lfs_accessors.h revision 1.17 1 /* $NetBSD: lfs_accessors.h,v 1.17 2015/09/01 06:10:16 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * dinodes
206 */
207
208 /*
209 * Maximum length of a symlink that can be stored within the inode.
210 */
211 #define ULFS1_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
212 #define ULFS2_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
213
214 #define ULFS_MAXSYMLINKLEN(ip) \
215 ((ip)->i_ump->um_fstype == ULFS1) ? \
216 ULFS1_MAXSYMLINKLEN : ULFS2_MAXSYMLINKLEN
217
218 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
219
220 #define DINO_IN_BLOCK(fs, base, ix) \
221 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
222
223 static __unused inline void
224 lfs_copy_dinode(STRUCT_LFS *fs,
225 union lfs_dinode *dst, const union lfs_dinode *src)
226 {
227 /*
228 * We can do structure assignment of the structs, but not of
229 * the whole union, as the union is the size of the (larger)
230 * 64-bit struct and on a 32-bit fs the upper half of it might
231 * be off the end of a buffer or otherwise invalid.
232 */
233 if (fs->lfs_is64) {
234 dst->u_64 = src->u_64;
235 } else {
236 dst->u_32 = src->u_32;
237 }
238 }
239
240 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
241 static __unused inline type \
242 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
243 { \
244 if (fs->lfs_is64) { \
245 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
246 } else { \
247 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
248 } \
249 } \
250 static __unused inline void \
251 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
252 { \
253 if (fs->lfs_is64) { \
254 type *p = &dip->u_64.di_##field; \
255 (void)p; \
256 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
257 } else { \
258 type32 *p = &dip->u_32.di_##field; \
259 (void)p; \
260 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
261 } \
262 } \
263
264 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
265 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
266 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
267 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
268 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
269 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
270 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
271 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
272 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
273 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
274 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
275 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
276 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
277 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
278 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
279
280 /* XXX this should be done differently (it's a fake field) */
281 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
282
283 static __unused inline daddr_t
284 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
285 {
286 KASSERT(ix < ULFS_NDADDR);
287 if (fs->lfs_is64) {
288 return dip->u_64.di_db[ix];
289 } else {
290 return dip->u_32.di_db[ix];
291 }
292 }
293
294 static __unused inline daddr_t
295 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
296 {
297 KASSERT(ix < ULFS_NIADDR);
298 if (fs->lfs_is64) {
299 return dip->u_64.di_ib[ix];
300 } else {
301 return dip->u_32.di_ib[ix];
302 }
303 }
304
305 static __unused inline void
306 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
307 {
308 KASSERT(ix < ULFS_NDADDR);
309 if (fs->lfs_is64) {
310 dip->u_64.di_db[ix] = val;
311 } else {
312 dip->u_32.di_db[ix] = val;
313 }
314 }
315
316 static __unused inline void
317 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
318 {
319 KASSERT(ix < ULFS_NIADDR);
320 if (fs->lfs_is64) {
321 dip->u_64.di_ib[ix] = val;
322 } else {
323 dip->u_32.di_ib[ix] = val;
324 }
325 }
326
327 /* birthtime is present only in the 64-bit inode */
328 static __unused inline void
329 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
330 const struct timespec *ts)
331 {
332 if (fs->lfs_is64) {
333 dip->u_64.di_birthtime = ts->tv_sec;
334 dip->u_64.di_birthnsec = ts->tv_nsec;
335 } else {
336 /* drop it on the floor */
337 }
338 }
339
340 /*
341 * indirect blocks
342 */
343
344 static __unused inline daddr_t
345 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
346 {
347 if (fs->lfs_is64) {
348 // XXX re-enable these asserts after reorging this file
349 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
350 return (daddr_t)(((int64_t *)block)[ix]);
351 } else {
352 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
353 /* must sign-extend or UNWRITTEN gets trashed */
354 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
355 }
356 }
357
358 static __unused inline void
359 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
360 {
361 if (fs->lfs_is64) {
362 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
363 ((int64_t *)block)[ix] = val;
364 } else {
365 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
366 ((int32_t *)block)[ix] = val;
367 }
368 }
369
370 /*
371 * "struct buf" associated definitions
372 */
373
374 # define LFS_LOCK_BUF(bp) do { \
375 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
376 mutex_enter(&lfs_lock); \
377 ++locked_queue_count; \
378 locked_queue_bytes += bp->b_bufsize; \
379 mutex_exit(&lfs_lock); \
380 } \
381 (bp)->b_flags |= B_LOCKED; \
382 } while (0)
383
