lfs_accessors.h revision 1.12 1 /* $NetBSD: lfs_accessors.h,v 1.12 2015/08/12 18:27:01 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if !defined(_KERNEL) && !defined(_STANDALONE)
149 #include <assert.h>
150 #define KASSERT assert
151 #endif
152
153 /*
154 * STRUCT_LFS is used by the libsa code to get accessors that work
155 * with struct salfs instead of struct lfs, and by the cleaner to
156 * get accessors that work with struct clfs.
157 */
158
159 #ifndef STRUCT_LFS
160 #define STRUCT_LFS struct lfs
161 #endif
162
163
164 /*
165 * Maximum length of a symlink that can be stored within the inode.
166 */
167 #define ULFS1_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
168 #define ULFS2_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
169
170 #define ULFS_MAXSYMLINKLEN(ip) \
171 ((ip)->i_ump->um_fstype == ULFS1) ? \
172 ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
173
174 /*
175 * "struct buf" associated definitions
176 */
177
178 # define LFS_LOCK_BUF(bp) do { \
179 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
180 mutex_enter(&lfs_lock); \
181 ++locked_queue_count; \
182 locked_queue_bytes += bp->b_bufsize; \
183 mutex_exit(&lfs_lock); \
184 } \
185 (bp)->b_flags |= B_LOCKED; \
186 } while (0)
187
188 # define LFS_UNLOCK_BUF(bp) do { \
189 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
190 mutex_enter(&lfs_lock); \
191 --locked_queue_count; \
192 locked_queue_bytes -= bp->b_bufsize; \
193 if (locked_queue_count < LFS_WAIT_BUFS && \
194 locked_queue_bytes < LFS_WAIT_BYTES) \
195 cv_broadcast(&locked_queue_cv); \
196 mutex_exit(&lfs_lock); \
197 } \
198 (bp)->b_flags &= ~B_LOCKED; \
199 } while (0)
200
201 /*
202 * "struct inode" associated definitions
203 */
204
205 #define LFS_SET_UINO(ip, flags) do { \
206 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
207 lfs_sb_adduinodes((ip)->i_lfs, 1); \
208 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
209 lfs_sb_adduinodes((ip)->i_lfs, 1); \
210 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
211 lfs_sb_adduinodes((ip)->i_lfs, 1); \
212 (ip)->i_flag |= (flags); \
213 } while (0)
214
215 #define LFS_CLR_UINO(ip, flags) do { \
216 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
217 lfs_sb_subuinodes((ip)->i_lfs, 1); \
218 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
219 lfs_sb_subuinodes((ip)->i_lfs, 1); \
220 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
221 lfs_sb_subuinodes((ip)->i_lfs, 1); \
222 (ip)->i_flag &= ~(flags); \
223 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
224 panic("lfs_uinodes < 0"); \
225 } \
226 } while (0)
227
228 #define LFS_ITIMES(ip, acc, mod, cre) \
229 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
230 lfs_itimes(ip, acc, mod, cre)
231
232 /*
233 * On-disk and in-memory checkpoint segment usage structure.
234 */
235
236 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
237 #define SEGTABSIZE_SU(fs) \
238 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
239
240 #ifdef _KERNEL
241 # define SHARE_IFLOCK(F) \
242 do { \
243 rw_enter(&(F)->lfs_iflock, RW_READER); \
244 } while(0)
245 # define UNSHARE_IFLOCK(F) \
246 do { \
247 rw_exit(&(F)->lfs_iflock); \
248 } while(0)
249 #else /* ! _KERNEL */
250 # define SHARE_IFLOCK(F)
251 # define UNSHARE_IFLOCK(F)
252 #endif /* ! _KERNEL */
253
254 /* Read in the block with a specific segment usage entry from the ifile. */
255 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
256 int _e; \
257 SHARE_IFLOCK(F); \
258 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
259 if ((_e = bread((F)->lfs_ivnode, \
260 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
261 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
262 panic("lfs: ifile read: %d", _e); \
263 if (lfs_sb_getversion(F) == 1) \
264 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
265 ((IN) & (lfs_sb_getsepb(F) - 1))); \
266 else \
267 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
268 UNSHARE_IFLOCK(F); \
269 } while (0)
270
271 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
272 if ((SP)->su_nbytes == 0) \
273 (SP)->su_flags |= SEGUSE_EMPTY; \
274 else \
275 (SP)->su_flags &= ~SEGUSE_EMPTY; \
276 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
277 LFS_BWRITE_LOG(BP); \
278 } while (0)
279
280 /*
281 * FINFO (file info) entries.
