lfs_accessors.h revision 1.24 1 /* $NetBSD: lfs_accessors.h,v 1.24 2015/09/15 14:59:58 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * For handling directories we will need to know if the volume is
206 * little-endian.
207 */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213
214
215 /*
216 * directories
217 */
218
219 /*
220 * The LFS_DIRSIZ macro gives the minimum record length which will hold
221 * the directory entry. This requires the amount of space in struct lfs_direct
222 * without the d_name field, plus enough space for the name with a terminating
223 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
224 */
225 #define LFS_DIRECTSIZ(namlen) \
226 ((sizeof(struct lfs_direct) - (LFS_MAXNAMLEN+1)) + (((namlen)+1 + 3) &~ 3))
227
228 #if (BYTE_ORDER == LITTLE_ENDIAN)
229 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
230 (((oldfmt) && !(needswap)) ? \
231 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
232 #else
233 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
234 (((oldfmt) && (needswap)) ? \
235 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
236 #endif
237
238 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(lfs_dir_getnamlen(fs, dp))
239
240 /* Constants for the first argument of LFS_OLDDIRSIZ */
241 #define LFS_OLDDIRFMT 1
242 #define LFS_NEWDIRFMT 0
243
244 #define LFS_NEXTDIR(fs, dp) \
245 ((struct lfs_direct *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
246
247 static __unused inline uint32_t
248 lfs_dir_getino(const STRUCT_LFS *fs, const struct lfs_direct *dp)
249 {
250 return LFS_SWAP_uint32_t(fs, dp->d_header.dh_ino);
251 }
252
253 static __unused inline uint16_t
254 lfs_dir_getreclen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
255 {
256 return LFS_SWAP_uint16_t(fs, dp->d_header.dh_reclen);
257 }
258
259 static __unused inline uint8_t
260 lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_direct *dp)
261 {
262 if (fs->lfs_hasolddirfmt) {
263 return LFS_DT_UNKNOWN;
264 }
265 return dp->d_header.dh_type;
266 }
267
268 static __unused inline uint8_t
269 lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
270 {
271 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
272 /* low-order byte of old 16-bit namlen field */
273 return dp->d_header.dh_type;
274 }
275 return dp->d_header.dh_namlen;
276 }
277
278 static __unused inline void
279 lfs_dir_setino(STRUCT_LFS *fs, struct lfs_direct *dp, uint32_t ino)
280 {
281 dp->d_header.dh_ino = LFS_SWAP_uint32_t(fs, ino);
282 }
283
284 static __unused inline void
285 lfs_dir_setreclen(STRUCT_LFS *fs, struct lfs_direct *dp, uint16_t reclen)
286 {
287 dp->d_header.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
288 }
289
290 static __unused inline void
291 lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t type)
292 {
293 if (fs->lfs_hasolddirfmt) {
294 /* do nothing */
295 return;
296 }
297 dp->d_header.dh_type = type;
298 }
299
300 static __unused inline void
301 lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t namlen)
302 {
303 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
304 /* low-order byte of old 16-bit namlen field */
305 dp->d_header.dh_type = namlen;
306 }
307 dp->d_header.dh_namlen = namlen;
308 }
309
310 /*
311 * These are called "dirt" because they ought to be cleaned up.
