lfs_accessors.h revision 1.25 1 /* $NetBSD: lfs_accessors.h,v 1.25 2015/09/15 15:01:38 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * For handling directories we will need to know if the volume is
206 * little-endian.
207 */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213
214
215 /*
216 * directories
217 */
218
219 /*
220 * The LFS_DIRSIZ macro gives the minimum record length which will hold
221 * the directory entry. This requires the amount of space in struct lfs_direct
222 * without the d_name field, plus enough space for the name with a terminating
223 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
224 */
225 #define LFS_DIRECTSIZ(namlen) \
226 ((sizeof(struct lfs_direct) - (LFS_MAXNAMLEN+1)) + (((namlen)+1 + 3) &~ 3))
227
228 #if (BYTE_ORDER == LITTLE_ENDIAN)
229 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
230 (((oldfmt) && !(needswap)) ? \
231 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
232 #else
233 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
234 (((oldfmt) && (needswap)) ? \
235 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
236 #endif
237
238 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(lfs_dir_getnamlen(fs, dp))
239
240 /* Constants for the first argument of LFS_OLDDIRSIZ */
241 #define LFS_OLDDIRFMT 1
242 #define LFS_NEWDIRFMT 0
243
244 #define LFS_NEXTDIR(fs, dp) \
245 ((struct lfs_direct *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
246
247 static __unused inline uint32_t
248 lfs_dir_getino(const STRUCT_LFS *fs, const struct lfs_direct *dp)
249 {
250 return LFS_SWAP_uint32_t(fs, dp->d_header.dh_ino);
251 }
252
253 static __unused inline uint16_t
254 lfs_dir_getreclen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
255 {
256 return LFS_SWAP_uint16_t(fs, dp->d_header.dh_reclen);
257 }
258
259 static __unused inline uint8_t
260 lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_direct *dp)
261 {
262 if (fs->lfs_hasolddirfmt) {
263 return LFS_DT_UNKNOWN;
264 }
265 return dp->d_header.dh_type;
266 }
267
268 static __unused inline uint8_t
269 lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
270 {
271 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
272 /* low-order byte of old 16-bit namlen field */
273 return dp->d_header.dh_type;
274 }
275 return dp->d_header.dh_namlen;
276 }
277
278 static __unused inline void
279 lfs_dir_setino(STRUCT_LFS *fs, struct lfs_direct *dp, uint32_t ino)
280 {
281 dp->d_header.dh_ino = LFS_SWAP_uint32_t(fs, ino);
282 }
283
284 static __unused inline void
285 lfs_dir_setreclen(STRUCT_LFS *fs, struct lfs_direct *dp, uint16_t reclen)
286 {
287 dp->d_header.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
288 }
289
290 static __unused inline void
291 lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t type)
292 {
293 if (fs->lfs_hasolddirfmt) {
294 /* do nothing */
295 return;
296 }
297 dp->d_header.dh_type = type;
298 }
299
300 static __unused inline void
301 lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t namlen)
302 {
303 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
304 /* low-order byte of old 16-bit namlen field */
305 dp->d_header.dh_type = namlen;
306 }
307 dp->d_header.dh_namlen = namlen;
308 }
309
310 static __unused inline void
311 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
312 unsigned namlen, unsigned reclen)
313 {
314 /* must always be at least 1 byte as a null terminator */
315 KASSERT(reclen > namlen);
316
317 memcpy(dest, src, namlen);
318 memset(dest + namlen, '\0', reclen - namlen);
319 }
320
321 /*
322 * These are called "dirt" because they ought to be cleaned up.
