lfs_accessors.h revision 1.26 1 /* $NetBSD: lfs_accessors.h,v 1.26 2015/09/15 15:02:01 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * For handling directories we will need to know if the volume is
206 * little-endian.
207 */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213
214
215 /*
216 * directories
217 */
218
219 /*
220 * The LFS_DIRSIZ macro gives the minimum record length which will hold
221 * the directory entry. This requires the amount of space in struct lfs_direct
222 * without the d_name field, plus enough space for the name with a terminating
223 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
224 */
225 #define LFS_DIRECTSIZ(namlen) \
226 ((sizeof(struct lfs_direct) - (LFS_MAXNAMLEN+1)) + (((namlen)+1 + 3) &~ 3))
227
228 #if (BYTE_ORDER == LITTLE_ENDIAN)
229 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
230 (((oldfmt) && !(needswap)) ? \
231 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
232 #else
233 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
234 (((oldfmt) && (needswap)) ? \
235 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
236 #endif
237
238 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(lfs_dir_getnamlen(fs, dp))
239
240 /* Constants for the first argument of LFS_OLDDIRSIZ */
241 #define LFS_OLDDIRFMT 1
242 #define LFS_NEWDIRFMT 0
243
244 #define LFS_NEXTDIR(fs, dp) \
245 ((struct lfs_direct *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
246
247 static __unused inline char *
248 lfs_dir_nameptr(const STRUCT_LFS *fs, struct lfs_direct *dp)
249 {
250 return (char *)(&dp->d_header + 1);
251 }
252
253 static __unused inline uint32_t
254 lfs_dir_getino(const STRUCT_LFS *fs, const struct lfs_direct *dp)
255 {
256 return LFS_SWAP_uint32_t(fs, dp->d_header.dh_ino);
257 }
258
259 static __unused inline uint16_t
260 lfs_dir_getreclen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
261 {
262 return LFS_SWAP_uint16_t(fs, dp->d_header.dh_reclen);
263 }
264
265 static __unused inline uint8_t
266 lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_direct *dp)
267 {
268 if (fs->lfs_hasolddirfmt) {
269 return LFS_DT_UNKNOWN;
270 }
271 return dp->d_header.dh_type;
272 }
273
274 static __unused inline uint8_t
275 lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_direct *dp)
276 {
277 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
278 /* low-order byte of old 16-bit namlen field */
279 return dp->d_header.dh_type;
280 }
281 return dp->d_header.dh_namlen;
282 }
283
284 static __unused inline void
285 lfs_dir_setino(STRUCT_LFS *fs, struct lfs_direct *dp, uint32_t ino)
286 {
287 dp->d_header.dh_ino = LFS_SWAP_uint32_t(fs, ino);
288 }
289
290 static __unused inline void
291 lfs_dir_setreclen(STRUCT_LFS *fs, struct lfs_direct *dp, uint16_t reclen)
292 {
293 dp->d_header.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
294 }
295
296 static __unused inline void
297 lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t type)
298 {
299 if (fs->lfs_hasolddirfmt) {
300 /* do nothing */
301 return;
302 }
303 dp->d_header.dh_type = type;
304 }
305
306 static __unused inline void
307 lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_direct *dp, uint8_t namlen)
308 {
309 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
310 /* low-order byte of old 16-bit namlen field */
311 dp->d_header.dh_type = namlen;
312 }
313 dp->d_header.dh_namlen = namlen;
314 }
315
316 static __unused inline void
317 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
318 unsigned namlen, unsigned reclen)
319 {
320 /* must always be at least 1 byte as a null terminator */
321 KASSERT(reclen > namlen);
322
323 memcpy(dest, src, namlen);
324 memset(dest + namlen, '\0', reclen - namlen);
325 }
326
327 /*
328 * These are called "dirt" because they ought to be cleaned up.
