Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.30
      1 /*	$NetBSD: lfs_accessors.h,v 1.30 2015/09/21 01:22:18 dholland Exp $	*/
      2 
      3 /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4 /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
      5 /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
      6 
      7 /*-
      8  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9  * All rights reserved.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*-
     36  * Copyright (c) 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64  */
     65 /*
     66  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67  * All rights reserved.
     68  *
     69  * This software was developed for the FreeBSD Project by Marshall
     70  * Kirk McKusick and Network Associates Laboratories, the Security
     71  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73  * research program
     74  *
     75  * Copyright (c) 1982, 1989, 1993
     76  *	The Regents of the University of California.  All rights reserved.
     77  * (c) UNIX System Laboratories, Inc.
     78  * All or some portions of this file are derived from material licensed
     79  * to the University of California by American Telephone and Telegraph
     80  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81  * the permission of UNIX System Laboratories, Inc.
     82  *
     83  * Redistribution and use in source and binary forms, with or without
     84  * modification, are permitted provided that the following conditions
     85  * are met:
     86  * 1. Redistributions of source code must retain the above copyright
     87  *    notice, this list of conditions and the following disclaimer.
     88  * 2. Redistributions in binary form must reproduce the above copyright
     89  *    notice, this list of conditions and the following disclaimer in the
     90  *    documentation and/or other materials provided with the distribution.
     91  * 3. Neither the name of the University nor the names of its contributors
     92  *    may be used to endorse or promote products derived from this software
     93  *    without specific prior written permission.
     94  *
     95  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105  * SUCH DAMAGE.
    106  *
    107  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108  */
    109 /*
    110  * Copyright (c) 1982, 1986, 1989, 1993
    111  *	The Regents of the University of California.  All rights reserved.
    112  * (c) UNIX System Laboratories, Inc.
    113  * All or some portions of this file are derived from material licensed
    114  * to the University of California by American Telephone and Telegraph
    115  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116  * the permission of UNIX System Laboratories, Inc.
    117  *
    118  * Redistribution and use in source and binary forms, with or without
    119  * modification, are permitted provided that the following conditions
    120  * are met:
    121  * 1. Redistributions of source code must retain the above copyright
    122  *    notice, this list of conditions and the following disclaimer.
    123  * 2. Redistributions in binary form must reproduce the above copyright
    124  *    notice, this list of conditions and the following disclaimer in the
    125  *    documentation and/or other materials provided with the distribution.
    126  * 3. Neither the name of the University nor the names of its contributors
    127  *    may be used to endorse or promote products derived from this software
    128  *    without specific prior written permission.
    129  *
    130  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140  * SUCH DAMAGE.
    141  *
    142  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143  */
    144 
    145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146 #define _UFS_LFS_LFS_ACCESSORS_H_
    147 
    148 #if defined(_KERNEL_OPT)
    149 #include "opt_lfs.h"
    150 #endif
    151 
    152 #include <sys/bswap.h>
    153 
    154 #if !defined(_KERNEL) && !defined(_STANDALONE)
    155 #include <assert.h>
    156 #define KASSERT assert
    157 #endif
    158 
    159 /*
    160  * STRUCT_LFS is used by the libsa code to get accessors that work
    161  * with struct salfs instead of struct lfs, and by the cleaner to
    162  * get accessors that work with struct clfs.
    163  */
    164 
    165 #ifndef STRUCT_LFS
    166 #define STRUCT_LFS struct lfs
    167 #endif
    168 
    169 /*
    170  * byte order
    171  */
    172 
    173 /*
    174  * For now at least, the bootblocks shall not be endian-independent.
    175  * We can see later if it fits in the size budget. Also disable the
    176  * byteswapping if LFS_EI is off.
    177  *
    178  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    179  * and if that changes will likely break silently.
    180  */
    181 
    182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    183 #define LFS_SWAP_int16_t(fs, val) (val)
    184 #define LFS_SWAP_int32_t(fs, val) (val)
    185 #define LFS_SWAP_int64_t(fs, val) (val)
    186 #define LFS_SWAP_uint16_t(fs, val) (val)
    187 #define LFS_SWAP_uint32_t(fs, val) (val)
    188 #define LFS_SWAP_uint64_t(fs, val) (val)
    189 #else
    190 #define LFS_SWAP_int16_t(fs, val) \
    191 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    192 #define LFS_SWAP_int32_t(fs, val) \
    193 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    194 #define LFS_SWAP_int64_t(fs, val) \
    195 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    196 #define LFS_SWAP_uint16_t(fs, val) \
    197 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    198 #define LFS_SWAP_uint32_t(fs, val) \
    199 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    200 #define LFS_SWAP_uint64_t(fs, val) \
    201 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    202 #endif
    203 
    204 /*
    205  * For handling directories we will need to know if the volume is
    206  * little-endian.