282 */
283
284 /* Size of an on-disk block pointer, e.g. in an indirect block. */
285 /* XXX: move to a more suitable location in this file */
286 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
287
288 /* Size of an on-disk inode number. */
289 /* XXX: move to a more suitable location in this file */
290 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
291
292 /* size of a FINFO, without the block pointers */
293 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
294
295 /* Full size of the provided FINFO record, including its block pointers. */
296 #define FINFO_FULLSIZE(fs, fip) \
297 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
298
299 #define NEXT_FINFO(fs, fip) \
300 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
301
302 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
303 static __unused inline type \
304 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
305 { \
306 if (fs->lfs_is64) { \
307 return fip->u_64.fi_##field; \
308 } else { \
309 return fip->u_32.fi_##field; \
310 } \
311 } \
312 static __unused inline void \
313 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
314 { \
315 if (fs->lfs_is64) { \
316 type *p = &fip->u_64.fi_##field; \
317 (void)p; \
318 fip->u_64.fi_##field = val; \
319 } else { \
320 type32 *p = &fip->u_32.fi_##field; \
321 (void)p; \
322 fip->u_32.fi_##field = val; \
323 } \
324 } \
325
326 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
327 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
328 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
329 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
330
331 static __unused inline daddr_t
332 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
333 {
334 void *firstblock;
335
336 firstblock = (char *)fip + FINFOSIZE(fs);
337 KASSERT(index < lfs_fi_getnblocks(fs, fip));
338 if (fs->lfs_is64) {
339 return ((int64_t *)firstblock)[index];
340 } else {
341 return ((int32_t *)firstblock)[index];
342 }
343 }
344
345 static __unused inline void
346 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
347 {
348 void *firstblock;
349
350 firstblock = (char *)fip + FINFOSIZE(fs);
351 KASSERT(index < lfs_fi_getnblocks(fs, fip));
352 if (fs->lfs_is64) {
353 ((int64_t *)firstblock)[index] = blk;
354 } else {
355 ((int32_t *)firstblock)[index] = blk;
356 }
357 }
358
359 /*
360 * Index file inode entries.
361 */
362
363 /*
364 * LFSv1 compatibility code is not allowed to touch if_atime, since it
365 * may not be mapped!
366 */
367 /* Read in the block with a specific inode from the ifile. */
368 #define LFS_IENTRY(IP, F, IN, BP) do { \
369 int _e; \
370 SHARE_IFLOCK(F); \
371 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
372 if ((_e = bread((F)->lfs_ivnode, \
373 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
374 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
375 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
376 if ((F)->lfs_is64) { \
377 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
378 (IN) % lfs_sb_getifpb(F)); \
379 } else if (lfs_sb_getversion(F) > 1) { \
380 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
381 (IN) % lfs_sb_getifpb(F)); \
382 } else { \
383 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
384 (IN) % lfs_sb_getifpb(F)); \
385 } \
386 UNSHARE_IFLOCK(F); \
387 } while (0)
388
389 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
390 static __unused inline type \
391 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
392 { \
393 if (fs->lfs_is64) { \
394 return ifp->u_64.if_##field; \
395 } else { \
396 return ifp->u_32.if_##field; \
397 } \
398 } \
399 static __unused inline void \
400 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
401 { \
402 if (fs->lfs_is64) { \
403 type *p = &ifp->u_64.if_##field; \
404 (void)p; \
405 ifp->u_64.if_##field = val; \
406 } else { \
407 type32 *p = &ifp->u_32.if_##field; \
408 (void)p; \
409 ifp->u_32.if_##field = val; \
410 } \
411 } \
412
413 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
414 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
415 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
416 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
417 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
418
419 /*
420 * Cleaner information structure. This resides in the ifile and is used
421 * to pass information from the kernel to the cleaner.
