnostic push
236 1.50 riastrad #pragma clang diagnostic ignored "-Waddress-of-packed-member"
237 1.50 riastrad #elif __GNUC_PREREQ__(9,0)
238 1.50 riastrad #pragma GCC diagnostic push
239 1.50 riastrad #pragma GCC diagnostic ignored "-Waddress-of-packed-member"
240 1.50 riastrad #endif
241 1.50 riastrad #endif
242 1.50 riastrad
243 1.50 riastrad
244 1.50 riastrad
245 1.50 riastrad /*
246 1.22 dholland * directories
247 1.22 dholland */
248 1.22 dholland
249 1.31 dholland #define LFS_DIRHEADERSIZE(fs) \
250 1.31 dholland ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
251 1.31 dholland
252 1.22 dholland /*
253 1.22 dholland * The LFS_DIRSIZ macro gives the minimum record length which will hold
254 1.22 dholland * the directory entry. This requires the amount of space in struct lfs_direct
255 1.22 dholland * without the d_name field, plus enough space for the name with a terminating
256 1.22 dholland * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
257 1.22 dholland */
258 1.30 dholland #define LFS_DIRECTSIZ(fs, namlen) \
259 1.31 dholland (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
260 1.22 dholland
261 1.30 dholland /*
262 1.30 dholland * The size of the largest possible directory entry. This is
263 1.30 dholland * used by ulfs_dirhash to figure the size of an array, so we
264 1.30 dholland * need a single constant value true for both lfs32 and lfs64.
265 1.30 dholland */
266 1.30 dholland #define LFS_MAXDIRENTRYSIZE \
267 1.31 dholland (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
268 1.30 dholland
269 1.22 dholland #if (BYTE_ORDER == LITTLE_ENDIAN)
270 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
271 1.22 dholland (((oldfmt) && !(needswap)) ? \
272 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
273 1.22 dholland #else
274 1.22 dholland #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
275 1.22 dholland (((oldfmt) && (needswap)) ? \
276 1.22 dholland LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
277 1.22 dholland #endif
278 1.22 dholland
279 1.30 dholland #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
280 1.22 dholland
281 1.22 dholland /* Constants for the first argument of LFS_OLDDIRSIZ */
282 1.22 dholland #define LFS_OLDDIRFMT 1
283 1.22 dholland #define LFS_NEWDIRFMT 0
284 1.22 dholland
285 1.23 dholland #define LFS_NEXTDIR(fs, dp) \
286 1.31 dholland ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
287 1.23 dholland
288 1.42 christos static __inline char *
289 1.31 dholland lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
290 1.26 dholland {
291 1.31 dholland if (fs->lfs_is64) {
292 1.31 dholland return (char *)(&dh->u_64 + 1);
293 1.31 dholland } else {
294 1.31 dholland return (char *)(&dh->u_32 + 1);
295 1.31 dholland }
296 1.26 dholland }
297 1.26 dholland
298 1.42 christos static __inline uint64_t
299 1.31 dholland lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
300 1.23 dholland {
301 1.31 dholland if (fs->lfs_is64) {
302 1.49 riastrad return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino);
303 1.31 dholland } else {
304 1.31 dholland return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
305 1.31 dholland }
306 1.23 dholland }
307 1.23 dholland
308 1.42 christos static __inline uint16_t
309 1.31 dholland lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
310 1.23 dholland {
311 1.31 dholland if (fs->lfs_is64) {
312 1.31 dholland return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
313 1.31 dholland } else {
314 1.31 dholland return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
315 1.31 dholland }
316 1.23 dholland }
317 1.23 dholland
318 1.42 christos static __inline uint8_t
319 1.31 dholland lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
320 1.22 dholland {
321 1.31 dholland if (fs->lfs_is64) {
322 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
323 1.31 dholland return dh->u_64.dh_type;
324 1.31 dholland } else if (fs->lfs_hasolddirfmt) {
325 1.22 dholland return LFS_DT_UNKNOWN;
326 1.31 dholland } else {
327 1.31 dholland return dh->u_32.dh_type;
328 1.22 dholland }
329 1.22 dholland }
330 1.22 dholland
331 1.42 christos static __inline uint8_t
332 1.31 dholland lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
333 1.22 dholland {
334 1.31 dholland if (fs->lfs_is64) {
335 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
336 1.40 dholland return dh->u_64.dh_namlen;
337 1.31 dholland } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
338 1.22 dholland /* low-order byte of old 16-bit namlen field */
339 1.31 dholland return dh->u_32.dh_type;
340 1.31 dholland } else {
341 1.31 dholland return dh->u_32.dh_namlen;
342 1.22 dholland }
343 1.22 dholland }
344 1.22 dholland
345 1.42 christos static __inline void
346 1.31 dholland lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
347 1.23 dholland {
348 1.31 dholland if (fs->lfs_is64) {
349 1.49 riastrad dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino);
350 1.31 dholland } else {
351 1.31 dholland dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
352 1.31 dholland }
353 1.23 dholland }
354 1.23 dholland
355 1.42 christos static __inline void
356 1.31 dholland lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
357 1.23 dholland {
358 1.31 dholland if (fs->lfs_is64) {
359 1.31 dholland dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
360 1.31 dholland } else {
361 1.31 dholland dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
362 1.31 dholland }
363 1.23 dholland }
364 1.23 dholland
365 1.42 christos static __inline void
366 1.31 dholland lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
367 1.22 dholland {
368 1.31 dholland if (fs->lfs_is64) {
369 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
370 1.31 dholland dh->u_64.dh_type = type;
371 1.31 dholland } else if (fs->lfs_hasolddirfmt) {
372 1.22 dholland /* do nothing */
373 1.22 dholland return;
374 1.31 dholland } else {
375 1.31 dholland dh->u_32.dh_type = type;
376 1.22 dholland }
377 1.22 dholland }
378 1.22 dholland
379 1.42 christos static __inline void
380 1.31 dholland lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
381 1.22 dholland {
382 1.31 dholland if (fs->lfs_is64) {
383 1.31 dholland KASSERT(fs->lfs_hasolddirfmt == 0);
384 1.31 dholland dh->u_64.dh_namlen = namlen;
385 1.31 dholland } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
386 1.22 dholland /* low-order byte of old 16-bit namlen field */
387 1.31 dholland dh->u_32.dh_type = namlen;
388 1.31 dholland } else {
389 1.31 dholland dh->u_32.dh_namlen = namlen;
390 1.22 dholland }
391 1.22 dholland }
392 1.22 dholland
393 1.42 christos static __inline void
394 1.25 dholland lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
395 1.25 dholland unsigned namlen, unsigned reclen)
396 1.25 dholland {
397 1.28 dholland unsigned spacelen;
398 1.28 dholland
399 1.31 dholland KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
400 1.31 dholland spacelen = reclen - LFS_DIRHEADERSIZE(fs);
401 1.28 dholland
402 1.25 dholland /* must always be at least 1 byte as a null terminator */
403 1.28 dholland KASSERT(spacelen > namlen);
404 1.25 dholland
405 1.25 dholland memcpy(dest, src, namlen);
406 1.28 dholland memset(dest + namlen, '\0', spacelen - namlen);
407 1.25 dholland }
408 1.25 dholland
409 1.42 christos static __inline LFS_DIRHEADER *
410 1.31 dholland lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
411 1.31 dholland {
412 1.31 dholland /* XXX blah, be nice to have a way to do this w/o casts */
413 1.31 dholland if (fs->lfs_is64) {
414 1.31 dholland return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
415 1.31 dholland } else {
416 1.31 dholland return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
417 1.31 dholland }
418 1.31 dholland }
419 1.31 dholland
420 1.42 christos static __inline char *
421 1.31 dholland lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
422 1.31 dholland {
423 1.31 dholland if (fs->lfs_is64) {
424 1.31 dholland return dt->u_64.dotdot_name;
425 1.31 dholland } else {
426 1.31 dholland return dt->u_32.dotdot_name;
427 1.31 dholland }
428 1.31 dholland }
429 1.31 dholland
430 1.22 dholland /*
431 1.13 dholland * dinodes
432 1.13 dholland */
433 1.9 dholland
434 1.9 dholland /*
435 1.1 dholland * Maximum length of a symlink that can be stored within the inode.
