lfs_accessors.h revision 1.22 1 /* $NetBSD: lfs_accessors.h,v 1.22 2015/09/01 06:16:59 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * For handling directories we will need to know if the volume is
206 * little-endian.
207 */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213
214
215 /*
216 * directories
217 */
218
219 /*
220 * The LFS_DIRSIZ macro gives the minimum record length which will hold
221 * the directory entry. This requires the amount of space in struct lfs_direct
222 * without the d_name field, plus enough space for the name with a terminating
223 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
224 */
225 #define LFS_DIRECTSIZ(namlen) \
226 ((sizeof(struct lfs_direct) - (LFS_MAXNAMLEN+1)) + (((namlen)+1 + 3) &~ 3))
227
228 #if (BYTE_ORDER == LITTLE_ENDIAN)
229 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
230 (((oldfmt) && !(needswap)) ? \
231 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
232 #else
233 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
234 (((oldfmt) && (needswap)) ? \
235 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
236 #endif
237
238 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(lfs_dir_getnamlen(fs, dp))
239
240 /* Constants for the first argument of LFS_OLDDIRSIZ */
241 #define LFS_OLDDIRFMT 1
242 #define LFS_NEWDIRFMT 0
243
244 static __unused inline uint8_t
245 lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_direct *dp)
246 {
247 if (fs->lfs_hasolddirfmt) {
248 return LFS_DT_UNKNOWN;
249 }
250 return dp->d_type;
251 }
252
253 static __unused inline uint8_t
254 lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
255 {
256 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
257 /* low-order byte of old 16-bit namlen field */
258 return dp->d_type;
259 }
260 return dp->d_namlen;
261 }
262
263 static __unused inline void
264 lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t type)
265 {
266 if (fs->lfs_hasolddirfmt) {
267 /* do nothing */
268 return;
269 }
270 dp->d_type = type;
271 }
272
273 static __unused inline void
274 lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t namlen)
275 {
276 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
277 /* low-order byte of old 16-bit namlen field */
278 dp->d_type = namlen;
279 }
280 dp->d_namlen = namlen;
281 }
282
283 /*
284 * These are called "dirt" because they ought to be cleaned up.
285 */
286
287 static __unused inline uint8_t
288 lfs_dirt_getdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
289 {
290 if (fs->lfs_hasolddirfmt) {
291 return LFS_DT_UNKNOWN;
292 }
293 return dp->dot_type;
294 }
295
296 static __unused inline uint8_t
297 lfs_dirt_getdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
298 {
299 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
300 /* low-order byte of old 16-bit namlen field */
301 return dp->dot_type;
302 }
303 return dp->dot_namlen;
304 }
305
306 static __unused inline uint8_t
307 lfs_dirt_getdotdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
308 {
309 if (fs->lfs_hasolddirfmt) {
310 return LFS_DT_UNKNOWN;
311 }
312 return dp->dotdot_type;
313 }
314
315 static __unused inline uint8_t
316 lfs_dirt_getdotdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
317 {
318 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
319 /* low-order byte of old 16-bit namlen field */
320 return dp->dotdot_type;
321 }
322 return dp->dotdot_namlen;
323 }
324
325 static __unused inline void
326 lfs_dirt_settypes(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
327 unsigned dt1, unsigned dt2)
328 {
329 if (fs->lfs_hasolddirfmt) {
330 /* do nothing */
331 return;
332 }
333 dtp->dot_type = dt1;
334 dtp->dotdot_type = dt2;
335 }
336
337 static __unused inline void
338 lfs_dirt_setnamlens(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
339 unsigned len1, unsigned len2)
340 {
341 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
342 /* low-order bytes of old 16-bit namlen field */
343 dtp->dot_type = len1;
344 dtp->dotdot_type = len2;
345 /* clear the high-order bytes */
346 dtp->dot_namlen = 0;
347 dtp->dotdot_namlen = 0;
348 return;
349 }
350 dtp->dot_namlen = len1;
351 dtp->dotdot_namlen = len2;
352 }
353
354
355 /*
356 * dinodes
357 */
358
359 /*
360 * Maximum length of a symlink that can be stored within the inode.