384 # define LFS_UNLOCK_BUF(bp) do { \
385 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
386 mutex_enter(&lfs_lock); \
387 --locked_queue_count; \
388 locked_queue_bytes -= bp->b_bufsize; \
389 if (locked_queue_count < LFS_WAIT_BUFS && \
390 locked_queue_bytes < LFS_WAIT_BYTES) \
391 cv_broadcast(&locked_queue_cv); \
392 mutex_exit(&lfs_lock); \
393 } \
394 (bp)->b_flags &= ~B_LOCKED; \
395 } while (0)
396
397 /*
398 * "struct inode" associated definitions
399 */
400
401 #define LFS_SET_UINO(ip, flags) do { \
402 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
403 lfs_sb_adduinodes((ip)->i_lfs, 1); \
404 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
405 lfs_sb_adduinodes((ip)->i_lfs, 1); \
406 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
407 lfs_sb_adduinodes((ip)->i_lfs, 1); \
408 (ip)->i_flag |= (flags); \
409 } while (0)
410
411 #define LFS_CLR_UINO(ip, flags) do { \
412 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
413 lfs_sb_subuinodes((ip)->i_lfs, 1); \
414 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
415 lfs_sb_subuinodes((ip)->i_lfs, 1); \
416 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
417 lfs_sb_subuinodes((ip)->i_lfs, 1); \
418 (ip)->i_flag &= ~(flags); \
419 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
420 panic("lfs_uinodes < 0"); \
421 } \
422 } while (0)
423
424 #define LFS_ITIMES(ip, acc, mod, cre) \
425 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
426 lfs_itimes(ip, acc, mod, cre)
427
428 /*
429 * On-disk and in-memory checkpoint segment usage structure.
430 */
431
432 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
433 #define SEGTABSIZE_SU(fs) \
434 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
435
436 #ifdef _KERNEL
437 # define SHARE_IFLOCK(F) \
438 do { \
439 rw_enter(&(F)->lfs_iflock, RW_READER); \
440 } while(0)
441 # define UNSHARE_IFLOCK(F) \
442 do { \
443 rw_exit(&(F)->lfs_iflock); \
444 } while(0)
445 #else /* ! _KERNEL */
446 # define SHARE_IFLOCK(F)
447 # define UNSHARE_IFLOCK(F)
448 #endif /* ! _KERNEL */
449
450 /* Read in the block with a specific segment usage entry from the ifile. */
451 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
452 int _e; \
453 SHARE_IFLOCK(F); \
454 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
455 if ((_e = bread((F)->lfs_ivnode, \
456 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
457 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
458 panic("lfs: ifile read: %d", _e); \
459 if (lfs_sb_getversion(F) == 1) \
460 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
461 ((IN) & (lfs_sb_getsepb(F) - 1))); \
462 else \
463 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
464 UNSHARE_IFLOCK(F); \
465 } while (0)
466
467 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
468 if ((SP)->su_nbytes == 0) \
469 (SP)->su_flags |= SEGUSE_EMPTY; \
470 else \
471 (SP)->su_flags &= ~SEGUSE_EMPTY; \
472 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
473 LFS_BWRITE_LOG(BP); \
474 } while (0)
475
476 /*
477 * FINFO (file info) entries.
478 */
479
480 /* Size of an on-disk block pointer, e.g. in an indirect block. */
481 /* XXX: move to a more suitable location in this file */
482 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
483
484 /* Size of an on-disk inode number. */
485 /* XXX: move to a more suitable location in this file */
486 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
487
488 /* size of a FINFO, without the block pointers */
489 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
490
491 /* Full size of the provided FINFO record, including its block pointers. */
492 #define FINFO_FULLSIZE(fs, fip) \
493 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
494
495 #define NEXT_FINFO(fs, fip) \
496 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
497
498 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
499 static __unused inline type \
500 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
501 { \
502 if (fs->lfs_is64) { \
503 return fip->u_64.fi_##field; \
504 } else { \
505 return fip->u_32.fi_##field; \
506 } \
507 } \
508 static __unused inline void \
509 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
510 { \
511 if (fs->lfs_is64) { \
512 type *p = &fip->u_64.fi_##field; \
513 (void)p; \
514 fip->u_64.fi_##field = val; \
515 } else { \
516 type32 *p = &fip->u_32.fi_##field; \
517 (void)p; \
518 fip->u_32.fi_##field = val; \
519 } \
520 } \
521
522 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
523 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
524 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
525 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
526
527 static __unused inline daddr_t
528 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
529 {
530 void *firstblock;
531
532 firstblock = (char *)fip + FINFOSIZE(fs);
533 KASSERT(index < lfs_fi_getnblocks(fs, fip));
534 if (fs->lfs_is64) {
535 return ((int64_t *)firstblock)[index];
536 } else {
537 return ((int32_t *)firstblock)[index];
538 }
539 }
540
541 static __unused inline void
542 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
543 {
544 void *firstblock;
545
546 firstblock = (char *)fip + FINFOSIZE(fs);
547 KASSERT(index < lfs_fi_getnblocks(fs, fip));
548 if (fs->lfs_is64) {
549 ((int64_t *)firstblock)[index] = blk;
550 } else {
551 ((int32_t *)firstblock)[index] = blk;
552 }
553 }
554
555 /*
556 * Index file inode entries.