    207  */
    208 #if BYTE_ORDER == LITTLE_ENDIAN
    209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
    210 #else
    211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
    212 #endif
    213 
    214 
    215 /*
    216  * directories
    217  */
    218 
    219 /*
    220  * The LFS_DIRSIZ macro gives the minimum record length which will hold
    221  * the directory entry.  This requires the amount of space in struct lfs_direct
    222  * without the d_name field, plus enough space for the name with a terminating
    223  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
    224  */
    225 #define	LFS_DIRECTSIZ(fs, namlen) \
    226 	(sizeof(struct lfs_dirheader) + (((namlen)+1 + 3) &~ 3))
    227 
    228 /*
    229  * The size of the largest possible directory entry. This is
    230  * used by ulfs_dirhash to figure the size of an array, so we
    231  * need a single constant value true for both lfs32 and lfs64.
    232  */
    233 #define LFS_MAXDIRENTRYSIZE \
    234 	(sizeof(struct lfs_dirheader) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
    235 
    236 #if (BYTE_ORDER == LITTLE_ENDIAN)
    237 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    238     (((oldfmt) && !(needswap)) ?		\
    239     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    240 #else
    241 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    242     (((oldfmt) && (needswap)) ?			\
    243     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    244 #endif
    245 
    246 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
    247 
    248 /* Constants for the first argument of LFS_OLDDIRSIZ */
    249 #define LFS_OLDDIRFMT	1
    250 #define LFS_NEWDIRFMT	0
    251 
    252 #define LFS_NEXTDIR(fs, dp) \
    253 	((struct lfs_dirheader *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
    254 
    255 static __unused inline char *
    256 lfs_dir_nameptr(const STRUCT_LFS *fs, struct lfs_dirheader *dh)
    257 {
    258 	return (char *)(dh + 1);
    259 }
    260 
    261 static __unused inline uint32_t
    262 lfs_dir_getino(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
    263 {
    264 	return LFS_SWAP_uint32_t(fs, dh->dh_ino);
    265 }
    266 
    267 static __unused inline uint16_t
    268 lfs_dir_getreclen(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
    269 {
    270 	return LFS_SWAP_uint16_t(fs, dh->dh_reclen);
    271 }
    272 
    273 static __unused inline uint8_t
    274 lfs_dir_gettype(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
    275 {
    276 	if (fs->lfs_hasolddirfmt) {
    277 		return LFS_DT_UNKNOWN;
    278 	}
    279 	return dh->dh_type;
    280 }
    281 
    282 static __unused inline uint8_t
    283 lfs_dir_getnamlen(const STRUCT_LFS *fs, const struct lfs_dirheader *dh)
    284 {
    285 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    286 		/* low-order byte of old 16-bit namlen field */
    287 		return dh->dh_type;
    288 	}
    289 	return dh->dh_namlen;
    290 }
    291 
    292 static __unused inline void
    293 lfs_dir_setino(STRUCT_LFS *fs, struct lfs_dirheader *dh, uint32_t ino)
    294 {
    295 	dh->dh_ino = LFS_SWAP_uint32_t(fs, ino);
    296 }
    297 
    298 static __unused inline void
    299 lfs_dir_setreclen(STRUCT_LFS *fs, struct lfs_dirheader *dh, uint16_t reclen)
    300 {
    301 	dh->dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    302 }
    303 
    304 static __unused inline void
    305 lfs_dir_settype(const STRUCT_LFS *fs, struct lfs_dirheader *dh, uint8_t type)
    306 {
    307 	if (fs->lfs_hasolddirfmt) {
    308 		/* do nothing */
    309 		return;
    310 	}
    311 	dh->dh_type = type;
    312 }
    313 
    314 static __unused inline void
    315 lfs_dir_setnamlen(const STRUCT_LFS *fs, struct lfs_dirheader *dh, uint8_t namlen)
    316 {
    317 	if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    318 		/* low-order byte of old 16-bit namlen field */
    319 		dh->dh_type = namlen;
    320 	}
    321 	dh->dh_namlen = namlen;
    322 }
    323 
    324 static __unused inline void
    325 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
    326 		unsigned namlen, unsigned reclen)
    327 {
    328 	unsigned spacelen;
    329 
    330 	KASSERT(reclen > sizeof(struct lfs_dirheader));
    331 	spacelen = reclen - sizeof(struct lfs_dirheader);
    332 
    333 	/* must always be at least 1 byte as a null terminator */
    334 	KASSERT(spacelen > namlen);
    335 
    336 	memcpy(dest, src, namlen);
    337 	memset(dest + namlen, '\0', spacelen - namlen);
    338 }
    339 
    340 /*
    341  * dinodes
    342  */
    343 
    344 /*
    345  * Maximum length of a symlink that can be stored within the inode.
