Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.22
      1 /*	$NetBSD: lfs_accessors.h,v 1.22 2015/09/01 06:16:59 dholland Exp $	*/
      2 
      3 /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4 /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
      5 /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
      6 
      7 /*-
      8  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9  * All rights reserved.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*-
     36  * Copyright (c) 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64  */
     65 /*
     66  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67  * All rights reserved.
     68  *
     69  * This software was developed for the FreeBSD Project by Marshall
     70  * Kirk McKusick and Network Associates Laboratories, the Security
     71  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73  * research program
     74  *
     75  * Copyright (c) 1982, 1989, 1993
     76  *	The Regents of the University of California.  All rights reserved.
     77  * (c) UNIX System Laboratories, Inc.
     78  * All or some portions of this file are derived from material licensed
     79  * to the University of California by American Telephone and Telegraph
     80  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81  * the permission of UNIX System Laboratories, Inc.
     82  *
     83  * Redistribution and use in source and binary forms, with or without
     84  * modification, are permitted provided that the following conditions
     85  * are met:
     86  * 1. Redistributions of source code must retain the above copyright
     87  *    notice, this list of conditions and the following disclaimer.
     88  * 2. Redistributions in binary form must reproduce the above copyright
     89  *    notice, this list of conditions and the following disclaimer in the
     90  *    documentation and/or other materials provided with the distribution.
     91  * 3. Neither the name of the University nor the names of its contributors
     92  *    may be used to endorse or promote products derived from this software
     93  *    without specific prior written permission.
     94  *
     95  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105  * SUCH DAMAGE.
    106  *
    107  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108  */
    109 /*
    110  * Copyright (c) 1982, 1986, 1989, 1993
    111  *	The Regents of the University of California.  All rights reserved.
    112  * (c) UNIX System Laboratories, Inc.
    113  * All or some portions of this file are derived from material licensed
    114  * to the University of California by American Telephone and Telegraph
    115  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116  * the permission of UNIX System Laboratories, Inc.
    117  *
    118  * Redistribution and use in source and binary forms, with or without
    119  * modification, are permitted provided that the following conditions
    120  * are met:
    121  * 1. Redistributions of source code must retain the above copyright
    122  *    notice, this list of conditions and the following disclaimer.
    123  * 2. Redistributions in binary form must reproduce the above copyright
    124  *    notice, this list of conditions and the following disclaimer in the
    125  *    documentation and/or other materials provided with the distribution.
    126  * 3. Neither the name of the University nor the names of its contributors
    127  *    may be used to endorse or promote products derived from this software
    128  *    without specific prior written permission.
    129  *
    130  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140  * SUCH DAMAGE.
    141  *
    142  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143  */
    144 
    145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146 #define _UFS_LFS_LFS_ACCESSORS_H_
    147 
    148 #if defined(_KERNEL_OPT)
    149 #include "opt_lfs.h"
    150 #endif
    151 
    152 #include <sys/bswap.h>
    153 
    154 #if !defined(_KERNEL) && !defined(_STANDALONE)
    155 #include <assert.h>
    156 #define KASSERT assert
    157 #endif
    158 
    159 /*
    160  * STRUCT_LFS is used by the libsa code to get accessors that work
    161  * with struct salfs instead of struct lfs, and by the cleaner to
    162  * get accessors that work with struct clfs.
    163  */
    164 
    165 #ifndef STRUCT_LFS
    166 #define STRUCT_LFS struct lfs
    167 #endif
    168 
    169 /*
    170  * byte order
    171  */
    172 
    173 /*
    174  * For now at least, the bootblocks shall not be endian-independent.
    175  * We can see later if it fits in the size budget. Also disable the
    176  * byteswapping if LFS_EI is off.
    177  *
    178  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    179  * and if that changes will likely break silently.
    180  */
    181 
    182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    183 #define LFS_SWAP_int16_t(fs, val) (val)
    184 #define LFS_SWAP_int32_t(fs, val) (val)
    185 #define LFS_SWAP_int64_t(fs, val) (val)
    186 #define LFS_SWAP_uint16_t(fs, val) (val)
    187 #define LFS_SWAP_uint32_t(fs, val) (val)
    188 #define LFS_SWAP_uint64_t(fs, val) (val)
    189 #else
    190 #define LFS_SWAP_int16_t(fs, val) \
    191 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    192 #define LFS_SWAP_int32_t(fs, val) \
    193 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    194 #define LFS_SWAP_int64_t(fs, val) \
    195 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    196 #define LFS_SWAP_uint16_t(fs, val) \
    197 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    198 #define LFS_SWAP_uint32_t(fs, val) \
    199 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    200 #define LFS_SWAP_uint64_t(fs, val) \
    201 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    202 #endif
    203 
    204 /*
    205  * For handling directories we will need to know if the volume is
    206  * little-endian.
