lfs_accessors.h revision 1.13 1 /* $NetBSD: lfs_accessors.h,v 1.13 2015/08/12 18:28:01 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if !defined(_KERNEL) && !defined(_STANDALONE)
149 #include <assert.h>
150 #define KASSERT assert
151 #endif
152
153 /*
154 * STRUCT_LFS is used by the libsa code to get accessors that work
155 * with struct salfs instead of struct lfs, and by the cleaner to
156 * get accessors that work with struct clfs.
157 */
158
159 #ifndef STRUCT_LFS
160 #define STRUCT_LFS struct lfs
161 #endif
162
163 /*
164 * dinodes
165 */
166
167 /*
168 * Maximum length of a symlink that can be stored within the inode.
169 */
170 #define ULFS1_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
171 #define ULFS2_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
172
173 #define ULFS_MAXSYMLINKLEN(ip) \
174 ((ip)->i_ump->um_fstype == ULFS1) ? \
175 ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
176
177 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
178
179 #define DINO_IN_BLOCK(fs, base, ix) \
180 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
181
182 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
183 static __unused inline type \
184 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
185 { \
186 if (fs->lfs_is64) { \
187 return dip->u_64.di_##field; \
188 } else { \
189 return dip->u_32.di_##field; \
190 } \
191 } \
192 static __unused inline void \
193 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
194 { \
195 if (fs->lfs_is64) { \
196 type *p = &dip->u_64.di_##field; \
197 (void)p; \
198 dip->u_64.di_##field = val; \
199 } else { \
200 type32 *p = &dip->u_32.di_##field; \
201 (void)p; \
202 dip->u_32.di_##field = val; \
203 } \
204 } \
205
206 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
207 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
208 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
209 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
210 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
211 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
212 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
213 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
214 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
215 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
216 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
217 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
218 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
219 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
220 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
221
222 static __unused inline daddr_t
223 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
224 {
225 KASSERT(ix < ULFS_NDADDR);
226 if (fs->lfs_is64) {
227 return dip->u_64.di_db[ix];
228 } else {
229 return dip->u_32.di_db[ix];
230 }
231 }
232
233 static __unused inline daddr_t
234 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
235 {
236 KASSERT(ix < ULFS_NIADDR);
237 if (fs->lfs_is64) {
238 return dip->u_64.di_ib[ix];
239 } else {
240 return dip->u_32.di_ib[ix];
241 }
242 }
243
244 static __unused inline void
245 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
246 {
247 KASSERT(ix < ULFS_NDADDR);
248 if (fs->lfs_is64) {
249 dip->u_64.di_db[ix] = val;
250 } else {
251 dip->u_32.di_db[ix] = val;
252 }
253 }
254
255 static __unused inline void
256 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
257 {
258 KASSERT(ix < ULFS_NIADDR);
259 if (fs->lfs_is64) {
260 dip->u_64.di_ib[ix] = val;
261 } else {
262 dip->u_32.di_ib[ix] = val;
263 }
264 }
265
266 /*
267 * "struct buf" associated definitions
268 */
269
270 # define LFS_LOCK_BUF(bp) do { \
271 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
272 mutex_enter(&lfs_lock); \
273 ++locked_queue_count; \
274 locked_queue_bytes += bp->b_bufsize; \
275 mutex_exit(&lfs_lock); \
276 } \
277 (bp)->b_flags |= B_LOCKED; \
278 } while (0)
279
280 # define LFS_UNLOCK_BUF(bp) do { \
281 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
282 mutex_enter(&lfs_lock); \
283 --locked_queue_count; \
284 locked_queue_bytes -= bp->b_bufsize; \
285 if (locked_queue_count < LFS_WAIT_BUFS && \
286 locked_queue_bytes < LFS_WAIT_BYTES) \
287 cv_broadcast(&locked_queue_cv); \
288 mutex_exit(&lfs_lock); \
289 } \
290 (bp)->b_flags &= ~B_LOCKED; \
291 } while (0)
292
293 /*
294 * "struct inode" associated definitions
295 */
296
297 #define LFS_SET_UINO(ip, flags) do { \
298 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
299 lfs_sb_adduinodes((ip)->i_lfs, 1); \
300 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
301 lfs_sb_adduinodes((ip)->i_lfs, 1); \
302 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
303 lfs_sb_adduinodes((ip)->i_lfs, 1); \
304 (ip)->i_flag |= (flags); \
305 } while (0)
306
307 #define LFS_CLR_UINO(ip, flags) do { \
308 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
309 lfs_sb_subuinodes((ip)->i_lfs, 1); \
310 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
311 lfs_sb_subuinodes((ip)->i_lfs, 1); \
312 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
313 lfs_sb_subuinodes((ip)->i_lfs, 1); \
314 (ip)->i_flag &= ~(flags); \
315 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
316 panic("lfs_uinodes < 0"); \
317 } \
318 } while (0)
319
320 #define LFS_ITIMES(ip, acc, mod, cre) \
321 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
322 lfs_itimes(ip, acc, mod, cre)
323
324 /*
325 * On-disk and in-memory checkpoint segment usage structure.