361 */
362 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
363 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
364
365 #define LFS_MAXSYMLINKLEN(fs) \
366 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
367
368 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
369
370 #define DINO_IN_BLOCK(fs, base, ix) \
371 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
372
373 static __unused inline void
374 lfs_copy_dinode(STRUCT_LFS *fs,
375 union lfs_dinode *dst, const union lfs_dinode *src)
376 {
377 /*
378 * We can do structure assignment of the structs, but not of
379 * the whole union, as the union is the size of the (larger)
380 * 64-bit struct and on a 32-bit fs the upper half of it might
381 * be off the end of a buffer or otherwise invalid.
382 */
383 if (fs->lfs_is64) {
384 dst->u_64 = src->u_64;
385 } else {
386 dst->u_32 = src->u_32;
387 }
388 }
389
390 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
391 static __unused inline type \
392 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
393 { \
394 if (fs->lfs_is64) { \
395 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
396 } else { \
397 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
398 } \
399 } \
400 static __unused inline void \
401 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
402 { \
403 if (fs->lfs_is64) { \
404 type *p = &dip->u_64.di_##field; \
405 (void)p; \
406 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
407 } else { \
408 type32 *p = &dip->u_32.di_##field; \
409 (void)p; \
410 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
411 } \
412 } \
413
414 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
415 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
416 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
417 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
418 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
419 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
420 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
421 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
422 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
423 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
424 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
425 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
426 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
427 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
428 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
429
430 /* XXX this should be done differently (it's a fake field) */
431 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
432
433 static __unused inline daddr_t
434 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
435 {
436 KASSERT(ix < ULFS_NDADDR);
437 if (fs->lfs_is64) {
438 return dip->u_64.di_db[ix];
439 } else {
440 return dip->u_32.di_db[ix];
441 }
442 }
443
444 static __unused inline daddr_t
445 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
446 {
447 KASSERT(ix < ULFS_NIADDR);
448 if (fs->lfs_is64) {
449 return dip->u_64.di_ib[ix];
450 } else {
451 return dip->u_32.di_ib[ix];
452 }
453 }
454
455 static __unused inline void
456 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
457 {
458 KASSERT(ix < ULFS_NDADDR);
459 if (fs->lfs_is64) {
460 dip->u_64.di_db[ix] = val;
461 } else {
462 dip->u_32.di_db[ix] = val;
463 }
464 }
465
466 static __unused inline void
467 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
468 {
469 KASSERT(ix < ULFS_NIADDR);
470 if (fs->lfs_is64) {
471 dip->u_64.di_ib[ix] = val;
472 } else {
473 dip->u_32.di_ib[ix] = val;
474 }
475 }
476
477 /* birthtime is present only in the 64-bit inode */
478 static __unused inline void
479 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
480 const struct timespec *ts)
481 {
482 if (fs->lfs_is64) {
483 dip->u_64.di_birthtime = ts->tv_sec;
484 dip->u_64.di_birthnsec = ts->tv_nsec;
485 } else {
486 /* drop it on the floor */
487 }
488 }
489
490 /*
491 * indirect blocks
492 */
493
494 static __unused inline daddr_t
495 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
496 {
497 if (fs->lfs_is64) {
498 // XXX re-enable these asserts after reorging this file
499 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
500 return (daddr_t)(((int64_t *)block)[ix]);
501 } else {
502 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
503 /* must sign-extend or UNWRITTEN gets trashed */
504 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
505 }
506 }
507
508 static __unused inline void
509 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
510 {
511 if (fs->lfs_is64) {
512 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
513 ((int64_t *)block)[ix] = val;
514 } else {
515 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
516 ((int32_t *)block)[ix] = val;
517 }
518 }
519
520 /*
521 * "struct buf" associated definitions
522 */
523
524 # define LFS_LOCK_BUF(bp) do { \
525 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
526 mutex_enter(&lfs_lock); \
527 ++locked_queue_count; \
528 locked_queue_bytes += bp->b_bufsize; \
529 mutex_exit(&lfs_lock); \
530 } \
531 (bp)->b_flags |= B_LOCKED; \
532 } while (0)
533
534 # define LFS_UNLOCK_BUF(bp) do { \
535 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
536 mutex_enter(&lfs_lock); \
537 --locked_queue_count; \
538 locked_queue_bytes -= bp->b_bufsize; \
539 if (locked_queue_count < LFS_WAIT_BUFS && \
540 locked_queue_bytes < LFS_WAIT_BYTES) \
541 cv_broadcast(&locked_queue_cv); \
542 mutex_exit(&lfs_lock); \
543 } \
544 (bp)->b_flags &= ~B_LOCKED; \
545 } while (0)
546
547 /*
548 * "struct inode" associated definitions
549 */
550
551 #define LFS_SET_UINO(ip, flags) do { \
552 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
553 lfs_sb_adduinodes((ip)->i_lfs, 1); \
554 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
555 lfs_sb_adduinodes((ip)->i_lfs, 1); \
556 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
557 lfs_sb_adduinodes((ip)->i_lfs, 1); \
558 (ip)->i_flag |= (flags); \
559 } while (0)
560
561 #define LFS_CLR_UINO(ip, flags) do { \
562 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
563 lfs_sb_subuinodes((ip)->i_lfs, 1); \
564 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
565 lfs_sb_subuinodes((ip)->i_lfs, 1); \
566 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
567 lfs_sb_subuinodes((ip)->i_lfs, 1); \
568 (ip)->i_flag &= ~(flags); \
569 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
570 panic("lfs_uinodes < 0"); \
571 } \
572 } while (0)
573
574 #define LFS_ITIMES(ip, acc, mod, cre) \
575 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
576 lfs_itimes(ip, acc, mod, cre)
577
578 /*
579 * On-disk and in-memory checkpoint segment usage structure.