    207  */
    208 #if BYTE_ORDER == LITTLE_ENDIAN
    209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
    210 #else
    211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
    212 #endif
    213 
    214 
    215 /*
    216  * directories
    217  */
    218 
    219 /*
    220  * The LFS_DIRSIZ macro gives the minimum record length which will hold
    221  * the directory entry.  This requires the amount of space in struct lfs_direct
    222  * without the d_name field, plus enough space for the name with a terminating
    223  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
    224  */
    225 #define	LFS_DIRECTSIZ(namlen) \
    226 	((sizeof(struct lfs_direct) - (LFS_MAXNAMLEN+1)) + (((namlen)+1 + 3) &~ 3))
    227 
    228 #if (BYTE_ORDER == LITTLE_ENDIAN)
    229 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    230     (((oldfmt) && !(needswap)) ?		\
    231     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    232 #else
    233 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    234     (((oldfmt) && (needswap)) ?			\
    235     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    236 #endif
    237 
    238 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(lfs_dir_getnamlen(fs, dp))
    239 
    240 /* Constants for the first argument of LFS_OLDDIRSIZ */
    241 #define LFS_OLDDIRFMT	1
    242 #define LFS_NEWDIRFMT	0
    243 
    244 static __unused inline uint8_t
    245 lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_direct *dp)
    246 {
    247 	if (fs->lfs_hasolddirfmt) {
    248 		return LFS_DT_UNKNOWN;
    249 	}
    250 	return dp->d_type;
    251 }
    252 
    253 static __unused inline uint8_t
    254 lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
    255 {
    256 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    257 		/* low-order byte of old 16-bit namlen field */
    258 		return dp->d_type;
    259 	}
    260 	return dp->d_namlen;
    261 }
    262 
    263 static __unused inline void
    264 lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t type)
    265 {
    266 	if (fs->lfs_hasolddirfmt) {
    267 		/* do nothing */
    268 		return;
    269 	}
    270 	dp->d_type = type;
    271 }
    272 
    273 static __unused inline void
    274 lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t namlen)
    275 {
    276 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    277 		/* low-order byte of old 16-bit namlen field */
    278 		dp->d_type = namlen;
    279 	}
    280 	dp->d_namlen = namlen;
    281 }
    282 
    283 /*
    284  * These are called "dirt" because they ought to be cleaned up.
    285  */
    286 
    287 static __unused inline uint8_t
    288 lfs_dirt_getdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    289 {
    290 	if (fs->lfs_hasolddirfmt) {
    291 		return LFS_DT_UNKNOWN;
    292 	}
    293 	return dp->dot_type;
    294 }
    295 
    296 static __unused inline uint8_t
    297 lfs_dirt_getdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    298 {
    299 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    300 		/* low-order byte of old 16-bit namlen field */
    301 		return dp->dot_type;
    302 	}
    303 	return dp->dot_namlen;
    304 }
    305 
    306 static __unused inline uint8_t
    307 lfs_dirt_getdotdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    308 {
    309 	if (fs->lfs_hasolddirfmt) {
    310 		return LFS_DT_UNKNOWN;
    311 	}
    312 	return dp->dotdot_type;
    313 }
    314 
    315 static __unused inline uint8_t
    316 lfs_dirt_getdotdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
    317 {
    318 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    319 		/* low-order byte of old 16-bit namlen field */
    320 		return dp->dotdot_type;
    321 	}
    322 	return dp->dotdot_namlen;
    323 }
    324 
    325 static __unused inline void
    326 lfs_dirt_settypes(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
    327     unsigned dt1, unsigned dt2)
    328 {
    329 	if (fs->lfs_hasolddirfmt) {
    330 		/* do nothing */
    331 		return;
    332 	}
    333 	dtp->dot_type = dt1;
    334 	dtp->dotdot_type = dt2;
    335 }
    336 
    337 static __unused inline void
    338 lfs_dirt_setnamlens(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
    339     unsigned len1, unsigned len2)
    340 {
    341 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    342 		/* low-order bytes of old 16-bit namlen field */
    343 		dtp->dot_type = len1;
    344 		dtp->dotdot_type = len2;
    345 		/* clear the high-order bytes */
    346 		dtp->dot_namlen = 0;
    347 		dtp->dotdot_namlen = 0;
    348 		return;
    349 	}
    350 	dtp->dot_namlen = len1;
    351 	dtp->dotdot_namlen = len2;
    352 }
    353 
    354 
    355 /*
    356  * dinodes
    357  */
    358 
    359 /*
    360  * Maximum length of a symlink that can be stored within the inode.
