lfs_accessors.h revision 1.33.2.3 1 /* $NetBSD: lfs_accessors.h,v 1.33.2.3 2015/12/27 12:10:19 skrll Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * For handling directories we will need to know if the volume is
206 * little-endian.
207 */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213
214
215 /*
216 * directories
217 */
218
219 #define LFS_DIRHEADERSIZE(fs) \
220 ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
221
222 /*
223 * The LFS_DIRSIZ macro gives the minimum record length which will hold
224 * the directory entry. This requires the amount of space in struct lfs_direct
225 * without the d_name field, plus enough space for the name with a terminating
226 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
227 */
228 #define LFS_DIRECTSIZ(fs, namlen) \
229 (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
230
231 /*
232 * The size of the largest possible directory entry. This is
233 * used by ulfs_dirhash to figure the size of an array, so we
234 * need a single constant value true for both lfs32 and lfs64.
235 */
236 #define LFS_MAXDIRENTRYSIZE \
237 (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
238
239 #if (BYTE_ORDER == LITTLE_ENDIAN)
240 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
241 (((oldfmt) && !(needswap)) ? \
242 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
243 #else
244 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
245 (((oldfmt) && (needswap)) ? \
246 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
247 #endif
248
249 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
250
251 /* Constants for the first argument of LFS_OLDDIRSIZ */
252 #define LFS_OLDDIRFMT 1
253 #define LFS_NEWDIRFMT 0
254
255 #define LFS_NEXTDIR(fs, dp) \
256 ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
257
258 static __unused inline char *
259 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
260 {
261 if (fs->lfs_is64) {
262 return (char *)(&dh->u_64 + 1);
263 } else {
264 return (char *)(&dh->u_32 + 1);
265 }
266 }
267
268 static __unused inline uint64_t
269 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
270 {
271 if (fs->lfs_is64) {
272 uint64_t ino;
273
274 /*
275 * XXX we can probably write this in a way that's both
276 * still legal and generates better code.
277 */
278 memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
279 memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
280 &dh->u_64.dh_inoB,
281 sizeof(dh->u_64.dh_inoB));
282 return LFS_SWAP_uint64_t(fs, ino);
283 } else {
284 return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
285 }
286 }
287
288 static __unused inline uint16_t
289 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
290 {
291 if (fs->lfs_is64) {
292 return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
293 } else {
294 return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
295 }
296 }
297
298 static __unused inline uint8_t
299 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
300 {
301 if (fs->lfs_is64) {
302 KASSERT(fs->lfs_hasolddirfmt == 0);
303 return dh->u_64.dh_type;
304 } else if (fs->lfs_hasolddirfmt) {
305 return LFS_DT_UNKNOWN;
306 } else {
307 return dh->u_32.dh_type;
308 }
309 }
310
311 static __unused inline uint8_t
312 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
313 {
314 if (fs->lfs_is64) {
315 KASSERT(fs->lfs_hasolddirfmt == 0);
316 return dh->u_64.dh_namlen;
317 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
318 /* low-order byte of old 16-bit namlen field */
319 return dh->u_32.dh_type;
320 } else {
321 return dh->u_32.dh_namlen;
322 }
323 }
324
325 static __unused inline void
326 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
327 {
328 if (fs->lfs_is64) {
329
330 ino = LFS_SWAP_uint64_t(fs, ino);
331 /*
332 * XXX we can probably write this in a way that's both
333 * still legal and generates better code.