580 */
581
582 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
583 #define SEGTABSIZE_SU(fs) \
584 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
585
586 #ifdef _KERNEL
587 # define SHARE_IFLOCK(F) \
588 do { \
589 rw_enter(&(F)->lfs_iflock, RW_READER); \
590 } while(0)
591 # define UNSHARE_IFLOCK(F) \
592 do { \
593 rw_exit(&(F)->lfs_iflock); \
594 } while(0)
595 #else /* ! _KERNEL */
596 # define SHARE_IFLOCK(F)
597 # define UNSHARE_IFLOCK(F)
598 #endif /* ! _KERNEL */
599
600 /* Read in the block with a specific segment usage entry from the ifile. */
601 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
602 int _e; \
603 SHARE_IFLOCK(F); \
604 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
605 if ((_e = bread((F)->lfs_ivnode, \
606 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
607 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
608 panic("lfs: ifile read: %d", _e); \
609 if (lfs_sb_getversion(F) == 1) \
610 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
611 ((IN) & (lfs_sb_getsepb(F) - 1))); \
612 else \
613 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
614 UNSHARE_IFLOCK(F); \
615 } while (0)
616
617 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
618 if ((SP)->su_nbytes == 0) \
619 (SP)->su_flags |= SEGUSE_EMPTY; \
620 else \
621 (SP)->su_flags &= ~SEGUSE_EMPTY; \
622 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
623 LFS_BWRITE_LOG(BP); \
624 } while (0)
625
626 /*
627 * FINFO (file info) entries.
628 */
629
630 /* Size of an on-disk block pointer, e.g. in an indirect block. */
631 /* XXX: move to a more suitable location in this file */
632 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
633
634 /* Size of an on-disk inode number. */
635 /* XXX: move to a more suitable location in this file */
636 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
637
638 /* size of a FINFO, without the block pointers */
639 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
640
641 /* Full size of the provided FINFO record, including its block pointers. */
642 #define FINFO_FULLSIZE(fs, fip) \
643 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
644
645 #define NEXT_FINFO(fs, fip) \
646 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
647
648 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
649 static __unused inline type \
650 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
651 { \
652 if (fs->lfs_is64) { \
653 return fip->u_64.fi_##field; \
654 } else { \
655 return fip->u_32.fi_##field; \
656 } \
657 } \
658 static __unused inline void \
659 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
660 { \
661 if (fs->lfs_is64) { \
662 type *p = &fip->u_64.fi_##field; \
663 (void)p; \
664 fip->u_64.fi_##field = val; \
665 } else { \
666 type32 *p = &fip->u_32.fi_##field; \
667 (void)p; \
668 fip->u_32.fi_##field = val; \
669 } \
670 } \
671
672 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
673 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
674 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
675 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
676
677 static __unused inline daddr_t
678 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
679 {
680 void *firstblock;
681
682 firstblock = (char *)fip + FINFOSIZE(fs);
683 KASSERT(index < lfs_fi_getnblocks(fs, fip));
684 if (fs->lfs_is64) {
685 return ((int64_t *)firstblock)[index];
686 } else {
687 return ((int32_t *)firstblock)[index];
688 }
689 }
690
691 static __unused inline void
692 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
693 {
694 void *firstblock;
695
696 firstblock = (char *)fip + FINFOSIZE(fs);
697 KASSERT(index < lfs_fi_getnblocks(fs, fip));
698 if (fs->lfs_is64) {
699 ((int64_t *)firstblock)[index] = blk;
700 } else {
701 ((int32_t *)firstblock)[index] = blk;
702 }
703 }
704
705 /*
706 * Index file inode entries.