557 */
558
559 /*
560 * LFSv1 compatibility code is not allowed to touch if_atime, since it
561 * may not be mapped!
562 */
563 /* Read in the block with a specific inode from the ifile. */
564 #define LFS_IENTRY(IP, F, IN, BP) do { \
565 int _e; \
566 SHARE_IFLOCK(F); \
567 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
568 if ((_e = bread((F)->lfs_ivnode, \
569 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
570 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
571 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
572 if ((F)->lfs_is64) { \
573 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
574 (IN) % lfs_sb_getifpb(F)); \
575 } else if (lfs_sb_getversion(F) > 1) { \
576 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
577 (IN) % lfs_sb_getifpb(F)); \
578 } else { \
579 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
580 (IN) % lfs_sb_getifpb(F)); \
581 } \
582 UNSHARE_IFLOCK(F); \
583 } while (0)
584 #define LFS_IENTRY_NEXT(IP, F) do { \
585 if ((F)->lfs_is64) { \
586 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
587 } else if (lfs_sb_getversion(F) > 1) { \
588 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
589 } else { \
590 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
591 } \
592 } while (0)
593
594 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
595 static __unused inline type \
596 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
597 { \
598 if (fs->lfs_is64) { \
599 return ifp->u_64.if_##field; \
600 } else { \
601 return ifp->u_32.if_##field; \
602 } \
603 } \
604 static __unused inline void \
605 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
606 { \
607 if (fs->lfs_is64) { \
608 type *p = &ifp->u_64.if_##field; \
609 (void)p; \
610 ifp->u_64.if_##field = val; \
611 } else { \
612 type32 *p = &ifp->u_32.if_##field; \
613 (void)p; \
614 ifp->u_32.if_##field = val; \
615 } \
616 } \
617
618 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
619 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
620 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
621 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
622 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
623
624 /*
625 * Cleaner information structure. This resides in the ifile and is used
626 * to pass information from the kernel to the cleaner.
627 */
628
629 #define CLEANSIZE_SU(fs) \
630 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
631 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
632
633 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
634 static __unused inline type \
635 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
636 { \
637 if (fs->lfs_is64) { \
638 return cip->u_64.field; \
639 } else { \
640 return cip->u_32.field; \
641 } \
642 } \
643 static __unused inline void \
644 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
645 { \
646 if (fs->lfs_is64) { \
647 type *p = &cip->u_64.field; \
648 (void)p; \
649 cip->u_64.field = val; \
650 } else { \
651 type32 *p = &cip->u_32.field; \
652 (void)p; \
653 cip->u_32.field = val; \
654 } \
655 } \
656
657 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
658 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
659 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
660 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
661 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
662 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
663 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
664
665 static __unused inline void
666 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
667 {
668 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
669 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
670 }
671
672 static __unused inline void
673 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
674 {
675 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
676 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
677 }
678
679 /* Read in the block with the cleaner info from the ifile. */
680 #define LFS_CLEANERINFO(CP, F, BP) do { \
681 SHARE_IFLOCK(F); \
682 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
683 if (bread((F)->lfs_ivnode, \
684 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
685 panic("lfs: ifile read"); \
686 (CP) = (CLEANERINFO *)(BP)->b_data; \
687 UNSHARE_IFLOCK(F); \
688 } while (0)
689
690 /*
691 * Synchronize the Ifile cleaner info with current avail and bfree.