    346  */
    347 #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    348 #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    349 
    350 #define LFS_MAXSYMLINKLEN(fs) \
    351 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
    352 
    353 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    354 
    355 #define DINO_IN_BLOCK(fs, base, ix) \
    356 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    357 
    358 static __unused inline void
    359 lfs_copy_dinode(STRUCT_LFS *fs,
    360     union lfs_dinode *dst, const union lfs_dinode *src)
    361 {
    362 	/*
    363 	 * We can do structure assignment of the structs, but not of
    364 	 * the whole union, as the union is the size of the (larger)
    365 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    366 	 * be off the end of a buffer or otherwise invalid.
    367 	 */
    368 	if (fs->lfs_is64) {
    369 		dst->u_64 = src->u_64;
    370 	} else {
    371 		dst->u_32 = src->u_32;
    372 	}
    373 }
    374 
    375 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    376 	static __unused inline type				\
    377 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    378 	{							\
    379 		if (fs->lfs_is64) {				\
    380 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    381 		} else {					\
    382 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    383 		}						\
    384 	}							\
    385 	static __unused inline void				\
    386 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    387 	{							\
    388 		if (fs->lfs_is64) {				\
    389 			type *p = &dip->u_64.di_##field;	\
    390 			(void)p;				\
    391 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    392 		} else {					\
    393 			type32 *p = &dip->u_32.di_##field;	\
    394 			(void)p;				\
    395 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    396 		}						\
    397 	}							\
    398 
    399 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
    400 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
    401 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
    402 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
    403 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
    404 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
    405 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
    406 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
    407 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
    408 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
    409 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
    410 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
    411 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
    412 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
    413 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
    414 
    415 /* XXX this should be done differently (it's a fake field) */
    416 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
    417 
    418 static __unused inline daddr_t
    419 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    420 {
    421 	KASSERT(ix < ULFS_NDADDR);
    422 	if (fs->lfs_is64) {
    423 		return dip->u_64.di_db[ix];
    424 	} else {
    425 		return dip->u_32.di_db[ix];
    426 	}
    427 }
    428 
    429 static __unused inline daddr_t
    430 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    431 {
    432 	KASSERT(ix < ULFS_NIADDR);
    433 	if (fs->lfs_is64) {
    434 		return dip->u_64.di_ib[ix];
    435 	} else {
    436 		return dip->u_32.di_ib[ix];
    437 	}
    438 }
    439 
    440 static __unused inline void
    441 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    442 {
    443 	KASSERT(ix < ULFS_NDADDR);
    444 	if (fs->lfs_is64) {
    445 		dip->u_64.di_db[ix] = val;
    446 	} else {
    447 		dip->u_32.di_db[ix] = val;
    448 	}
    449 }
    450 
    451 static __unused inline void
    452 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    453 {
    454 	KASSERT(ix < ULFS_NIADDR);
    455 	if (fs->lfs_is64) {
    456 		dip->u_64.di_ib[ix] = val;
    457 	} else {
    458 		dip->u_32.di_ib[ix] = val;
    459 	}
    460 }
    461 
    462 /* birthtime is present only in the 64-bit inode */
    463 static __unused inline void
    464 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    465     const struct timespec *ts)
    466 {
    467 	if (fs->lfs_is64) {
    468 		dip->u_64.di_birthtime = ts->tv_sec;
    469 		dip->u_64.di_birthnsec = ts->tv_nsec;
    470 	} else {
    471 		/* drop it on the floor */
    472 	}
    473 }
    474 
    475 /*
    476  * indirect blocks
    477  */
    478 
    479 static __unused inline daddr_t
    480 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    481 {
    482 	if (fs->lfs_is64) {
    483 		// XXX re-enable these asserts after reorging this file
    484 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    485 		return (daddr_t)(((int64_t *)block)[ix]);
    486 	} else {
    487 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    488 		/* must sign-extend or UNWRITTEN gets trashed */
    489 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    490 	}
    491 }
    492 
    493 static __unused inline void
    494 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    495 {
    496 	if (fs->lfs_is64) {
    497 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    498 		((int64_t *)block)[ix] = val;
    499 	} else {
    500 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    501 		((int32_t *)block)[ix] = val;
    502 	}
    503 }
    504 
    505 /*
    506  * "struct buf" associated definitions
    507  */
    508 
    509 # define LFS_LOCK_BUF(bp) do {						\
    510 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    511 		mutex_enter(&lfs_lock);					\
    512 		++locked_queue_count;					\
    513 		locked_queue_bytes += bp->b_bufsize;			\
    514 		mutex_exit(&lfs_lock);					\
    515 	}								\
    516 	(bp)->b_flags |= B_LOCKED;					\
    517 } while (0)
    518 
    519 # define LFS_UNLOCK_BUF(bp) do {					\
    520 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    521 		mutex_enter(&lfs_lock);					\
    522 		--locked_queue_count;					\
    523 		locked_queue_bytes -= bp->b_bufsize;			\
    524 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    525 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    526 			cv_broadcast(&locked_queue_cv);			\
    527 		mutex_exit(&lfs_lock);					\
    528 	}								\
    529 	(bp)->b_flags &= ~B_LOCKED;					\
    530 } while (0)
    531 
    532 /*
    533  * "struct inode" associated definitions
    534  */
    535 
    536 #define LFS_SET_UINO(ip, flags) do {					\
    537 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    538 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    539 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    540 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    541 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    542 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    543 	(ip)->i_flag |= (flags);					\
    544 } while (0)
    545 
    546 #define LFS_CLR_UINO(ip, flags) do {					\
    547 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    548 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    549 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    550 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    551 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    552 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    553 	(ip)->i_flag &= ~(flags);					\
    554 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    555 		panic("lfs_uinodes < 0");				\
    556 	}								\
    557 } while (0)
    558 
    559 #define LFS_ITIMES(ip, acc, mod, cre) \
    560 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    561 		lfs_itimes(ip, acc, mod, cre)
    562 
    563 /*
    564  * On-disk and in-memory checkpoint segment usage structure.