707 */
708
709 /*
710 * LFSv1 compatibility code is not allowed to touch if_atime, since it
711 * may not be mapped!
712 */
713 /* Read in the block with a specific inode from the ifile. */
714 #define LFS_IENTRY(IP, F, IN, BP) do { \
715 int _e; \
716 SHARE_IFLOCK(F); \
717 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
718 if ((_e = bread((F)->lfs_ivnode, \
719 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
720 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
721 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
722 if ((F)->lfs_is64) { \
723 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
724 (IN) % lfs_sb_getifpb(F)); \
725 } else if (lfs_sb_getversion(F) > 1) { \
726 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
727 (IN) % lfs_sb_getifpb(F)); \
728 } else { \
729 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
730 (IN) % lfs_sb_getifpb(F)); \
731 } \
732 UNSHARE_IFLOCK(F); \
733 } while (0)
734 #define LFS_IENTRY_NEXT(IP, F) do { \
735 if ((F)->lfs_is64) { \
736 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
737 } else if (lfs_sb_getversion(F) > 1) { \
738 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
739 } else { \
740 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
741 } \
742 } while (0)
743
744 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
745 static __unused inline type \
746 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
747 { \
748 if (fs->lfs_is64) { \
749 return ifp->u_64.if_##field; \
750 } else { \
751 return ifp->u_32.if_##field; \
752 } \
753 } \
754 static __unused inline void \
755 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
756 { \
757 if (fs->lfs_is64) { \
758 type *p = &ifp->u_64.if_##field; \
759 (void)p; \
760 ifp->u_64.if_##field = val; \
761 } else { \
762 type32 *p = &ifp->u_32.if_##field; \
763 (void)p; \
764 ifp->u_32.if_##field = val; \
765 } \
766 } \
767
768 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
769 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
770 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
771 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
772 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
773
774 /*
775 * Cleaner information structure. This resides in the ifile and is used
776 * to pass information from the kernel to the cleaner.
777 */
778
779 #define CLEANSIZE_SU(fs) \
780 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
781 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
782
783 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
784 static __unused inline type \
785 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
786 { \
787 if (fs->lfs_is64) { \
788 return cip->u_64.field; \
789 } else { \
790 return cip->u_32.field; \
791 } \
792 } \
793 static __unused inline void \
794 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
795 { \
796 if (fs->lfs_is64) { \
797 type *p = &cip->u_64.field; \
798 (void)p; \
799 cip->u_64.field = val; \
800 } else { \
801 type32 *p = &cip->u_32.field; \
802 (void)p; \
803 cip->u_32.field = val; \
804 } \
805 } \
806
807 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
808 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
809 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
810 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
811 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
812 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
813 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
814
815 static __unused inline void
816 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
817 {
818 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
819 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
820 }
821
822 static __unused inline void
823 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
824 {
825 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
826 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
827 }
828
829 /* Read in the block with the cleaner info from the ifile. */
830 #define LFS_CLEANERINFO(CP, F, BP) do { \
831 SHARE_IFLOCK(F); \
832 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
833 if (bread((F)->lfs_ivnode, \
834 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
835 panic("lfs: ifile read"); \
836 (CP) = (CLEANERINFO *)(BP)->b_data; \
837 UNSHARE_IFLOCK(F); \
838 } while (0)
839
840 /*
841 * Synchronize the Ifile cleaner info with current avail and bfree.
842 */
843 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
844 mutex_enter(&lfs_lock); \
845 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
846 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
847 fs->lfs_favail) { \
848 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
849 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
850 fs->lfs_favail); \
851 if (((bp)->b_flags & B_GATHERED) == 0) { \
852 fs->lfs_flags |= LFS_IFDIRTY; \
853 } \
854 mutex_exit(&lfs_lock); \
855 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
856 } else { \
857 mutex_exit(&lfs_lock); \
858 brelse(bp, 0); \
859 } \
860 } while (0)
861
862 /*
863 * Get the head of the inode free list.