329 */
330
331 static __unused inline uint8_t
332 lfs_dirt_getdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
333 {
334 if (fs->lfs_hasolddirfmt) {
335 return LFS_DT_UNKNOWN;
336 }
337 return dp->dot_type;
338 }
339
340 static __unused inline uint8_t
341 lfs_dirt_getdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
342 {
343 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
344 /* low-order byte of old 16-bit namlen field */
345 return dp->dot_type;
346 }
347 return dp->dot_namlen;
348 }
349
350 static __unused inline uint8_t
351 lfs_dirt_getdotdottype(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
352 {
353 if (fs->lfs_hasolddirfmt) {
354 return LFS_DT_UNKNOWN;
355 }
356 return dp->dotdot_type;
357 }
358
359 static __unused inline uint8_t
360 lfs_dirt_getdotdotnamlen(const STRUCT_LFS *fs, const struct lfs_dirtemplate *dp)
361 {
362 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
363 /* low-order byte of old 16-bit namlen field */
364 return dp->dotdot_type;
365 }
366 return dp->dotdot_namlen;
367 }
368
369 static __unused inline void
370 lfs_dirt_settypes(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
371 unsigned dt1, unsigned dt2)
372 {
373 if (fs->lfs_hasolddirfmt) {
374 /* do nothing */
375 return;
376 }
377 dtp->dot_type = dt1;
378 dtp->dotdot_type = dt2;
379 }
380
381 static __unused inline void
382 lfs_dirt_setnamlens(const STRUCT_LFS *fs, struct lfs_dirtemplate *dtp,
383 unsigned len1, unsigned len2)
384 {
385 if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
386 /* low-order bytes of old 16-bit namlen field */
387 dtp->dot_type = len1;
388 dtp->dotdot_type = len2;
389 /* clear the high-order bytes */
390 dtp->dot_namlen = 0;
391 dtp->dotdot_namlen = 0;
392 return;
393 }
394 dtp->dot_namlen = len1;
395 dtp->dotdot_namlen = len2;
396 }
397
398
399 /*
400 * dinodes
401 */
402
403 /*
404 * Maximum length of a symlink that can be stored within the inode.
405 */
406 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
407 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
408
409 #define LFS_MAXSYMLINKLEN(fs) \
410 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
411
412 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
413
414 #define DINO_IN_BLOCK(fs, base, ix) \
415 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
416
417 static __unused inline void
418 lfs_copy_dinode(STRUCT_LFS *fs,
419 union lfs_dinode *dst, const union lfs_dinode *src)
420 {
421 /*
422 * We can do structure assignment of the structs, but not of
423 * the whole union, as the union is the size of the (larger)
424 * 64-bit struct and on a 32-bit fs the upper half of it might
425 * be off the end of a buffer or otherwise invalid.
426 */
427 if (fs->lfs_is64) {
428 dst->u_64 = src->u_64;
429 } else {
430 dst->u_32 = src->u_32;
431 }
432 }
433
434 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
435 static __unused inline type \
436 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
437 { \
438 if (fs->lfs_is64) { \
439 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
440 } else { \
441 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
442 } \
443 } \
444 static __unused inline void \
445 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
446 { \
447 if (fs->lfs_is64) { \
448 type *p = &dip->u_64.di_##field; \
449 (void)p; \
450 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
451 } else { \
452 type32 *p = &dip->u_32.di_##field; \
453 (void)p; \
454 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
455 } \
456 } \
457
458 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
459 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
460 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
461 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
462 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
463 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
464 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
465 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
466 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
467 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
468 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
469 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
470 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