334 */
335 memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
336 memcpy(&dh->u_64.dh_inoB,
337 (char *)&ino + sizeof(dh->u_64.dh_inoA),
338 sizeof(dh->u_64.dh_inoB));
339 } else {
340 dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
341 }
342 }
343
344 static __unused inline void
345 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
346 {
347 if (fs->lfs_is64) {
348 dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
349 } else {
350 dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
351 }
352 }
353
354 static __unused inline void
355 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
356 {
357 if (fs->lfs_is64) {
358 KASSERT(fs->lfs_hasolddirfmt == 0);
359 dh->u_64.dh_type = type;
360 } else if (fs->lfs_hasolddirfmt) {
361 /* do nothing */
362 return;
363 } else {
364 dh->u_32.dh_type = type;
365 }
366 }
367
368 static __unused inline void
369 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
370 {
371 if (fs->lfs_is64) {
372 KASSERT(fs->lfs_hasolddirfmt == 0);
373 dh->u_64.dh_namlen = namlen;
374 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
375 /* low-order byte of old 16-bit namlen field */
376 dh->u_32.dh_type = namlen;
377 } else {
378 dh->u_32.dh_namlen = namlen;
379 }
380 }
381
382 static __unused inline void
383 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
384 unsigned namlen, unsigned reclen)
385 {
386 unsigned spacelen;
387
388 KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
389 spacelen = reclen - LFS_DIRHEADERSIZE(fs);
390
391 /* must always be at least 1 byte as a null terminator */
392 KASSERT(spacelen > namlen);
393
394 memcpy(dest, src, namlen);
395 memset(dest + namlen, '\0', spacelen - namlen);
396 }
397
398 static __unused LFS_DIRHEADER *
399 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
400 {
401 /* XXX blah, be nice to have a way to do this w/o casts */
402 if (fs->lfs_is64) {
403 return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
404 } else {
405 return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
406 }
407 }
408
409 static __unused char *
410 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
411 {
412 if (fs->lfs_is64) {
413 return dt->u_64.dotdot_name;
414 } else {
415 return dt->u_32.dotdot_name;
416 }
417 }
418
419 /*
420 * dinodes
421 */
422
423 /*
424 * Maximum length of a symlink that can be stored within the inode.
425 */
426 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
427 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
428
429 #define LFS_MAXSYMLINKLEN(fs) \
430 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
431
432 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
433
434 #define DINO_IN_BLOCK(fs, base, ix) \
435 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
436
437 static __unused inline void
438 lfs_copy_dinode(STRUCT_LFS *fs,
439 union lfs_dinode *dst, const union lfs_dinode *src)
440 {
441 /*
442 * We can do structure assignment of the structs, but not of
443 * the whole union, as the union is the size of the (larger)
444 * 64-bit struct and on a 32-bit fs the upper half of it might
445 * be off the end of a buffer or otherwise invalid.
446 */
447 if (fs->lfs_is64) {
448 dst->u_64 = src->u_64;
449 } else {
450 dst->u_32 = src->u_32;
451 }
452 }
453
454 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
455 static __unused inline type \
456 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
457 { \
458 if (fs->lfs_is64) { \
459 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
460 } else { \
461 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
462 } \
463 } \
464 static __unused inline void \
465 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
466 { \
467 if (fs->lfs_is64) { \
468 type *p = &dip->u_64.di_##field; \
469 (void)p; \
470 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
471 } else { \
472 type32 *p = &dip->u_32.di_##field; \
473 (void)p; \
474 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
475 } \
476 } \
477
478 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
479 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
480 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
481 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
482 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
483 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
484 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
485 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
486 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
487 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
488 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
489 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
490 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
491 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
492 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
493
494 /* XXX this should be done differently (it's a fake field) */
495 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
496
497 static __unused inline daddr_t
498 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
499 {
500 KASSERT(ix < ULFS_NDADDR);
501 if (fs->lfs_is64) {
502 return LFS_SWAP_uint64_t(fs, dip->u_64.di_db[ix]);
503 } else {
504 /* note: this must sign-extend or UNWRITTEN gets trashed */
505 return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_db[ix]);
506 }
507 }
508
509 static __unused inline daddr_t
510 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
511 {
512 KASSERT(ix < ULFS_NIADDR);