864 * Always called with the segment lock held.
865 */
866 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
867 if (lfs_sb_getversion(FS) > 1) { \
868 LFS_CLEANERINFO((CIP), (FS), (BP)); \
869 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
870 brelse(BP, 0); \
871 } \
872 *(FREEP) = lfs_sb_getfreehd(FS); \
873 } while (0)
874
875 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
876 lfs_sb_setfreehd(FS, VAL); \
877 if (lfs_sb_getversion(FS) > 1) { \
878 LFS_CLEANERINFO((CIP), (FS), (BP)); \
879 lfs_ci_setfree_head(FS, CIP, VAL); \
880 LFS_BWRITE_LOG(BP); \
881 mutex_enter(&lfs_lock); \
882 (FS)->lfs_flags |= LFS_IFDIRTY; \
883 mutex_exit(&lfs_lock); \
884 } \
885 } while (0)
886
887 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
888 LFS_CLEANERINFO((CIP), (FS), (BP)); \
889 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
890 brelse(BP, 0); \
891 } while (0)
892
893 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
894 LFS_CLEANERINFO((CIP), (FS), (BP)); \
895 lfs_ci_setfree_tail(FS, CIP, VAL); \
896 LFS_BWRITE_LOG(BP); \
897 mutex_enter(&lfs_lock); \
898 (FS)->lfs_flags |= LFS_IFDIRTY; \
899 mutex_exit(&lfs_lock); \
900 } while (0)
901
902 /*
903 * On-disk segment summary information
904 */
905
906 #define SEGSUM_SIZE(fs) \
907 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
908 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
909
910 /*
911 * The SEGSUM structure is followed by FINFO structures. Get the pointer
912 * to the first FINFO.
913 *
914 * XXX this can't be a macro yet; this file needs to be resorted.
915 */
916 #if 0
917 static __unused inline FINFO *
918 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
919 {
920 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
921 }
922 #else
923 #define SEGSUM_FINFOBASE(fs, ssp) \
924 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
925 #endif
926
927 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
928 static __unused inline type \
929 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
930 { \
931 if (fs->lfs_is64) { \
932 return ssp->u_64.ss_##field; \
933 } else { \
934 return ssp->u_32.ss_##field; \
935 } \
936 } \
937 static __unused inline void \
938 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
939 { \
940 if (fs->lfs_is64) { \
941 type *p = &ssp->u_64.ss_##field; \
942 (void)p; \
943 ssp->u_64.ss_##field = val; \
944 } else { \
945 type32 *p = &ssp->u_32.ss_##field; \
946 (void)p; \
947 ssp->u_32.ss_##field = val; \
948 } \
949 } \
950
951 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
952 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
953 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
954 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
955 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
956 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
957 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
958 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
959 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
960 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
961 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
962
963 static __unused inline size_t
964 lfs_ss_getsumstart(STRUCT_LFS *fs)
965 {
966 /* These are actually all the same. */
967 if (fs->lfs_is64) {
968 return offsetof(SEGSUM64, ss_datasum);
969 } else /* if (lfs_sb_getversion(fs) > 1) */ {
970 return offsetof(SEGSUM32, ss_datasum);
971 } /* else {
972 return offsetof(SEGSUM_V1, ss_datasum);
973 } */
974 /*
975 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
976 * defined yet.
977 */
978 }
979
980 static __unused inline uint32_t
981 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
982 {
983 KASSERT(fs->lfs_is64 == 0);
984 /* XXX need to resort this file before we can do this */
985 //KASSERT(lfs_sb_getversion(fs) == 1);
986
987 return ssp->u_v1.ss_create;
988 }
989
990 static __unused inline void
991 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
992 {
993 KASSERT(fs->lfs_is64 == 0);
994 /* XXX need to resort this file before we can do this */
995 //KASSERT(lfs_sb_getversion(fs) == 1);
996
997 ssp->u_v1.ss_create = val;
998 }
999
1000
1001 /*
1002 * Super block.
1003 */
1004
1005 /*
1006 * Generate accessors for the on-disk superblock fields with cpp.