471 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
472 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
473
474 /* XXX this should be done differently (it's a fake field) */
475 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
476
477 static __unused inline daddr_t
478 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
479 {
480 KASSERT(ix < ULFS_NDADDR);
481 if (fs->lfs_is64) {
482 return dip->u_64.di_db[ix];
483 } else {
484 return dip->u_32.di_db[ix];
485 }
486 }
487
488 static __unused inline daddr_t
489 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
490 {
491 KASSERT(ix < ULFS_NIADDR);
492 if (fs->lfs_is64) {
493 return dip->u_64.di_ib[ix];
494 } else {
495 return dip->u_32.di_ib[ix];
496 }
497 }
498
499 static __unused inline void
500 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
501 {
502 KASSERT(ix < ULFS_NDADDR);
503 if (fs->lfs_is64) {
504 dip->u_64.di_db[ix] = val;
505 } else {
506 dip->u_32.di_db[ix] = val;
507 }
508 }
509
510 static __unused inline void
511 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
512 {
513 KASSERT(ix < ULFS_NIADDR);
514 if (fs->lfs_is64) {
515 dip->u_64.di_ib[ix] = val;
516 } else {
517 dip->u_32.di_ib[ix] = val;
518 }
519 }
520
521 /* birthtime is present only in the 64-bit inode */
522 static __unused inline void
523 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
524 const struct timespec *ts)
525 {
526 if (fs->lfs_is64) {
527 dip->u_64.di_birthtime = ts->tv_sec;
528 dip->u_64.di_birthnsec = ts->tv_nsec;
529 } else {
530 /* drop it on the floor */
531 }
532 }
533
534 /*
535 * indirect blocks
536 */
537
538 static __unused inline daddr_t
539 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
540 {
541 if (fs->lfs_is64) {
542 // XXX re-enable these asserts after reorging this file
543 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
544 return (daddr_t)(((int64_t *)block)[ix]);
545 } else {
546 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
547 /* must sign-extend or UNWRITTEN gets trashed */
548 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
549 }
550 }
551
552 static __unused inline void
553 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
554 {
555 if (fs->lfs_is64) {
556 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
557 ((int64_t *)block)[ix] = val;
558 } else {
559 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
560 ((int32_t *)block)[ix] = val;
561 }
562 }
563
564 /*
565 * "struct buf" associated definitions
566 */
567
568 # define LFS_LOCK_BUF(bp) do { \
569 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
570 mutex_enter(&lfs_lock); \
571 ++locked_queue_count; \
572 locked_queue_bytes += bp->b_bufsize; \
573 mutex_exit(&lfs_lock); \
574 } \
575 (bp)->b_flags |= B_LOCKED; \
576 } while (0)
577
578 # define LFS_UNLOCK_BUF(bp) do { \
579 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
580 mutex_enter(&lfs_lock); \
581 --locked_queue_count; \
582 locked_queue_bytes -= bp->b_bufsize; \
583 if (locked_queue_count < LFS_WAIT_BUFS && \
584 locked_queue_bytes < LFS_WAIT_BYTES) \
585 cv_broadcast(&locked_queue_cv); \
586 mutex_exit(&lfs_lock); \
587 } \
588 (bp)->b_flags &= ~B_LOCKED; \
589 } while (0)
590
591 /*
592 * "struct inode" associated definitions
593 */
594
595 #define LFS_SET_UINO(ip, flags) do { \
596 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
597 lfs_sb_adduinodes((ip)->i_lfs, 1); \
598 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
599 lfs_sb_adduinodes((ip)->i_lfs, 1); \
600 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
601 lfs_sb_adduinodes((ip)->i_lfs, 1); \
602 (ip)->i_flag |= (flags); \
603 } while (0)
604
605 #define LFS_CLR_UINO(ip, flags) do { \
606 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
607 lfs_sb_subuinodes((ip)->i_lfs, 1); \
608 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
609 lfs_sb_subuinodes((ip)->i_lfs, 1); \
610 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
611 lfs_sb_subuinodes((ip)->i_lfs, 1); \
612 (ip)->i_flag &= ~(flags); \
613 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
614 panic("lfs_uinodes < 0"); \
615 } \
616 } while (0)
617
618 #define LFS_ITIMES(ip, acc, mod, cre) \
619 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
620 lfs_itimes(ip, acc, mod, cre)
621
622 /*
623 * On-disk and in-memory checkpoint segment usage structure.