422 */
423
424 #define CLEANSIZE_SU(fs) \
425 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
426 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
427
428 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
429 static __unused inline type \
430 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
431 { \
432 if (fs->lfs_is64) { \
433 return cip->u_64.field; \
434 } else { \
435 return cip->u_32.field; \
436 } \
437 } \
438 static __unused inline void \
439 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
440 { \
441 if (fs->lfs_is64) { \
442 type *p = &cip->u_64.field; \
443 (void)p; \
444 cip->u_64.field = val; \
445 } else { \
446 type32 *p = &cip->u_32.field; \
447 (void)p; \
448 cip->u_32.field = val; \
449 } \
450 } \
451
452 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
453 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
454 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
455 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
456 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
457 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
458 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
459
460 static __unused inline void
461 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
462 {
463 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
464 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
465 }
466
467 static __unused inline void
468 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
469 {
470 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
471 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
472 }
473
474 /* Read in the block with the cleaner info from the ifile. */
475 #define LFS_CLEANERINFO(CP, F, BP) do { \
476 SHARE_IFLOCK(F); \
477 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
478 if (bread((F)->lfs_ivnode, \
479 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
480 panic("lfs: ifile read"); \
481 (CP) = (CLEANERINFO *)(BP)->b_data; \
482 UNSHARE_IFLOCK(F); \
483 } while (0)
484
485 /*
486 * Synchronize the Ifile cleaner info with current avail and bfree.
487 */
488 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
489 mutex_enter(&lfs_lock); \
490 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
491 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
492 fs->lfs_favail) { \
493 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
494 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
495 fs->lfs_favail); \
496 if (((bp)->b_flags & B_GATHERED) == 0) { \
497 fs->lfs_flags |= LFS_IFDIRTY; \
498 } \
499 mutex_exit(&lfs_lock); \
500 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
501 } else { \
502 mutex_exit(&lfs_lock); \
503 brelse(bp, 0); \
504 } \
505 } while (0)
506
507 /*
508 * Get the head of the inode free list.
509 * Always called with the segment lock held.
510 */
511 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
512 if (lfs_sb_getversion(FS) > 1) { \
513 LFS_CLEANERINFO((CIP), (FS), (BP)); \
514 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
515 brelse(BP, 0); \
516 } \
517 *(FREEP) = lfs_sb_getfreehd(FS); \
518 } while (0)
519
520 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
521 lfs_sb_setfreehd(FS, VAL); \
522 if (lfs_sb_getversion(FS) > 1) { \
523 LFS_CLEANERINFO((CIP), (FS), (BP)); \
524 lfs_ci_setfree_head(FS, CIP, VAL); \
525 LFS_BWRITE_LOG(BP); \
526 mutex_enter(&lfs_lock); \
527 (FS)->lfs_flags |= LFS_IFDIRTY; \
528 mutex_exit(&lfs_lock); \
529 } \
530 } while (0)
531
532 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
533 LFS_CLEANERINFO((CIP), (FS), (BP)); \
534 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
535 brelse(BP, 0); \
536 } while (0)
537
538 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
539 LFS_CLEANERINFO((CIP), (FS), (BP)); \
540 lfs_ci_setfree_tail(FS, CIP, VAL); \
541 LFS_BWRITE_LOG(BP); \
542 mutex_enter(&lfs_lock); \
543 (FS)->lfs_flags |= LFS_IFDIRTY; \
544 mutex_exit(&lfs_lock); \
545 } while (0)
546
547 /*
548 * On-disk segment summary information
549 */
550
551 #define SEGSUM_SIZE(fs) \
552 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
553 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
554
555 /*
556 * The SEGSUM structure is followed by FINFO structures. Get the pointer
557 * to the first FINFO.