312 */
313
314 static __unused inline uint8_t
315 lfs_dirt_getdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
316 {
317 if (fs->lfs_hasolddirfmt) {
318 return LFS_DT_UNKNOWN;
319 }
320 return dp->dot_type;
321 }
322
323 static __unused inline uint8_t
324 lfs_dirt_getdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
325 {
326 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
327 /* low-order byte of old 16-bit namlen field */
328 return dp->dot_type;
329 }
330 return dp->dot_namlen;
331 }
332
333 static __unused inline uint8_t
334 lfs_dirt_getdotdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
335 {
336 if (fs->lfs_hasolddirfmt) {
337 return LFS_DT_UNKNOWN;
338 }
339 return dp->dotdot_type;
340 }
341
342 static __unused inline uint8_t
343 lfs_dirt_getdotdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
344 {
345 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
346 /* low-order byte of old 16-bit namlen field */
347 return dp->dotdot_type;
348 }
349 return dp->dotdot_namlen;
350 }
351
352 static __unused inline void
353 lfs_dirt_settypes(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
354 unsigned dt1, unsigned dt2)
355 {
356 if (fs->lfs_hasolddirfmt) {
357 /* do nothing */
358 return;
359 }
360 dtp->dot_type = dt1;
361 dtp->dotdot_type = dt2;
362 }
363
364 static __unused inline void
365 lfs_dirt_setnamlens(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
366 unsigned len1, unsigned len2)
367 {
368 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
369 /* low-order bytes of old 16-bit namlen field */
370 dtp->dot_type = len1;
371 dtp->dotdot_type = len2;
372 /* clear the high-order bytes */
373 dtp->dot_namlen = 0;
374 dtp->dotdot_namlen = 0;
375 return;
376 }
377 dtp->dot_namlen = len1;
378 dtp->dotdot_namlen = len2;
379 }
380
381
382 /*
383 * dinodes
384 */
385
386 /*
387 * Maximum length of a symlink that can be stored within the inode.
388 */
389 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
390 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
391
392 #define LFS_MAXSYMLINKLEN(fs) \
393 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
394
395 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
396
397 #define DINO_IN_BLOCK(fs, base, ix) \
398 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
399
400 static __unused inline void
401 lfs_copy_dinode(STRUCT_LFS *fs,
402 union lfs_dinode *dst, const union lfs_dinode *src)
403 {
404 /*
405 * We can do structure assignment of the structs, but not of
406 * the whole union, as the union is the size of the (larger)
407 * 64-bit struct and on a 32-bit fs the upper half of it might
408 * be off the end of a buffer or otherwise invalid.
409 */
410 if (fs->lfs_is64) {
411 dst->u_64 = src->u_64;
412 } else {
413 dst->u_32 = src->u_32;
414 }
415 }
416
417 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
418 static __unused inline type \
419 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
420 { \
421 if (fs->lfs_is64) { \
422 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
423 } else { \
424 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
425 } \
426 } \
427 static __unused inline void \
428 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
429 { \
430 if (fs->lfs_is64) { \
431 type *p = &dip->u_64.di_##field; \
432 (void)p; \
433 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
434 } else { \
435 type32 *p = &dip->u_32.di_##field; \
436 (void)p; \
437 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
438 } \
439 } \
440
441 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
442 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
443 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
444 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
445 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
446 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
447 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
448 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
449 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
450 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
451 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
452 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
453 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
454 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
455 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
456
457 /* XXX this should be done differently (it's a fake field) */
458 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
459
460 static __unused inline daddr_t
461 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
462 {
463 KASSERT(ix < ULFS_NDADDR);
464 if (fs->lfs_is64) {
465 return dip->u_64.di_db[ix];
466 } else {
467 return dip->u_32.di_db[ix];
468 }
469 }
470
471 static __unused inline daddr_t
472 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
473 {
474 KASSERT(ix < ULFS_NIADDR);
475 if (fs->lfs_is64) {
476 return dip->u_64.di_ib[ix];
477 } else {
478 return dip->u_32.di_ib[ix];
479 }
480 }
481
482 static __unused inline void