323 */
324
325 static __unused inline uint8_t
326 lfs_dirt_getdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
327 {
328 if (fs->lfs_hasolddirfmt) {
329 return LFS_DT_UNKNOWN;
330 }
331 return dp->dot_type;
332 }
333
334 static __unused inline uint8_t
335 lfs_dirt_getdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
336 {
337 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
338 /* low-order byte of old 16-bit namlen field */
339 return dp->dot_type;
340 }
341 return dp->dot_namlen;
342 }
343
344 static __unused inline uint8_t
345 lfs_dirt_getdotdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
346 {
347 if (fs->lfs_hasolddirfmt) {
348 return LFS_DT_UNKNOWN;
349 }
350 return dp->dotdot_type;
351 }
352
353 static __unused inline uint8_t
354 lfs_dirt_getdotdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
355 {
356 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
357 /* low-order byte of old 16-bit namlen field */
358 return dp->dotdot_type;
359 }
360 return dp->dotdot_namlen;
361 }
362
363 static __unused inline void
364 lfs_dirt_settypes(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
365 unsigned dt1, unsigned dt2)
366 {
367 if (fs->lfs_hasolddirfmt) {
368 /* do nothing */
369 return;
370 }
371 dtp->dot_type = dt1;
372 dtp->dotdot_type = dt2;
373 }
374
375 static __unused inline void
376 lfs_dirt_setnamlens(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
377 unsigned len1, unsigned len2)
378 {
379 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
380 /* low-order bytes of old 16-bit namlen field */
381 dtp->dot_type = len1;
382 dtp->dotdot_type = len2;
383 /* clear the high-order bytes */
384 dtp->dot_namlen = 0;
385 dtp->dotdot_namlen = 0;
386 return;
387 }
388 dtp->dot_namlen = len1;
389 dtp->dotdot_namlen = len2;
390 }
391
392
393 /*
394 * dinodes
395 */
396
397 /*
398 * Maximum length of a symlink that can be stored within the inode.
399 */
400 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
401 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
402
403 #define LFS_MAXSYMLINKLEN(fs) \
404 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
405
406 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
407
408 #define DINO_IN_BLOCK(fs, base, ix) \
409 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
410
411 static __unused inline void
412 lfs_copy_dinode(STRUCT_LFS *fs,
413 union lfs_dinode *dst, const union lfs_dinode *src)
414 {
415 /*
416 * We can do structure assignment of the structs, but not of
417 * the whole union, as the union is the size of the (larger)
418 * 64-bit struct and on a 32-bit fs the upper half of it might
419 * be off the end of a buffer or otherwise invalid.
420 */
421 if (fs->lfs_is64) {
422 dst->u_64 = src->u_64;
423 } else {
424 dst->u_32 = src->u_32;
425 }
426 }
427
428 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
429 static __unused inline type \
430 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
431 { \
432 if (fs->lfs_is64) { \
433 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
434 } else { \
435 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
436 } \
437 } \
438 static __unused inline void \
439 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
440 { \
441 if (fs->lfs_is64) { \
442 type *p = &dip->u_64.di_##field; \
443 (void)p; \
444 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
445 } else { \
446 type32 *p = &dip->u_32.di_##field; \
447 (void)p; \
448 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
449 } \
450 } \
451
452 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
453 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
454 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
455 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
456 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
457 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
458 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
459 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
460 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
461 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
462 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
463 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
464 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
465 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