326 */
327
328 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
329 #define SEGTABSIZE_SU(fs) \
330 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
331
332 #ifdef _KERNEL
333 # define SHARE_IFLOCK(F) \
334 do { \
335 rw_enter(&(F)->lfs_iflock, RW_READER); \
336 } while(0)
337 # define UNSHARE_IFLOCK(F) \
338 do { \
339 rw_exit(&(F)->lfs_iflock); \
340 } while(0)
341 #else /* ! _KERNEL */
342 # define SHARE_IFLOCK(F)
343 # define UNSHARE_IFLOCK(F)
344 #endif /* ! _KERNEL */
345
346 /* Read in the block with a specific segment usage entry from the ifile. */
347 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
348 int _e; \
349 SHARE_IFLOCK(F); \
350 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
351 if ((_e = bread((F)->lfs_ivnode, \
352 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
353 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
354 panic("lfs: ifile read: %d", _e); \
355 if (lfs_sb_getversion(F) == 1) \
356 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
357 ((IN) & (lfs_sb_getsepb(F) - 1))); \
358 else \
359 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
360 UNSHARE_IFLOCK(F); \
361 } while (0)
362
363 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
364 if ((SP)->su_nbytes == 0) \
365 (SP)->su_flags |= SEGUSE_EMPTY; \
366 else \
367 (SP)->su_flags &= ~SEGUSE_EMPTY; \
368 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
369 LFS_BWRITE_LOG(BP); \
370 } while (0)
371
372 /*
373 * FINFO (file info) entries.
374 */
375
376 /* Size of an on-disk block pointer, e.g. in an indirect block. */
377 /* XXX: move to a more suitable location in this file */
378 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
379
380 /* Size of an on-disk inode number. */
381 /* XXX: move to a more suitable location in this file */
382 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
383
384 /* size of a FINFO, without the block pointers */
385 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
386
387 /* Full size of the provided FINFO record, including its block pointers. */
388 #define FINFO_FULLSIZE(fs, fip) \
389 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
390
391 #define NEXT_FINFO(fs, fip) \
392 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
393
394 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
395 static __unused inline type \
396 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
397 { \
398 if (fs->lfs_is64) { \
399 return fip->u_64.fi_##field; \
400 } else { \
401 return fip->u_32.fi_##field; \
402 } \
403 } \
404 static __unused inline void \
405 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
406 { \
407 if (fs->lfs_is64) { \
408 type *p = &fip->u_64.fi_##field; \
409 (void)p; \
410 fip->u_64.fi_##field = val; \
411 } else { \
412 type32 *p = &fip->u_32.fi_##field; \
413 (void)p; \
414 fip->u_32.fi_##field = val; \
415 } \
416 } \
417
418 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
419 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
420 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
421 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
422
423 static __unused inline daddr_t
424 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
425 {
426 void *firstblock;
427
428 firstblock = (char *)fip + FINFOSIZE(fs);
429 KASSERT(index < lfs_fi_getnblocks(fs, fip));
430 if (fs->lfs_is64) {
431 return ((int64_t *)firstblock)[index];
432 } else {
433 return ((int32_t *)firstblock)[index];
434 }
435 }
436
437 static __unused inline void
438 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
439 {
440 void *firstblock;
441
442 firstblock = (char *)fip + FINFOSIZE(fs);
443 KASSERT(index < lfs_fi_getnblocks(fs, fip));
444 if (fs->lfs_is64) {
445 ((int64_t *)firstblock)[index] = blk;
446 } else {
447 ((int32_t *)firstblock)[index] = blk;
448 }
449 }
450
451 /*
452 * Index file inode entries.