    565  */
    566 
    567 #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    568 #define	SEGTABSIZE_SU(fs)						\
    569 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    570 
    571 #ifdef _KERNEL
    572 # define SHARE_IFLOCK(F) 						\
    573   do {									\
    574 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    575   } while(0)
    576 # define UNSHARE_IFLOCK(F)						\
    577   do {									\
    578 	rw_exit(&(F)->lfs_iflock);					\
    579   } while(0)
    580 #else /* ! _KERNEL */
    581 # define SHARE_IFLOCK(F)
    582 # define UNSHARE_IFLOCK(F)
    583 #endif /* ! _KERNEL */
    584 
    585 /* Read in the block with a specific segment usage entry from the ifile. */
    586 #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    587 	int _e;								\
    588 	SHARE_IFLOCK(F);						\
    589 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    590 	if ((_e = bread((F)->lfs_ivnode,				\
    591 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    592 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    593 		panic("lfs: ifile read: %d", _e);			\
    594 	if (lfs_sb_getversion(F) == 1)					\
    595 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    596 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    597 	else								\
    598 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    599 	UNSHARE_IFLOCK(F);						\
    600 } while (0)
    601 
    602 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    603 	if ((SP)->su_nbytes == 0)					\
    604 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    605 	else								\
    606 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    607 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    608 	LFS_BWRITE_LOG(BP);						\
    609 } while (0)
    610 
    611 /*
    612  * FINFO (file info) entries.
    613  */
    614 
    615 /* Size of an on-disk block pointer, e.g. in an indirect block. */
    616 /* XXX: move to a more suitable location in this file */
    617 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    618 
    619 /* Size of an on-disk inode number. */
    620 /* XXX: move to a more suitable location in this file */
    621 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    622 
    623 /* size of a FINFO, without the block pointers */
    624 #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    625 
    626 /* Full size of the provided FINFO record, including its block pointers. */
    627 #define FINFO_FULLSIZE(fs, fip) \
    628 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    629 
    630 #define NEXT_FINFO(fs, fip) \
    631 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    632 
    633 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    634 	static __unused inline type				\
    635 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    636 	{							\
    637 		if (fs->lfs_is64) {				\
    638 			return fip->u_64.fi_##field; 		\
    639 		} else {					\
    640 			return fip->u_32.fi_##field; 		\
    641 		}						\
    642 	}							\
    643 	static __unused inline void				\
    644 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    645 	{							\
    646 		if (fs->lfs_is64) {				\
    647 			type *p = &fip->u_64.fi_##field;	\
    648 			(void)p;				\
    649 			fip->u_64.fi_##field = val;		\
    650 		} else {					\
    651 			type32 *p = &fip->u_32.fi_##field;	\
    652 			(void)p;				\
    653 			fip->u_32.fi_##field = val;		\
    654 		}						\
    655 	}							\
    656 
    657 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    658 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    659 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    660 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    661 
    662 static __unused inline daddr_t
    663 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
    664 {
    665 	void *firstblock;
    666 
    667 	firstblock = (char *)fip + FINFOSIZE(fs);
    668 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    669 	if (fs->lfs_is64) {
    670 		return ((int64_t *)firstblock)[index];
    671 	} else {
    672 		return ((int32_t *)firstblock)[index];
    673 	}
    674 }
    675 
    676 static __unused inline void
    677 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
    678 {
    679 	void *firstblock;
    680 
    681 	firstblock = (char *)fip + FINFOSIZE(fs);
    682 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    683 	if (fs->lfs_is64) {
    684 		((int64_t *)firstblock)[index] = blk;
    685 	} else {
    686 		((int32_t *)firstblock)[index] = blk;
    687 	}
    688 }
    689 
    690 /*
    691  * Index file inode entries.