466 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
467
468 /* XXX this should be done differently (it's a fake field) */
469 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
470
471 static __unused inline daddr_t
472 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
473 {
474 KASSERT(ix < ULFS_NDADDR);
475 if (fs->lfs_is64) {
476 return dip->u_64.di_db[ix];
477 } else {
478 return dip->u_32.di_db[ix];
479 }
480 }
481
482 static __unused inline daddr_t
483 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
484 {
485 KASSERT(ix < ULFS_NIADDR);
486 if (fs->lfs_is64) {
487 return dip->u_64.di_ib[ix];
488 } else {
489 return dip->u_32.di_ib[ix];
490 }
491 }
492
493 static __unused inline void
494 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
495 {
496 KASSERT(ix < ULFS_NDADDR);
497 if (fs->lfs_is64) {
498 dip->u_64.di_db[ix] = val;
499 } else {
500 dip->u_32.di_db[ix] = val;
501 }
502 }
503
504 static __unused inline void
505 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
506 {
507 KASSERT(ix < ULFS_NIADDR);
508 if (fs->lfs_is64) {
509 dip->u_64.di_ib[ix] = val;
510 } else {
511 dip->u_32.di_ib[ix] = val;
512 }
513 }
514
515 /* birthtime is present only in the 64-bit inode */
516 static __unused inline void
517 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
518 const struct timespec *ts)
519 {
520 if (fs->lfs_is64) {
521 dip->u_64.di_birthtime = ts->tv_sec;
522 dip->u_64.di_birthnsec = ts->tv_nsec;
523 } else {
524 /* drop it on the floor */
525 }
526 }
527
528 /*
529 * indirect blocks
530 */
531
532 static __unused inline daddr_t
533 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
534 {
535 if (fs->lfs_is64) {
536 // XXX re-enable these asserts after reorging this file
537 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
538 return (daddr_t)(((int64_t *)block)[ix]);
539 } else {
540 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
541 /* must sign-extend or UNWRITTEN gets trashed */
542 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
543 }
544 }
545
546 static __unused inline void
547 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
548 {
549 if (fs->lfs_is64) {
550 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
551 ((int64_t *)block)[ix] = val;
552 } else {
553 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
554 ((int32_t *)block)[ix] = val;
555 }
556 }
557
558 /*
559 * "struct buf" associated definitions
560 */
561
562 # define LFS_LOCK_BUF(bp) do { \
563 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
564 mutex_enter(&lfs_lock); \
565 ++locked_queue_count; \
566 locked_queue_bytes += bp->b_bufsize; \
567 mutex_exit(&lfs_lock); \
568 } \
569 (bp)->b_flags |= B_LOCKED; \
570 } while (0)
571
572 # define LFS_UNLOCK_BUF(bp) do { \
573 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
574 mutex_enter(&lfs_lock); \
575 --locked_queue_count; \
576 locked_queue_bytes -= bp->b_bufsize; \
577 if (locked_queue_count < LFS_WAIT_BUFS && \
578 locked_queue_bytes < LFS_WAIT_BYTES) \
579 cv_broadcast(&locked_queue_cv); \
580 mutex_exit(&lfs_lock); \
581 } \
582 (bp)->b_flags &= ~B_LOCKED; \
583 } while (0)
584
585 /*
586 * "struct inode" associated definitions
587 */
588
589 #define LFS_SET_UINO(ip, flags) do { \
590 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
591 lfs_sb_adduinodes((ip)->i_lfs, 1); \
592 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
593 lfs_sb_adduinodes((ip)->i_lfs, 1); \
594 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
595 lfs_sb_adduinodes((ip)->i_lfs, 1); \
596 (ip)->i_flag |= (flags); \
597 } while (0)
598
599 #define LFS_CLR_UINO(ip, flags) do { \
600 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
601 lfs_sb_subuinodes((ip)->i_lfs, 1); \
602 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
603 lfs_sb_subuinodes((ip)->i_lfs, 1); \
604 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
605 lfs_sb_subuinodes((ip)->i_lfs, 1); \
606 (ip)->i_flag &= ~(flags); \
607 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
608 panic("lfs_uinodes < 0"); \
609 } \
610 } while (0)
611
612 #define LFS_ITIMES(ip, acc, mod, cre) \
613 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
614 lfs_itimes(ip, acc, mod, cre)
615
616 /*
617 * On-disk and in-memory checkpoint segment usage structure.