513 if (fs->lfs_is64) {
514 return LFS_SWAP_uint64_t(fs, dip->u_64.di_ib[ix]);
515 } else {
516 /* note: this must sign-extend or UNWRITTEN gets trashed */
517 return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_ib[ix]);
518 }
519 }
520
521 static __unused inline void
522 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
523 {
524 KASSERT(ix < ULFS_NDADDR);
525 if (fs->lfs_is64) {
526 dip->u_64.di_db[ix] = LFS_SWAP_uint64_t(fs, val);
527 } else {
528 dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
529 }
530 }
531
532 static __unused inline void
533 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
534 {
535 KASSERT(ix < ULFS_NIADDR);
536 if (fs->lfs_is64) {
537 dip->u_64.di_ib[ix] = LFS_SWAP_uint64_t(fs, val);
538 } else {
539 dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
540 }
541 }
542
543 /* birthtime is present only in the 64-bit inode */
544 static __unused inline void
545 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
546 const struct timespec *ts)
547 {
548 if (fs->lfs_is64) {
549 dip->u_64.di_birthtime = ts->tv_sec;
550 dip->u_64.di_birthnsec = ts->tv_nsec;
551 } else {
552 /* drop it on the floor */
553 }
554 }
555
556 /*
557 * indirect blocks
558 */
559
560 static __unused inline daddr_t
561 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
562 {
563 if (fs->lfs_is64) {
564 // XXX re-enable these asserts after reorging this file
565 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
566 return (daddr_t)(((int64_t *)block)[ix]);
567 } else {
568 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
569 /* must sign-extend or UNWRITTEN gets trashed */
570 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
571 }
572 }
573
574 static __unused inline void
575 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
576 {
577 if (fs->lfs_is64) {
578 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
579 ((int64_t *)block)[ix] = val;
580 } else {
581 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
582 ((int32_t *)block)[ix] = val;
583 }
584 }
585
586 /*
587 * "struct buf" associated definitions
588 */
589
590 # define LFS_LOCK_BUF(bp) do { \
591 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
592 mutex_enter(&lfs_lock); \
593 ++locked_queue_count; \
594 locked_queue_bytes += bp->b_bufsize; \
595 mutex_exit(&lfs_lock); \
596 } \
597 (bp)->b_flags |= B_LOCKED; \
598 } while (0)
599
600 # define LFS_UNLOCK_BUF(bp) do { \
601 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
602 mutex_enter(&lfs_lock); \
603 --locked_queue_count; \
604 locked_queue_bytes -= bp->b_bufsize; \
605 if (locked_queue_count < LFS_WAIT_BUFS && \
606 locked_queue_bytes < LFS_WAIT_BYTES) \
607 cv_broadcast(&locked_queue_cv); \
608 mutex_exit(&lfs_lock); \
609 } \
610 (bp)->b_flags &= ~B_LOCKED; \
611 } while (0)
612
613 /*
614 * "struct inode" associated definitions
615 */
616
617 #define LFS_SET_UINO(ip, flags) do { \
618 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
619 lfs_sb_adduinodes((ip)->i_lfs, 1); \
620 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
621 lfs_sb_adduinodes((ip)->i_lfs, 1); \
622 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
623 lfs_sb_adduinodes((ip)->i_lfs, 1); \
624 (ip)->i_flag |= (flags); \
625 } while (0)
626
627 #define LFS_CLR_UINO(ip, flags) do { \
628 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
629 lfs_sb_subuinodes((ip)->i_lfs, 1); \
630 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
631 lfs_sb_subuinodes((ip)->i_lfs, 1); \
632 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
633 lfs_sb_subuinodes((ip)->i_lfs, 1); \
634 (ip)->i_flag &= ~(flags); \
635 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
636 panic("lfs_uinodes < 0"); \
637 } \
638 } while (0)
639
640 #define LFS_ITIMES(ip, acc, mod, cre) \
641 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
642 lfs_itimes(ip, acc, mod, cre)
643
644 /*
645 * On-disk and in-memory checkpoint segment usage structure.
646 */
647
648 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
649 #define SEGTABSIZE_SU(fs) \
650 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
651
652 #ifdef _KERNEL
653 # define SHARE_IFLOCK(F) \
654 do { \
655 rw_enter(&(F)->lfs_iflock, RW_READER); \
656 } while(0)
657 # define UNSHARE_IFLOCK(F) \
658 do { \
659 rw_exit(&(F)->lfs_iflock); \
660 } while(0)
661 #else /* ! _KERNEL */
662 # define SHARE_IFLOCK(F)
663 # define UNSHARE_IFLOCK(F)
664 #endif /* ! _KERNEL */
665
666 /* Read in the block with a specific segment usage entry from the ifile. */
667 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
668 int _e; \
669 SHARE_IFLOCK(F); \
670 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
671 if ((_e = bread((F)->lfs_ivnode, \
672 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
673 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
674 panic("lfs: ifile read: segentry %llu: error %d\n", \
675 (unsigned long long)(IN), _e); \
676 if (lfs_sb_getversion(F) == 1) \
677 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
678 ((IN) & (lfs_sb_getsepb(F) - 1))); \
679 else \
680 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
681 UNSHARE_IFLOCK(F); \
682 } while (0)
683
684 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
685 if ((SP)->su_nbytes == 0) \
686 (SP)->su_flags |= SEGUSE_EMPTY; \
687 else \
688 (SP)->su_flags &= ~SEGUSE_EMPTY; \
689 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
690 LFS_BWRITE_LOG(BP); \
691 } while (0)
692
693 /*
694 * FINFO (file info) entries.