624 */
625
626 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
627 #define SEGTABSIZE_SU(fs) \
628 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
629
630 #ifdef _KERNEL
631 # define SHARE_IFLOCK(F) \
632 do { \
633 rw_enter(&(F)->lfs_iflock, RW_READER); \
634 } while(0)
635 # define UNSHARE_IFLOCK(F) \
636 do { \
637 rw_exit(&(F)->lfs_iflock); \
638 } while(0)
639 #else /* ! _KERNEL */
640 # define SHARE_IFLOCK(F)
641 # define UNSHARE_IFLOCK(F)
642 #endif /* ! _KERNEL */
643
644 /* Read in the block with a specific segment usage entry from the ifile. */
645 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
646 int _e; \
647 SHARE_IFLOCK(F); \
648 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
649 if ((_e = bread((F)->lfs_ivnode, \
650 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
651 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
652 panic("lfs: ifile read: %d", _e); \
653 if (lfs_sb_getversion(F) == 1) \
654 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
655 ((IN) & (lfs_sb_getsepb(F) - 1))); \
656 else \
657 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
658 UNSHARE_IFLOCK(F); \
659 } while (0)
660
661 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
662 if ((SP)->su_nbytes == 0) \
663 (SP)->su_flags |= SEGUSE_EMPTY; \
664 else \
665 (SP)->su_flags &= ~SEGUSE_EMPTY; \
666 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
667 LFS_BWRITE_LOG(BP); \
668 } while (0)
669
670 /*
671 * FINFO (file info) entries.
672 */
673
674 /* Size of an on-disk block pointer, e.g. in an indirect block. */
675 /* XXX: move to a more suitable location in this file */
676 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
677
678 /* Size of an on-disk inode number. */
679 /* XXX: move to a more suitable location in this file */
680 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
681
682 /* size of a FINFO, without the block pointers */
683 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
684
685 /* Full size of the provided FINFO record, including its block pointers. */
686 #define FINFO_FULLSIZE(fs, fip) \
687 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
688
689 #define NEXT_FINFO(fs, fip) \
690 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
691
692 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
693 static __unused inline type \
694 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
695 { \
696 if (fs->lfs_is64) { \
697 return fip->u_64.fi_##field; \
698 } else { \
699 return fip->u_32.fi_##field; \
700 } \
701 } \
702 static __unused inline void \
703 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
704 { \
705 if (fs->lfs_is64) { \
706 type *p = &fip->u_64.fi_##field; \
707 (void)p; \
708 fip->u_64.fi_##field = val; \
709 } else { \
710 type32 *p = &fip->u_32.fi_##field; \
711 (void)p; \
712 fip->u_32.fi_##field = val; \
713 } \
714 } \
715
716 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
717 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
718 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
719 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
720
721 static __unused inline daddr_t
722 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
723 {
724 void *firstblock;
725
726 firstblock = (char *)fip + FINFOSIZE(fs);
727 KASSERT(index < lfs_fi_getnblocks(fs, fip));
728 if (fs->lfs_is64) {
729 return ((int64_t *)firstblock)[index];
730 } else {
731 return ((int32_t *)firstblock)[index];
732 }
733 }
734
735 static __unused inline void
736 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
737 {
738 void *firstblock;
739
740 firstblock = (char *)fip + FINFOSIZE(fs);
741 KASSERT(index < lfs_fi_getnblocks(fs, fip));
742 if (fs->lfs_is64) {
743 ((int64_t *)firstblock)[index] = blk;
744 } else {
745 ((int32_t *)firstblock)[index] = blk;
746 }
747 }
748
749 /*
750 * Index file inode entries.
751 */
752
753 /*
754 * LFSv1 compatibility code is not allowed to touch if_atime, since it
755 * may not be mapped!