618 */
619
620 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
621 #define SEGTABSIZE_SU(fs) \
622 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
623
624 #ifdef _KERNEL
625 # define SHARE_IFLOCK(F) \
626 do { \
627 rw_enter(&(F)->lfs_iflock, RW_READER); \
628 } while(0)
629 # define UNSHARE_IFLOCK(F) \
630 do { \
631 rw_exit(&(F)->lfs_iflock); \
632 } while(0)
633 #else /* ! _KERNEL */
634 # define SHARE_IFLOCK(F)
635 # define UNSHARE_IFLOCK(F)
636 #endif /* ! _KERNEL */
637
638 /* Read in the block with a specific segment usage entry from the ifile. */
639 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
640 int _e; \
641 SHARE_IFLOCK(F); \
642 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
643 if ((_e = bread((F)->lfs_ivnode, \
644 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
645 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
646 panic("lfs: ifile read: %d", _e); \
647 if (lfs_sb_getversion(F) == 1) \
648 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
649 ((IN) & (lfs_sb_getsepb(F) - 1))); \
650 else \
651 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
652 UNSHARE_IFLOCK(F); \
653 } while (0)
654
655 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
656 if ((SP)->su_nbytes == 0) \
657 (SP)->su_flags |= SEGUSE_EMPTY; \
658 else \
659 (SP)->su_flags &= ~SEGUSE_EMPTY; \
660 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
661 LFS_BWRITE_LOG(BP); \
662 } while (0)
663
664 /*
665 * FINFO (file info) entries.
666 */
667
668 /* Size of an on-disk block pointer, e.g. in an indirect block. */
669 /* XXX: move to a more suitable location in this file */
670 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
671
672 /* Size of an on-disk inode number. */
673 /* XXX: move to a more suitable location in this file */
674 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
675
676 /* size of a FINFO, without the block pointers */
677 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
678
679 /* Full size of the provided FINFO record, including its block pointers. */
680 #define FINFO_FULLSIZE(fs, fip) \
681 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
682
683 #define NEXT_FINFO(fs, fip) \
684 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
685
686 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
687 static __unused inline type \
688 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
689 { \
690 if (fs->lfs_is64) { \
691 return fip->u_64.fi_##field; \
692 } else { \
693 return fip->u_32.fi_##field; \
694 } \
695 } \
696 static __unused inline void \
697 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
698 { \
699 if (fs->lfs_is64) { \
700 type *p = &fip->u_64.fi_##field; \
701 (void)p; \
702 fip->u_64.fi_##field = val; \
703 } else { \
704 type32 *p = &fip->u_32.fi_##field; \
705 (void)p; \
706 fip->u_32.fi_##field = val; \
707 } \
708 } \
709
710 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
711 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
712 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
713 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
714
715 static __unused inline daddr_t
716 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
717 {
718 void *firstblock;
719
720 firstblock = (char *)fip + FINFOSIZE(fs);
721 KASSERT(index < lfs_fi_getnblocks(fs, fip));
722 if (fs->lfs_is64) {
723 return ((int64_t *)firstblock)[index];
724 } else {
725 return ((int32_t *)firstblock)[index];
726 }
727 }
728
729 static __unused inline void
730 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
731 {
732 void *firstblock;
733
734 firstblock = (char *)fip + FINFOSIZE(fs);
735 KASSERT(index < lfs_fi_getnblocks(fs, fip));
736 if (fs->lfs_is64) {
737 ((int64_t *)firstblock)[index] = blk;
738 } else {
739 ((int32_t *)firstblock)[index] = blk;
740 }
741 }
742
743 /*
744 * Index file inode entries.
745 */
746
747 /*
748 * LFSv1 compatibility code is not allowed to touch if_atime, since it
749 * may not be mapped!
750 */
751 /* Read in the block with a specific inode from the ifile. */
752 #define LFS_IENTRY(IP, F, IN, BP) do { \
753 int _e; \
754 SHARE_IFLOCK(F); \
755 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
756 if ((_e = bread((F)->lfs_ivnode, \
757 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
758 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
759 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
760 if ((F)->lfs_is64) { \
761 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
762 (IN) % lfs_sb_getifpb(F)); \
763 } else if (lfs_sb_getversion(F) > 1) { \
764 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
765 (IN) % lfs_sb_getifpb(F)); \
766 } else { \
767 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
768 (IN) % lfs_sb_getifpb(F)); \
769 } \
770 UNSHARE_IFLOCK(F); \
771 } while (0)
772 #define LFS_IENTRY_NEXT(IP, F) do { \
773 if ((F)->lfs_is64) { \
774 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
775 } else if (lfs_sb_getversion(F) > 1) { \
776 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
777 } else { \
778 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
779 } \
780 } while (0)
781
782 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
783 static __unused inline type \
784 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
785 { \
786 if (fs->lfs_is64) { \
787 return ifp->u_64.if_##field; \
788 } else { \
789 return ifp->u_32.if_##field; \
790 } \
791 } \
792 static __unused inline void \
793 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
794 { \
795 if (fs->lfs_is64) { \
796 type *p = &ifp->u_64.if_##field; \
797 (void)p; \
798 ifp->u_64.if_##field = val; \
799 } else { \
800 type32 *p = &ifp->u_32.if_##field; \
801 (void)p; \
802 ifp->u_32.if_##field = val; \
803 } \
804 } \
805
806 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
807 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
808 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
809 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
810 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
811
812 /*
813 * Cleaner information structure. This resides in the ifile and is used
814 * to pass information from the kernel to the cleaner.