695 */
696
697 /* Size of an on-disk block pointer, e.g. in an indirect block. */
698 /* XXX: move to a more suitable location in this file */
699 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
700
701 /* Size of an on-disk inode number. */
702 /* XXX: move to a more suitable location in this file */
703 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
704
705 /* size of a FINFO, without the block pointers */
706 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
707
708 /* Full size of the provided FINFO record, including its block pointers. */
709 #define FINFO_FULLSIZE(fs, fip) \
710 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
711
712 #define NEXT_FINFO(fs, fip) \
713 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
714
715 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
716 static __unused inline type \
717 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
718 { \
719 if (fs->lfs_is64) { \
720 return fip->u_64.fi_##field; \
721 } else { \
722 return fip->u_32.fi_##field; \
723 } \
724 } \
725 static __unused inline void \
726 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
727 { \
728 if (fs->lfs_is64) { \
729 type *p = &fip->u_64.fi_##field; \
730 (void)p; \
731 fip->u_64.fi_##field = val; \
732 } else { \
733 type32 *p = &fip->u_32.fi_##field; \
734 (void)p; \
735 fip->u_32.fi_##field = val; \
736 } \
737 } \
738
739 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
740 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
741 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
742 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
743
744 static __unused inline daddr_t
745 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
746 {
747 void *firstblock;
748
749 firstblock = (char *)fip + FINFOSIZE(fs);
750 KASSERT(index < lfs_fi_getnblocks(fs, fip));
751 if (fs->lfs_is64) {
752 return ((int64_t *)firstblock)[index];
753 } else {
754 return ((int32_t *)firstblock)[index];
755 }
756 }
757
758 static __unused inline void
759 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
760 {
761 void *firstblock;
762
763 firstblock = (char *)fip + FINFOSIZE(fs);
764 KASSERT(index < lfs_fi_getnblocks(fs, fip));
765 if (fs->lfs_is64) {
766 ((int64_t *)firstblock)[index] = blk;
767 } else {
768 ((int32_t *)firstblock)[index] = blk;
769 }
770 }
771
772 /*
773 * inode info entries (in the segment summary)
774 */
775
776 #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
777
778 /* iinfos scroll backward from the end of the segment summary block */
779 #define SEGSUM_IINFOSTART(fs, buf) \
780 ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
781
782 #define NEXTLOWER_IINFO(fs, iip) \
783 ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
784
785 #define NTH_IINFO(fs, buf, n) \
786 ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
787
788 static __unused inline uint64_t
789 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
790 {
791 if (fs->lfs_is64) {
792 return iip->u_64.ii_block;
793 } else {
794 return iip->u_32.ii_block;
795 }
796 }
797
798 static __unused inline void
799 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
800 {
801 if (fs->lfs_is64) {
802 iip->u_64.ii_block = block;
803 } else {
804 iip->u_32.ii_block = block;
805 }
806 }
807
808 /*
809 * Index file inode entries.
810 */
811
812 #define IFILE_ENTRYSIZE(fs) \
813 ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
814
815 /*
816 * LFSv1 compatibility code is not allowed to touch if_atime, since it
817 * may not be mapped!