692 */
693 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
694 mutex_enter(&lfs_lock); \
695 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
696 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
697 fs->lfs_favail) { \
698 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
699 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
700 fs->lfs_favail); \
701 if (((bp)->b_flags & B_GATHERED) == 0) { \
702 fs->lfs_flags |= LFS_IFDIRTY; \
703 } \
704 mutex_exit(&lfs_lock); \
705 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
706 } else { \
707 mutex_exit(&lfs_lock); \
708 brelse(bp, 0); \
709 } \
710 } while (0)
711
712 /*
713 * Get the head of the inode free list.
714 * Always called with the segment lock held.
715 */
716 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
717 if (lfs_sb_getversion(FS) > 1) { \
718 LFS_CLEANERINFO((CIP), (FS), (BP)); \
719 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
720 brelse(BP, 0); \
721 } \
722 *(FREEP) = lfs_sb_getfreehd(FS); \
723 } while (0)
724
725 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
726 lfs_sb_setfreehd(FS, VAL); \
727 if (lfs_sb_getversion(FS) > 1) { \
728 LFS_CLEANERINFO((CIP), (FS), (BP)); \
729 lfs_ci_setfree_head(FS, CIP, VAL); \
730 LFS_BWRITE_LOG(BP); \
731 mutex_enter(&lfs_lock); \
732 (FS)->lfs_flags |= LFS_IFDIRTY; \
733 mutex_exit(&lfs_lock); \
734 } \
735 } while (0)
736
737 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
738 LFS_CLEANERINFO((CIP), (FS), (BP)); \
739 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
740 brelse(BP, 0); \
741 } while (0)
742
743 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
744 LFS_CLEANERINFO((CIP), (FS), (BP)); \
745 lfs_ci_setfree_tail(FS, CIP, VAL); \
746 LFS_BWRITE_LOG(BP); \
747 mutex_enter(&lfs_lock); \
748 (FS)->lfs_flags |= LFS_IFDIRTY; \
749 mutex_exit(&lfs_lock); \
750 } while (0)
751
752 /*
753 * On-disk segment summary information
754 */
755
756 #define SEGSUM_SIZE(fs) \
757 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
758 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
759
760 /*
761 * The SEGSUM structure is followed by FINFO structures. Get the pointer
762 * to the first FINFO.
763 *
764 * XXX this can't be a macro yet; this file needs to be resorted.
765 */
766 #if 0
767 static __unused inline FINFO *
768 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
769 {
770 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
771 }
772 #else
773 #define SEGSUM_FINFOBASE(fs, ssp) \
774 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
775 #endif
776
777 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
778 static __unused inline type \
779 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
780 { \
781 if (fs->lfs_is64) { \
782 return ssp->u_64.ss_##field; \
783 } else { \
784 return ssp->u_32.ss_##field; \
785 } \
786 } \
787 static __unused inline void \
788 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
789 { \
790 if (fs->lfs_is64) { \
791 type *p = &ssp->u_64.ss_##field; \
792 (void)p; \
793 ssp->u_64.ss_##field = val; \
794 } else { \
795 type32 *p = &ssp->u_32.ss_##field; \
796 (void)p; \
797 ssp->u_32.ss_##field = val; \
798 } \
799 } \
800
801 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
802 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
803 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
804 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
805 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
806 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
807 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
808 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
809 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
810 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
811 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
812
813 static __unused inline size_t
814 lfs_ss_getsumstart(STRUCT_LFS *fs)
815 {
816 /* These are actually all the same. */
817 if (fs->lfs_is64) {
818 return offsetof(SEGSUM64, ss_datasum);
819 } else /* if (lfs_sb_getversion(fs) > 1) */ {
820 return offsetof(SEGSUM32, ss_datasum);
821 } /* else {
822 return offsetof(SEGSUM_V1, ss_datasum);
823 } */
824 /*
825 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
826 * defined yet.
827 */
828 }
829
830 static __unused inline uint32_t
831 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
832 {
833 KASSERT(fs->lfs_is64 == 0);
834 /* XXX need to resort this file before we can do this */
835 //KASSERT(lfs_sb_getversion(fs) == 1);
836
837 return ssp->u_v1.ss_create;
838 }
839
840 static __unused inline void
841 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
842 {
843 KASSERT(fs->lfs_is64 == 0);
844 /* XXX need to resort this file before we can do this */
845 //KASSERT(lfs_sb_getversion(fs) == 1);
846
847 ssp->u_v1.ss_create = val;
848 }
849
850
851 /*
852 * Super block.
853 */
854
855 /*
856 * Generate accessors for the on-disk superblock fields with cpp.