436 1.1 dholland */
437 1.20 dholland #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
438 1.20 dholland #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
439 1.1 dholland
440 1.20 dholland #define LFS_MAXSYMLINKLEN(fs) \
441 1.20 dholland ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
442 1.20 dholland
443 1.13 dholland #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
444 1.13 dholland
445 1.13 dholland #define DINO_IN_BLOCK(fs, base, ix) \
446 1.13 dholland ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
447 1.13 dholland
448 1.42 christos static __inline void
449 1.14 dholland lfs_copy_dinode(STRUCT_LFS *fs,
450 1.14 dholland union lfs_dinode *dst, const union lfs_dinode *src)
451 1.14 dholland {
452 1.14 dholland /*
453 1.14 dholland * We can do structure assignment of the structs, but not of
454 1.14 dholland * the whole union, as the union is the size of the (larger)
455 1.14 dholland * 64-bit struct and on a 32-bit fs the upper half of it might
456 1.14 dholland * be off the end of a buffer or otherwise invalid.
457 1.14 dholland */
458 1.14 dholland if (fs->lfs_is64) {
459 1.14 dholland dst->u_64 = src->u_64;
460 1.14 dholland } else {
461 1.14 dholland dst->u_32 = src->u_32;
462 1.14 dholland }
463 1.14 dholland }
464 1.14 dholland
465 1.13 dholland #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
466 1.42 christos static __inline type \
467 1.13 dholland lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
468 1.13 dholland { \
469 1.13 dholland if (fs->lfs_is64) { \
470 1.17 dholland return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
471 1.13 dholland } else { \
472 1.17 dholland return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
473 1.13 dholland } \
474 1.13 dholland } \
475 1.42 christos static __inline void \
476 1.13 dholland lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
477 1.13 dholland { \
478 1.13 dholland if (fs->lfs_is64) { \
479 1.13 dholland type *p = &dip->u_64.di_##field; \
480 1.13 dholland (void)p; \
481 1.17 dholland dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
482 1.13 dholland } else { \
483 1.13 dholland type32 *p = &dip->u_32.di_##field; \
484 1.13 dholland (void)p; \
485 1.17 dholland dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
486 1.13 dholland } \
487 1.13 dholland } \
488 1.13 dholland
489 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode)
490 1.51 rillig LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink)
491 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber)
492 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size)
493 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime)
494 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec)
495 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime)
496 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec)
497 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime)
498 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec)
499 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags)
500 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks)
501 1.51 rillig LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen)
502 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid)
503 1.51 rillig LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid)
504 1.13 dholland
505 1.16 dholland /* XXX this should be done differently (it's a fake field) */
506 1.51 rillig LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev)
507 1.16 dholland
508 1.42 christos static __inline daddr_t
509 1.13 dholland lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
510 1.13 dholland {
511 1.13 dholland KASSERT(ix < ULFS_NDADDR);
512 1.13 dholland if (fs->lfs_is64) {
513 1.47 christos return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]);
514 1.13 dholland } else {
515 1.36 dholland /* note: this must sign-extend or UNWRITTEN gets trashed */
516 1.47 christos return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]);
517 1.13 dholland }
518 1.13 dholland }
519 1.13 dholland
520 1.42 christos static __inline daddr_t
521 1.13 dholland lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
522 1.13 dholland {
523 1.13 dholland KASSERT(ix < ULFS_NIADDR);
524 1.13 dholland if (fs->lfs_is64) {
525 1.47 christos return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]);
526 1.13 dholland } else {
527 1.36 dholland /* note: this must sign-extend or UNWRITTEN gets trashed */
528 1.47 christos return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]);
529 1.13 dholland }
530 1.13 dholland }
531 1.13 dholland
532 1.42 christos static __inline void
533 1.13 dholland lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
534 1.13 dholland {
535 1.13 dholland KASSERT(ix < ULFS_NDADDR);
536 1.13 dholland if (fs->lfs_is64) {
537 1.47 christos dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val);
538 1.13 dholland } else {
539 1.37 dholland dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
540 1.13 dholland }
541 1.13 dholland }
542 1.13 dholland
543 1.42 christos static __inline void
544 1.13 dholland lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
545 1.13 dholland {
546 1.13 dholland KASSERT(ix < ULFS_NIADDR);
547 1.13 dholland if (fs->lfs_is64) {
548 1.47 christos dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val);
549 1.13 dholland } else {
550 1.37 dholland dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
551 1.13 dholland }
552 1.13 dholland }
553 1.13 dholland
554 1.16 dholland /* birthtime is present only in the 64-bit inode */
555 1.42 christos static __inline void
556 1.16 dholland lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
557 1.16 dholland const struct timespec *ts)
558 1.16 dholland {
559 1.16 dholland if (fs->lfs_is64) {
560 1.16 dholland dip->u_64.di_birthtime = ts->tv_sec;
561 1.16 dholland dip->u_64.di_birthnsec = ts->tv_nsec;
562 1.16 dholland } else {
563 1.16 dholland /* drop it on the floor */
564 1.16 dholland }
565 1.16 dholland }
566 1.16 dholland
567 1.16 dholland /*
568 1.16 dholland * indirect blocks