483 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
484 {
485 KASSERT(ix < ULFS_NDADDR);
486 if (fs->lfs_is64) {
487 dip->u_64.di_db[ix] = val;
488 } else {
489 dip->u_32.di_db[ix] = val;
490 }
491 }
492
493 static __unused inline void
494 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
495 {
496 KASSERT(ix < ULFS_NIADDR);
497 if (fs->lfs_is64) {
498 dip->u_64.di_ib[ix] = val;
499 } else {
500 dip->u_32.di_ib[ix] = val;
501 }
502 }
503
504 /* birthtime is present only in the 64-bit inode */
505 static __unused inline void
506 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
507 const struct timespec *ts)
508 {
509 if (fs->lfs_is64) {
510 dip->u_64.di_birthtime = ts->tv_sec;
511 dip->u_64.di_birthnsec = ts->tv_nsec;
512 } else {
513 /* drop it on the floor */
514 }
515 }
516
517 /*
518 * indirect blocks
519 */
520
521 static __unused inline daddr_t
522 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
523 {
524 if (fs->lfs_is64) {
525 // XXX re-enable these asserts after reorging this file
526 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
527 return (daddr_t)(((int64_t *)block)[ix]);
528 } else {
529 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
530 /* must sign-extend or UNWRITTEN gets trashed */
531 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
532 }
533 }
534
535 static __unused inline void
536 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
537 {
538 if (fs->lfs_is64) {
539 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
540 ((int64_t *)block)[ix] = val;
541 } else {
542 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
543 ((int32_t *)block)[ix] = val;
544 }
545 }
546
547 /*
548 * "struct buf" associated definitions
549 */
550
551 # define LFS_LOCK_BUF(bp) do { \
552 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
553 mutex_enter(&lfs_lock); \
554 ++locked_queue_count; \
555 locked_queue_bytes += bp->b_bufsize; \
556 mutex_exit(&lfs_lock); \
557 } \
558 (bp)->b_flags |= B_LOCKED; \
559 } while (0)
560
561 # define LFS_UNLOCK_BUF(bp) do { \
562 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
563 mutex_enter(&lfs_lock); \
564 --locked_queue_count; \
565 locked_queue_bytes -= bp->b_bufsize; \
566 if (locked_queue_count < LFS_WAIT_BUFS && \
567 locked_queue_bytes < LFS_WAIT_BYTES) \
568 cv_broadcast(&locked_queue_cv); \
569 mutex_exit(&lfs_lock); \
570 } \
571 (bp)->b_flags &= ~B_LOCKED; \
572 } while (0)
573
574 /*
575 * "struct inode" associated definitions
576 */
577
578 #define LFS_SET_UINO(ip, flags) do { \
579 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
580 lfs_sb_adduinodes((ip)->i_lfs, 1); \
581 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
582 lfs_sb_adduinodes((ip)->i_lfs, 1); \
583 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
584 lfs_sb_adduinodes((ip)->i_lfs, 1); \
585 (ip)->i_flag |= (flags); \
586 } while (0)
587
588 #define LFS_CLR_UINO(ip, flags) do { \
589 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
590 lfs_sb_subuinodes((ip)->i_lfs, 1); \
591 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
592 lfs_sb_subuinodes((ip)->i_lfs, 1); \
593 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
594 lfs_sb_subuinodes((ip)->i_lfs, 1); \
595 (ip)->i_flag &= ~(flags); \
596 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
597 panic("lfs_uinodes < 0"); \
598 } \
599 } while (0)
600
601 #define LFS_ITIMES(ip, acc, mod, cre) \
602 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
603 lfs_itimes(ip, acc, mod, cre)
604
605 /*
606 * On-disk and in-memory checkpoint segment usage structure.
607 */
608
609 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
610 #define SEGTABSIZE_SU(fs) \
611 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
612
613 #ifdef _KERNEL
614 # define SHARE_IFLOCK(F) \
615 do { \
616 rw_enter(&(F)->lfs_iflock, RW_READER); \
617 } while(0)
618 # define UNSHARE_IFLOCK(F) \
619 do { \
620 rw_exit(&(F)->lfs_iflock); \
621 } while(0)
622 #else /* ! _KERNEL */
623 # define SHARE_IFLOCK(F)
624 # define UNSHARE_IFLOCK(F)
625 #endif /* ! _KERNEL */
626
627 /* Read in the block with a specific segment usage entry from the ifile. */
628 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
629 int _e; \
630 SHARE_IFLOCK(F); \
631 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
632 if ((_e = bread((F)->lfs_ivnode, \
633 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
634 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
635 panic("lfs: ifile read: %d", _e); \
636 if (lfs_sb_getversion(F) == 1) \
637 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
638 ((IN) & (lfs_sb_getsepb(F) - 1))); \
639 else \
640 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
641 UNSHARE_IFLOCK(F); \
642 } while (0)
643
644 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
645 if ((SP)->su_nbytes == 0) \
646 (SP)->su_flags |= SEGUSE_EMPTY; \
647 else \
648 (SP)->su_flags &= ~SEGUSE_EMPTY; \
649 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
650 LFS_BWRITE_LOG(BP); \
651 } while (0)
652
653 /*
654 * FINFO (file info) entries.