857 */
858
859 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
860 static __unused inline type \
861 lfs_sb_get##field(STRUCT_LFS *fs) \
862 { \
863 if (fs->lfs_is64) { \
864 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
865 } else { \
866 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
867 } \
868 } \
869 static __unused inline void \
870 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
871 { \
872 if (fs->lfs_is64) { \
873 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
874 } else { \
875 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
876 } \
877 } \
878 static __unused inline void \
879 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
880 { \
881 if (fs->lfs_is64) { \
882 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
883 *p64 += val; \
884 } else { \
885 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
886 *p32 += val; \
887 } \
888 } \
889 static __unused inline void \
890 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
891 { \
892 if (fs->lfs_is64) { \
893 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
894 *p64 -= val; \
895 } else { \
896 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
897 *p32 -= val; \
898 } \
899 }
900
901 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
902
903 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
904 static __unused inline type \
905 lfs_sb_get##field(STRUCT_LFS *fs) \
906 { \
907 if (fs->lfs_is64) { \
908 return val64; \
909 } else { \
910 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
911 } \
912 }
913
914 #define lfs_magic lfs_dlfs.dlfs_magic
915 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
916 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
917 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
918 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
919 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
920 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
921 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
922 LFS_DEF_SB_ACCESSOR(u_int32_t, freehd);
923 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
924 LFS_DEF_SB_ACCESSOR(u_int32_t, nfiles);
925 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
926 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
927 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
928 LFS_DEF_SB_ACCESSOR(u_int32_t, ifile);
929 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
930 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
931 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
932 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
933 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
934 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
935 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
936 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
937 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
938 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
939 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
940 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
941 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
942 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
943 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
944 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
945 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
946 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
947 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
948 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
949 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
950 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
951 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
952 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
953 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
954 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
955 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
956 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
957 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
958 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
959 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
960 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
961 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
962 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
963 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
964 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
965 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
966 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
967 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
968 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
969 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
970 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
971 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
972
973 /* special-case accessors */
974
975 /*
976 * the v1 otstamp field lives in what's now dlfs_inopf
977 */
978 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
979 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
980
981 /*
982 * lfs_sboffs is an array
983 */
984 static __unused inline int32_t
985 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
986 {
987 #ifdef KASSERT /* ugh */
988 KASSERT(n < LFS_MAXNUMSB);
989 #endif
990 if (fs->lfs_is64) {
991 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
992 } else {
993 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
994 }
995 }
996 static __unused inline void
997 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
998 {
999 #ifdef KASSERT /* ugh */
1000 KASSERT(n < LFS_MAXNUMSB);
1001 #endif
1002 if (fs->lfs_is64) {
1003 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1004 } else {
1005 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1006 }
1007 }
1008
1009 /*
1010 * lfs_fsmnt is a string
1011 */
1012 static __unused inline const char *
1013 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1014 {
1015 if (fs->lfs_is64) {
1016 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1017 } else {
1018 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1019 }
1020 }
1021
1022 static __unused inline void
1023 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1024 {
1025 if (fs->lfs_is64) {
1026 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1027 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1028 } else {
1029 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1030 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1031 }
1032 }
1033
1034 /* Highest addressable fsb */
1035 #define LFS_MAX_DADDR(fs) \
1036 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1037
1038 /* LFS_NINDIR is the number of indirects in a file system block. */
1039 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1040
1041 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1042 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1043 /* LFS_INOPF is the number of inodes in a fragment. */