    361  */
    362 #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    363 #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    364 
    365 #define LFS_MAXSYMLINKLEN(fs) \
    366 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
    367 
    368 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    369 
    370 #define DINO_IN_BLOCK(fs, base, ix) \
    371 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    372 
    373 static __unused inline void
    374 lfs_copy_dinode(STRUCT_LFS *fs,
    375     union lfs_dinode *dst, const union lfs_dinode *src)
    376 {
    377 	/*
    378 	 * We can do structure assignment of the structs, but not of
    379 	 * the whole union, as the union is the size of the (larger)
    380 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    381 	 * be off the end of a buffer or otherwise invalid.
    382 	 */
    383 	if (fs->lfs_is64) {
    384 		dst->u_64 = src->u_64;
    385 	} else {
    386 		dst->u_32 = src->u_32;
    387 	}
    388 }
    389 
    390 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    391 	static __unused inline type				\
    392 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    393 	{							\
    394 		if (fs->lfs_is64) {				\
    395 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    396 		} else {					\
    397 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    398 		}						\
    399 	}							\
    400 	static __unused inline void				\
    401 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    402 	{							\
    403 		if (fs->lfs_is64) {				\
    404 			type *p = &dip->u_64.di_##field;	\
    405 			(void)p;				\
    406 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    407 		} else {					\
    408 			type32 *p = &dip->u_32.di_##field;	\
    409 			(void)p;				\
    410 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    411 		}						\
    412 	}							\
    413 
    414 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
    415 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
    416 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
    417 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
    418 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
    419 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
    420 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
    421 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
    422 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
    423 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
    424 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
    425 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
    426 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
    427 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
    428 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
    429 
    430 /* XXX this should be done differently (it's a fake field) */
    431 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
    432 
    433 static __unused inline daddr_t
    434 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    435 {
    436 	KASSERT(ix < ULFS_NDADDR);
    437 	if (fs->lfs_is64) {
    438 		return dip->u_64.di_db[ix];
    439 	} else {
    440 		return dip->u_32.di_db[ix];
    441 	}
    442 }
    443 
    444 static __unused inline daddr_t
    445 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    446 {
    447 	KASSERT(ix < ULFS_NIADDR);
    448 	if (fs->lfs_is64) {
    449 		return dip->u_64.di_ib[ix];
    450 	} else {
    451 		return dip->u_32.di_ib[ix];
    452 	}
    453 }
    454 
    455 static __unused inline void
    456 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    457 {
    458 	KASSERT(ix < ULFS_NDADDR);
    459 	if (fs->lfs_is64) {
    460 		dip->u_64.di_db[ix] = val;
    461 	} else {
    462 		dip->u_32.di_db[ix] = val;
    463 	}
    464 }
    465 
    466 static __unused inline void
    467 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    468 {
    469 	KASSERT(ix < ULFS_NIADDR);
    470 	if (fs->lfs_is64) {
    471 		dip->u_64.di_ib[ix] = val;
    472 	} else {
    473 		dip->u_32.di_ib[ix] = val;
    474 	}
    475 }
    476 
    477 /* birthtime is present only in the 64-bit inode */
    478 static __unused inline void
    479 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    480     const struct timespec *ts)
    481 {
    482 	if (fs->lfs_is64) {
    483 		dip->u_64.di_birthtime = ts->tv_sec;
    484 		dip->u_64.di_birthnsec = ts->tv_nsec;
    485 	} else {
    486 		/* drop it on the floor */
    487 	}
    488 }
    489 
    490 /*
    491  * indirect blocks
    492  */
    493 
    494 static __unused inline daddr_t
    495 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    496 {
    497 	if (fs->lfs_is64) {
    498 		// XXX re-enable these asserts after reorging this file
    499 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    500 		return (daddr_t)(((int64_t *)block)[ix]);
    501 	} else {
    502 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    503 		/* must sign-extend or UNWRITTEN gets trashed */
    504 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    505 	}
    506 }
    507 
    508 static __unused inline void
    509 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    510 {
    511 	if (fs->lfs_is64) {
    512 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    513 		((int64_t *)block)[ix] = val;
    514 	} else {
    515 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    516 		((int32_t *)block)[ix] = val;
    517 	}
    518 }
    519 
    520 /*
    521  * "struct buf" associated definitions
    522  */
    523 
    524 # define LFS_LOCK_BUF(bp) do {						\
    525 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    526 		mutex_enter(&lfs_lock);					\
    527 		++locked_queue_count;					\
    528 		locked_queue_bytes += bp->b_bufsize;			\
    529 		mutex_exit(&lfs_lock);					\
    530 	}								\
    531 	(bp)->b_flags |= B_LOCKED;					\
    532 } while (0)
    533 
    534 # define LFS_UNLOCK_BUF(bp) do {					\
    535 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    536 		mutex_enter(&lfs_lock);					\
    537 		--locked_queue_count;					\
    538 		locked_queue_bytes -= bp->b_bufsize;			\
    539 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    540 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    541 			cv_broadcast(&locked_queue_cv);			\
    542 		mutex_exit(&lfs_lock);					\
    543 	}								\
    544 	(bp)->b_flags &= ~B_LOCKED;					\
    545 } while (0)
    546 
    547 /*
    548  * "struct inode" associated definitions
    549  */
    550 
    551 #define LFS_SET_UINO(ip, flags) do {					\
    552 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    553 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    554 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    555 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    556 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    557 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    558 	(ip)->i_flag |= (flags);					\
    559 } while (0)
    560 
    561 #define LFS_CLR_UINO(ip, flags) do {					\
    562 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    563 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    564 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    565 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    566 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    567 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    568 	(ip)->i_flag &= ~(flags);					\
    569 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    570 		panic("lfs_uinodes < 0");				\
    571 	}								\
    572 } while (0)
    573 
    574 #define LFS_ITIMES(ip, acc, mod, cre) \
    575 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    576 		lfs_itimes(ip, acc, mod, cre)
    577 
    578 /*
    579  * On-disk and in-memory checkpoint segment usage structure.