569 1.16 dholland */
570 1.16 dholland
571 1.42 christos static __inline daddr_t
572 1.16 dholland lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
573 1.16 dholland {
574 1.16 dholland if (fs->lfs_is64) {
575 1.16 dholland // XXX re-enable these asserts after reorging this file
576 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
577 1.16 dholland return (daddr_t)(((int64_t *)block)[ix]);
578 1.16 dholland } else {
579 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
580 1.16 dholland /* must sign-extend or UNWRITTEN gets trashed */
581 1.16 dholland return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
582 1.16 dholland }
583 1.16 dholland }
584 1.16 dholland
585 1.42 christos static __inline void
586 1.16 dholland lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
587 1.16 dholland {
588 1.16 dholland if (fs->lfs_is64) {
589 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
590 1.16 dholland ((int64_t *)block)[ix] = val;
591 1.16 dholland } else {
592 1.16 dholland //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
593 1.16 dholland ((int32_t *)block)[ix] = val;
594 1.16 dholland }
595 1.16 dholland }
596 1.16 dholland
597 1.1 dholland /*
598 1.1 dholland * "struct buf" associated definitions
599 1.1 dholland */
600 1.1 dholland
601 1.1 dholland # define LFS_LOCK_BUF(bp) do { \
602 1.1 dholland if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
603 1.1 dholland mutex_enter(&lfs_lock); \
604 1.1 dholland ++locked_queue_count; \
605 1.1 dholland locked_queue_bytes += bp->b_bufsize; \
606 1.1 dholland mutex_exit(&lfs_lock); \
607 1.1 dholland } \
608 1.1 dholland (bp)->b_flags |= B_LOCKED; \
609 1.1 dholland } while (0)
610 1.1 dholland
611 1.1 dholland # define LFS_UNLOCK_BUF(bp) do { \
612 1.1 dholland if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
613 1.1 dholland mutex_enter(&lfs_lock); \
614 1.1 dholland --locked_queue_count; \
615 1.1 dholland locked_queue_bytes -= bp->b_bufsize; \
616 1.1 dholland if (locked_queue_count < LFS_WAIT_BUFS && \
617 1.1 dholland locked_queue_bytes < LFS_WAIT_BYTES) \
618 1.1 dholland cv_broadcast(&locked_queue_cv); \
619 1.1 dholland mutex_exit(&lfs_lock); \
620 1.1 dholland } \
621 1.1 dholland (bp)->b_flags &= ~B_LOCKED; \
622 1.1 dholland } while (0)
623 1.1 dholland
624 1.1 dholland /*
625 1.1 dholland * "struct inode" associated definitions
626 1.1 dholland */
627 1.1 dholland
628 1.48 maya #define LFS_SET_UINO(ip, states) do { \
629 1.48 maya if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED)) \
630 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
631 1.48 maya if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING)) \
632 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
633 1.48 maya if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED)) \
634 1.1 dholland lfs_sb_adduinodes((ip)->i_lfs, 1); \
635 1.48 maya (ip)->i_state |= (states); \
636 1.1 dholland } while (0)
637 1.1 dholland
638 1.48 maya #define LFS_CLR_UINO(ip, states) do { \
639 1.48 maya if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED)) \
640 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
641 1.48 maya if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING)) \
642 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
643 1.48 maya if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED)) \
644 1.1 dholland lfs_sb_subuinodes((ip)->i_lfs, 1); \
645 1.48 maya (ip)->i_state &= ~(states); \
646 1.1 dholland if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
647 1.1 dholland panic("lfs_uinodes < 0"); \
648 1.1 dholland } \
649 1.1 dholland } while (0)
650 1.1 dholland
651 1.1 dholland #define LFS_ITIMES(ip, acc, mod, cre) \
652 1.48 maya while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
653 1.1 dholland lfs_itimes(ip, acc, mod, cre)
654 1.1 dholland
655 1.1 dholland /*
656 1.1 dholland * On-disk and in-memory checkpoint segment usage structure.
657 1.1 dholland */
658 1.1 dholland
659 1.1 dholland #define SEGUPB(fs) (lfs_sb_getsepb(fs))
660 1.1 dholland #define SEGTABSIZE_SU(fs) \
661 1.1 dholland ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
662 1.1 dholland
663 1.1 dholland #ifdef _KERNEL
664 1.1 dholland # define SHARE_IFLOCK(F) \
665 1.1 dholland do { \
666 1.1 dholland rw_enter(&(F)->lfs_iflock, RW_READER); \
667 1.1 dholland } while(0)
668 1.1 dholland # define UNSHARE_IFLOCK(F) \
669 1.1 dholland do { \
670 1.1 dholland rw_exit(&(F)->lfs_iflock); \
671 1.1 dholland } while(0)
672 1.1 dholland #else /* ! _KERNEL */
673 1.1 dholland # define SHARE_IFLOCK(F)
674 1.1 dholland # define UNSHARE_IFLOCK(F)
675 1.1 dholland #endif /* ! _KERNEL */
676 1.1 dholland
677 1.1 dholland /* Read in the block with a specific segment usage entry from the ifile. */
678 1.1 dholland #define LFS_SEGENTRY(SP, F, IN, BP) do { \
679 1.1 dholland int _e; \
680 1.1 dholland SHARE_IFLOCK(F); \
681 1.48 maya VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \
682 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
683 1.1 dholland ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
684 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
685 1.39 dholland panic("lfs: ifile read: segentry %llu: error %d\n", \
686 1.39 dholland (unsigned long long)(IN), _e); \
687 1.6 dholland if (lfs_sb_getversion(F) == 1) \
688 1.1 dholland (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
689 1.1 dholland ((IN) & (lfs_sb_getsepb(F) - 1))); \
690 1.1 dholland else \
691 1.1 dholland (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
692 1.1 dholland UNSHARE_IFLOCK(F); \
693 1.1 dholland } while (0)
694 1.1 dholland
695 1.1 dholland #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
696 1.1 dholland if ((SP)->su_nbytes == 0) \
697 1.1 dholland (SP)->su_flags |= SEGUSE_EMPTY; \
698 1.1 dholland else \
699 1.1 dholland (SP)->su_flags &= ~SEGUSE_EMPTY; \
700 1.1 dholland (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
701 1.1 dholland LFS_BWRITE_LOG(BP); \
702 1.1 dholland } while (0)
703 1.1 dholland
704 1.1 dholland /*
705 1.11 dholland * FINFO (file info) entries.