558 *
559 * XXX this can't be a macro yet; this file needs to be resorted.
560 */
561 #if 0
562 static __unused inline FINFO *
563 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
564 {
565 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
566 }
567 #else
568 #define SEGSUM_FINFOBASE(fs, ssp) \
569 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
570 #endif
571
572 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
573 static __unused inline type \
574 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
575 { \
576 if (fs->lfs_is64) { \
577 return ssp->u_64.ss_##field; \
578 } else { \
579 return ssp->u_32.ss_##field; \
580 } \
581 } \
582 static __unused inline void \
583 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
584 { \
585 if (fs->lfs_is64) { \
586 type *p = &ssp->u_64.ss_##field; \
587 (void)p; \
588 ssp->u_64.ss_##field = val; \
589 } else { \
590 type32 *p = &ssp->u_32.ss_##field; \
591 (void)p; \
592 ssp->u_32.ss_##field = val; \
593 } \
594 } \
595
596 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
597 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
598 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
599 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
600 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
601 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
602 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
603 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
604 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
605 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
606 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
607
608 static __unused inline size_t
609 lfs_ss_getsumstart(STRUCT_LFS *fs)
610 {
611 /* These are actually all the same. */
612 if (fs->lfs_is64) {
613 return offsetof(SEGSUM64, ss_datasum);
614 } else /* if (lfs_sb_getversion(fs) > 1) */ {
615 return offsetof(SEGSUM32, ss_datasum);
616 } /* else {
617 return offsetof(SEGSUM_V1, ss_datasum);
618 } */
619 /*
620 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
621 * defined yet.
622 */
623 }
624
625 static __unused inline uint32_t
626 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
627 {
628 KASSERT(fs->lfs_is64 == 0);
629 /* XXX need to resort this file before we can do this */
630 //KASSERT(lfs_sb_getversion(fs) == 1);
631
632 return ssp->u_v1.ss_create;
633 }
634
635 static __unused inline void
636 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
637 {
638 KASSERT(fs->lfs_is64 == 0);
639 /* XXX need to resort this file before we can do this */
640 //KASSERT(lfs_sb_getversion(fs) == 1);
641
642 ssp->u_v1.ss_create = val;
643 }
644
645
646 /*
647 * Super block.
648 */
649
650 /*
651 * Generate accessors for the on-disk superblock fields with cpp.
652 */
653
654 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
655 static __unused inline type \
656 lfs_sb_get##field(STRUCT_LFS *fs) \
657 { \
658 if (fs->lfs_is64) { \
659 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
660 } else { \
661 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
662 } \
663 } \
664 static __unused inline void \
665 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
666 { \
667 if (fs->lfs_is64) { \
668 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
669 } else { \
670 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
671 } \
672 } \
673 static __unused inline void \
674 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
675 { \
676 if (fs->lfs_is64) { \
677 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
678 *p64 += val; \
679 } else { \
680 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
681 *p32 += val; \
682 } \
683 } \
684 static __unused inline void \
685 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
686 { \
687 if (fs->lfs_is64) { \
688 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
689 *p64 -= val; \
690 } else { \
691 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
692 *p32 -= val; \
693 } \
694 }
695
696 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
697
698 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
699 static __unused inline type \
700 lfs_sb_get##field(STRUCT_LFS *fs) \
701 { \
702 if (fs->lfs_is64) { \
703 return val64; \
704 } else { \
705 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
706 } \
707 }
708
709 #define lfs_magic lfs_dlfs.dlfs_magic
710 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
711 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
712 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
713 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
714 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
715 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
716 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
717 LFS_DEF_SB_ACCESSOR(u_int32_t, freehd);
718 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
719 LFS_DEF_SB_ACCESSOR(u_int32_t, nfiles);
720 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
721 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
722 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
723 LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
724 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
725 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
726 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
727 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
728 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
729 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
730 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