    580  */
    581 
    582 #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    583 #define	SEGTABSIZE_SU(fs)						\
    584 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    585 
    586 #ifdef _KERNEL
    587 # define SHARE_IFLOCK(F) 						\
    588   do {									\
    589 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    590   } while(0)
    591 # define UNSHARE_IFLOCK(F)						\
    592   do {									\
    593 	rw_exit(&(F)->lfs_iflock);					\
    594   } while(0)
    595 #else /* ! _KERNEL */
    596 # define SHARE_IFLOCK(F)
    597 # define UNSHARE_IFLOCK(F)
    598 #endif /* ! _KERNEL */
    599 
    600 /* Read in the block with a specific segment usage entry from the ifile. */
    601 #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    602 	int _e;								\
    603 	SHARE_IFLOCK(F);						\
    604 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    605 	if ((_e = bread((F)->lfs_ivnode,				\
    606 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    607 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    608 		panic("lfs: ifile read: %d", _e);			\
    609 	if (lfs_sb_getversion(F) == 1)					\
    610 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    611 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    612 	else								\
    613 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    614 	UNSHARE_IFLOCK(F);						\
    615 } while (0)
    616 
    617 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    618 	if ((SP)->su_nbytes == 0)					\
    619 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    620 	else								\
    621 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    622 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    623 	LFS_BWRITE_LOG(BP);						\
    624 } while (0)
    625 
    626 /*
    627  * FINFO (file info) entries.
    628  */
    629 
    630 /* Size of an on-disk block pointer, e.g. in an indirect block. */
    631 /* XXX: move to a more suitable location in this file */
    632 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    633 
    634 /* Size of an on-disk inode number. */
    635 /* XXX: move to a more suitable location in this file */
    636 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    637 
    638 /* size of a FINFO, without the block pointers */
    639 #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    640 
    641 /* Full size of the provided FINFO record, including its block pointers. */
    642 #define FINFO_FULLSIZE(fs, fip) \
    643 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    644 
    645 #define NEXT_FINFO(fs, fip) \
    646 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    647 
    648 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    649 	static __unused inline type				\
    650 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    651 	{							\
    652 		if (fs->lfs_is64) {				\
    653 			return fip->u_64.fi_##field; 		\
    654 		} else {					\
    655 			return fip->u_32.fi_##field; 		\
    656 		}						\
    657 	}							\
    658 	static __unused inline void				\
    659 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    660 	{							\
    661 		if (fs->lfs_is64) {				\
    662 			type *p = &fip->u_64.fi_##field;	\
    663 			(void)p;				\
    664 			fip->u_64.fi_##field = val;		\
    665 		} else {					\
    666 			type32 *p = &fip->u_32.fi_##field;	\
    667 			(void)p;				\
    668 			fip->u_32.fi_##field = val;		\
    669 		}						\
    670 	}							\
    671 
    672 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    673 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    674 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    675 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    676 
    677 static __unused inline daddr_t
    678 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
    679 {
    680 	void *firstblock;
    681 
    682 	firstblock = (char *)fip + FINFOSIZE(fs);
    683 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    684 	if (fs->lfs_is64) {
    685 		return ((int64_t *)firstblock)[index];
    686 	} else {
    687 		return ((int32_t *)firstblock)[index];
    688 	}
    689 }
    690 
    691 static __unused inline void
    692 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
    693 {
    694 	void *firstblock;
    695 
    696 	firstblock = (char *)fip + FINFOSIZE(fs);
    697 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    698 	if (fs->lfs_is64) {
    699 		((int64_t *)firstblock)[index] = blk;
    700 	} else {
    701 		((int32_t *)firstblock)[index] = blk;
    702 	}
    703 }
    704 
    705 /*
    706  * Index file inode entries.