756 */
757 /* Read in the block with a specific inode from the ifile. */
758 #define LFS_IENTRY(IP, F, IN, BP) do { \
759 int _e; \
760 SHARE_IFLOCK(F); \
761 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
762 if ((_e = bread((F)->lfs_ivnode, \
763 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
764 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
765 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
766 if ((F)->lfs_is64) { \
767 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
768 (IN) % lfs_sb_getifpb(F)); \
769 } else if (lfs_sb_getversion(F) > 1) { \
770 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
771 (IN) % lfs_sb_getifpb(F)); \
772 } else { \
773 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
774 (IN) % lfs_sb_getifpb(F)); \
775 } \
776 UNSHARE_IFLOCK(F); \
777 } while (0)
778 #define LFS_IENTRY_NEXT(IP, F) do { \
779 if ((F)->lfs_is64) { \
780 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
781 } else if (lfs_sb_getversion(F) > 1) { \
782 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
783 } else { \
784 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
785 } \
786 } while (0)
787
788 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
789 static __unused inline type \
790 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
791 { \
792 if (fs->lfs_is64) { \
793 return ifp->u_64.if_##field; \
794 } else { \
795 return ifp->u_32.if_##field; \
796 } \
797 } \
798 static __unused inline void \
799 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
800 { \
801 if (fs->lfs_is64) { \
802 type *p = &ifp->u_64.if_##field; \
803 (void)p; \
804 ifp->u_64.if_##field = val; \
805 } else { \
806 type32 *p = &ifp->u_32.if_##field; \
807 (void)p; \
808 ifp->u_32.if_##field = val; \
809 } \
810 } \
811
812 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
813 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
814 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
815 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
816 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
817
818 /*
819 * Cleaner information structure. This resides in the ifile and is used
820 * to pass information from the kernel to the cleaner.
821 */
822
823 #define CLEANSIZE_SU(fs) \
824 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
825 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
826
827 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
828 static __unused inline type \
829 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
830 { \
831 if (fs->lfs_is64) { \
832 return cip->u_64.field; \
833 } else { \
834 return cip->u_32.field; \
835 } \
836 } \
837 static __unused inline void \
838 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
839 { \
840 if (fs->lfs_is64) { \
841 type *p = &cip->u_64.field; \
842 (void)p; \
843 cip->u_64.field = val; \
844 } else { \
845 type32 *p = &cip->u_32.field; \
846 (void)p; \
847 cip->u_32.field = val; \
848 } \
849 } \
850
851 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
852 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
853 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
854 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
855 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
856 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
857 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
858
859 static __unused inline void
860 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
861 {
862 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
863 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
864 }
865
866 static __unused inline void
867 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
868 {
869 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
870 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
871 }
872
873 /* Read in the block with the cleaner info from the ifile. */
874 #define LFS_CLEANERINFO(CP, F, BP) do { \
875 SHARE_IFLOCK(F); \
876 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
877 if (bread((F)->lfs_ivnode, \
878 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
879 panic("lfs: ifile read"); \
880 (CP) = (CLEANERINFO *)(BP)->b_data; \
881 UNSHARE_IFLOCK(F); \
882 } while (0)
883
884 /*
885 * Synchronize the Ifile cleaner info with current avail and bfree.
886 */
887 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
888 mutex_enter(&lfs_lock); \
889 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
890 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
891 fs->lfs_favail) { \
892 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
893 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
894 fs->lfs_favail); \
895 if (((bp)->b_flags & B_GATHERED) == 0) { \
896 fs->lfs_flags |= LFS_IFDIRTY; \
897 } \
898 mutex_exit(&lfs_lock); \
899 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
900 } else { \
901 mutex_exit(&lfs_lock); \
902 brelse(bp, 0); \
903 } \
904 } while (0)
905
906 /*
907 * Get the head of the inode free list.
908 * Always called with the segment lock held.
909 */
910 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
911 if (lfs_sb_getversion(FS) > 1) { \
912 LFS_CLEANERINFO((CIP), (FS), (BP)); \
913 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
914 brelse(BP, 0); \
915 } \
916 *(FREEP) = lfs_sb_getfreehd(FS); \
917 } while (0)
918
919 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
920 lfs_sb_setfreehd(FS, VAL); \
921 if (lfs_sb_getversion(FS) > 1) { \
922 LFS_CLEANERINFO((CIP), (FS), (BP)); \
923 lfs_ci_setfree_head(FS, CIP, VAL); \
924 LFS_BWRITE_LOG(BP); \
925 mutex_enter(&lfs_lock); \
926 (FS)->lfs_flags |= LFS_IFDIRTY; \
927 mutex_exit(&lfs_lock); \
928 } \
929 } while (0)
930
931 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
932 LFS_CLEANERINFO((CIP), (FS), (BP)); \
933 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
934 brelse(BP, 0); \
935 } while (0)
936
937 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
938 LFS_CLEANERINFO((CIP), (FS), (BP)); \
939 lfs_ci_setfree_tail(FS, CIP, VAL); \
940 LFS_BWRITE_LOG(BP); \
941 mutex_enter(&lfs_lock); \
942 (FS)->lfs_flags |= LFS_IFDIRTY; \
943 mutex_exit(&lfs_lock); \
944 } while (0)
945
946 /*
947 * On-disk segment summary information
948 */
949
950 #define SEGSUM_SIZE(fs) \
951 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
952 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
953
954 /*
955 * The SEGSUM structure is followed by FINFO structures. Get the pointer
956 * to the first FINFO.