    692  */
    693 
    694 /*
    695  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    696  * may not be mapped!
    697  */
    698 /* Read in the block with a specific inode from the ifile. */
    699 #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    700 	int _e;								\
    701 	SHARE_IFLOCK(F);						\
    702 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    703 	if ((_e = bread((F)->lfs_ivnode,				\
    704 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    705 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    706 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    707 	if ((F)->lfs_is64) {						\
    708 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    709 				 (IN) % lfs_sb_getifpb(F));		\
    710 	} else if (lfs_sb_getversion(F) > 1) {				\
    711 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    712 				(IN) % lfs_sb_getifpb(F)); 		\
    713 	} else {							\
    714 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    715 				 (IN) % lfs_sb_getifpb(F));		\
    716 	}								\
    717 	UNSHARE_IFLOCK(F);						\
    718 } while (0)
    719 #define LFS_IENTRY_NEXT(IP, F) do { \
    720 	if ((F)->lfs_is64) {						\
    721 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    722 	} else if (lfs_sb_getversion(F) > 1) {				\
    723 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    724 	} else {							\
    725 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    726 	}								\
    727 } while (0)
    728 
    729 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    730 	static __unused inline type				\
    731 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    732 	{							\
    733 		if (fs->lfs_is64) {				\
    734 			return ifp->u_64.if_##field; 		\
    735 		} else {					\
    736 			return ifp->u_32.if_##field; 		\
    737 		}						\
    738 	}							\
    739 	static __unused inline void				\
    740 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    741 	{							\
    742 		if (fs->lfs_is64) {				\
    743 			type *p = &ifp->u_64.if_##field;	\
    744 			(void)p;				\
    745 			ifp->u_64.if_##field = val;		\
    746 		} else {					\
    747 			type32 *p = &ifp->u_32.if_##field;	\
    748 			(void)p;				\
    749 			ifp->u_32.if_##field = val;		\
    750 		}						\
    751 	}							\
    752 
    753 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
    754 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    755 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
    756 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_sec);
    757 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
    758 
    759 /*
    760  * Cleaner information structure.  This resides in the ifile and is used
    761  * to pass information from the kernel to the cleaner.
    762  */
    763 
    764 #define	CLEANSIZE_SU(fs)						\
    765 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    766 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    767 
    768 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    769 	static __unused inline type				\
    770 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    771 	{							\
    772 		if (fs->lfs_is64) {				\
    773 			return cip->u_64.field; 		\
    774 		} else {					\
    775 			return cip->u_32.field; 		\
    776 		}						\
    777 	}							\
    778 	static __unused inline void				\
    779 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    780 	{							\
    781 		if (fs->lfs_is64) {				\
    782 			type *p = &cip->u_64.field;		\
    783 			(void)p;				\
    784 			cip->u_64.field = val;			\
    785 		} else {					\
    786 			type32 *p = &cip->u_32.field;		\
    787 			(void)p;				\
    788 			cip->u_32.field = val;			\
    789 		}						\
    790 	}							\
    791 
    792 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
    793 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
    794 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    795 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    796 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
    797 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
    798 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
    799 
    800 static __unused inline void
    801 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    802 {
    803 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    804 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    805 }
    806 
    807 static __unused inline void
    808 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    809 {
    810 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    811 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    812 }
    813 
    814 /* Read in the block with the cleaner info from the ifile. */
    815 #define LFS_CLEANERINFO(CP, F, BP) do {					\
    816 	SHARE_IFLOCK(F);						\
    817 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    818 	if (bread((F)->lfs_ivnode,					\
    819 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
    820 		panic("lfs: ifile read");				\
    821 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    822 	UNSHARE_IFLOCK(F);						\
    823 } while (0)
    824 
    825 /*
    826  * Synchronize the Ifile cleaner info with current avail and bfree.
    827  */
    828 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    829     mutex_enter(&lfs_lock);						\
    830     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    831 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    832 	fs->lfs_favail) {	 					\
    833 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    834 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    835 		fs->lfs_favail);				 	\
    836 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    837 		fs->lfs_flags |= LFS_IFDIRTY;				\
    838 	}								\
    839 	mutex_exit(&lfs_lock);						\
    840 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    841     } else {							 	\
    842 	mutex_exit(&lfs_lock);						\
    843 	brelse(bp, 0);						 	\
    844     }									\
    845 } while (0)
    846 
    847 /*
    848  * Get the head of the inode free list.
    849  * Always called with the segment lock held.