706 1.11 dholland */
707 1.11 dholland
708 1.11 dholland /* Size of an on-disk block pointer, e.g. in an indirect block. */
709 1.11 dholland /* XXX: move to a more suitable location in this file */
710 1.11 dholland #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
711 1.11 dholland
712 1.12 dholland /* Size of an on-disk inode number. */
713 1.12 dholland /* XXX: move to a more suitable location in this file */
714 1.12 dholland #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
715 1.12 dholland
716 1.12 dholland /* size of a FINFO, without the block pointers */
717 1.12 dholland #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
718 1.12 dholland
719 1.11 dholland /* Full size of the provided FINFO record, including its block pointers. */
720 1.11 dholland #define FINFO_FULLSIZE(fs, fip) \
721 1.12 dholland (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
722 1.11 dholland
723 1.11 dholland #define NEXT_FINFO(fs, fip) \
724 1.11 dholland ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
725 1.11 dholland
726 1.12 dholland #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
727 1.42 christos static __inline type \
728 1.12 dholland lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
729 1.12 dholland { \
730 1.12 dholland if (fs->lfs_is64) { \
731 1.12 dholland return fip->u_64.fi_##field; \
732 1.12 dholland } else { \
733 1.12 dholland return fip->u_32.fi_##field; \
734 1.12 dholland } \
735 1.12 dholland } \
736 1.42 christos static __inline void \
737 1.12 dholland lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
738 1.12 dholland { \
739 1.12 dholland if (fs->lfs_is64) { \
740 1.12 dholland type *p = &fip->u_64.fi_##field; \
741 1.12 dholland (void)p; \
742 1.12 dholland fip->u_64.fi_##field = val; \
743 1.12 dholland } else { \
744 1.12 dholland type32 *p = &fip->u_32.fi_##field; \
745 1.12 dholland (void)p; \
746 1.12 dholland fip->u_32.fi_##field = val; \
747 1.12 dholland } \
748 1.12 dholland } \
749 1.12 dholland
750 1.51 rillig LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks)
751 1.51 rillig LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version)
752 1.51 rillig LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino)
753 1.51 rillig LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength)
754 1.12 dholland
755 1.42 christos static __inline daddr_t
756 1.43 riastrad lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
757 1.12 dholland {
758 1.12 dholland void *firstblock;
759 1.12 dholland
760 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
761 1.43 riastrad KASSERT(idx < lfs_fi_getnblocks(fs, fip));
762 1.12 dholland if (fs->lfs_is64) {
763 1.43 riastrad return ((int64_t *)firstblock)[idx];
764 1.12 dholland } else {
765 1.43 riastrad return ((int32_t *)firstblock)[idx];
766 1.12 dholland }
767 1.12 dholland }
768 1.12 dholland
769 1.42 christos static __inline void
770 1.43 riastrad lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
771 1.12 dholland {
772 1.12 dholland void *firstblock;
773 1.12 dholland
774 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
775 1.43 riastrad KASSERT(idx < lfs_fi_getnblocks(fs, fip));
776 1.12 dholland if (fs->lfs_is64) {
777 1.43 riastrad ((int64_t *)firstblock)[idx] = blk;
778 1.12 dholland } else {
779 1.43 riastrad ((int32_t *)firstblock)[idx] = blk;
780 1.12 dholland }
781 1.12 dholland }
782 1.12 dholland
783 1.11 dholland /*
784 1.34 dholland * inode info entries (in the segment summary)
785 1.34 dholland */
786 1.34 dholland
787 1.34 dholland #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
788 1.34 dholland
789 1.34 dholland /* iinfos scroll backward from the end of the segment summary block */
790 1.34 dholland #define SEGSUM_IINFOSTART(fs, buf) \
791 1.34 dholland ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
792 1.34 dholland
793 1.34 dholland #define NEXTLOWER_IINFO(fs, iip) \
794 1.34 dholland ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
795 1.34 dholland
796 1.35 dholland #define NTH_IINFO(fs, buf, n) \
797 1.35 dholland ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
798 1.35 dholland
799 1.42 christos static __inline uint64_t
800 1.34 dholland lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
801 1.34 dholland {
802 1.34 dholland if (fs->lfs_is64) {
803 1.34 dholland return iip->u_64.ii_block;
804 1.34 dholland } else {
805 1.34 dholland return iip->u_32.ii_block;
806 1.34 dholland }
807 1.34 dholland }
808 1.34 dholland
809 1.42 christos static __inline void
810 1.34 dholland lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
811 1.34 dholland {
812 1.34 dholland if (fs->lfs_is64) {
813 1.34 dholland iip->u_64.ii_block = block;
814 1.34 dholland } else {
815 1.34 dholland iip->u_32.ii_block = block;
816 1.34 dholland }
817 1.34 dholland }
818 1.34 dholland
819 1.34 dholland /*
820 1.1 dholland * Index file inode entries.
821 1.1 dholland */
822 1.1 dholland
823 1.33 dholland #define IFILE_ENTRYSIZE(fs) \
824 1.33 dholland ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
825 1.33 dholland
826 1.1 dholland /*
827 1.1 dholland * LFSv1 compatibility code is not allowed to touch if_atime, since it
828 1.1 dholland * may not be mapped!
829 1.1 dholland */
830 1.1 dholland /* Read in the block with a specific inode from the ifile. */
831 1.1 dholland #define LFS_IENTRY(IP, F, IN, BP) do { \
832 1.1 dholland int _e; \
833 1.1 dholland SHARE_IFLOCK(F); \
834 1.48 maya VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \
835 1.1 dholland if ((_e = bread((F)->lfs_ivnode, \
836 1.1 dholland (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
837 1.1 dholland lfs_sb_getbsize(F), 0, &(BP))) != 0) \
838 1.1 dholland panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
839 1.10 dholland if ((F)->lfs_is64) { \
840 1.10 dholland (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
841 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
842 1.10 dholland } else if (lfs_sb_getversion(F) > 1) { \
843 1.10 dholland (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
844 1.10 dholland (IN) % lfs_sb_getifpb(F)); \
845 1.10 dholland } else { \
846 1.1 dholland (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
847 1.1 dholland (IN) % lfs_sb_getifpb(F)); \
848 1.10 dholland } \
849 1.1 dholland UNSHARE_IFLOCK(F); \
850 1.1 dholland } while (0)
851 1.15 mlelstv #define LFS_IENTRY_NEXT(IP, F) do { \
852 1.15 mlelstv if ((F)->lfs_is64) { \
853 1.15 mlelstv (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
854 1.15 mlelstv } else if (lfs_sb_getversion(F) > 1) { \
855 1.15 mlelstv (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
856 1.15 mlelstv } else { \
857 1.15 mlelstv (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
858 1.15 mlelstv } \
859 1.15 mlelstv } while (0)
860 1.1 dholland
861 1.10 dholland #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
862 1.42 christos static __inline type \
863 1.10 dholland lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
864 1.10 dholland { \
865 1.10 dholland if (fs->lfs_is64) { \
866 1.10 dholland return ifp->u_64.if_##field; \
867 1.10 dholland } else { \
868 1.10 dholland return ifp->u_32.if_##field; \
869 1.10 dholland } \
870 1.10 dholland } \
871 1.42 christos static __inline void \
872 1.10 dholland lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
873 1.10 dholland { \
874 1.10 dholland if (fs->lfs_is64) { \
875 1.10 dholland type *p = &ifp->u_64.if_##field; \
876 1.10 dholland (void)p; \
877 1.10 dholland ifp->u_64.if_##field = val; \
878 1.10 dholland } else { \
879 1.10 dholland type32 *p = &ifp->u_32.if_##field; \
880 1.10 dholland (void)p; \
881 1.10 dholland ifp->u_32.if_##field = val; \
882 1.10 dholland } \
883 1.10 dholland } \
884 1.10 dholland
885 1.51 rillig LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version)
886 1.51 rillig LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr)
887 1.51 rillig LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree)
888 1.51 rillig LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec)
889 1.51 rillig LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec)
890 1.10 dholland
891 1.1 dholland /*
892 1.1 dholland * Cleaner information structure. This resides in the ifile and is used
893 1.1 dholland * to pass information from the kernel to the cleaner.