957 *
958 * XXX this can't be a macro yet; this file needs to be resorted.
959 */
960 #if 0
961 static __unused inline FINFO *
962 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
963 {
964 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
965 }
966 #else
967 #define SEGSUM_FINFOBASE(fs, ssp) \
968 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
969 #endif
970
971 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
972 static __unused inline type \
973 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
974 { \
975 if (fs->lfs_is64) { \
976 return ssp->u_64.ss_##field; \
977 } else { \
978 return ssp->u_32.ss_##field; \
979 } \
980 } \
981 static __unused inline void \
982 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
983 { \
984 if (fs->lfs_is64) { \
985 type *p = &ssp->u_64.ss_##field; \
986 (void)p; \
987 ssp->u_64.ss_##field = val; \
988 } else { \
989 type32 *p = &ssp->u_32.ss_##field; \
990 (void)p; \
991 ssp->u_32.ss_##field = val; \
992 } \
993 } \
994
995 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
996 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
997 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
998 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
999 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1000 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1001 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1002 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1003 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1004 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1005 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1006
1007 static __unused inline size_t
1008 lfs_ss_getsumstart(STRUCT_LFS *fs)
1009 {
1010 /* These are actually all the same. */
1011 if (fs->lfs_is64) {
1012 return offsetof(SEGSUM64, ss_datasum);
1013 } else /* if (lfs_sb_getversion(fs) > 1) */ {
1014 return offsetof(SEGSUM32, ss_datasum);
1015 } /* else {
1016 return offsetof(SEGSUM_V1, ss_datasum);
1017 } */
1018 /*
1019 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1020 * defined yet.
1021 */
1022 }
1023
1024 static __unused inline uint32_t
1025 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1026 {
1027 KASSERT(fs->lfs_is64 == 0);
1028 /* XXX need to resort this file before we can do this */
1029 //KASSERT(lfs_sb_getversion(fs) == 1);
1030
1031 return ssp->u_v1.ss_create;
1032 }
1033
1034 static __unused inline void
1035 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1036 {
1037 KASSERT(fs->lfs_is64 == 0);
1038 /* XXX need to resort this file before we can do this */
1039 //KASSERT(lfs_sb_getversion(fs) == 1);
1040
1041 ssp->u_v1.ss_create = val;
1042 }
1043
1044
1045 /*
1046 * Super block.
1047 */
1048
1049 /*
1050 * Generate accessors for the on-disk superblock fields with cpp.