    707  */
    708 
    709 /*
    710  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    711  * may not be mapped!
    712  */
    713 /* Read in the block with a specific inode from the ifile. */
    714 #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    715 	int _e;								\
    716 	SHARE_IFLOCK(F);						\
    717 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    718 	if ((_e = bread((F)->lfs_ivnode,				\
    719 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    720 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    721 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    722 	if ((F)->lfs_is64) {						\
    723 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    724 				 (IN) % lfs_sb_getifpb(F));		\
    725 	} else if (lfs_sb_getversion(F) > 1) {				\
    726 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    727 				(IN) % lfs_sb_getifpb(F)); 		\
    728 	} else {							\
    729 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    730 				 (IN) % lfs_sb_getifpb(F));		\
    731 	}								\
    732 	UNSHARE_IFLOCK(F);						\
    733 } while (0)
    734 #define LFS_IENTRY_NEXT(IP, F) do { \
    735 	if ((F)->lfs_is64) {						\
    736 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    737 	} else if (lfs_sb_getversion(F) > 1) {				\
    738 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    739 	} else {							\
    740 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    741 	}								\
    742 } while (0)
    743 
    744 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    745 	static __unused inline type				\
    746 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    747 	{							\
    748 		if (fs->lfs_is64) {				\
    749 			return ifp->u_64.if_##field; 		\
    750 		} else {					\
    751 			return ifp->u_32.if_##field; 		\
    752 		}						\
    753 	}							\
    754 	static __unused inline void				\
    755 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    756 	{							\
    757 		if (fs->lfs_is64) {				\
    758 			type *p = &ifp->u_64.if_##field;	\
    759 			(void)p;				\
    760 			ifp->u_64.if_##field = val;		\
    761 		} else {					\
    762 			type32 *p = &ifp->u_32.if_##field;	\
    763 			(void)p;				\
    764 			ifp->u_32.if_##field = val;		\
    765 		}						\
    766 	}							\
    767 
    768 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
    769 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    770 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
    771 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
    772 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
    773 
    774 /*
    775  * Cleaner information structure.  This resides in the ifile and is used
    776  * to pass information from the kernel to the cleaner.
    777  */
    778 
    779 #define	CLEANSIZE_SU(fs)						\
    780 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    781 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    782 
    783 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    784 	static __unused inline type				\
    785 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    786 	{							\
    787 		if (fs->lfs_is64) {				\
    788 			return cip->u_64.field; 		\
    789 		} else {					\
    790 			return cip->u_32.field; 		\
    791 		}						\
    792 	}							\
    793 	static __unused inline void				\
    794 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    795 	{							\
    796 		if (fs->lfs_is64) {				\
    797 			type *p = &cip->u_64.field;		\
    798 			(void)p;				\
    799 			cip->u_64.field = val;			\
    800 		} else {					\
    801 			type32 *p = &cip->u_32.field;		\
    802 			(void)p;				\
    803 			cip->u_32.field = val;			\
    804 		}						\
    805 	}							\
    806 
    807 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
    808 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
    809 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    810 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    811 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
    812 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
    813 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
    814 
    815 static __unused inline void
    816 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    817 {
    818 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    819 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    820 }
    821 
    822 static __unused inline void
    823 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    824 {
    825 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    826 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    827 }
    828 
    829 /* Read in the block with the cleaner info from the ifile. */
    830 #define LFS_CLEANERINFO(CP, F, BP) do {					\
    831 	SHARE_IFLOCK(F);						\
    832 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    833 	if (bread((F)->lfs_ivnode,					\
    834 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
    835 		panic("lfs: ifile read");				\
    836 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    837 	UNSHARE_IFLOCK(F);						\
    838 } while (0)
    839 
    840 /*
    841  * Synchronize the Ifile cleaner info with current avail and bfree.
    842  */
    843 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    844     mutex_enter(&lfs_lock);						\
    845     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    846 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    847 	fs->lfs_favail) {	 					\
    848 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    849 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    850 		fs->lfs_favail);				 	\
    851 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    852 		fs->lfs_flags |= LFS_IFDIRTY;				\
    853 	}								\
    854 	mutex_exit(&lfs_lock);						\
    855 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    856     } else {							 	\
    857 	mutex_exit(&lfs_lock);						\
    858 	brelse(bp, 0);						 	\
    859     }									\
    860 } while (0)
    861 
    862 /*
    863  * Get the head of the inode free list.
    864  * Always called with the segment lock held.