815 */
816
817 #define CLEANSIZE_SU(fs) \
818 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
819 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
820
821 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
822 static __unused inline type \
823 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
824 { \
825 if (fs->lfs_is64) { \
826 return cip->u_64.field; \
827 } else { \
828 return cip->u_32.field; \
829 } \
830 } \
831 static __unused inline void \
832 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
833 { \
834 if (fs->lfs_is64) { \
835 type *p = &cip->u_64.field; \
836 (void)p; \
837 cip->u_64.field = val; \
838 } else { \
839 type32 *p = &cip->u_32.field; \
840 (void)p; \
841 cip->u_32.field = val; \
842 } \
843 } \
844
845 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
846 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
847 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
848 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
849 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
850 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
851 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
852
853 static __unused inline void
854 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
855 {
856 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
857 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
858 }
859
860 static __unused inline void
861 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
862 {
863 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
864 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
865 }
866
867 /* Read in the block with the cleaner info from the ifile. */
868 #define LFS_CLEANERINFO(CP, F, BP) do { \
869 SHARE_IFLOCK(F); \
870 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
871 if (bread((F)->lfs_ivnode, \
872 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
873 panic("lfs: ifile read"); \
874 (CP) = (CLEANERINFO *)(BP)->b_data; \
875 UNSHARE_IFLOCK(F); \
876 } while (0)
877
878 /*
879 * Synchronize the Ifile cleaner info with current avail and bfree.
880 */
881 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
882 mutex_enter(&lfs_lock); \
883 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
884 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
885 fs->lfs_favail) { \
886 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
887 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
888 fs->lfs_favail); \
889 if (((bp)->b_flags & B_GATHERED) == 0) { \
890 fs->lfs_flags |= LFS_IFDIRTY; \
891 } \
892 mutex_exit(&lfs_lock); \
893 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
894 } else { \
895 mutex_exit(&lfs_lock); \
896 brelse(bp, 0); \
897 } \
898 } while (0)
899
900 /*
901 * Get the head of the inode free list.
902 * Always called with the segment lock held.
903 */
904 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
905 if (lfs_sb_getversion(FS) > 1) { \
906 LFS_CLEANERINFO((CIP), (FS), (BP)); \
907 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
908 brelse(BP, 0); \
909 } \
910 *(FREEP) = lfs_sb_getfreehd(FS); \
911 } while (0)
912
913 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
914 lfs_sb_setfreehd(FS, VAL); \
915 if (lfs_sb_getversion(FS) > 1) { \
916 LFS_CLEANERINFO((CIP), (FS), (BP)); \
917 lfs_ci_setfree_head(FS, CIP, VAL); \
918 LFS_BWRITE_LOG(BP); \
919 mutex_enter(&lfs_lock); \
920 (FS)->lfs_flags |= LFS_IFDIRTY; \
921 mutex_exit(&lfs_lock); \
922 } \
923 } while (0)
924
925 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
926 LFS_CLEANERINFO((CIP), (FS), (BP)); \
927 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
928 brelse(BP, 0); \
929 } while (0)
930
931 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
932 LFS_CLEANERINFO((CIP), (FS), (BP)); \
933 lfs_ci_setfree_tail(FS, CIP, VAL); \
934 LFS_BWRITE_LOG(BP); \
935 mutex_enter(&lfs_lock); \
936 (FS)->lfs_flags |= LFS_IFDIRTY; \
937 mutex_exit(&lfs_lock); \
938 } while (0)
939
940 /*
941 * On-disk segment summary information
942 */
943
944 #define SEGSUM_SIZE(fs) \
945 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
946 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
947
948 /*
949 * The SEGSUM structure is followed by FINFO structures. Get the pointer
950 * to the first FINFO.