1051 */
1052
1053 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1054 static __unused inline type \
1055 lfs_sb_get##field(STRUCT_LFS *fs) \
1056 { \
1057 if (fs->lfs_is64) { \
1058 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1059 } else { \
1060 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1061 } \
1062 } \
1063 static __unused inline void \
1064 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1065 { \
1066 if (fs->lfs_is64) { \
1067 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1068 } else { \
1069 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1070 } \
1071 } \
1072 static __unused inline void \
1073 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1074 { \
1075 if (fs->lfs_is64) { \
1076 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1077 *p64 += val; \
1078 } else { \
1079 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1080 *p32 += val; \
1081 } \
1082 } \
1083 static __unused inline void \
1084 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1085 { \
1086 if (fs->lfs_is64) { \
1087 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1088 *p64 -= val; \
1089 } else { \
1090 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1091 *p32 -= val; \
1092 } \
1093 }
1094
1095 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1096
1097 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1098 static __unused inline type \
1099 lfs_sb_get##field(STRUCT_LFS *fs) \
1100 { \
1101 if (fs->lfs_is64) { \
1102 return val64; \
1103 } else { \
1104 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1105 } \
1106 }
1107
1108 #define lfs_magic lfs_dlfs.dlfs_magic
1109 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1110 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1111 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1112 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1113 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1114 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1115 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1116 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1117 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1118 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1119 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1120 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1121 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1122 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1123 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1124 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1125 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1126 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1127 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1128 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1129 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1130 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1131 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1132 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1133 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1134 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1135 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1136 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1137 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1138 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1139 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1140 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1141 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1142 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1143 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1144 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1145 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1146 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1147 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1148 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1149 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1150 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1151 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1152 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1153 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1154 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1155 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1156 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1157 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1158 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1159 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1160 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1161 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1162 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1163 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1164 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1165 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1166
1167 /* special-case accessors */
1168
1169 /*
1170 * the v1 otstamp field lives in what's now dlfs_inopf
1171 */
1172 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1173 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1174
1175 /*
1176 * lfs_sboffs is an array
1177 */
1178 static __unused inline int32_t
1179 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1180 {
1181 #ifdef KASSERT /* ugh */
1182 KASSERT(n < LFS_MAXNUMSB);
1183 #endif
1184 if (fs->lfs_is64) {
1185 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1186 } else {
1187 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1188 }
1189 }
1190 static __unused inline void
1191 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1192 {
1193 #ifdef KASSERT /* ugh */
1194 KASSERT(n < LFS_MAXNUMSB);
1195 #endif
1196 if (fs->lfs_is64) {
1197 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1198 } else {
1199 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1200 }
1201 }
1202
1203 /*
1204 * lfs_fsmnt is a string
1205 */
1206 static __unused inline const char *
1207 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1208 {
1209 if (fs->lfs_is64) {
1210 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1211 } else {
1212 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1213 }
1214 }
1215
1216 static __unused inline void
1217 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1218 {
1219 if (fs->lfs_is64) {
1220 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1221 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1222 } else {
1223 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1224 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1225 }
1226 }
1227
1228 /* Highest addressable fsb */
1229 #define LFS_MAX_DADDR(fs) \
1230 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1231
1232 /* LFS_NINDIR is the number of indirects in a file system block. */
1233 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1234
1235 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1236 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1237 /* LFS_INOPF is the number of inodes in a fragment. */