453 */
454
455 /*
456 * LFSv1 compatibility code is not allowed to touch if_atime, since it
457 * may not be mapped!
458 */
459 /* Read in the block with a specific inode from the ifile. */
460 #define LFS_IENTRY(IP, F, IN, BP) do { \
461 int _e; \
462 SHARE_IFLOCK(F); \
463 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
464 if ((_e = bread((F)->lfs_ivnode, \
465 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
466 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
467 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
468 if ((F)->lfs_is64) { \
469 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
470 (IN) % lfs_sb_getifpb(F)); \
471 } else if (lfs_sb_getversion(F) > 1) { \
472 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
473 (IN) % lfs_sb_getifpb(F)); \
474 } else { \
475 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
476 (IN) % lfs_sb_getifpb(F)); \
477 } \
478 UNSHARE_IFLOCK(F); \
479 } while (0)
480
481 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
482 static __unused inline type \
483 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
484 { \
485 if (fs->lfs_is64) { \
486 return ifp->u_64.if_##field; \
487 } else { \
488 return ifp->u_32.if_##field; \
489 } \
490 } \
491 static __unused inline void \
492 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
493 { \
494 if (fs->lfs_is64) { \
495 type *p = &ifp->u_64.if_##field; \
496 (void)p; \
497 ifp->u_64.if_##field = val; \
498 } else { \
499 type32 *p = &ifp->u_32.if_##field; \
500 (void)p; \
501 ifp->u_32.if_##field = val; \
502 } \
503 } \
504
505 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
506 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
507 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
508 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
509 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
510
511 /*
512 * Cleaner information structure. This resides in the ifile and is used
513 * to pass information from the kernel to the cleaner.
514 */
515
516 #define CLEANSIZE_SU(fs) \
517 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
518 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
519
520 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
521 static __unused inline type \
522 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
523 { \
524 if (fs->lfs_is64) { \
525 return cip->u_64.field; \
526 } else { \
527 return cip->u_32.field; \
528 } \
529 } \
530 static __unused inline void \
531 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
532 { \
533 if (fs->lfs_is64) { \
534 type *p = &cip->u_64.field; \
535 (void)p; \
536 cip->u_64.field = val; \
537 } else { \
538 type32 *p = &cip->u_32.field; \
539 (void)p; \
540 cip->u_32.field = val; \
541 } \
542 } \
543
544 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
545 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
546 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
547 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
548 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
549 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
550 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
551
552 static __unused inline void
553 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
554 {
555 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
556 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
557 }
558
559 static __unused inline void
560 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
561 {
562 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
563 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
564 }
565
566 /* Read in the block with the cleaner info from the ifile. */
567 #define LFS_CLEANERINFO(CP, F, BP) do { \
568 SHARE_IFLOCK(F); \
569 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
570 if (bread((F)->lfs_ivnode, \
571 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
572 panic("lfs: ifile read"); \
573 (CP) = (CLEANERINFO *)(BP)->b_data; \
574 UNSHARE_IFLOCK(F); \
575 } while (0)
576
577 /*
578 * Synchronize the Ifile cleaner info with current avail and bfree.
579 */
580 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
581 mutex_enter(&lfs_lock); \
582 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
583 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
584 fs->lfs_favail) { \
585 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
586 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
587 fs->lfs_favail); \
588 if (((bp)->b_flags & B_GATHERED) == 0) { \
589 fs->lfs_flags |= LFS_IFDIRTY; \
590 } \
591 mutex_exit(&lfs_lock); \
592 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
593 } else { \
594 mutex_exit(&lfs_lock); \
595 brelse(bp, 0); \
596 } \
597 } while (0)
598
599 /*
600 * Get the head of the inode free list.
601 * Always called with the segment lock held.