818 */
819 /* Read in the block with a specific inode from the ifile. */
820 #define LFS_IENTRY(IP, F, IN, BP) do { \
821 int _e; \
822 SHARE_IFLOCK(F); \
823 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
824 if ((_e = bread((F)->lfs_ivnode, \
825 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
826 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
827 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
828 if ((F)->lfs_is64) { \
829 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
830 (IN) % lfs_sb_getifpb(F)); \
831 } else if (lfs_sb_getversion(F) > 1) { \
832 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
833 (IN) % lfs_sb_getifpb(F)); \
834 } else { \
835 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
836 (IN) % lfs_sb_getifpb(F)); \
837 } \
838 UNSHARE_IFLOCK(F); \
839 } while (0)
840 #define LFS_IENTRY_NEXT(IP, F) do { \
841 if ((F)->lfs_is64) { \
842 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
843 } else if (lfs_sb_getversion(F) > 1) { \
844 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
845 } else { \
846 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
847 } \
848 } while (0)
849
850 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
851 static __unused inline type \
852 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
853 { \
854 if (fs->lfs_is64) { \
855 return ifp->u_64.if_##field; \
856 } else { \
857 return ifp->u_32.if_##field; \
858 } \
859 } \
860 static __unused inline void \
861 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
862 { \
863 if (fs->lfs_is64) { \
864 type *p = &ifp->u_64.if_##field; \
865 (void)p; \
866 ifp->u_64.if_##field = val; \
867 } else { \
868 type32 *p = &ifp->u_32.if_##field; \
869 (void)p; \
870 ifp->u_32.if_##field = val; \
871 } \
872 } \
873
874 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
875 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
876 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
877 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
878 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
879
880 /*
881 * Cleaner information structure. This resides in the ifile and is used
882 * to pass information from the kernel to the cleaner.
883 */
884
885 #define CLEANSIZE_SU(fs) \
886 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
887 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
888
889 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
890 static __unused inline type \
891 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
892 { \
893 if (fs->lfs_is64) { \
894 return cip->u_64.field; \
895 } else { \
896 return cip->u_32.field; \
897 } \
898 } \
899 static __unused inline void \
900 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
901 { \
902 if (fs->lfs_is64) { \
903 type *p = &cip->u_64.field; \
904 (void)p; \
905 cip->u_64.field = val; \
906 } else { \
907 type32 *p = &cip->u_32.field; \
908 (void)p; \
909 cip->u_32.field = val; \
910 } \
911 } \
912
913 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
914 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
915 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
916 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
917 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
918 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
919 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
920
921 static __unused inline void
922 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
923 {
924 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
925 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
926 }
927
928 static __unused inline void
929 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
930 {
931 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
932 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
933 }
934
935 /* Read in the block with the cleaner info from the ifile. */
936 #define LFS_CLEANERINFO(CP, F, BP) do { \
937 int _e; \
938 SHARE_IFLOCK(F); \
939 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
940 _e = bread((F)->lfs_ivnode, \
941 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \
942 if (_e) \
943 panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \
944 (CP) = (CLEANERINFO *)(BP)->b_data; \
945 UNSHARE_IFLOCK(F); \
946 } while (0)
947
948 /*
949 * Synchronize the Ifile cleaner info with current avail and bfree.
950 */
951 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
952 mutex_enter(&lfs_lock); \
953 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
954 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
955 fs->lfs_favail) { \
956 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
957 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
958 fs->lfs_favail); \
959 if (((bp)->b_flags & B_GATHERED) == 0) { \
960 fs->lfs_flags |= LFS_IFDIRTY; \
961 } \
962 mutex_exit(&lfs_lock); \
963 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
964 } else { \
965 mutex_exit(&lfs_lock); \
966 brelse(bp, 0); \
967 } \
968 } while (0)
969
970 /*
971 * Get the head of the inode free list.
972 * Always called with the segment lock held.