1238 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1239
1240 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1241 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1242 ((int)((loc) & lfs_sb_getffmask(fs)))
1243
1244 /* XXX: lowercase these as they're no longer macros */
1245 /* Frags to diskblocks */
1246 static __unused inline uint64_t
1247 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1248 {
1249 #if defined(_KERNEL)
1250 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1251 #else
1252 return b << lfs_sb_getfsbtodb(fs);
1253 #endif
1254 }
1255 /* Diskblocks to frags */
1256 static __unused inline uint64_t
1257 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1258 {
1259 #if defined(_KERNEL)
1260 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1261 #else
1262 return b >> lfs_sb_getfsbtodb(fs);
1263 #endif
1264 }
1265
1266 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1267 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1268
1269 /* Frags to bytes */
1270 static __unused inline uint64_t
1271 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1272 {
1273 return b << lfs_sb_getffshift(fs);
1274 }
1275 /* Bytes to frags */
1276 static __unused inline uint64_t
1277 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1278 {
1279 return b >> lfs_sb_getffshift(fs);
1280 }
1281
1282 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1283 ((loc) >> lfs_sb_getffshift(fs))
1284 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1285 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1286 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1287 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1288 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1289 ((frags) >> lfs_sb_getfbshift(fs))
1290 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1291 ((blks) << lfs_sb_getfbshift(fs))
1292 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1293 ((fsb) & ((fs)->lfs_frag - 1))
1294 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1295 ((fsb) &~ ((fs)->lfs_frag - 1))
1296 #define lfs_dblksize(fs, dp, lbn) \
1297 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1298 ? lfs_sb_getbsize(fs) \
1299 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1300
1301 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1302 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1303 lfs_sb_getssize(fs))
1304 /* XXX segtod produces a result in frags despite the 'd' */
1305 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1306 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1307 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1308 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1309 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1310
1311 /* XXX, blah. make this appear only if struct inode is defined */
1312 #ifdef _UFS_LFS_LFS_INODE_H_
1313 static __unused inline uint32_t
1314 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1315 {
1316 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1317 return lfs_sb_getbsize(fs);
1318 } else {
1319 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1320 }
1321 }
1322 #endif
1323
1324 /*
1325 * union lfs_blocks
1326 */
1327
1328 static __unused inline void
1329 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1330 {
1331 if (fs->lfs_is64) {
1332 bp->b64 = p;
1333 } else {
1334 bp->b32 = p;
1335 }
1336 }
1337
1338 static __unused inline void
1339 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1340 {
1341 void *firstblock;
1342
1343 firstblock = (char *)fip + FINFOSIZE(fs);
1344 if (fs->lfs_is64) {
1345 bp->b64 = (int64_t *)firstblock;
1346 } else {
1347 bp->b32 = (int32_t *)firstblock;
1348 }
1349 }
1350
1351 static __unused inline daddr_t
1352 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1353 {
1354 if (fs->lfs_is64) {
1355 return bp->b64[index];
1356 } else {
1357 return bp->b32[index];
1358 }
1359 }
1360
1361 static __unused inline void
1362 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1363 {
1364 if (fs->lfs_is64) {
1365 bp->b64[index] = val;
1366 } else {
1367 bp->b32[index] = val;
1368 }
1369 }
1370
1371 static __unused inline void
1372 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1373 {
1374 if (fs->lfs_is64) {
1375 bp->b64++;
1376 } else {
1377 bp->b32++;
1378 }
1379 }
1380
1381 static __unused inline int
1382 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1383 {
1384 if (fs->lfs_is64) {
1385 return bp1->b64 == bp2->b64;
1386 } else {
1387 return bp1->b32 == bp2->b32;
1388 }
1389 }
1390
1391 static __unused inline int
1392 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1393 {
1394 /* (remember that the pointers are typed) */
1395 if (fs->lfs_is64) {
1396 return bp1->b64 - bp2->b64;
1397 } else {
1398 return bp1->b32 - bp2->b32;
1399 }
1400 }
1401
1402 /*
1403 * struct segment
1404 */
1405
1406
1407 /*
1408 * Macros for determining free space on the disk, with the variable metadata
1409 * of segment summaries and inode blocks taken into account.
1410 */
1411 /*
1412 * Estimate number of clean blocks not available for writing because
1413 * they will contain metadata or overhead. This is calculated as
1414 *
1415 * E = ((C * M / D) * D + (0) * (T - D)) / T
1416 * or more simply
1417 * E = (C * M) / T
1418 *
1419 * where
1420 * C is the clean space,
1421 * D is the dirty space,
1422 * M is the dirty metadata, and
1423 * T = C + D is the total space on disk.
1424 *
1425 * This approximates the old formula of E = C * M / D when D is close to T,
1426 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1427 */
1428 #define LFS_EST_CMETA(F) (int32_t)(( \
1429 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1430 (lfs_sb_getnseg(F))))
1431
1432 /* Estimate total size of the disk not including metadata */
1433 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1434
1435 /* Estimate number of blocks actually available for writing */
1436 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1437 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1438
1439 /* Amount of non-meta space not available to mortal man */
1440 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) * \
1441 (u_int64_t)lfs_sb_getminfree(F)) / \
1442 100)
1443
1444 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1445 #define ISSPACE(F, BB, C) \
1446 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1447 LFS_EST_BFREE(F) >= (BB)) || \
1448 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1449
1450 /* Can an ordinary user write BB blocks */
1451 #define IS_FREESPACE(F, BB) \
1452 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1453
1454 /*
1455 * The minimum number of blocks to create a new inode. This is:
1456 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1457 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1458 */
1459 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1460
1461
1462
1463 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1464