951 *
952 * XXX this can't be a macro yet; this file needs to be resorted.
953 */
954 #if 0
955 static __unused inline FINFO *
956 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
957 {
958 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
959 }
960 #else
961 #define SEGSUM_FINFOBASE(fs, ssp) \
962 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
963 #endif
964
965 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
966 static __unused inline type \
967 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
968 { \
969 if (fs->lfs_is64) { \
970 return ssp->u_64.ss_##field; \
971 } else { \
972 return ssp->u_32.ss_##field; \
973 } \
974 } \
975 static __unused inline void \
976 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
977 { \
978 if (fs->lfs_is64) { \
979 type *p = &ssp->u_64.ss_##field; \
980 (void)p; \
981 ssp->u_64.ss_##field = val; \
982 } else { \
983 type32 *p = &ssp->u_32.ss_##field; \
984 (void)p; \
985 ssp->u_32.ss_##field = val; \
986 } \
987 } \
988
989 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
990 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
991 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
992 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
993 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
994 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
995 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
996 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
997 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
998 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
999 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1000
1001 static __unused inline size_t
1002 lfs_ss_getsumstart(STRUCT_LFS *fs)
1003 {
1004 /* These are actually all the same. */
1005 if (fs->lfs_is64) {
1006 return offsetof(SEGSUM64, ss_datasum);
1007 } else /* if (lfs_sb_getversion(fs) > 1) */ {
1008 return offsetof(SEGSUM32, ss_datasum);
1009 } /* else {
1010 return offsetof(SEGSUM_V1, ss_datasum);
1011 } */
1012 /*
1013 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1014 * defined yet.
1015 */
1016 }
1017
1018 static __unused inline uint32_t
1019 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1020 {
1021 KASSERT(fs->lfs_is64 == 0);
1022 /* XXX need to resort this file before we can do this */
1023 //KASSERT(lfs_sb_getversion(fs) == 1);
1024
1025 return ssp->u_v1.ss_create;
1026 }
1027
1028 static __unused inline void
1029 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1030 {
1031 KASSERT(fs->lfs_is64 == 0);
1032 /* XXX need to resort this file before we can do this */
1033 //KASSERT(lfs_sb_getversion(fs) == 1);
1034
1035 ssp->u_v1.ss_create = val;
1036 }
1037
1038
1039 /*
1040 * Super block.
1041 */
1042
1043 /*
1044 * Generate accessors for the on-disk superblock fields with cpp.