973 */
974 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
975 if (lfs_sb_getversion(FS) > 1) { \
976 LFS_CLEANERINFO((CIP), (FS), (BP)); \
977 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
978 brelse(BP, 0); \
979 } \
980 *(FREEP) = lfs_sb_getfreehd(FS); \
981 } while (0)
982
983 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
984 lfs_sb_setfreehd(FS, VAL); \
985 if (lfs_sb_getversion(FS) > 1) { \
986 LFS_CLEANERINFO((CIP), (FS), (BP)); \
987 lfs_ci_setfree_head(FS, CIP, VAL); \
988 LFS_BWRITE_LOG(BP); \
989 mutex_enter(&lfs_lock); \
990 (FS)->lfs_flags |= LFS_IFDIRTY; \
991 mutex_exit(&lfs_lock); \
992 } \
993 } while (0)
994
995 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
996 LFS_CLEANERINFO((CIP), (FS), (BP)); \
997 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
998 brelse(BP, 0); \
999 } while (0)
1000
1001 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
1002 LFS_CLEANERINFO((CIP), (FS), (BP)); \
1003 lfs_ci_setfree_tail(FS, CIP, VAL); \
1004 LFS_BWRITE_LOG(BP); \
1005 mutex_enter(&lfs_lock); \
1006 (FS)->lfs_flags |= LFS_IFDIRTY; \
1007 mutex_exit(&lfs_lock); \
1008 } while (0)
1009
1010 /*
1011 * On-disk segment summary information
1012 */
1013
1014 #define SEGSUM_SIZE(fs) \
1015 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1016 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1017
1018 /*
1019 * The SEGSUM structure is followed by FINFO structures. Get the pointer
1020 * to the first FINFO.
1021 *
1022 * XXX this can't be a macro yet; this file needs to be resorted.
1023 */
1024 #if 0
1025 static __unused inline FINFO *
1026 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1027 {
1028 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1029 }
1030 #else
1031 #define SEGSUM_FINFOBASE(fs, ssp) \
1032 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1033 #endif
1034
1035 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1036 static __unused inline type \
1037 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
1038 { \
1039 if (fs->lfs_is64) { \
1040 return ssp->u_64.ss_##field; \
1041 } else { \
1042 return ssp->u_32.ss_##field; \
1043 } \
1044 } \
1045 static __unused inline void \
1046 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1047 { \
1048 if (fs->lfs_is64) { \
1049 type *p = &ssp->u_64.ss_##field; \
1050 (void)p; \
1051 ssp->u_64.ss_##field = val; \
1052 } else { \
1053 type32 *p = &ssp->u_32.ss_##field; \
1054 (void)p; \
1055 ssp->u_32.ss_##field = val; \
1056 } \
1057 } \
1058
1059 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1060 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1061 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1062 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1063 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1064 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1065 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1066 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1067 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1068 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1069 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1070
1071 static __unused inline size_t
1072 lfs_ss_getsumstart(STRUCT_LFS *fs)
1073 {
1074 /* These are actually all the same. */
1075 if (fs->lfs_is64) {
1076 return offsetof(SEGSUM64, ss_datasum);
1077 } else /* if (lfs_sb_getversion(fs) > 1) */ {
1078 return offsetof(SEGSUM32, ss_datasum);
1079 } /* else {
1080 return offsetof(SEGSUM_V1, ss_datasum);
1081 } */
1082 /*
1083 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1084 * defined yet.
1085 */
1086 }
1087
1088 static __unused inline uint32_t
1089 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1090 {
1091 KASSERT(fs->lfs_is64 == 0);
1092 /* XXX need to resort this file before we can do this */
1093 //KASSERT(lfs_sb_getversion(fs) == 1);
1094
1095 return ssp->u_v1.ss_create;
1096 }
1097
1098 static __unused inline void
1099 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1100 {
1101 KASSERT(fs->lfs_is64 == 0);
1102 /* XXX need to resort this file before we can do this */
1103 //KASSERT(lfs_sb_getversion(fs) == 1);
1104
1105 ssp->u_v1.ss_create = val;
1106 }
1107
1108
1109 /*
1110 * Super block.
1111 */
1112
1113 /*
1114 * Generate accessors for the on-disk superblock fields with cpp.