1007 */
1008
1009 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1010 static __unused inline type \
1011 lfs_sb_get##field(STRUCT_LFS *fs) \
1012 { \
1013 if (fs->lfs_is64) { \
1014 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1015 } else { \
1016 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1017 } \
1018 } \
1019 static __unused inline void \
1020 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1021 { \
1022 if (fs->lfs_is64) { \
1023 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1024 } else { \
1025 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1026 } \
1027 } \
1028 static __unused inline void \
1029 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1030 { \
1031 if (fs->lfs_is64) { \
1032 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1033 *p64 += val; \
1034 } else { \
1035 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1036 *p32 += val; \
1037 } \
1038 } \
1039 static __unused inline void \
1040 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1041 { \
1042 if (fs->lfs_is64) { \
1043 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1044 *p64 -= val; \
1045 } else { \
1046 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1047 *p32 -= val; \
1048 } \
1049 }
1050
1051 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1052
1053 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1054 static __unused inline type \
1055 lfs_sb_get##field(STRUCT_LFS *fs) \
1056 { \
1057 if (fs->lfs_is64) { \
1058 return val64; \
1059 } else { \
1060 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1061 } \
1062 }
1063
1064 #define lfs_magic lfs_dlfs.dlfs_magic
1065 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1066 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1067 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1068 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1069 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1070 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1071 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1072 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1073 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1074 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1075 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1076 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1077 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1078 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1079 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1080 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1081 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1082 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1083 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1084 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1085 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1086 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1087 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1088 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1089 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1090 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1091 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1092 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1093 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1094 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1095 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1096 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1097 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1098 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1099 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1100 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1101 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1102 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1103 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1104 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1105 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1106 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1107 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1108 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1109 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1110 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1111 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1112 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1113 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1114 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1115 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1116 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1117 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1118 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1119 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1120 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1121 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1122
1123 /* special-case accessors */
1124
1125 /*
1126 * the v1 otstamp field lives in what's now dlfs_inopf
1127 */
1128 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1129 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1130
1131 /*
1132 * lfs_sboffs is an array
1133 */
1134 static __unused inline int32_t
1135 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1136 {
1137 #ifdef KASSERT /* ugh */
1138 KASSERT(n < LFS_MAXNUMSB);
1139 #endif
1140 if (fs->lfs_is64) {
1141 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1142 } else {
1143 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1144 }
1145 }
1146 static __unused inline void
1147 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1148 {
1149 #ifdef KASSERT /* ugh */
1150 KASSERT(n < LFS_MAXNUMSB);
1151 #endif
1152 if (fs->lfs_is64) {
1153 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1154 } else {
1155 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1156 }
1157 }
1158
1159 /*
1160 * lfs_fsmnt is a string
1161 */
1162 static __unused inline const char *
1163 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1164 {
1165 if (fs->lfs_is64) {
1166 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1167 } else {
1168 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1169 }
1170 }
1171
1172 static __unused inline void
1173 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1174 {
1175 if (fs->lfs_is64) {
1176 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1177 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1178 } else {
1179 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1180 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1181 }
1182 }
1183
1184 /* Highest addressable fsb */
1185 #define LFS_MAX_DADDR(fs) \
1186 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1187
1188 /* LFS_NINDIR is the number of indirects in a file system block. */
1189 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1190
1191 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1192 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1193 /* LFS_INOPF is the number of inodes in a fragment. */