655 */
656
657 /* Size of an on-disk block pointer, e.g. in an indirect block. */
658 /* XXX: move to a more suitable location in this file */
659 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
660
661 /* Size of an on-disk inode number. */
662 /* XXX: move to a more suitable location in this file */
663 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
664
665 /* size of a FINFO, without the block pointers */
666 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
667
668 /* Full size of the provided FINFO record, including its block pointers. */
669 #define FINFO_FULLSIZE(fs, fip) \
670 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
671
672 #define NEXT_FINFO(fs, fip) \
673 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
674
675 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
676 static __unused inline type \
677 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
678 { \
679 if (fs->lfs_is64) { \
680 return fip->u_64.fi_##field; \
681 } else { \
682 return fip->u_32.fi_##field; \
683 } \
684 } \
685 static __unused inline void \
686 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
687 { \
688 if (fs->lfs_is64) { \
689 type *p = &fip->u_64.fi_##field; \
690 (void)p; \
691 fip->u_64.fi_##field = val; \
692 } else { \
693 type32 *p = &fip->u_32.fi_##field; \
694 (void)p; \
695 fip->u_32.fi_##field = val; \
696 } \
697 } \
698
699 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
700 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
701 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
702 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
703
704 static __unused inline daddr_t
705 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
706 {
707 void *firstblock;
708
709 firstblock = (char *)fip + FINFOSIZE(fs);
710 KASSERT(index < lfs_fi_getnblocks(fs, fip));
711 if (fs->lfs_is64) {
712 return ((int64_t *)firstblock)[index];
713 } else {
714 return ((int32_t *)firstblock)[index];
715 }
716 }
717
718 static __unused inline void
719 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
720 {
721 void *firstblock;
722
723 firstblock = (char *)fip + FINFOSIZE(fs);
724 KASSERT(index < lfs_fi_getnblocks(fs, fip));
725 if (fs->lfs_is64) {
726 ((int64_t *)firstblock)[index] = blk;
727 } else {
728 ((int32_t *)firstblock)[index] = blk;
729 }
730 }
731
732 /*
733 * Index file inode entries.
734 */
735
736 /*
737 * LFSv1 compatibility code is not allowed to touch if_atime, since it
738 * may not be mapped!
739 */
740 /* Read in the block with a specific inode from the ifile. */
741 #define LFS_IENTRY(IP, F, IN, BP) do { \
742 int _e; \
743 SHARE_IFLOCK(F); \
744 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
745 if ((_e = bread((F)->lfs_ivnode, \
746 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
747 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
748 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
749 if ((F)->lfs_is64) { \
750 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
751 (IN) % lfs_sb_getifpb(F)); \
752 } else if (lfs_sb_getversion(F) > 1) { \
753 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
754 (IN) % lfs_sb_getifpb(F)); \
755 } else { \
756 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
757 (IN) % lfs_sb_getifpb(F)); \
758 } \
759 UNSHARE_IFLOCK(F); \
760 } while (0)
761 #define LFS_IENTRY_NEXT(IP, F) do { \
762 if ((F)->lfs_is64) { \
763 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
764 } else if (lfs_sb_getversion(F) > 1) { \
765 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
766 } else { \
767 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
768 } \
769 } while (0)
770
771 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
772 static __unused inline type \
773 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
774 { \
775 if (fs->lfs_is64) { \
776 return ifp->u_64.if_##field; \
777 } else { \
778 return ifp->u_32.if_##field; \
779 } \
780 } \
781 static __unused inline void \
782 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
783 { \
784 if (fs->lfs_is64) { \
785 type *p = &ifp->u_64.if_##field; \
786 (void)p; \
787 ifp->u_64.if_##field = val; \
788 } else { \
789 type32 *p = &ifp->u_32.if_##field; \
790 (void)p; \
791 ifp->u_32.if_##field = val; \
792 } \
793 } \
794
795 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
796 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
797 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
798 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
799 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
800
801 /*
802 * Cleaner information structure. This resides in the ifile and is used
803 * to pass information from the kernel to the cleaner.