894 1.1 dholland */
895 1.1 dholland
896 1.1 dholland #define CLEANSIZE_SU(fs) \
897 1.9 dholland ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
898 1.9 dholland lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
899 1.9 dholland
900 1.9 dholland #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
901 1.42 christos static __inline type \
902 1.9 dholland lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
903 1.9 dholland { \
904 1.9 dholland if (fs->lfs_is64) { \
905 1.9 dholland return cip->u_64.field; \
906 1.9 dholland } else { \
907 1.9 dholland return cip->u_32.field; \
908 1.9 dholland } \
909 1.9 dholland } \
910 1.42 christos static __inline void \
911 1.9 dholland lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
912 1.9 dholland { \
913 1.9 dholland if (fs->lfs_is64) { \
914 1.9 dholland type *p = &cip->u_64.field; \
915 1.9 dholland (void)p; \
916 1.9 dholland cip->u_64.field = val; \
917 1.9 dholland } else { \
918 1.9 dholland type32 *p = &cip->u_32.field; \
919 1.9 dholland (void)p; \
920 1.9 dholland cip->u_32.field = val; \
921 1.9 dholland } \
922 1.9 dholland } \
923 1.9 dholland
924 1.51 rillig LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean)
925 1.51 rillig LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty)
926 1.51 rillig LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree)
927 1.51 rillig LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail)
928 1.51 rillig LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head)
929 1.51 rillig LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail)
930 1.51 rillig LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags)
931 1.9 dholland
932 1.42 christos static __inline void
933 1.9 dholland lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
934 1.9 dholland {
935 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
936 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
937 1.9 dholland }
938 1.9 dholland
939 1.42 christos static __inline void
940 1.9 dholland lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
941 1.9 dholland {
942 1.9 dholland lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
943 1.9 dholland lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
944 1.9 dholland }
945 1.1 dholland
946 1.1 dholland /* Read in the block with the cleaner info from the ifile. */
947 1.1 dholland #define LFS_CLEANERINFO(CP, F, BP) do { \
948 1.39 dholland int _e; \
949 1.1 dholland SHARE_IFLOCK(F); \
950 1.48 maya VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \
951 1.39 dholland _e = bread((F)->lfs_ivnode, \
952 1.39 dholland (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \
953 1.39 dholland if (_e) \
954 1.39 dholland panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \
955 1.1 dholland (CP) = (CLEANERINFO *)(BP)->b_data; \
956 1.1 dholland UNSHARE_IFLOCK(F); \
957 1.1 dholland } while (0)
958 1.1 dholland
959 1.1 dholland /*
960 1.1 dholland * Synchronize the Ifile cleaner info with current avail and bfree.
961 1.1 dholland */
962 1.1 dholland #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
963 1.1 dholland mutex_enter(&lfs_lock); \
964 1.9 dholland if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
965 1.9 dholland lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
966 1.1 dholland fs->lfs_favail) { \
967 1.9 dholland lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
968 1.9 dholland lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
969 1.9 dholland fs->lfs_favail); \
970 1.1 dholland if (((bp)->b_flags & B_GATHERED) == 0) { \
971 1.1 dholland fs->lfs_flags |= LFS_IFDIRTY; \
972 1.1 dholland } \
973 1.1 dholland mutex_exit(&lfs_lock); \
974 1.1 dholland (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
975 1.1 dholland } else { \
976 1.1 dholland mutex_exit(&lfs_lock); \
977 1.1 dholland brelse(bp, 0); \
978 1.1 dholland } \
979 1.1 dholland } while (0)
980 1.1 dholland
981 1.1 dholland /*
982 1.1 dholland * Get the head of the inode free list.
983 1.1 dholland * Always called with the segment lock held.
984 1.1 dholland */
985 1.1 dholland #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
986 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
987 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
988 1.9 dholland lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
989 1.1 dholland brelse(BP, 0); \
990 1.1 dholland } \
991 1.1 dholland *(FREEP) = lfs_sb_getfreehd(FS); \
992 1.1 dholland } while (0)
993 1.1 dholland
994 1.1 dholland #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
995 1.1 dholland lfs_sb_setfreehd(FS, VAL); \
996 1.6 dholland if (lfs_sb_getversion(FS) > 1) { \
997 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
998 1.9 dholland lfs_ci_setfree_head(FS, CIP, VAL); \
999 1.52 perseant if ((VAL) == LFS_UNUSED_INUM) \
1000 1.52 perseant lfs_ci_setfree_tail(FS, CIP, VAL); \
1001 1.1 dholland LFS_BWRITE_LOG(BP); \
1002 1.1 dholland mutex_enter(&lfs_lock); \
1003 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
1004 1.1 dholland mutex_exit(&lfs_lock); \
1005 1.1 dholland } \
1006 1.1 dholland } while (0)
1007 1.1 dholland
1008 1.1 dholland #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
1009 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
1010 1.9 dholland *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
1011 1.1 dholland brelse(BP, 0); \
1012 1.1 dholland } while (0)
1013 1.1 dholland
1014 1.1 dholland #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
1015 1.1 dholland LFS_CLEANERINFO((CIP), (FS), (BP)); \
1016 1.9 dholland lfs_ci_setfree_tail(FS, CIP, VAL); \
1017 1.52 perseant if ((VAL) == LFS_UNUSED_INUM) \
1018 1.52 perseant lfs_ci_setfree_head(FS, CIP, VAL); \
1019 1.1 dholland LFS_BWRITE_LOG(BP); \
1020 1.1 dholland mutex_enter(&lfs_lock); \
1021 1.1 dholland (FS)->lfs_flags |= LFS_IFDIRTY; \
1022 1.1 dholland mutex_exit(&lfs_lock); \
1023 1.1 dholland } while (0)
1024 1.1 dholland
1025 1.1 dholland /*
1026 1.1 dholland * On-disk segment summary information
1027 1.1 dholland */
1028 1.1 dholland
1029 1.11 dholland #define SEGSUM_SIZE(fs) \
1030 1.11 dholland (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1031 1.11 dholland lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1032 1.11 dholland
1033 1.11 dholland /*
1034 1.11 dholland * The SEGSUM structure is followed by FINFO structures. Get the pointer
1035 1.11 dholland * to the first FINFO.
1036 1.11 dholland *
1037 1.11 dholland * XXX this can't be a macro yet; this file needs to be resorted.