1194 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1195
1196 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1197 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1198 ((int)((loc) & lfs_sb_getffmask(fs)))
1199
1200 /* XXX: lowercase these as they're no longer macros */
1201 /* Frags to diskblocks */
1202 static __unused inline uint64_t
1203 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1204 {
1205 #if defined(_KERNEL)
1206 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1207 #else
1208 return b << lfs_sb_getfsbtodb(fs);
1209 #endif
1210 }
1211 /* Diskblocks to frags */
1212 static __unused inline uint64_t
1213 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1214 {
1215 #if defined(_KERNEL)
1216 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1217 #else
1218 return b >> lfs_sb_getfsbtodb(fs);
1219 #endif
1220 }
1221
1222 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1223 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1224
1225 /* Frags to bytes */
1226 static __unused inline uint64_t
1227 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1228 {
1229 return b << lfs_sb_getffshift(fs);
1230 }
1231 /* Bytes to frags */
1232 static __unused inline uint64_t
1233 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1234 {
1235 return b >> lfs_sb_getffshift(fs);
1236 }
1237
1238 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1239 ((loc) >> lfs_sb_getffshift(fs))
1240 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1241 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1242 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1243 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1244 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1245 ((frags) >> lfs_sb_getfbshift(fs))
1246 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1247 ((blks) << lfs_sb_getfbshift(fs))
1248 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1249 ((fsb) & ((fs)->lfs_frag - 1))
1250 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1251 ((fsb) &~ ((fs)->lfs_frag - 1))
1252 #define lfs_dblksize(fs, dp, lbn) \
1253 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1254 ? lfs_sb_getbsize(fs) \
1255 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1256
1257 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1258 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1259 lfs_sb_getssize(fs))
1260 /* XXX segtod produces a result in frags despite the 'd' */
1261 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1262 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1263 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1264 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1265 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1266
1267 /* XXX, blah. make this appear only if struct inode is defined */
1268 #ifdef _UFS_LFS_LFS_INODE_H_
1269 static __unused inline uint32_t
1270 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1271 {
1272 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1273 return lfs_sb_getbsize(fs);
1274 } else {
1275 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1276 }
1277 }
1278 #endif
1279
1280 /*
1281 * union lfs_blocks
1282 */
1283
1284 static __unused inline void
1285 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1286 {
1287 if (fs->lfs_is64) {
1288 bp->b64 = p;
1289 } else {
1290 bp->b32 = p;
1291 }
1292 }
1293
1294 static __unused inline void
1295 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1296 {
1297 void *firstblock;
1298
1299 firstblock = (char *)fip + FINFOSIZE(fs);
1300 if (fs->lfs_is64) {
1301 bp->b64 = (int64_t *)firstblock;
1302 } else {
1303 bp->b32 = (int32_t *)firstblock;
1304 }
1305 }
1306
1307 static __unused inline daddr_t
1308 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1309 {
1310 if (fs->lfs_is64) {
1311 return bp->b64[index];
1312 } else {
1313 return bp->b32[index];
1314 }
1315 }
1316
1317 static __unused inline void
1318 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1319 {
1320 if (fs->lfs_is64) {
1321 bp->b64[index] = val;
1322 } else {
1323 bp->b32[index] = val;
1324 }
1325 }
1326
1327 static __unused inline void
1328 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1329 {
1330 if (fs->lfs_is64) {
1331 bp->b64++;
1332 } else {
1333 bp->b32++;
1334 }
1335 }
1336
1337 static __unused inline int
1338 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1339 {
1340 if (fs->lfs_is64) {
1341 return bp1->b64 == bp2->b64;
1342 } else {
1343 return bp1->b32 == bp2->b32;
1344 }
1345 }
1346
1347 static __unused inline int
1348 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1349 {
1350 /* (remember that the pointers are typed) */
1351 if (fs->lfs_is64) {
1352 return bp1->b64 - bp2->b64;
1353 } else {
1354 return bp1->b32 - bp2->b32;
1355 }
1356 }
1357
1358 /*
1359 * struct segment
1360 */
1361
1362
1363 /*
1364 * Macros for determining free space on the disk, with the variable metadata
1365 * of segment summaries and inode blocks taken into account.
1366 */
1367 /*
1368 * Estimate number of clean blocks not available for writing because
1369 * they will contain metadata or overhead. This is calculated as
1370 *
1371 * E = ((C * M / D) * D + (0) * (T - D)) / T
1372 * or more simply
1373 * E = (C * M) / T
1374 *
1375 * where
1376 * C is the clean space,
1377 * D is the dirty space,
1378 * M is the dirty metadata, and
1379 * T = C + D is the total space on disk.
1380 *
1381 * This approximates the old formula of E = C * M / D when D is close to T,
1382 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1383 */
1384 #define LFS_EST_CMETA(F) (int32_t)(( \
1385 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1386 (lfs_sb_getnseg(F))))
1387
1388 /* Estimate total size of the disk not including metadata */
1389 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1390
1391 /* Estimate number of blocks actually available for writing */
1392 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1393 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1394
1395 /* Amount of non-meta space not available to mortal man */
1396 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1397 (u_int64_t)lfs_sb_getminfree(F)) / \
1398 100)
1399
1400 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1401 #define ISSPACE(F, BB, C) \
1402 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1403 LFS_EST_BFREE(F) >= (BB)) || \
1404 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1405
1406 /* Can an ordinary user write BB blocks */
1407 #define IS_FREESPACE(F, BB) \
1408 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1409
1410 /*
1411 * The minimum number of blocks to create a new inode. This is:
1412 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1413 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1414 */
1415 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1416
1417
1418
1419 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1420