    850  */
    851 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    852 	if (lfs_sb_getversion(FS) > 1) {				\
    853 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    854 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    855 		brelse(BP, 0);						\
    856 	}								\
    857 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    858 } while (0)
    859 
    860 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    861 	lfs_sb_setfreehd(FS, VAL);					\
    862 	if (lfs_sb_getversion(FS) > 1) {				\
    863 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    864 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    865 		LFS_BWRITE_LOG(BP);					\
    866 		mutex_enter(&lfs_lock);					\
    867 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    868 		mutex_exit(&lfs_lock);					\
    869 	}								\
    870 } while (0)
    871 
    872 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
    873 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    874 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
    875 	brelse(BP, 0);							\
    876 } while (0)
    877 
    878 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
    879 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    880 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
    881 	LFS_BWRITE_LOG(BP);						\
    882 	mutex_enter(&lfs_lock);						\
    883 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
    884 	mutex_exit(&lfs_lock);						\
    885 } while (0)
    886 
    887 /*
    888  * On-disk segment summary information
    889  */
    890 
    891 #define SEGSUM_SIZE(fs) \
    892 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
    893 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
    894 
    895 /*
    896  * The SEGSUM structure is followed by FINFO structures. Get the pointer
    897  * to the first FINFO.
    898  *
    899  * XXX this can't be a macro yet; this file needs to be resorted.
    900  */
    901 #if 0
    902 static __unused inline FINFO *
    903 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
    904 {
    905 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
    906 }
    907 #else
    908 #define SEGSUM_FINFOBASE(fs, ssp) \
    909 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
    910 #endif
    911 
    912 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
    913 	static __unused inline type				\
    914 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
    915 	{							\
    916 		if (fs->lfs_is64) {				\
    917 			return ssp->u_64.ss_##field; 		\
    918 		} else {					\
    919 			return ssp->u_32.ss_##field; 		\
    920 		}						\
    921 	}							\
    922 	static __unused inline void				\
    923 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
    924 	{							\
    925 		if (fs->lfs_is64) {				\
    926 			type *p = &ssp->u_64.ss_##field;	\
    927 			(void)p;				\
    928 			ssp->u_64.ss_##field = val;		\
    929 		} else {					\
    930 			type32 *p = &ssp->u_32.ss_##field;	\
    931 			(void)p;				\
    932 			ssp->u_32.ss_##field = val;		\
    933 		}						\
    934 	}							\
    935 
    936 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
    937 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
    938 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
    939 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
    940 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
    941 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
    942 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
    943 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
    944 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
    945 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
    946 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
    947 
    948 static __unused inline size_t
    949 lfs_ss_getsumstart(STRUCT_LFS *fs)
    950 {
    951 	/* These are actually all the same. */
    952 	if (fs->lfs_is64) {
    953 		return offsetof(SEGSUM64, ss_datasum);
    954 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
    955 		return offsetof(SEGSUM32, ss_datasum);
    956 	} /* else {
    957 		return offsetof(SEGSUM_V1, ss_datasum);
    958 	} */
    959 	/*
    960 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
    961 	 * defined yet.
    962 	 */
    963 }
    964 
    965 static __unused inline uint32_t
    966 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
    967 {
    968 	KASSERT(fs->lfs_is64 == 0);
    969 	/* XXX need to resort this file before we can do this */
    970 	//KASSERT(lfs_sb_getversion(fs) == 1);
    971 
    972 	return ssp->u_v1.ss_create;
    973 }
    974 
    975 static __unused inline void
    976 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
    977 {
    978 	KASSERT(fs->lfs_is64 == 0);
    979 	/* XXX need to resort this file before we can do this */
    980 	//KASSERT(lfs_sb_getversion(fs) == 1);
    981 
    982 	ssp->u_v1.ss_create = val;
    983 }
    984 
    985 
    986 /*
    987  * Super block.
    988  */
    989 
    990 /*
    991  * Generate accessors for the on-disk superblock fields with cpp.