731 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
732 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
733 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
734 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
735 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
736 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
737 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
738 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
739 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
740 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
741 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
742 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
743 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
744 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
745 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
746 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
747 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
748 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
749 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
750 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
751 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
752 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
753 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
754 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
755 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
756 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
757 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
758 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
759 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
760 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
761 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
762 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
763 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
764 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
765 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
766 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
767
768 /* special-case accessors */
769
770 /*
771 * the v1 otstamp field lives in what's now dlfs_inopf
772 */
773 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
774 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
775
776 /*
777 * lfs_sboffs is an array
778 */
779 static __unused inline int32_t
780 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
781 {
782 #ifdef KASSERT /* ugh */
783 KASSERT(n < LFS_MAXNUMSB);
784 #endif
785 if (fs->lfs_is64) {
786 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
787 } else {
788 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
789 }
790 }
791 static __unused inline void
792 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
793 {
794 #ifdef KASSERT /* ugh */
795 KASSERT(n < LFS_MAXNUMSB);
796 #endif
797 if (fs->lfs_is64) {
798 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
799 } else {
800 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
801 }
802 }
803
804 /*
805 * lfs_fsmnt is a string
806 */
807 static __unused inline const char *
808 lfs_sb_getfsmnt(STRUCT_LFS *fs)
809 {
810 if (fs->lfs_is64) {
811 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
812 } else {
813 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
814 }
815 }
816
817 static __unused inline void
818 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
819 {
820 if (fs->lfs_is64) {
821 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
822 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
823 } else {
824 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
825 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
826 }
827 }
828
829 /* Highest addressable fsb */
830 #define LFS_MAX_DADDR(fs) \
831 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
832
833 /* LFS_NINDIR is the number of indirects in a file system block. */
834 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
835
836 /* LFS_INOPB is the number of inodes in a secondary storage block. */
837 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
838 /* LFS_INOPF is the number of inodes in a fragment. */
839 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
840
841 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
842 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
843 ((int)((loc) & lfs_sb_getffmask(fs)))
844
845 /* XXX: lowercase these as they're no longer macros */
846 /* Frags to diskblocks */
847 static __unused inline uint64_t
848 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
849 {
850 #if defined(_KERNEL)
851 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
852 #else
853 return b << lfs_sb_getfsbtodb(fs);
854 #endif
855 }
856 /* Diskblocks to frags */
857 static __unused inline uint64_t
858 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
859 {
860 #if defined(_KERNEL)
861 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
862 #else
863 return b >> lfs_sb_getfsbtodb(fs);
864 #endif
865 }
866
867 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
868 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
869
870 /* Frags to bytes */
871 static __unused inline uint64_t
872 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
873 {
874 return b << lfs_sb_getffshift(fs);
875 }
876 /* Bytes to frags */
877 static __unused inline uint64_t
878 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
879 {
880 return b >> lfs_sb_getffshift(fs);
881 }
882
883 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