804 */
805
806 #define CLEANSIZE_SU(fs) \
807 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
808 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
809
810 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
811 static __unused inline type \
812 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
813 { \
814 if (fs->lfs_is64) { \
815 return cip->u_64.field; \
816 } else { \
817 return cip->u_32.field; \
818 } \
819 } \
820 static __unused inline void \
821 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
822 { \
823 if (fs->lfs_is64) { \
824 type *p = &cip->u_64.field; \
825 (void)p; \
826 cip->u_64.field = val; \
827 } else { \
828 type32 *p = &cip->u_32.field; \
829 (void)p; \
830 cip->u_32.field = val; \
831 } \
832 } \
833
834 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
835 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
836 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
837 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
838 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
839 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
840 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
841
842 static __unused inline void
843 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
844 {
845 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
846 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
847 }
848
849 static __unused inline void
850 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
851 {
852 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
853 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
854 }
855
856 /* Read in the block with the cleaner info from the ifile. */
857 #define LFS_CLEANERINFO(CP, F, BP) do { \
858 SHARE_IFLOCK(F); \
859 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
860 if (bread((F)->lfs_ivnode, \
861 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
862 panic("lfs: ifile read"); \
863 (CP) = (CLEANERINFO *)(BP)->b_data; \
864 UNSHARE_IFLOCK(F); \
865 } while (0)
866
867 /*
868 * Synchronize the Ifile cleaner info with current avail and bfree.
869 */
870 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
871 mutex_enter(&lfs_lock); \
872 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
873 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
874 fs->lfs_favail) { \
875 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
876 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
877 fs->lfs_favail); \
878 if (((bp)->b_flags & B_GATHERED) == 0) { \
879 fs->lfs_flags |= LFS_IFDIRTY; \
880 } \
881 mutex_exit(&lfs_lock); \
882 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
883 } else { \
884 mutex_exit(&lfs_lock); \
885 brelse(bp, 0); \
886 } \
887 } while (0)
888
889 /*
890 * Get the head of the inode free list.
891 * Always called with the segment lock held.
892 */
893 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
894 if (lfs_sb_getversion(FS) > 1) { \
895 LFS_CLEANERINFO((CIP), (FS), (BP)); \
896 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
897 brelse(BP, 0); \
898 } \
899 *(FREEP) = lfs_sb_getfreehd(FS); \
900 } while (0)
901
902 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
903 lfs_sb_setfreehd(FS, VAL); \
904 if (lfs_sb_getversion(FS) > 1) { \
905 LFS_CLEANERINFO((CIP), (FS), (BP)); \
906 lfs_ci_setfree_head(FS, CIP, VAL); \
907 LFS_BWRITE_LOG(BP); \
908 mutex_enter(&lfs_lock); \
909 (FS)->lfs_flags |= LFS_IFDIRTY; \
910 mutex_exit(&lfs_lock); \
911 } \
912 } while (0)
913
914 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
915 LFS_CLEANERINFO((CIP), (FS), (BP)); \
916 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
917 brelse(BP, 0); \
918 } while (0)
919
920 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
921 LFS_CLEANERINFO((CIP), (FS), (BP)); \
922 lfs_ci_setfree_tail(FS, CIP, VAL); \
923 LFS_BWRITE_LOG(BP); \
924 mutex_enter(&lfs_lock); \
925 (FS)->lfs_flags |= LFS_IFDIRTY; \
926 mutex_exit(&lfs_lock); \
927 } while (0)
928
929 /*
930 * On-disk segment summary information
931 */
932
933 #define SEGSUM_SIZE(fs) \
934 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
935 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
936
937 /*
938 * The SEGSUM structure is followed by FINFO structures. Get the pointer
939 * to the first FINFO.