1044 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1045
1046 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1047 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1048 ((int)((loc) & lfs_sb_getffmask(fs)))
1049
1050 /* XXX: lowercase these as they're no longer macros */
1051 /* Frags to diskblocks */
1052 static __unused inline uint64_t
1053 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1054 {
1055 #if defined(_KERNEL)
1056 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1057 #else
1058 return b << lfs_sb_getfsbtodb(fs);
1059 #endif
1060 }
1061 /* Diskblocks to frags */
1062 static __unused inline uint64_t
1063 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1064 {
1065 #if defined(_KERNEL)
1066 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1067 #else
1068 return b >> lfs_sb_getfsbtodb(fs);
1069 #endif
1070 }
1071
1072 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1073 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1074
1075 /* Frags to bytes */
1076 static __unused inline uint64_t
1077 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1078 {
1079 return b << lfs_sb_getffshift(fs);
1080 }
1081 /* Bytes to frags */
1082 static __unused inline uint64_t
1083 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1084 {
1085 return b >> lfs_sb_getffshift(fs);
1086 }
1087
1088 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1089 ((loc) >> lfs_sb_getffshift(fs))
1090 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1091 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1092 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1093 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1094 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1095 ((frags) >> lfs_sb_getfbshift(fs))
1096 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1097 ((blks) << lfs_sb_getfbshift(fs))
1098 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1099 ((fsb) & ((fs)->lfs_frag - 1))
1100 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1101 ((fsb) &~ ((fs)->lfs_frag - 1))
1102 #define lfs_dblksize(fs, dp, lbn) \
1103 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1104 ? lfs_sb_getbsize(fs) \
1105 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1106
1107 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1108 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1109 lfs_sb_getssize(fs))
1110 /* XXX segtod produces a result in frags despite the 'd' */
1111 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1112 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1113 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1114 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1115 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1116
1117 /* XXX, blah. make this appear only if struct inode is defined */
1118 #ifdef _UFS_LFS_LFS_INODE_H_
1119 static __unused inline uint32_t
1120 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1121 {
1122 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1123 return lfs_sb_getbsize(fs);
1124 } else {
1125 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1126 }
1127 }
1128 #endif
1129
1130 /*
1131 * union lfs_blocks
1132 */
1133
1134 static __unused inline void
1135 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1136 {
1137 if (fs->lfs_is64) {
1138 bp->b64 = p;
1139 } else {
1140 bp->b32 = p;
1141 }
1142 }
1143
1144 static __unused inline void
1145 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1146 {
1147 void *firstblock;
1148
1149 firstblock = (char *)fip + FINFOSIZE(fs);
1150 if (fs->lfs_is64) {
1151 bp->b64 = (int64_t *)firstblock;
1152 } else {
1153 bp->b32 = (int32_t *)firstblock;
1154 }
1155 }
1156
1157 static __unused inline daddr_t
1158 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1159 {
1160 if (fs->lfs_is64) {
1161 return bp->b64[index];
1162 } else {
1163 return bp->b32[index];
1164 }
1165 }
1166
1167 static __unused inline void
1168 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1169 {
1170 if (fs->lfs_is64) {
1171 bp->b64[index] = val;
1172 } else {
1173 bp->b32[index] = val;
1174 }
1175 }
1176
1177 static __unused inline void
1178 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1179 {
1180 if (fs->lfs_is64) {
1181 bp->b64++;
1182 } else {
1183 bp->b32++;
1184 }
1185 }
1186
1187 static __unused inline int
1188 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1189 {
1190 if (fs->lfs_is64) {
1191 return bp1->b64 == bp2->b64;
1192 } else {
1193 return bp1->b32 == bp2->b32;
1194 }
1195 }
1196
1197 static __unused inline int
1198 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1199 {
1200 /* (remember that the pointers are typed) */
1201 if (fs->lfs_is64) {
1202 return bp1->b64 - bp2->b64;
1203 } else {
1204 return bp1->b32 - bp2->b32;
1205 }
1206 }
1207
1208 /*
1209 * struct segment
1210 */
1211
1212
1213 /*
1214 * Macros for determining free space on the disk, with the variable metadata
1215 * of segment summaries and inode blocks taken into account.
1216 */
1217 /*
1218 * Estimate number of clean blocks not available for writing because
1219 * they will contain metadata or overhead. This is calculated as
1220 *
1221 * E = ((C * M / D) * D + (0) * (T - D)) / T
1222 * or more simply
1223 * E = (C * M) / T
1224 *
1225 * where
1226 * C is the clean space,
1227 * D is the dirty space,
1228 * M is the dirty metadata, and
1229 * T = C + D is the total space on disk.
1230 *
1231 * This approximates the old formula of E = C * M / D when D is close to T,
1232 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1233 */
1234 #define LFS_EST_CMETA(F) (int32_t)(( \
1235 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1236 (lfs_sb_getnseg(F))))
1237
1238 /* Estimate total size of the disk not including metadata */
1239 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1240
1241 /* Estimate number of blocks actually available for writing */
1242 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1243 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1244
1245 /* Amount of non-meta space not available to mortal man */
1246 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1247 (u_int64_t)lfs_sb_getminfree(F)) / \
1248 100)
1249
1250 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1251 #define ISSPACE(F, BB, C) \
1252 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1253 LFS_EST_BFREE(F) >= (BB)) || \
1254 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1255
1256 /* Can an ordinary user write BB blocks */
1257 #define IS_FREESPACE(F, BB) \
1258 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1259
1260 /*
1261 * The minimum number of blocks to create a new inode. This is:
1262 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1263 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1264 */
1265 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1266
1267
1268
1269 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1270