    865  */
    866 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    867 	if (lfs_sb_getversion(FS) > 1) {				\
    868 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    869 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    870 		brelse(BP, 0);						\
    871 	}								\
    872 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    873 } while (0)
    874 
    875 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    876 	lfs_sb_setfreehd(FS, VAL);					\
    877 	if (lfs_sb_getversion(FS) > 1) {				\
    878 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    879 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    880 		LFS_BWRITE_LOG(BP);					\
    881 		mutex_enter(&lfs_lock);					\
    882 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    883 		mutex_exit(&lfs_lock);					\
    884 	}								\
    885 } while (0)
    886 
    887 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
    888 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    889 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
    890 	brelse(BP, 0);							\
    891 } while (0)
    892 
    893 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
    894 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    895 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
    896 	LFS_BWRITE_LOG(BP);						\
    897 	mutex_enter(&lfs_lock);						\
    898 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
    899 	mutex_exit(&lfs_lock);						\
    900 } while (0)
    901 
    902 /*
    903  * On-disk segment summary information
    904  */
    905 
    906 #define SEGSUM_SIZE(fs) \
    907 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
    908 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
    909 
    910 /*
    911  * The SEGSUM structure is followed by FINFO structures. Get the pointer
    912  * to the first FINFO.
    913  *
    914  * XXX this can't be a macro yet; this file needs to be resorted.
    915  */
    916 #if 0
    917 static __unused inline FINFO *
    918 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
    919 {
    920 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
    921 }
    922 #else
    923 #define SEGSUM_FINFOBASE(fs, ssp) \
    924 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
    925 #endif
    926 
    927 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
    928 	static __unused inline type				\
    929 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
    930 	{							\
    931 		if (fs->lfs_is64) {				\
    932 			return ssp->u_64.ss_##field; 		\
    933 		} else {					\
    934 			return ssp->u_32.ss_##field; 		\
    935 		}						\
    936 	}							\
    937 	static __unused inline void				\
    938 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
    939 	{							\
    940 		if (fs->lfs_is64) {				\
    941 			type *p = &ssp->u_64.ss_##field;	\
    942 			(void)p;				\
    943 			ssp->u_64.ss_##field = val;		\
    944 		} else {					\
    945 			type32 *p = &ssp->u_32.ss_##field;	\
    946 			(void)p;				\
    947 			ssp->u_32.ss_##field = val;		\
    948 		}						\
    949 	}							\
    950 
    951 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
    952 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
    953 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
    954 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
    955 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
    956 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
    957 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
    958 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
    959 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
    960 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
    961 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
    962 
    963 static __unused inline size_t
    964 lfs_ss_getsumstart(STRUCT_LFS *fs)
    965 {
    966 	/* These are actually all the same. */
    967 	if (fs->lfs_is64) {
    968 		return offsetof(SEGSUM64, ss_datasum);
    969 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
    970 		return offsetof(SEGSUM32, ss_datasum);
    971 	} /* else {
    972 		return offsetof(SEGSUM_V1, ss_datasum);
    973 	} */
    974 	/*
    975 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
    976 	 * defined yet.
    977 	 */
    978 }
    979 
    980 static __unused inline uint32_t
    981 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
    982 {
    983 	KASSERT(fs->lfs_is64 == 0);
    984 	/* XXX need to resort this file before we can do this */
    985 	//KASSERT(lfs_sb_getversion(fs) == 1);
    986 
    987 	return ssp->u_v1.ss_create;
    988 }
    989 
    990 static __unused inline void
    991 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
    992 {
    993 	KASSERT(fs->lfs_is64 == 0);
    994 	/* XXX need to resort this file before we can do this */
    995 	//KASSERT(lfs_sb_getversion(fs) == 1);
    996 
    997 	ssp->u_v1.ss_create = val;
    998 }
    999 
   1000 
   1001 /*
   1002  * Super block.
   1003  */
   1004 
   1005 /*
   1006  * Generate accessors for the on-disk superblock fields with cpp.