940 *
941 * XXX this can't be a macro yet; this file needs to be resorted.
942 */
943 #if 0
944 static __unused inline FINFO *
945 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
946 {
947 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
948 }
949 #else
950 #define SEGSUM_FINFOBASE(fs, ssp) \
951 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
952 #endif
953
954 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
955 static __unused inline type \
956 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
957 { \
958 if (fs->lfs_is64) { \
959 return ssp->u_64.ss_##field; \
960 } else { \
961 return ssp->u_32.ss_##field; \
962 } \
963 } \
964 static __unused inline void \
965 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
966 { \
967 if (fs->lfs_is64) { \
968 type *p = &ssp->u_64.ss_##field; \
969 (void)p; \
970 ssp->u_64.ss_##field = val; \
971 } else { \
972 type32 *p = &ssp->u_32.ss_##field; \
973 (void)p; \
974 ssp->u_32.ss_##field = val; \
975 } \
976 } \
977
978 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
979 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
980 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
981 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
982 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
983 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
984 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
985 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
986 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
987 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
988 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
989
990 static __unused inline size_t
991 lfs_ss_getsumstart(STRUCT_LFS *fs)
992 {
993 /* These are actually all the same. */
994 if (fs->lfs_is64) {
995 return offsetof(SEGSUM64, ss_datasum);
996 } else /* if (lfs_sb_getversion(fs) > 1) */ {
997 return offsetof(SEGSUM32, ss_datasum);
998 } /* else {
999 return offsetof(SEGSUM_V1, ss_datasum);
1000 } */
1001 /*
1002 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1003 * defined yet.
1004 */
1005 }
1006
1007 static __unused inline uint32_t
1008 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1009 {
1010 KASSERT(fs->lfs_is64 == 0);
1011 /* XXX need to resort this file before we can do this */
1012 //KASSERT(lfs_sb_getversion(fs) == 1);
1013
1014 return ssp->u_v1.ss_create;
1015 }
1016
1017 static __unused inline void
1018 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1019 {
1020 KASSERT(fs->lfs_is64 == 0);
1021 /* XXX need to resort this file before we can do this */
1022 //KASSERT(lfs_sb_getversion(fs) == 1);
1023
1024 ssp->u_v1.ss_create = val;
1025 }
1026
1027
1028 /*
1029 * Super block.
1030 */
1031
1032 /*
1033 * Generate accessors for the on-disk superblock fields with cpp.