602 */
603 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
604 if (lfs_sb_getversion(FS) > 1) { \
605 LFS_CLEANERINFO((CIP), (FS), (BP)); \
606 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
607 brelse(BP, 0); \
608 } \
609 *(FREEP) = lfs_sb_getfreehd(FS); \
610 } while (0)
611
612 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
613 lfs_sb_setfreehd(FS, VAL); \
614 if (lfs_sb_getversion(FS) > 1) { \
615 LFS_CLEANERINFO((CIP), (FS), (BP)); \
616 lfs_ci_setfree_head(FS, CIP, VAL); \
617 LFS_BWRITE_LOG(BP); \
618 mutex_enter(&lfs_lock); \
619 (FS)->lfs_flags |= LFS_IFDIRTY; \
620 mutex_exit(&lfs_lock); \
621 } \
622 } while (0)
623
624 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
625 LFS_CLEANERINFO((CIP), (FS), (BP)); \
626 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
627 brelse(BP, 0); \
628 } while (0)
629
630 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
631 LFS_CLEANERINFO((CIP), (FS), (BP)); \
632 lfs_ci_setfree_tail(FS, CIP, VAL); \
633 LFS_BWRITE_LOG(BP); \
634 mutex_enter(&lfs_lock); \
635 (FS)->lfs_flags |= LFS_IFDIRTY; \
636 mutex_exit(&lfs_lock); \
637 } while (0)
638
639 /*
640 * On-disk segment summary information
641 */
642
643 #define SEGSUM_SIZE(fs) \
644 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
645 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
646
647 /*
648 * The SEGSUM structure is followed by FINFO structures. Get the pointer
649 * to the first FINFO.
650 *
651 * XXX this can't be a macro yet; this file needs to be resorted.
652 */
653 #if 0
654 static __unused inline FINFO *
655 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
656 {
657 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
658 }
659 #else
660 #define SEGSUM_FINFOBASE(fs, ssp) \
661 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
662 #endif
663
664 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
665 static __unused inline type \
666 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
667 { \
668 if (fs->lfs_is64) { \
669 return ssp->u_64.ss_##field; \
670 } else { \
671 return ssp->u_32.ss_##field; \
672 } \
673 } \
674 static __unused inline void \
675 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
676 { \
677 if (fs->lfs_is64) { \
678 type *p = &ssp->u_64.ss_##field; \
679 (void)p; \
680 ssp->u_64.ss_##field = val; \
681 } else { \
682 type32 *p = &ssp->u_32.ss_##field; \
683 (void)p; \
684 ssp->u_32.ss_##field = val; \
685 } \
686 } \
687
688 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
689 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
690 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
691 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
692 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
693 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
694 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
695 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
696 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
697 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
698 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
699
700 static __unused inline size_t
701 lfs_ss_getsumstart(STRUCT_LFS *fs)
702 {
703 /* These are actually all the same. */
704 if (fs->lfs_is64) {
705 return offsetof(SEGSUM64, ss_datasum);
706 } else /* if (lfs_sb_getversion(fs) > 1) */ {
707 return offsetof(SEGSUM32, ss_datasum);
708 } /* else {
709 return offsetof(SEGSUM_V1, ss_datasum);
710 } */
711 /*
712 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
713 * defined yet.
714 */
715 }
716
717 static __unused inline uint32_t
718 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
719 {
720 KASSERT(fs->lfs_is64 == 0);
721 /* XXX need to resort this file before we can do this */
722 //KASSERT(lfs_sb_getversion(fs) == 1);
723
724 return ssp->u_v1.ss_create;
725 }
726
727 static __unused inline void
728 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
729 {
730 KASSERT(fs->lfs_is64 == 0);
731 /* XXX need to resort this file before we can do this */
732 //KASSERT(lfs_sb_getversion(fs) == 1);
733
734 ssp->u_v1.ss_create = val;
735 }
736
737
738 /*
739 * Super block.
740 */
741
742 /*
743 * Generate accessors for the on-disk superblock fields with cpp.