   1007  */
   1008 
   1009 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
   1010 	static __unused inline type				\
   1011 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1012 	{							\
   1013 		if (fs->lfs_is64) {				\
   1014 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1015 		} else {					\
   1016 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1017 		}						\
   1018 	}							\
   1019 	static __unused inline void				\
   1020 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
   1021 	{							\
   1022 		if (fs->lfs_is64) {				\
   1023 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
   1024 		} else {					\
   1025 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
   1026 		}						\
   1027 	}							\
   1028 	static __unused inline void				\
   1029 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
   1030 	{							\
   1031 		if (fs->lfs_is64) {				\
   1032 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1033 			*p64 += val;				\
   1034 		} else {					\
   1035 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1036 			*p32 += val;				\
   1037 		}						\
   1038 	}							\
   1039 	static __unused inline void				\
   1040 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
   1041 	{							\
   1042 		if (fs->lfs_is64) {				\
   1043 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1044 			*p64 -= val;				\
   1045 		} else {					\
   1046 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1047 			*p32 -= val;				\
   1048 		}						\
   1049 	}
   1050 
   1051 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
   1052 
   1053 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
   1054 	static __unused inline type				\
   1055 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1056 	{							\
   1057 		if (fs->lfs_is64) {				\
   1058 			return val64;				\
   1059 		} else {					\
   1060 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1061 		}						\
   1062 	}
   1063 
   1064 #define lfs_magic lfs_dlfs.dlfs_magic
   1065 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
   1066 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
   1067 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
   1068 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
   1069 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
   1070 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
   1071 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
   1072 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
   1073 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
   1074 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
   1075 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
   1076 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
   1077 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
   1078 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
   1079 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
   1080 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
   1081 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
   1082 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
   1083 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
   1084 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
   1085 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
   1086 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
   1087 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
   1088 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
   1089 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
   1090 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
   1091 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
   1092 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
   1093 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
   1094 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
   1095 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
   1096 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
   1097 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
   1098 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
   1099 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
   1100 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
   1101 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
   1102 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
   1103 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
   1104 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
   1105 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
   1106 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
   1107 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
   1108 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
   1109 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
   1110 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
   1111 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
   1112 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
   1113 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
   1114 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
   1115 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
   1116 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
   1117 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
   1118 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
   1119 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
   1120 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
   1121 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
   1122 
   1123 /* special-case accessors */
   1124 
   1125 /*
   1126  * the v1 otstamp field lives in what's now dlfs_inopf
   1127  */
   1128 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
   1129 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
   1130 
   1131 /*
   1132  * lfs_sboffs is an array
   1133  */
   1134 static __unused inline int32_t
   1135 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
   1136 {
   1137 #ifdef KASSERT /* ugh */
   1138 	KASSERT(n < LFS_MAXNUMSB);
   1139 #endif
   1140 	if (fs->lfs_is64) {
   1141 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
   1142 	} else {
   1143 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
   1144 	}
   1145 }
   1146 static __unused inline void
   1147 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
   1148 {
   1149 #ifdef KASSERT /* ugh */
   1150 	KASSERT(n < LFS_MAXNUMSB);
   1151 #endif
   1152 	if (fs->lfs_is64) {
   1153 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1154 	} else {
   1155 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1156 	}
   1157 }
   1158 
   1159 /*
   1160  * lfs_fsmnt is a string
   1161  */
   1162 static __unused inline const char *
   1163 lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1164 {
   1165 	if (fs->lfs_is64) {
   1166 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1167 	} else {
   1168 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1169 	}
   1170 }
   1171 
   1172 static __unused inline void
   1173 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1174 {
   1175 	if (fs->lfs_is64) {
   1176 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1177 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1178 	} else {
   1179 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1180 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1181 	}
   1182 }
   1183 
   1184 /* Highest addressable fsb */
   1185 #define LFS_MAX_DADDR(fs) \
   1186 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1187 
   1188 /* LFS_NINDIR is the number of indirects in a file system block. */
   1189 #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1190 