1034 */
1035
1036 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1037 static __unused inline type \
1038 lfs_sb_get##field(STRUCT_LFS *fs) \
1039 { \
1040 if (fs->lfs_is64) { \
1041 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1042 } else { \
1043 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1044 } \
1045 } \
1046 static __unused inline void \
1047 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1048 { \
1049 if (fs->lfs_is64) { \
1050 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1051 } else { \
1052 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1053 } \
1054 } \
1055 static __unused inline void \
1056 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1057 { \
1058 if (fs->lfs_is64) { \
1059 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1060 *p64 += val; \
1061 } else { \
1062 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1063 *p32 += val; \
1064 } \
1065 } \
1066 static __unused inline void \
1067 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1068 { \
1069 if (fs->lfs_is64) { \
1070 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1071 *p64 -= val; \
1072 } else { \
1073 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1074 *p32 -= val; \
1075 } \
1076 }
1077
1078 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1079
1080 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1081 static __unused inline type \
1082 lfs_sb_get##field(STRUCT_LFS *fs) \
1083 { \
1084 if (fs->lfs_is64) { \
1085 return val64; \
1086 } else { \
1087 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1088 } \
1089 }
1090
1091 #define lfs_magic lfs_dlfs.dlfs_magic
1092 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1093 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1094 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1095 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1096 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1097 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1098 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1099 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1100 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1101 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1102 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1103 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1104 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1105 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1106 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1107 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1108 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1109 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1110 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1111 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1112 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1113 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1114 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1115 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1116 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1117 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1118 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1119 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1120 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1121 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1122 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1123 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1124 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1125 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1126 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1127 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1128 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1129 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1130 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1131 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1132 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1133 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1134 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1135 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1136 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1137 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1138 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1139 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1140 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1141 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1142 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1143 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1144 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1145 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1146 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1147 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1148 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1149
1150 /* special-case accessors */
1151
1152 /*
1153 * the v1 otstamp field lives in what's now dlfs_inopf
1154 */
1155 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1156 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1157
1158 /*
1159 * lfs_sboffs is an array
1160 */
1161 static __unused inline int32_t
1162 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1163 {
1164 #ifdef KASSERT /* ugh */
1165 KASSERT(n < LFS_MAXNUMSB);
1166 #endif
1167 if (fs->lfs_is64) {
1168 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1169 } else {
1170 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1171 }
1172 }
1173 static __unused inline void
1174 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1175 {
1176 #ifdef KASSERT /* ugh */
1177 KASSERT(n < LFS_MAXNUMSB);
1178 #endif
1179 if (fs->lfs_is64) {
1180 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1181 } else {
1182 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1183 }
1184 }
1185
1186 /*
1187 * lfs_fsmnt is a string
1188 */
1189 static __unused inline const char *
1190 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1191 {
1192 if (fs->lfs_is64) {
1193 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1194 } else {
1195 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1196 }
1197 }
1198
1199 static __unused inline void
1200 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1201 {
1202 if (fs->lfs_is64) {
1203 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1204 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1205 } else {
1206 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1207 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1208 }
1209 }
1210
1211 /* Highest addressable fsb */
1212 #define LFS_MAX_DADDR(fs) \
1213 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1214
1215 /* LFS_NINDIR is the number of indirects in a file system block. */
1216 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1217
1218 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1219 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1220 /* LFS_INOPF is the number of inodes in a fragment. */