1045 */
1046
1047 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1048 static __unused inline type \
1049 lfs_sb_get##field(STRUCT_LFS *fs) \
1050 { \
1051 if (fs->lfs_is64) { \
1052 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1053 } else { \
1054 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1055 } \
1056 } \
1057 static __unused inline void \
1058 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1059 { \
1060 if (fs->lfs_is64) { \
1061 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1062 } else { \
1063 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1064 } \
1065 } \
1066 static __unused inline void \
1067 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1068 { \
1069 if (fs->lfs_is64) { \
1070 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1071 *p64 += val; \
1072 } else { \
1073 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1074 *p32 += val; \
1075 } \
1076 } \
1077 static __unused inline void \
1078 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1079 { \
1080 if (fs->lfs_is64) { \
1081 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1082 *p64 -= val; \
1083 } else { \
1084 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1085 *p32 -= val; \
1086 } \
1087 }
1088
1089 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1090
1091 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1092 static __unused inline type \
1093 lfs_sb_get##field(STRUCT_LFS *fs) \
1094 { \
1095 if (fs->lfs_is64) { \
1096 return val64; \
1097 } else { \
1098 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1099 } \
1100 }
1101
1102 #define lfs_magic lfs_dlfs.dlfs_magic
1103 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1104 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1105 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1106 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1107 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1108 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1109 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1110 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1111 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1112 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1113 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1114 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1115 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1116 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1117 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1118 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1119 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1120 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1121 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1122 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1123 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1124 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1125 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1126 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1127 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1128 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1129 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1130 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1131 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1132 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1133 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1134 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1135 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1136 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1137 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1138 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1139 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1140 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1141 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1142 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1143 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1144 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1145 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1146 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1147 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1148 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1149 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1150 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1151 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1152 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1153 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1154 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1155 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1156 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1157 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1158 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1159 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1160
1161 /* special-case accessors */
1162
1163 /*
1164 * the v1 otstamp field lives in what's now dlfs_inopf
1165 */
1166 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1167 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1168
1169 /*
1170 * lfs_sboffs is an array
1171 */
1172 static __unused inline int32_t
1173 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1174 {
1175 #ifdef KASSERT /* ugh */
1176 KASSERT(n < LFS_MAXNUMSB);
1177 #endif
1178 if (fs->lfs_is64) {
1179 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1180 } else {
1181 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1182 }
1183 }
1184 static __unused inline void
1185 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1186 {
1187 #ifdef KASSERT /* ugh */
1188 KASSERT(n < LFS_MAXNUMSB);
1189 #endif
1190 if (fs->lfs_is64) {
1191 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1192 } else {
1193 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1194 }
1195 }
1196
1197 /*
1198 * lfs_fsmnt is a string
1199 */
1200 static __unused inline const char *
1201 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1202 {
1203 if (fs->lfs_is64) {
1204 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1205 } else {
1206 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1207 }
1208 }
1209
1210 static __unused inline void
1211 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1212 {
1213 if (fs->lfs_is64) {
1214 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1215 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1216 } else {
1217 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1218 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1219 }
1220 }
1221
1222 /* Highest addressable fsb */
1223 #define LFS_MAX_DADDR(fs) \
1224 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1225
1226 /* LFS_NINDIR is the number of indirects in a file system block. */
1227 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1228
1229 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1230 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1231 /* LFS_INOPF is the number of inodes in a fragment. */