884 ((loc) >> lfs_sb_getffshift(fs))
885 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
886 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
887 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
888 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
889 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
890 ((frags) >> lfs_sb_getfbshift(fs))
891 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
892 ((blks) << lfs_sb_getfbshift(fs))
893 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
894 ((fsb) & ((fs)->lfs_frag - 1))
895 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
896 ((fsb) &~ ((fs)->lfs_frag - 1))
897 #define lfs_dblksize(fs, dp, lbn) \
898 (((lbn) >= ULFS_NDADDR || (dp)->di_size >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
899 ? lfs_sb_getbsize(fs) \
900 : (lfs_fragroundup(fs, lfs_blkoff(fs, (dp)->di_size))))
901
902 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
903 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
904 lfs_sb_getssize(fs))
905 /* XXX segtod produces a result in frags despite the 'd' */
906 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
907 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
908 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
909 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
910 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
911
912 /* XXX, blah. make this appear only if struct inode is defined */
913 #ifdef _UFS_LFS_LFS_INODE_H_
914 static __unused inline uint32_t
915 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
916 {
917 if (lbn >= ULFS_NDADDR || ip->i_ffs1_size >= (lbn + 1) << lfs_sb_getbshift(fs)) {
918 return lfs_sb_getbsize(fs);
919 } else {
920 return lfs_fragroundup(fs, lfs_blkoff(fs, ip->i_ffs1_size));
921 }
922 }
923 #endif
924
925 /*
926 * union lfs_blocks
927 */
928
929 static __unused inline void
930 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
931 {
932 if (fs->lfs_is64) {
933 bp->b64 = p;
934 } else {
935 bp->b32 = p;
936 }
937 }
938
939 static __unused inline void
940 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
941 {
942 void *firstblock;
943
944 firstblock = (char *)fip + FINFOSIZE(fs);
945 if (fs->lfs_is64) {
946 bp->b64 = (int64_t *)firstblock;
947 } else {
948 bp->b32 = (int32_t *)firstblock;
949 }
950 }
951
952 static __unused inline daddr_t
953 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
954 {
955 if (fs->lfs_is64) {
956 return bp->b64[index];
957 } else {
958 return bp->b32[index];
959 }
960 }
961
962 static __unused inline void
963 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
964 {
965 if (fs->lfs_is64) {
966 bp->b64[index] = val;
967 } else {
968 bp->b32[index] = val;
969 }
970 }
971
972 static __unused inline void
973 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
974 {
975 if (fs->lfs_is64) {
976 bp->b64++;
977 } else {
978 bp->b32++;
979 }
980 }
981
982 static __unused inline int
983 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
984 {
985 if (fs->lfs_is64) {
986 return bp1->b64 == bp2->b64;
987 } else {
988 return bp1->b32 == bp2->b32;
989 }
990 }
991
992 static __unused inline int
993 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
994 {
995 /* (remember that the pointers are typed) */
996 if (fs->lfs_is64) {
997 return bp1->b64 - bp2->b64;
998 } else {
999 return bp1->b32 - bp2->b32;
1000 }
1001 }
1002
1003 /*
1004 * struct segment
1005 */
1006
1007
1008 /*
1009 * Macros for determining free space on the disk, with the variable metadata
1010 * of segment summaries and inode blocks taken into account.
1011 */
1012 /*
1013 * Estimate number of clean blocks not available for writing because
1014 * they will contain metadata or overhead. This is calculated as
1015 *
1016 * E = ((C * M / D) * D + (0) * (T - D)) / T
1017 * or more simply
1018 * E = (C * M) / T
1019 *
1020 * where
1021 * C is the clean space,
1022 * D is the dirty space,
1023 * M is the dirty metadata, and
1024 * T = C + D is the total space on disk.
1025 *
1026 * This approximates the old formula of E = C * M / D when D is close to T,
1027 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1028 */
1029 #define LFS_EST_CMETA(F) (int32_t)(( \
1030 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1031 (lfs_sb_getnseg(F))))
1032
1033 /* Estimate total size of the disk not including metadata */
1034 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1035
1036 /* Estimate number of blocks actually available for writing */
1037 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1038 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1039
1040 /* Amount of non-meta space not available to mortal man */
1041 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1042 (u_int64_t)lfs_sb_getminfree(F)) / \
1043 100)
1044
1045 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1046 #define ISSPACE(F, BB, C) \
1047 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1048 LFS_EST_BFREE(F) >= (BB)) || \
1049 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1050
1051 /* Can an ordinary user write BB blocks */
1052 #define IS_FREESPACE(F, BB) \
1053 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1054
1055 /*
1056 * The minimum number of blocks to create a new inode. This is:
1057 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1058 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1059 */
1060 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1061
1062
1063
1064 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1065