1221 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1222
1223 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1224 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1225 ((int)((loc) & lfs_sb_getffmask(fs)))
1226
1227 /* XXX: lowercase these as they're no longer macros */
1228 /* Frags to diskblocks */
1229 static __unused inline uint64_t
1230 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1231 {
1232 #if defined(_KERNEL)
1233 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1234 #else
1235 return b << lfs_sb_getfsbtodb(fs);
1236 #endif
1237 }
1238 /* Diskblocks to frags */
1239 static __unused inline uint64_t
1240 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1241 {
1242 #if defined(_KERNEL)
1243 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1244 #else
1245 return b >> lfs_sb_getfsbtodb(fs);
1246 #endif
1247 }
1248
1249 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1250 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1251
1252 /* Frags to bytes */
1253 static __unused inline uint64_t
1254 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1255 {
1256 return b << lfs_sb_getffshift(fs);
1257 }
1258 /* Bytes to frags */
1259 static __unused inline uint64_t
1260 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1261 {
1262 return b >> lfs_sb_getffshift(fs);
1263 }
1264
1265 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1266 ((loc) >> lfs_sb_getffshift(fs))
1267 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1268 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1269 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1270 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1271 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1272 ((frags) >> lfs_sb_getfbshift(fs))
1273 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1274 ((blks) << lfs_sb_getfbshift(fs))
1275 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1276 ((fsb) & ((fs)->lfs_frag - 1))
1277 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1278 ((fsb) &~ ((fs)->lfs_frag - 1))
1279 #define lfs_dblksize(fs, dp, lbn) \
1280 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1281 ? lfs_sb_getbsize(fs) \
1282 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1283
1284 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1285 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1286 lfs_sb_getssize(fs))
1287 /* XXX segtod produces a result in frags despite the 'd' */
1288 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1289 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1290 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1291 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1292 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1293
1294 /* XXX, blah. make this appear only if struct inode is defined */
1295 #ifdef _UFS_LFS_LFS_INODE_H_
1296 static __unused inline uint32_t
1297 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1298 {
1299 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1300 return lfs_sb_getbsize(fs);
1301 } else {
1302 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1303 }
1304 }
1305 #endif
1306
1307 /*
1308 * union lfs_blocks
1309 */
1310
1311 static __unused inline void
1312 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1313 {
1314 if (fs->lfs_is64) {
1315 bp->b64 = p;
1316 } else {
1317 bp->b32 = p;
1318 }
1319 }
1320
1321 static __unused inline void
1322 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1323 {
1324 void *firstblock;
1325
1326 firstblock = (char *)fip + FINFOSIZE(fs);
1327 if (fs->lfs_is64) {
1328 bp->b64 = (int64_t *)firstblock;
1329 } else {
1330 bp->b32 = (int32_t *)firstblock;
1331 }
1332 }
1333
1334 static __unused inline daddr_t
1335 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1336 {
1337 if (fs->lfs_is64) {
1338 return bp->b64[index];
1339 } else {
1340 return bp->b32[index];
1341 }
1342 }
1343
1344 static __unused inline void
1345 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1346 {
1347 if (fs->lfs_is64) {
1348 bp->b64[index] = val;
1349 } else {
1350 bp->b32[index] = val;
1351 }
1352 }
1353
1354 static __unused inline void
1355 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1356 {
1357 if (fs->lfs_is64) {
1358 bp->b64++;
1359 } else {
1360 bp->b32++;
1361 }
1362 }
1363
1364 static __unused inline int
1365 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1366 {
1367 if (fs->lfs_is64) {
1368 return bp1->b64 == bp2->b64;
1369 } else {
1370 return bp1->b32 == bp2->b32;
1371 }
1372 }
1373
1374 static __unused inline int
1375 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1376 {
1377 /* (remember that the pointers are typed) */
1378 if (fs->lfs_is64) {
1379 return bp1->b64 - bp2->b64;
1380 } else {
1381 return bp1->b32 - bp2->b32;
1382 }
1383 }
1384
1385 /*
1386 * struct segment
1387 */
1388
1389
1390 /*
1391 * Macros for determining free space on the disk, with the variable metadata
1392 * of segment summaries and inode blocks taken into account.
1393 */
1394 /*
1395 * Estimate number of clean blocks not available for writing because
1396 * they will contain metadata or overhead. This is calculated as
1397 *
1398 * E = ((C * M / D) * D + (0) * (T - D)) / T
1399 * or more simply
1400 * E = (C * M) / T
1401 *
1402 * where
1403 * C is the clean space,
1404 * D is the dirty space,
1405 * M is the dirty metadata, and
1406 * T = C + D is the total space on disk.
1407 *
1408 * This approximates the old formula of E = C * M / D when D is close to T,
1409 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1410 */
1411 #define LFS_EST_CMETA(F) (int32_t)(( \
1412 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1413 (lfs_sb_getnseg(F))))
1414
1415 /* Estimate total size of the disk not including metadata */
1416 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1417
1418 /* Estimate number of blocks actually available for writing */
1419 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1420 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1421
1422 /* Amount of non-meta space not available to mortal man */
1423 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1424 (u_int64_t)lfs_sb_getminfree(F)) / \
1425 100)
1426
1427 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1428 #define ISSPACE(F, BB, C) \
1429 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1430 LFS_EST_BFREE(F) >= (BB)) || \
1431 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1432
1433 /* Can an ordinary user write BB blocks */
1434 #define IS_FREESPACE(F, BB) \
1435 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1436
1437 /*
1438 * The minimum number of blocks to create a new inode. This is:
1439 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1440 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1441 */
1442 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1443
1444
1445
1446 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1447