1038 1.11 dholland */
1039 1.11 dholland #if 0
1040 1.42 christos static __inline FINFO *
1041 1.11 dholland segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1042 1.11 dholland {
1043 1.12 dholland return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1044 1.11 dholland }
1045 1.11 dholland #else
1046 1.11 dholland #define SEGSUM_FINFOBASE(fs, ssp) \
1047 1.12 dholland ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1048 1.11 dholland #endif
1049 1.11 dholland
1050 1.11 dholland #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1051 1.42 christos static __inline type \
1052 1.11 dholland lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
1053 1.11 dholland { \
1054 1.11 dholland if (fs->lfs_is64) { \
1055 1.11 dholland return ssp->u_64.ss_##field; \
1056 1.11 dholland } else { \
1057 1.11 dholland return ssp->u_32.ss_##field; \
1058 1.11 dholland } \
1059 1.11 dholland } \
1060 1.42 christos static __inline void \
1061 1.11 dholland lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1062 1.11 dholland { \
1063 1.11 dholland if (fs->lfs_is64) { \
1064 1.11 dholland type *p = &ssp->u_64.ss_##field; \
1065 1.11 dholland (void)p; \
1066 1.11 dholland ssp->u_64.ss_##field = val; \
1067 1.11 dholland } else { \
1068 1.11 dholland type32 *p = &ssp->u_32.ss_##field; \
1069 1.11 dholland (void)p; \
1070 1.11 dholland ssp->u_32.ss_##field = val; \
1071 1.11 dholland } \
1072 1.11 dholland } \
1073 1.11 dholland
1074 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum)
1075 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum)
1076 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic)
1077 1.51 rillig LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident)
1078 1.51 rillig LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next)
1079 1.51 rillig LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo)
1080 1.51 rillig LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos)
1081 1.51 rillig LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags)
1082 1.51 rillig LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino)
1083 1.51 rillig LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial)
1084 1.51 rillig LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create)
1085 1.11 dholland
1086 1.42 christos static __inline size_t
1087 1.11 dholland lfs_ss_getsumstart(STRUCT_LFS *fs)
1088 1.11 dholland {
1089 1.11 dholland /* These are actually all the same. */
1090 1.11 dholland if (fs->lfs_is64) {
1091 1.11 dholland return offsetof(SEGSUM64, ss_datasum);
1092 1.11 dholland } else /* if (lfs_sb_getversion(fs) > 1) */ {
1093 1.11 dholland return offsetof(SEGSUM32, ss_datasum);
1094 1.11 dholland } /* else {
1095 1.11 dholland return offsetof(SEGSUM_V1, ss_datasum);
1096 1.11 dholland } */
1097 1.11 dholland /*
1098 1.11 dholland * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1099 1.11 dholland * defined yet.
1100 1.11 dholland */
1101 1.11 dholland }
1102 1.11 dholland
1103 1.42 christos static __inline uint32_t
1104 1.11 dholland lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1105 1.11 dholland {
1106 1.11 dholland KASSERT(fs->lfs_is64 == 0);
1107 1.11 dholland /* XXX need to resort this file before we can do this */
1108 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
1109 1.51 rillig
1110 1.11 dholland return ssp->u_v1.ss_create;
1111 1.11 dholland }
1112 1.11 dholland
1113 1.42 christos static __inline void
1114 1.11 dholland lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1115 1.11 dholland {
1116 1.11 dholland KASSERT(fs->lfs_is64 == 0);
1117 1.11 dholland /* XXX need to resort this file before we can do this */
1118 1.11 dholland //KASSERT(lfs_sb_getversion(fs) == 1);
1119 1.51 rillig
1120 1.11 dholland ssp->u_v1.ss_create = val;
1121 1.11 dholland }
1122 1.11 dholland
1123 1.1 dholland
1124 1.1 dholland /*
1125 1.1 dholland * Super block.
1126 1.1 dholland */
1127 1.1 dholland
1128 1.1 dholland /*
1129 1.1 dholland * Generate accessors for the on-disk superblock fields with cpp.
1130 1.1 dholland */
1131 1.1 dholland
1132 1.3 dholland #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1133 1.42 christos static __inline type \
1134 1.1 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
1135 1.1 dholland { \
1136 1.7 dholland if (fs->lfs_is64) { \
1137 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1138 1.7 dholland } else { \
1139 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1140 1.7 dholland } \
1141 1.1 dholland } \
1142 1.42 christos static __inline void \
1143 1.1 dholland lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1144 1.1 dholland { \
1145 1.7 dholland if (fs->lfs_is64) { \
1146 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1147 1.7 dholland } else { \
1148 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1149 1.7 dholland } \
1150 1.1 dholland } \
1151 1.42 christos static __inline void \
1152 1.1 dholland lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1153 1.1 dholland { \
1154 1.7 dholland if (fs->lfs_is64) { \
1155 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1156 1.7 dholland *p64 += val; \
1157 1.7 dholland } else { \
1158 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1159 1.7 dholland *p32 += val; \
1160 1.7 dholland } \
1161 1.1 dholland } \
1162 1.42 christos static __inline void \
1163 1.1 dholland lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1164 1.1 dholland { \
1165 1.7 dholland if (fs->lfs_is64) { \
1166 1.7 dholland type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1167 1.7 dholland *p64 -= val; \
1168 1.7 dholland } else { \
1169 1.7 dholland type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1170 1.7 dholland *p32 -= val; \
1171 1.7 dholland } \
1172 1.1 dholland }
1173 1.1 dholland
1174 1.3 dholland #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1175 1.3 dholland
1176 1.7 dholland #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1177 1.42 christos static __inline type \
1178 1.7 dholland lfs_sb_get##field(STRUCT_LFS *fs) \
1179 1.7 dholland { \
1180 1.7 dholland if (fs->lfs_is64) { \
1181 1.7 dholland return val64; \
1182 1.7 dholland } else { \
1183 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1184 1.7 dholland } \
1185 1.7 dholland }
1186 1.7 dholland
1187 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, version)
1188 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size)
1189 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ssize)
1190 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize)
1191 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, bsize)
1192 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fsize)
1193 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, frag)
1194 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd)
1195 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree)
1196 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles)
1197 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail)
1198 1.51 rillig LFS_DEF_SB_ACCESSOR(int32_t, uinodes)
1199 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr)
1200 1.51 rillig LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM)
1201 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg)
1202 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg)
1203 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg)
1204 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset)
1205 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg)
1206 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, inopf)
1207 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, minfree)
1208 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize)
1209 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg)
1210 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, inopb)