    992  */
    993 
    994 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
    995 	static __unused inline type				\
    996 	lfs_sb_get##field(STRUCT_LFS *fs)			\
    997 	{							\
    998 		if (fs->lfs_is64) {				\
    999 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1000 		} else {					\
   1001 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1002 		}						\
   1003 	}							\
   1004 	static __unused inline void				\
   1005 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
   1006 	{							\
   1007 		if (fs->lfs_is64) {				\
   1008 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
   1009 		} else {					\
   1010 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
   1011 		}						\
   1012 	}							\
   1013 	static __unused inline void				\
   1014 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
   1015 	{							\
   1016 		if (fs->lfs_is64) {				\
   1017 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1018 			*p64 += val;				\
   1019 		} else {					\
   1020 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1021 			*p32 += val;				\
   1022 		}						\
   1023 	}							\
   1024 	static __unused inline void				\
   1025 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
   1026 	{							\
   1027 		if (fs->lfs_is64) {				\
   1028 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1029 			*p64 -= val;				\
   1030 		} else {					\
   1031 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1032 			*p32 -= val;				\
   1033 		}						\
   1034 	}
   1035 
   1036 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
   1037 
   1038 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
   1039 	static __unused inline type				\
   1040 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1041 	{							\
   1042 		if (fs->lfs_is64) {				\
   1043 			return val64;				\
   1044 		} else {					\
   1045 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1046 		}						\
   1047 	}
   1048 
   1049 #define lfs_magic lfs_dlfs.dlfs_magic
   1050 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
   1051 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
   1052 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
   1053 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
   1054 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
   1055 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
   1056 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
   1057 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
   1058 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
   1059 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
   1060 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
   1061 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
   1062 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
   1063 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
   1064 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
   1065 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
   1066 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
   1067 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
   1068 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
   1069 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
   1070 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
   1071 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
   1072 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
   1073 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
   1074 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
   1075 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
   1076 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
   1077 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
   1078 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
   1079 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
   1080 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
   1081 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
   1082 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
   1083 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
   1084 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
   1085 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
   1086 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
   1087 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
   1088 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
   1089 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
   1090 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
   1091 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
   1092 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
   1093 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
   1094 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
   1095 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
   1096 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
   1097 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
   1098 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
   1099 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
   1100 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
   1101 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
   1102 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
   1103 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
   1104 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
   1105 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
   1106 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
   1107 
   1108 /* special-case accessors */
   1109 
   1110 /*
   1111  * the v1 otstamp field lives in what's now dlfs_inopf
   1112  */
   1113 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
   1114 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
   1115 
   1116 /*
   1117  * lfs_sboffs is an array
   1118  */
   1119 static __unused inline int32_t
   1120 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
   1121 {
   1122 #ifdef KASSERT /* ugh */
   1123 	KASSERT(n < LFS_MAXNUMSB);
   1124 #endif
   1125 	if (fs->lfs_is64) {
   1126 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
   1127 	} else {
   1128 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
   1129 	}
   1130 }
   1131 static __unused inline void
   1132 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
   1133 {
   1134 #ifdef KASSERT /* ugh */
   1135 	KASSERT(n < LFS_MAXNUMSB);
   1136 #endif
   1137 	if (fs->lfs_is64) {
   1138 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1139 	} else {
   1140 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1141 	}
   1142 }
   1143 
   1144 /*
   1145  * lfs_fsmnt is a string
   1146  */
   1147 static __unused inline const char *
   1148 lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1149 {
   1150 	if (fs->lfs_is64) {
   1151 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1152 	} else {
   1153 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1154 	}
   1155 }
   1156 
   1157 static __unused inline void
   1158 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1159 {
   1160 	if (fs->lfs_is64) {
   1161 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1162 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1163 	} else {
   1164 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1165 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1166 	}
   1167 }
   1168 
   1169 /* Highest addressable fsb */
   1170 #define LFS_MAX_DADDR(fs) \
   1171 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1172 
   1173 /* LFS_NINDIR is the number of indirects in a file system block. */
   1174 #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1175 