744 */
745
746 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
747 static __unused inline type \
748 lfs_sb_get##field(STRUCT_LFS *fs) \
749 { \
750 if (fs->lfs_is64) { \
751 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
752 } else { \
753 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
754 } \
755 } \
756 static __unused inline void \
757 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
758 { \
759 if (fs->lfs_is64) { \
760 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
761 } else { \
762 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
763 } \
764 } \
765 static __unused inline void \
766 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
767 { \
768 if (fs->lfs_is64) { \
769 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
770 *p64 += val; \
771 } else { \
772 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
773 *p32 += val; \
774 } \
775 } \
776 static __unused inline void \
777 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
778 { \
779 if (fs->lfs_is64) { \
780 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
781 *p64 -= val; \
782 } else { \
783 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
784 *p32 -= val; \
785 } \
786 }
787
788 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
789
790 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
791 static __unused inline type \
792 lfs_sb_get##field(STRUCT_LFS *fs) \
793 { \
794 if (fs->lfs_is64) { \
795 return val64; \
796 } else { \
797 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
798 } \
799 }
800
801 #define lfs_magic lfs_dlfs.dlfs_magic
802 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
803 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
804 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
805 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
806 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
807 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
808 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
809 LFS_DEF_SB_ACCESSOR(u_int32_t, freehd);
810 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
811 LFS_DEF_SB_ACCESSOR(u_int32_t, nfiles);
812 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
813 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
814 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
815 LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
816 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
817 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
818 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
819 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
820 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
821 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
822 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
823 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
824 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
825 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
826 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
827 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
828 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
829 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
830 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
831 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
832 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
833 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
834 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
835 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
836 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
837 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
838 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
839 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
840 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
841 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
842 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
843 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
844 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
845 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
846 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
847 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
848 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
849 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
850 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
851 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
852 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
853 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
854 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
855 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
856 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
857 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
858 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
859
860 /* special-case accessors */
861
862 /*
863 * the v1 otstamp field lives in what's now dlfs_inopf
864 */
865 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
866 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
867
868 /*
869 * lfs_sboffs is an array
870 */
871 static __unused inline int32_t
872 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
873 {
874 #ifdef KASSERT /* ugh */
875 KASSERT(n < LFS_MAXNUMSB);
876 #endif
877 if (fs->lfs_is64) {
878 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
879 } else {
880 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
881 }
882 }
883 static __unused inline void
884 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
885 {
886 #ifdef KASSERT /* ugh */
887 KASSERT(n < LFS_MAXNUMSB);
888 #endif
889 if (fs->lfs_is64) {
890 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
891 } else {
892 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
893 }
894 }
895
896 /*
897 * lfs_fsmnt is a string
898 */
899 static __unused inline const char *
900 lfs_sb_getfsmnt(STRUCT_LFS *fs)
901 {
902 if (fs->lfs_is64) {
903 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
904 } else {
905 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
906 }
907 }
908
909 static __unused inline void
910 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
911 {
912 if (fs->lfs_is64) {
913 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
914 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
915 } else {
916 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
917 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
918 }
919 }
920
921 /* Highest addressable fsb */
922 #define LFS_MAX_DADDR(fs) \
923 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
924
925 /* LFS_NINDIR is the number of indirects in a file system block. */
926 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
927
928 /* LFS_INOPB is the number of inodes in a secondary storage block. */
929 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
930 /* LFS_INOPF is the number of inodes in a fragment. */