1211 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ifpb)
1212 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, sepb)
1213 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nindir)
1214 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nseg)
1215 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nspf)
1216 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, cleansz)
1217 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz)
1218 1.51 rillig LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0)
1219 1.51 rillig LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0)
1220 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, bmask)
1221 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, bshift)
1222 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, ffmask)
1223 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ffshift)
1224 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, fbmask)
1225 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fbshift)
1226 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, blktodb)
1227 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb)
1228 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, sushift)
1229 1.51 rillig LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen)
1230 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, cksum)
1231 1.51 rillig LFS_DEF_SB_ACCESSOR(uint16_t, pflags)
1232 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, nclean)
1233 1.51 rillig LFS_DEF_SB_ACCESSOR(int32_t, dmeta)
1234 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg)
1235 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, sumsize)
1236 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, serial)
1237 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ibsize)
1238 1.51 rillig LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr)
1239 1.51 rillig LFS_DEF_SB_ACCESSOR(uint64_t, tstamp)
1240 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt)
1241 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, interleave)
1242 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, ident)
1243 1.51 rillig LFS_DEF_SB_ACCESSOR(uint32_t, resvseg)
1244 1.1 dholland
1245 1.1 dholland /* special-case accessors */
1246 1.1 dholland
1247 1.1 dholland /*
1248 1.1 dholland * the v1 otstamp field lives in what's now dlfs_inopf
1249 1.1 dholland */
1250 1.1 dholland #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1251 1.1 dholland #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1252 1.1 dholland
1253 1.1 dholland /*
1254 1.1 dholland * lfs_sboffs is an array
1255 1.1 dholland */
1256 1.42 christos static __inline int32_t
1257 1.2 dholland lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1258 1.1 dholland {
1259 1.1 dholland #ifdef KASSERT /* ugh */
1260 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1261 1.1 dholland #endif
1262 1.7 dholland if (fs->lfs_is64) {
1263 1.7 dholland return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1264 1.7 dholland } else {
1265 1.7 dholland return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1266 1.7 dholland }
1267 1.1 dholland }
1268 1.42 christos static __inline void
1269 1.2 dholland lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1270 1.1 dholland {
1271 1.1 dholland #ifdef KASSERT /* ugh */
1272 1.1 dholland KASSERT(n < LFS_MAXNUMSB);
1273 1.1 dholland #endif
1274 1.7 dholland if (fs->lfs_is64) {
1275 1.7 dholland fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1276 1.7 dholland } else {
1277 1.7 dholland fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1278 1.7 dholland }
1279 1.1 dholland }
1280 1.1 dholland
1281 1.1 dholland /*
1282 1.1 dholland * lfs_fsmnt is a string
1283 1.1 dholland */
1284 1.42 christos static __inline const char *
1285 1.2 dholland lfs_sb_getfsmnt(STRUCT_LFS *fs)
1286 1.1 dholland {
1287 1.7 dholland if (fs->lfs_is64) {
1288 1.44 riastrad return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1289 1.7 dholland } else {
1290 1.44 riastrad return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1291 1.7 dholland }
1292 1.7 dholland }
1293 1.7 dholland
1294 1.42 christos static __inline void
1295 1.7 dholland lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1296 1.7 dholland {
1297 1.7 dholland if (fs->lfs_is64) {
1298 1.44 riastrad (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1299 1.7 dholland sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1300 1.7 dholland } else {
1301 1.44 riastrad (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1302 1.7 dholland sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1303 1.7 dholland }
1304 1.1 dholland }
1305 1.1 dholland
1306 1.8 dholland /* Highest addressable fsb */
1307 1.8 dholland #define LFS_MAX_DADDR(fs) \
1308 1.8 dholland ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1309 1.8 dholland
1310 1.1 dholland /* LFS_NINDIR is the number of indirects in a file system block. */
1311 1.1 dholland #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1312 1.1 dholland
1313 1.1 dholland /* LFS_INOPB is the number of inodes in a secondary storage block. */
1314 1.1 dholland #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1315 1.1 dholland /* LFS_INOPF is the number of inodes in a fragment. */
1316 1.1 dholland #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1317 1.1 dholland
1318 1.1 dholland #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1319 1.1 dholland #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1320 1.1 dholland ((int)((loc) & lfs_sb_getffmask(fs)))
1321 1.1 dholland
1322 1.4 dholland /* XXX: lowercase these as they're no longer macros */
1323 1.4 dholland /* Frags to diskblocks */
1324 1.42 christos static __inline uint64_t
1325 1.4 dholland LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1326 1.4 dholland {
1327 1.1 dholland #if defined(_KERNEL)
1328 1.4 dholland return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1329 1.1 dholland #else
1330 1.4 dholland return b << lfs_sb_getfsbtodb(fs);
1331 1.1 dholland #endif
1332 1.4 dholland }
1333 1.4 dholland /* Diskblocks to frags */
1334 1.42 christos static __inline uint64_t
1335 1.4 dholland LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1336 1.4 dholland {
1337 1.4 dholland #if defined(_KERNEL)
1338 1.4 dholland return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1339 1.4 dholland #else
1340 1.4 dholland return b >> lfs_sb_getfsbtodb(fs);
1341 1.4 dholland #endif
1342 1.4 dholland }
1343 1.1 dholland
1344 1.1 dholland #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1345 1.1 dholland #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1346 1.1 dholland
1347 1.4 dholland /* Frags to bytes */
1348 1.42 christos static __inline uint64_t
1349 1.4 dholland lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1350 1.4 dholland {
1351 1.4 dholland return b << lfs_sb_getffshift(fs);
1352 1.4 dholland }
1353 1.4 dholland /* Bytes to frags */
1354 1.42 christos static __inline uint64_t
1355 1.4 dholland lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1356 1.4 dholland {
1357 1.4 dholland return b >> lfs_sb_getffshift(fs);
1358 1.4 dholland }
1359 1.1 dholland
1360 1.1 dholland #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1361 1.1 dholland ((loc) >> lfs_sb_getffshift(fs))
1362 1.1 dholland #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1363 1.1 dholland ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1364 1.1 dholland #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1365 1.1 dholland ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1366 1.1 dholland #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1367 1.1 dholland ((frags) >> lfs_sb_getfbshift(fs))
1368 1.1 dholland #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1369 1.1 dholland ((blks) << lfs_sb_getfbshift(fs))