1115 */
1116
1117 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1118 static __unused inline type \
1119 lfs_sb_get##field(STRUCT_LFS *fs) \
1120 { \
1121 if (fs->lfs_is64) { \
1122 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1123 } else { \
1124 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1125 } \
1126 } \
1127 static __unused inline void \
1128 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1129 { \
1130 if (fs->lfs_is64) { \
1131 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1132 } else { \
1133 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1134 } \
1135 } \
1136 static __unused inline void \
1137 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1138 { \
1139 if (fs->lfs_is64) { \
1140 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1141 *p64 += val; \
1142 } else { \
1143 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1144 *p32 += val; \
1145 } \
1146 } \
1147 static __unused inline void \
1148 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1149 { \
1150 if (fs->lfs_is64) { \
1151 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1152 *p64 -= val; \
1153 } else { \
1154 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1155 *p32 -= val; \
1156 } \
1157 }
1158
1159 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1160
1161 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1162 static __unused inline type \
1163 lfs_sb_get##field(STRUCT_LFS *fs) \
1164 { \
1165 if (fs->lfs_is64) { \
1166 return val64; \
1167 } else { \
1168 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1169 } \
1170 }
1171
1172 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1173 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1174 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1175 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1176 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1177 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1178 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1179 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1180 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1181 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1182 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1183 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1184 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1185 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1186 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1187 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1188 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1189 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1190 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1191 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1192 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1193 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1194 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1195 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1196 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1197 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1198 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1199 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1200 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1201 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1202 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1203 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1204 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1205 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1206 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1207 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1208 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1209 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1210 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1211 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1212 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1213 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1214 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1215 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1216 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1217 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1218 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1219 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1220 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1221 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1222 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1223 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1224 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1225 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1226 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1227 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1228 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1229
1230 /* special-case accessors */
1231
1232 /*
1233 * the v1 otstamp field lives in what's now dlfs_inopf
1234 */
1235 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1236 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1237
1238 /*
1239 * lfs_sboffs is an array
1240 */
1241 static __unused inline int32_t
1242 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1243 {
1244 #ifdef KASSERT /* ugh */
1245 KASSERT(n < LFS_MAXNUMSB);
1246 #endif
1247 if (fs->lfs_is64) {
1248 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1249 } else {
1250 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1251 }
1252 }
1253 static __unused inline void
1254 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1255 {
1256 #ifdef KASSERT /* ugh */
1257 KASSERT(n < LFS_MAXNUMSB);
1258 #endif
1259 if (fs->lfs_is64) {
1260 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1261 } else {
1262 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1263 }
1264 }
1265
1266 /*
1267 * lfs_fsmnt is a string
1268 */
1269 static __unused inline const char *
1270 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1271 {
1272 if (fs->lfs_is64) {
1273 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1274 } else {
1275 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1276 }
1277 }
1278
1279 static __unused inline void
1280 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1281 {
1282 if (fs->lfs_is64) {
1283 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1284 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1285 } else {
1286 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1287 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1288 }
1289 }
1290
1291 /* Highest addressable fsb */
1292 #define LFS_MAX_DADDR(fs) \
1293 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1294
1295 /* LFS_NINDIR is the number of indirects in a file system block. */
1296 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1297
1298 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1299 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1300 /* LFS_INOPF is the number of inodes in a fragment. */