931 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
932
933 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
934 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
935 ((int)((loc) & lfs_sb_getffmask(fs)))
936
937 /* XXX: lowercase these as they're no longer macros */
938 /* Frags to diskblocks */
939 static __unused inline uint64_t
940 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
941 {
942 #if defined(_KERNEL)
943 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
944 #else
945 return b << lfs_sb_getfsbtodb(fs);
946 #endif
947 }
948 /* Diskblocks to frags */
949 static __unused inline uint64_t
950 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
951 {
952 #if defined(_KERNEL)
953 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
954 #else
955 return b >> lfs_sb_getfsbtodb(fs);
956 #endif
957 }
958
959 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
960 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
961
962 /* Frags to bytes */
963 static __unused inline uint64_t
964 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
965 {
966 return b << lfs_sb_getffshift(fs);
967 }
968 /* Bytes to frags */
969 static __unused inline uint64_t
970 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
971 {
972 return b >> lfs_sb_getffshift(fs);
973 }
974
975 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
976 ((loc) >> lfs_sb_getffshift(fs))
977 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
978 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
979 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
980 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
981 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
982 ((frags) >> lfs_sb_getfbshift(fs))
983 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
984 ((blks) << lfs_sb_getfbshift(fs))
985 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
986 ((fsb) & ((fs)->lfs_frag - 1))
987 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
988 ((fsb) &~ ((fs)->lfs_frag - 1))
989 #define lfs_dblksize(fs, dp, lbn) \
990 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
991 ? lfs_sb_getbsize(fs) \
992 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
993
994 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
995 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
996 lfs_sb_getssize(fs))
997 /* XXX segtod produces a result in frags despite the 'd' */
998 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
999 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1000 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1001 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1002 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1003
1004 /* XXX, blah. make this appear only if struct inode is defined */
1005 #ifdef _UFS_LFS_LFS_INODE_H_
1006 static __unused inline uint32_t
1007 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1008 {
1009 if (lbn >= ULFS_NDADDR || ip->i_ffs1_size >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1010 return lfs_sb_getbsize(fs);
1011 } else {
1012 return lfs_fragroundup(fs, lfs_blkoff(fs, ip->i_ffs1_size));
1013 }
1014 }
1015 #endif
1016
1017 /*
1018 * union lfs_blocks
1019 */
1020
1021 static __unused inline void
1022 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1023 {
1024 if (fs->lfs_is64) {
1025 bp->b64 = p;
1026 } else {
1027 bp->b32 = p;
1028 }
1029 }
1030
1031 static __unused inline void
1032 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1033 {
1034 void *firstblock;
1035
1036 firstblock = (char *)fip + FINFOSIZE(fs);
1037 if (fs->lfs_is64) {
1038 bp->b64 = (int64_t *)firstblock;
1039 } else {
1040 bp->b32 = (int32_t *)firstblock;
1041 }
1042 }
1043
1044 static __unused inline daddr_t
1045 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1046 {
1047 if (fs->lfs_is64) {
1048 return bp->b64[index];
1049 } else {
1050 return bp->b32[index];
1051 }
1052 }
1053
1054 static __unused inline void
1055 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1056 {
1057 if (fs->lfs_is64) {
1058 bp->b64[index] = val;
1059 } else {
1060 bp->b32[index] = val;
1061 }
1062 }
1063
1064 static __unused inline void
1065 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1066 {
1067 if (fs->lfs_is64) {
1068 bp->b64++;
1069 } else {
1070 bp->b32++;
1071 }
1072 }
1073
1074 static __unused inline int
1075 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1076 {
1077 if (fs->lfs_is64) {
1078 return bp1->b64 == bp2->b64;
1079 } else {
1080 return bp1->b32 == bp2->b32;
1081 }
1082 }
1083
1084 static __unused inline int
1085 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1086 {
1087 /* (remember that the pointers are typed) */
1088 if (fs->lfs_is64) {
1089 return bp1->b64 - bp2->b64;
1090 } else {
1091 return bp1->b32 - bp2->b32;
1092 }
1093 }
1094
1095 /*
1096 * struct segment
1097 */
1098
1099
1100 /*
1101 * Macros for determining free space on the disk, with the variable metadata
1102 * of segment summaries and inode blocks taken into account.
1103 */
1104 /*
1105 * Estimate number of clean blocks not available for writing because
1106 * they will contain metadata or overhead. This is calculated as
1107 *
1108 * E = ((C * M / D) * D + (0) * (T - D)) / T
1109 * or more simply
1110 * E = (C * M) / T
1111 *
1112 * where
1113 * C is the clean space,
1114 * D is the dirty space,
1115 * M is the dirty metadata, and
1116 * T = C + D is the total space on disk.
1117 *
1118 * This approximates the old formula of E = C * M / D when D is close to T,
1119 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1120 */
1121 #define LFS_EST_CMETA(F) (int32_t)(( \
1122 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1123 (lfs_sb_getnseg(F))))
1124
1125 /* Estimate total size of the disk not including metadata */
1126 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1127
1128 /* Estimate number of blocks actually available for writing */
1129 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1130 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1131
1132 /* Amount of non-meta space not available to mortal man */
1133 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1134 (u_int64_t)lfs_sb_getminfree(F)) / \
1135 100)
1136
1137 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1138 #define ISSPACE(F, BB, C) \
1139 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1140 LFS_EST_BFREE(F) >= (BB)) || \
1141 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1142
1143 /* Can an ordinary user write BB blocks */
1144 #define IS_FREESPACE(F, BB) \
1145 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1146
1147 /*
1148 * The minimum number of blocks to create a new inode. This is:
1149 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1150 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1151 */
1152 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1153
1154
1155
1156 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1157