1370 1.1 dholland #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1371 1.1 dholland ((fsb) & ((fs)->lfs_frag - 1))
1372 1.1 dholland #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1373 1.1 dholland ((fsb) &~ ((fs)->lfs_frag - 1))
1374 1.1 dholland #define lfs_dblksize(fs, dp, lbn) \
1375 1.13 dholland (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1376 1.1 dholland ? lfs_sb_getbsize(fs) \
1377 1.13 dholland : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1378 1.1 dholland
1379 1.6 dholland #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1380 1.1 dholland lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1381 1.1 dholland lfs_sb_getssize(fs))
1382 1.4 dholland /* XXX segtod produces a result in frags despite the 'd' */
1383 1.4 dholland #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1384 1.1 dholland #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1385 1.1 dholland ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1386 1.1 dholland #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1387 1.1 dholland ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1388 1.1 dholland
1389 1.4 dholland /* XXX, blah. make this appear only if struct inode is defined */
1390 1.4 dholland #ifdef _UFS_LFS_LFS_INODE_H_
1391 1.42 christos static __inline uint32_t
1392 1.4 dholland lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1393 1.4 dholland {
1394 1.16 dholland if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1395 1.4 dholland return lfs_sb_getbsize(fs);
1396 1.4 dholland } else {
1397 1.16 dholland return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1398 1.4 dholland }
1399 1.4 dholland }
1400 1.4 dholland #endif
1401 1.4 dholland
1402 1.12 dholland /*
1403 1.12 dholland * union lfs_blocks
1404 1.12 dholland */
1405 1.12 dholland
1406 1.42 christos static __inline void
1407 1.12 dholland lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1408 1.12 dholland {
1409 1.12 dholland if (fs->lfs_is64) {
1410 1.12 dholland bp->b64 = p;
1411 1.12 dholland } else {
1412 1.12 dholland bp->b32 = p;
1413 1.12 dholland }
1414 1.12 dholland }
1415 1.12 dholland
1416 1.42 christos static __inline void
1417 1.12 dholland lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1418 1.12 dholland {
1419 1.12 dholland void *firstblock;
1420 1.12 dholland
1421 1.12 dholland firstblock = (char *)fip + FINFOSIZE(fs);
1422 1.12 dholland if (fs->lfs_is64) {
1423 1.12 dholland bp->b64 = (int64_t *)firstblock;
1424 1.12 dholland } else {
1425 1.12 dholland bp->b32 = (int32_t *)firstblock;
1426 1.12 dholland }
1427 1.12 dholland }
1428 1.12 dholland
1429 1.42 christos static __inline daddr_t
1430 1.43 riastrad lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
1431 1.12 dholland {
1432 1.12 dholland if (fs->lfs_is64) {
1433 1.43 riastrad return bp->b64[idx];
1434 1.12 dholland } else {
1435 1.43 riastrad return bp->b32[idx];
1436 1.12 dholland }
1437 1.12 dholland }
1438 1.12 dholland
1439 1.42 christos static __inline void
1440 1.43 riastrad lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
1441 1.12 dholland {
1442 1.12 dholland if (fs->lfs_is64) {
1443 1.43 riastrad bp->b64[idx] = val;
1444 1.12 dholland } else {
1445 1.43 riastrad bp->b32[idx] = val;
1446 1.12 dholland }
1447 1.12 dholland }
1448 1.12 dholland
1449 1.42 christos static __inline void
1450 1.12 dholland lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1451 1.12 dholland {
1452 1.12 dholland if (fs->lfs_is64) {
1453 1.12 dholland bp->b64++;
1454 1.12 dholland } else {
1455 1.12 dholland bp->b32++;
1456 1.12 dholland }
1457 1.12 dholland }
1458 1.12 dholland
1459 1.42 christos static __inline int
1460 1.12 dholland lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1461 1.12 dholland {
1462 1.12 dholland if (fs->lfs_is64) {
1463 1.12 dholland return bp1->b64 == bp2->b64;
1464 1.12 dholland } else {
1465 1.12 dholland return bp1->b32 == bp2->b32;
1466 1.12 dholland }
1467 1.12 dholland }
1468 1.12 dholland
1469 1.42 christos static __inline int
1470 1.12 dholland lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1471 1.12 dholland {
1472 1.12 dholland /* (remember that the pointers are typed) */
1473 1.12 dholland if (fs->lfs_is64) {
1474 1.12 dholland return bp1->b64 - bp2->b64;
1475 1.12 dholland } else {
1476 1.12 dholland return bp1->b32 - bp2->b32;
1477 1.12 dholland }
1478 1.12 dholland }
1479 1.12 dholland
1480 1.12 dholland /*
1481 1.12 dholland * struct segment
1482 1.12 dholland */
1483 1.12 dholland
1484 1.4 dholland
1485 1.1 dholland /*
1486 1.1 dholland * Macros for determining free space on the disk, with the variable metadata
1487 1.1 dholland * of segment summaries and inode blocks taken into account.
1488 1.1 dholland */
1489 1.1 dholland /*
1490 1.1 dholland * Estimate number of clean blocks not available for writing because
1491 1.1 dholland * they will contain metadata or overhead. This is calculated as
1492 1.1 dholland *
1493 1.1 dholland * E = ((C * M / D) * D + (0) * (T - D)) / T
1494 1.1 dholland * or more simply
1495 1.1 dholland * E = (C * M) / T
1496 1.1 dholland *
1497 1.1 dholland * where
1498 1.1 dholland * C is the clean space,
1499 1.1 dholland * D is the dirty space,
1500 1.1 dholland * M is the dirty metadata, and
1501 1.1 dholland * T = C + D is the total space on disk.
1502 1.1 dholland *
1503 1.1 dholland * This approximates the old formula of E = C * M / D when D is close to T,
1504 1.1 dholland * but avoids falsely reporting "disk full" when the sample size (D) is small.
1505 1.1 dholland */
1506 1.33 dholland #define LFS_EST_CMETA(F) (( \
1507 1.1 dholland (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1508 1.1 dholland (lfs_sb_getnseg(F))))
1509 1.1 dholland
1510 1.1 dholland /* Estimate total size of the disk not including metadata */
1511 1.1 dholland #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1512 1.1 dholland
1513 1.1 dholland /* Estimate number of blocks actually available for writing */
1514 1.1 dholland #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1515 1.1 dholland lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1516 1.1 dholland
1517 1.1 dholland /* Amount of non-meta space not available to mortal man */
1518 1.33 dholland #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
1519 1.46 dholland (uint64_t)lfs_sb_getminfree(F)) / \
1520 1.1 dholland 100)
1521 1.1 dholland
1522 1.4 dholland /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1523 1.1 dholland #define ISSPACE(F, BB, C) \
1524 1.1 dholland ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1525 1.1 dholland LFS_EST_BFREE(F) >= (BB)) || \
1526 1.1 dholland (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1527 1.1 dholland
1528 1.1 dholland /* Can an ordinary user write BB blocks */
1529 1.1 dholland #define IS_FREESPACE(F, BB) \
1530 1.1 dholland (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1531 1.1 dholland
1532 1.1 dholland /*
1533 1.1 dholland * The minimum number of blocks to create a new inode. This is:
1534 1.1 dholland * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1535 1.1 dholland * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1536 1.1 dholland */
1537 1.1 dholland #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1538 1.1 dholland
1539 1.1 dholland
1540 1.50 riastrad /*
1541 1.50 riastrad * Suppress spurious clang warnings
1542 1.50 riastrad */
1543 1.50 riastrad #ifdef __GNUC__
1544 1.50 riastrad #if defined(__clang__)
1545 1.50 riastrad #pragma clang diagnostic pop
1546 1.50 riastrad #elif __GNUC_PREREQ__(9,0)
1547 1.50 riastrad #pragma GCC diagnostic pop
1548 1.50 riastrad #endif
1549 1.50 riastrad #endif
1550 1.50 riastrad
1551 1.1 dholland
1552 1.1 dholland #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1553