   1191 /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1192 #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1193 /* LFS_INOPF is the number of inodes in a fragment. */
   1194 #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1195 
   1196 #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1197 #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1198     ((int)((loc) & lfs_sb_getffmask(fs)))
   1199 
   1200 /* XXX: lowercase these as they're no longer macros */
   1201 /* Frags to diskblocks */
   1202 static __unused inline uint64_t
   1203 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1204 {
   1205 #if defined(_KERNEL)
   1206 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1207 #else
   1208 	return b << lfs_sb_getfsbtodb(fs);
   1209 #endif
   1210 }
   1211 /* Diskblocks to frags */
   1212 static __unused inline uint64_t
   1213 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1214 {
   1215 #if defined(_KERNEL)
   1216 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1217 #else
   1218 	return b >> lfs_sb_getfsbtodb(fs);
   1219 #endif
   1220 }
   1221 
   1222 #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1223 #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1224 
   1225 /* Frags to bytes */
   1226 static __unused inline uint64_t
   1227 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1228 {
   1229 	return b << lfs_sb_getffshift(fs);
   1230 }
   1231 /* Bytes to frags */
   1232 static __unused inline uint64_t
   1233 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1234 {
   1235 	return b >> lfs_sb_getffshift(fs);
   1236 }
   1237 
   1238 #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1239 	((loc) >> lfs_sb_getffshift(fs))
   1240 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1241 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1242 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1243 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1244 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1245 	((frags) >> lfs_sb_getfbshift(fs))
   1246 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1247 	((blks) << lfs_sb_getfbshift(fs))
   1248 #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1249 	((fsb) & ((fs)->lfs_frag - 1))
   1250 #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1251 	((fsb) &~ ((fs)->lfs_frag - 1))
   1252 #define lfs_dblksize(fs, dp, lbn) \
   1253 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1254 	    ? lfs_sb_getbsize(fs) \
   1255 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1256 
   1257 #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1258 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1259 			   lfs_sb_getssize(fs))
   1260 /* XXX segtod produces a result in frags despite the 'd' */
   1261 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1262 #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1263 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1264 #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1265 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1266 
   1267 /* XXX, blah. make this appear only if struct inode is defined */
   1268 #ifdef _UFS_LFS_LFS_INODE_H_
   1269 static __unused inline uint32_t
   1270 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1271 {
   1272 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1273 		return lfs_sb_getbsize(fs);
   1274 	} else {
   1275 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1276 	}
   1277 }
   1278 #endif
   1279 
   1280 /*
   1281  * union lfs_blocks
   1282  */
   1283 
   1284 static __unused inline void
   1285 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1286 {
   1287 	if (fs->lfs_is64) {
   1288 		bp->b64 = p;
   1289 	} else {
   1290 		bp->b32 = p;
   1291 	}
   1292 }
   1293 
   1294 static __unused inline void
   1295 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1296 {
   1297 	void *firstblock;
   1298 
   1299 	firstblock = (char *)fip + FINFOSIZE(fs);
   1300 	if (fs->lfs_is64) {
   1301 		bp->b64 = (int64_t *)firstblock;
   1302 	}  else {
   1303 		bp->b32 = (int32_t *)firstblock;
   1304 	}
   1305 }
   1306 
   1307 static __unused inline daddr_t
   1308 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
   1309 {
   1310 	if (fs->lfs_is64) {
   1311 		return bp->b64[index];
   1312 	} else {
   1313 		return bp->b32[index];
   1314 	}
   1315 }
   1316 
   1317 static __unused inline void
   1318 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
   1319 {
   1320 	if (fs->lfs_is64) {
   1321 		bp->b64[index] = val;
   1322 	} else {
   1323 		bp->b32[index] = val;
   1324 	}
   1325 }
   1326 
   1327 static __unused inline void
   1328 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1329 {
   1330 	if (fs->lfs_is64) {
   1331 		bp->b64++;
   1332 	} else {
   1333 		bp->b32++;
   1334 	}
   1335 }
   1336 
   1337 static __unused inline int
   1338 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1339 {
   1340 	if (fs->lfs_is64) {
   1341 		return bp1->b64 == bp2->b64;
   1342 	} else {
   1343 		return bp1->b32 == bp2->b32;
   1344 	}
   1345 }
   1346 
   1347 static __unused inline int
   1348 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1349 {
   1350 	/* (remember that the pointers are typed) */
   1351 	if (fs->lfs_is64) {
   1352 		return bp1->b64 - bp2->b64;
   1353 	} else {
   1354 		return bp1->b32 - bp2->b32;
   1355 	}
   1356 }
   1357 
   1358 /*
   1359  * struct segment
   1360  */
   1361 
   1362 
   1363 /*
   1364  * Macros for determining free space on the disk, with the variable metadata
   1365  * of segment summaries and inode blocks taken into account.
   1366  */
   1367 /*
   1368  * Estimate number of clean blocks not available for writing because
   1369  * they will contain metadata or overhead.  This is calculated as
   1370  *
   1371  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1372  * or more simply
   1373  *		E = (C * M) / T
   1374  *
   1375  * where
   1376  * C is the clean space,
   1377  * D is the dirty space,
   1378  * M is the dirty metadata, and
   1379  * T = C + D is the total space on disk.
   1380  *
   1381  * This approximates the old formula of E = C * M / D when D is close to T,
   1382  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1383  */
   1384 #define LFS_EST_CMETA(F) (int32_t)((					\
   1385 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1386 	(lfs_sb_getnseg(F))))
   1387 
   1388 /* Estimate total size of the disk not including metadata */
   1389 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1390 
   1391 /* Estimate number of blocks actually available for writing */
   1392 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1393 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1394 
   1395 /* Amount of non-meta space not available to mortal man */
   1396 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) *			     \
   1397 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
   1398 				  100)
   1399 
   1400 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1401 #define ISSPACE(F, BB, C)						\
   1402 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1403 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1404 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1405 
   1406 /* Can an ordinary user write BB blocks */
   1407 #define IS_FREESPACE(F, BB)						\
   1408 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1409 
   1410 /*
   1411  * The minimum number of blocks to create a new inode.  This is:
   1412  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1413  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1414  */
   1415 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1416 
   1417 
   1418 
   1419 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1420