   1176 /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1177 #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1178 /* LFS_INOPF is the number of inodes in a fragment. */
   1179 #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1180 
   1181 #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1182 #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1183     ((int)((loc) & lfs_sb_getffmask(fs)))
   1184 
   1185 /* XXX: lowercase these as they're no longer macros */
   1186 /* Frags to diskblocks */
   1187 static __unused inline uint64_t
   1188 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1189 {
   1190 #if defined(_KERNEL)
   1191 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1192 #else
   1193 	return b << lfs_sb_getfsbtodb(fs);
   1194 #endif
   1195 }
   1196 /* Diskblocks to frags */
   1197 static __unused inline uint64_t
   1198 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1199 {
   1200 #if defined(_KERNEL)
   1201 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1202 #else
   1203 	return b >> lfs_sb_getfsbtodb(fs);
   1204 #endif
   1205 }
   1206 
   1207 #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1208 #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1209 
   1210 /* Frags to bytes */
   1211 static __unused inline uint64_t
   1212 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1213 {
   1214 	return b << lfs_sb_getffshift(fs);
   1215 }
   1216 /* Bytes to frags */
   1217 static __unused inline uint64_t
   1218 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1219 {
   1220 	return b >> lfs_sb_getffshift(fs);
   1221 }
   1222 
   1223 #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1224 	((loc) >> lfs_sb_getffshift(fs))
   1225 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1226 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1227 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1228 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1229 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1230 	((frags) >> lfs_sb_getfbshift(fs))
   1231 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1232 	((blks) << lfs_sb_getfbshift(fs))
   1233 #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1234 	((fsb) & ((fs)->lfs_frag - 1))
   1235 #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1236 	((fsb) &~ ((fs)->lfs_frag - 1))
   1237 #define lfs_dblksize(fs, dp, lbn) \
   1238 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1239 	    ? lfs_sb_getbsize(fs) \
   1240 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1241 
   1242 #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1243 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1244 			   lfs_sb_getssize(fs))
   1245 /* XXX segtod produces a result in frags despite the 'd' */
   1246 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1247 #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1248 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1249 #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1250 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1251 
   1252 /* XXX, blah. make this appear only if struct inode is defined */
   1253 #ifdef _UFS_LFS_LFS_INODE_H_
   1254 static __unused inline uint32_t
   1255 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1256 {
   1257 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1258 		return lfs_sb_getbsize(fs);
   1259 	} else {
   1260 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1261 	}
   1262 }
   1263 #endif
   1264 
   1265 /*
   1266  * union lfs_blocks
   1267  */
   1268 
   1269 static __unused inline void
   1270 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1271 {
   1272 	if (fs->lfs_is64) {
   1273 		bp->b64 = p;
   1274 	} else {
   1275 		bp->b32 = p;
   1276 	}
   1277 }
   1278 
   1279 static __unused inline void
   1280 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1281 {
   1282 	void *firstblock;
   1283 
   1284 	firstblock = (char *)fip + FINFOSIZE(fs);
   1285 	if (fs->lfs_is64) {
   1286 		bp->b64 = (int64_t *)firstblock;
   1287 	}  else {
   1288 		bp->b32 = (int32_t *)firstblock;
   1289 	}
   1290 }
   1291 
   1292 static __unused inline daddr_t
   1293 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
   1294 {
   1295 	if (fs->lfs_is64) {
   1296 		return bp->b64[index];
   1297 	} else {
   1298 		return bp->b32[index];
   1299 	}
   1300 }
   1301 
   1302 static __unused inline void
   1303 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
   1304 {
   1305 	if (fs->lfs_is64) {
   1306 		bp->b64[index] = val;
   1307 	} else {
   1308 		bp->b32[index] = val;
   1309 	}
   1310 }
   1311 
   1312 static __unused inline void
   1313 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1314 {
   1315 	if (fs->lfs_is64) {
   1316 		bp->b64++;
   1317 	} else {
   1318 		bp->b32++;
   1319 	}
   1320 }
   1321 
   1322 static __unused inline int
   1323 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1324 {
   1325 	if (fs->lfs_is64) {
   1326 		return bp1->b64 == bp2->b64;
   1327 	} else {
   1328 		return bp1->b32 == bp2->b32;
   1329 	}
   1330 }
   1331 
   1332 static __unused inline int
   1333 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1334 {
   1335 	/* (remember that the pointers are typed) */
   1336 	if (fs->lfs_is64) {
   1337 		return bp1->b64 - bp2->b64;
   1338 	} else {
   1339 		return bp1->b32 - bp2->b32;
   1340 	}
   1341 }
   1342 
   1343 /*
   1344  * struct segment
   1345  */
   1346 
   1347 
   1348 /*
   1349  * Macros for determining free space on the disk, with the variable metadata
   1350  * of segment summaries and inode blocks taken into account.
   1351  */
   1352 /*
   1353  * Estimate number of clean blocks not available for writing because
   1354  * they will contain metadata or overhead.  This is calculated as
   1355  *
   1356  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1357  * or more simply
   1358  *		E = (C * M) / T
   1359  *
   1360  * where
   1361  * C is the clean space,
   1362  * D is the dirty space,
   1363  * M is the dirty metadata, and
   1364  * T = C + D is the total space on disk.
   1365  *
   1366  * This approximates the old formula of E = C * M / D when D is close to T,
   1367  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1368  */
   1369 #define LFS_EST_CMETA(F) (int32_t)((					\
   1370 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1371 	(lfs_sb_getnseg(F))))
   1372 
   1373 /* Estimate total size of the disk not including metadata */
   1374 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1375 
   1376 /* Estimate number of blocks actually available for writing */
   1377 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1378 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1379 
   1380 /* Amount of non-meta space not available to mortal man */
   1381 #define LFS_EST_RSVD(F) (int32_t)((LFS_EST_NONMETA(F) *			     \
   1382 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
   1383 				  100)
   1384 
   1385 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1386 #define ISSPACE(F, BB, C)						\
   1387 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1388 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1389 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1390 
   1391 /* Can an ordinary user write BB blocks */
   1392 #define IS_FREESPACE(F, BB)						\
   1393 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1394 
   1395 /*
   1396  * The minimum number of blocks to create a new inode.  This is:
   1397  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1398  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1399  */
   1400 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1401 
   1402 
   1403 
   1404 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1405