1232 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1233
1234 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1235 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1236 ((int)((loc) & lfs_sb_getffmask(fs)))
1237
1238 /* XXX: lowercase these as they're no longer macros */
1239 /* Frags to diskblocks */
1240 static __unused inline uint64_t
1241 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1242 {
1243 #if defined(_KERNEL)
1244 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1245 #else
1246 return b << lfs_sb_getfsbtodb(fs);
1247 #endif
1248 }
1249 /* Diskblocks to frags */
1250 static __unused inline uint64_t
1251 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1252 {
1253 #if defined(_KERNEL)
1254 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1255 #else
1256 return b >> lfs_sb_getfsbtodb(fs);
1257 #endif
1258 }
1259
1260 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1261 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1262
1263 /* Frags to bytes */
1264 static __unused inline uint64_t
1265 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1266 {
1267 return b << lfs_sb_getffshift(fs);
1268 }
1269 /* Bytes to frags */
1270 static __unused inline uint64_t
1271 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1272 {
1273 return b >> lfs_sb_getffshift(fs);
1274 }
1275
1276 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1277 ((loc) >> lfs_sb_getffshift(fs))
1278 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1279 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1280 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1281 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1282 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1283 ((frags) >> lfs_sb_getfbshift(fs))
1284 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1285 ((blks) << lfs_sb_getfbshift(fs))
1286 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1287 ((fsb) & ((fs)->lfs_frag - 1))
1288 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1289 ((fsb) &~ ((fs)->lfs_frag - 1))
1290 #define lfs_dblksize(fs, dp, lbn) \
1291 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1292 ? lfs_sb_getbsize(fs) \
1293 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1294
1295 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1296 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1297 lfs_sb_getssize(fs))
1298 /* XXX segtod produces a result in frags despite the 'd' */
1299 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1300 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1301 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1302 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1303 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1304
1305 /* XXX, blah. make this appear only if struct inode is defined */
1306 #ifdef _UFS_LFS_LFS_INODE_H_
1307 static __unused inline uint32_t
1308 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1309 {
1310 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1311 return lfs_sb_getbsize(fs);
1312 } else {
1313 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1314 }
1315 }
1316 #endif
1317
1318 /*
1319 * union lfs_blocks
1320 */
1321
1322 static __unused inline void
1323 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1324 {
1325 if (fs->lfs_is64) {
1326 bp->b64 = p;
1327 } else {
1328 bp->b32 = p;
1329 }
1330 }
1331
1332 static __unused inline void
1333 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1334 {
1335 void *firstblock;
1336
1337 firstblock = (char *)fip + FINFOSIZE(fs);
1338 if (fs->lfs_is64) {
1339 bp->b64 = (int64_t *)firstblock;
1340 } else {
1341 bp->b32 = (int32_t *)firstblock;
1342 }
1343 }
1344
1345 static __unused inline daddr_t
1346 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1347 {
1348 if (fs->lfs_is64) {
1349 return bp->b64[index];
1350 } else {
1351 return bp->b32[index];
1352 }
1353 }
1354
1355 static __unused inline void
1356 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1357 {
1358 if (fs->lfs_is64) {
1359 bp->b64[index] = val;
1360 } else {
1361 bp->b32[index] = val;
1362 }
1363 }
1364
1365 static __unused inline void
1366 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1367 {
1368 if (fs->lfs_is64) {
1369 bp->b64++;
1370 } else {
1371 bp->b32++;
1372 }
1373 }
1374
1375 static __unused inline int
1376 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1377 {
1378 if (fs->lfs_is64) {
1379 return bp1->b64 == bp2->b64;
1380 } else {
1381 return bp1->b32 == bp2->b32;
1382 }
1383 }
1384
1385 static __unused inline int
1386 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1387 {
1388 /* (remember that the pointers are typed) */
1389 if (fs->lfs_is64) {
1390 return bp1->b64 - bp2->b64;
1391 } else {
1392 return bp1->b32 - bp2->b32;
1393 }
1394 }
1395
1396 /*
1397 * struct segment
1398 */
1399
1400
1401 /*
1402 * Macros for determining free space on the disk, with the variable metadata
1403 * of segment summaries and inode blocks taken into account.
1404 */
1405 /*
1406 * Estimate number of clean blocks not available for writing because
1407 * they will contain metadata or overhead. This is calculated as
1408 *
1409 * E = ((C * M / D) * D + (0) * (T - D)) / T
1410 * or more simply
1411 * E = (C * M) / T
1412 *
1413 * where
1414 * C is the clean space,
1415 * D is the dirty space,
1416 * M is the dirty metadata, and
1417 * T = C + D is the total space on disk.
1418 *
1419 * This approximates the old formula of E = C * M / D when D is close to T,
1420 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1421 */
1422 #define LFS_EST_CMETA(F) (int32_t)(( \
1423 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1424 (lfs_sb_getnseg(F))))
1425
1426 /* Estimate total size of the disk not including metadata */
1427 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1428
1429 /* Estimate number of blocks actually available for writing */
1430 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1431 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1432
1433 /* Amount of non-meta space not available to mortal man */
1434 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1435 (u_int64_t)lfs_sb_getminfree(F)) / \
1436 100)
1437
1438 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1439 #define ISSPACE(F, BB, C) \
1440 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1441 LFS_EST_BFREE(F) >= (BB)) || \
1442 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1443
1444 /* Can an ordinary user write BB blocks */
1445 #define IS_FREESPACE(F, BB) \
1446 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1447
1448 /*
1449 * The minimum number of blocks to create a new inode. This is:
1450 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1451 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1452 */
1453 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1454
1455
1456
1457 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1458