1301 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1302
1303 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1304 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1305 ((int)((loc) & lfs_sb_getffmask(fs)))
1306
1307 /* XXX: lowercase these as they're no longer macros */
1308 /* Frags to diskblocks */
1309 static __unused inline uint64_t
1310 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1311 {
1312 #if defined(_KERNEL)
1313 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1314 #else
1315 return b << lfs_sb_getfsbtodb(fs);
1316 #endif
1317 }
1318 /* Diskblocks to frags */
1319 static __unused inline uint64_t
1320 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1321 {
1322 #if defined(_KERNEL)
1323 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1324 #else
1325 return b >> lfs_sb_getfsbtodb(fs);
1326 #endif
1327 }
1328
1329 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1330 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1331
1332 /* Frags to bytes */
1333 static __unused inline uint64_t
1334 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1335 {
1336 return b << lfs_sb_getffshift(fs);
1337 }
1338 /* Bytes to frags */
1339 static __unused inline uint64_t
1340 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1341 {
1342 return b >> lfs_sb_getffshift(fs);
1343 }
1344
1345 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1346 ((loc) >> lfs_sb_getffshift(fs))
1347 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1348 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1349 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1350 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1351 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1352 ((frags) >> lfs_sb_getfbshift(fs))
1353 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1354 ((blks) << lfs_sb_getfbshift(fs))
1355 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1356 ((fsb) & ((fs)->lfs_frag - 1))
1357 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1358 ((fsb) &~ ((fs)->lfs_frag - 1))
1359 #define lfs_dblksize(fs, dp, lbn) \
1360 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1361 ? lfs_sb_getbsize(fs) \
1362 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1363
1364 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1365 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1366 lfs_sb_getssize(fs))
1367 /* XXX segtod produces a result in frags despite the 'd' */
1368 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1369 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1370 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1371 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1372 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1373
1374 /* XXX, blah. make this appear only if struct inode is defined */
1375 #ifdef _UFS_LFS_LFS_INODE_H_
1376 static __unused inline uint32_t
1377 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1378 {
1379 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1380 return lfs_sb_getbsize(fs);
1381 } else {
1382 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1383 }
1384 }
1385 #endif
1386
1387 /*
1388 * union lfs_blocks
1389 */
1390
1391 static __unused inline void
1392 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1393 {
1394 if (fs->lfs_is64) {
1395 bp->b64 = p;
1396 } else {
1397 bp->b32 = p;
1398 }
1399 }
1400
1401 static __unused inline void
1402 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1403 {
1404 void *firstblock;
1405
1406 firstblock = (char *)fip + FINFOSIZE(fs);
1407 if (fs->lfs_is64) {
1408 bp->b64 = (int64_t *)firstblock;
1409 } else {
1410 bp->b32 = (int32_t *)firstblock;
1411 }
1412 }
1413
1414 static __unused inline daddr_t
1415 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1416 {
1417 if (fs->lfs_is64) {
1418 return bp->b64[index];
1419 } else {
1420 return bp->b32[index];
1421 }
1422 }
1423
1424 static __unused inline void
1425 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1426 {
1427 if (fs->lfs_is64) {
1428 bp->b64[index] = val;
1429 } else {
1430 bp->b32[index] = val;
1431 }
1432 }
1433
1434 static __unused inline void
1435 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1436 {
1437 if (fs->lfs_is64) {
1438 bp->b64++;
1439 } else {
1440 bp->b32++;
1441 }
1442 }
1443
1444 static __unused inline int
1445 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1446 {
1447 if (fs->lfs_is64) {
1448 return bp1->b64 == bp2->b64;
1449 } else {
1450 return bp1->b32 == bp2->b32;
1451 }
1452 }
1453
1454 static __unused inline int
1455 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1456 {
1457 /* (remember that the pointers are typed) */
1458 if (fs->lfs_is64) {
1459 return bp1->b64 - bp2->b64;
1460 } else {
1461 return bp1->b32 - bp2->b32;
1462 }
1463 }
1464
1465 /*
1466 * struct segment
1467 */
1468
1469
1470 /*
1471 * Macros for determining free space on the disk, with the variable metadata
1472 * of segment summaries and inode blocks taken into account.
1473 */
1474 /*
1475 * Estimate number of clean blocks not available for writing because
1476 * they will contain metadata or overhead. This is calculated as
1477 *
1478 * E = ((C * M / D) * D + (0) * (T - D)) / T
1479 * or more simply
1480 * E = (C * M) / T
1481 *
1482 * where
1483 * C is the clean space,
1484 * D is the dirty space,
1485 * M is the dirty metadata, and
1486 * T = C + D is the total space on disk.
1487 *
1488 * This approximates the old formula of E = C * M / D when D is close to T,
1489 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1490 */
1491 #define LFS_EST_CMETA(F) (( \
1492 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1493 (lfs_sb_getnseg(F))))
1494
1495 /* Estimate total size of the disk not including metadata */
1496 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1497
1498 /* Estimate number of blocks actually available for writing */
1499 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1500 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1501
1502 /* Amount of non-meta space not available to mortal man */
1503 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
1504 (u_int64_t)lfs_sb_getminfree(F)) / \
1505 100)
1506
1507 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1508 #define ISSPACE(F, BB, C) \
1509 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1510 LFS_EST_BFREE(F) >= (BB)) || \
1511 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1512
1513 /* Can an ordinary user write BB blocks */
1514 #define IS_FREESPACE(F, BB) \
1515 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1516
1517 /*
1518 * The minimum number of blocks to create a new inode. This is:
1519 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1520 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1521 */
1522 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1523
1524
1525
1526 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1527