lfs_accessors.h revision 1.35 1 /* $NetBSD: lfs_accessors.h,v 1.35 2015/10/03 08:28:16 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */
5 /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158
159 /*
160 * STRUCT_LFS is used by the libsa code to get accessors that work
161 * with struct salfs instead of struct lfs, and by the cleaner to
162 * get accessors that work with struct clfs.
163 */
164
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168
169 /*
170 * byte order
171 */
172
173 /*
174 * For now at least, the bootblocks shall not be endian-independent.
175 * We can see later if it fits in the size budget. Also disable the
176 * byteswapping if LFS_EI is off.
177 *
178 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179 * and if that changes will likely break silently.
180 */
181
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203
204 /*
205 * For handling directories we will need to know if the volume is
206 * little-endian.
207 */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213
214
215 /*
216 * directories
217 */
218
219 #define LFS_DIRHEADERSIZE(fs) \
220 ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
221
222 /*
223 * The LFS_DIRSIZ macro gives the minimum record length which will hold
224 * the directory entry. This requires the amount of space in struct lfs_direct
225 * without the d_name field, plus enough space for the name with a terminating
226 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
227 */
228 #define LFS_DIRECTSIZ(fs, namlen) \
229 (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
230
231 /*
232 * The size of the largest possible directory entry. This is
233 * used by ulfs_dirhash to figure the size of an array, so we
234 * need a single constant value true for both lfs32 and lfs64.
235 */
236 #define LFS_MAXDIRENTRYSIZE \
237 (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
238
239 #if (BYTE_ORDER == LITTLE_ENDIAN)
240 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
241 (((oldfmt) && !(needswap)) ? \
242 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
243 #else
244 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
245 (((oldfmt) && (needswap)) ? \
246 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
247 #endif
248
249 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
250
251 /* Constants for the first argument of LFS_OLDDIRSIZ */
252 #define LFS_OLDDIRFMT 1
253 #define LFS_NEWDIRFMT 0
254
255 #define LFS_NEXTDIR(fs, dp) \
256 ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
257
258 static __unused inline char *
259 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
260 {
261 if (fs->lfs_is64) {
262 return (char *)(&dh->u_64 + 1);
263 } else {
264 return (char *)(&dh->u_32 + 1);
265 }
266 }
267
268 static __unused inline uint64_t
269 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
270 {
271 if (fs->lfs_is64) {
272 uint64_t ino;
273
274 /*
275 * XXX we can probably write this in a way that's both
276 * still legal and generates better code.
277 */
278 memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
279 memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
280 &dh->u_64.dh_inoB,
281 sizeof(dh->u_64.dh_inoB));
282 return LFS_SWAP_uint64_t(fs, ino);
283 } else {
284 return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
285 }
286 }
287
288 static __unused inline uint16_t
289 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
290 {
291 if (fs->lfs_is64) {
292 return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
293 } else {
294 return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
295 }
296 }
297
298 static __unused inline uint8_t
299 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
300 {
301 if (fs->lfs_is64) {
302 KASSERT(fs->lfs_hasolddirfmt == 0);
303 return dh->u_64.dh_type;
304 } else if (fs->lfs_hasolddirfmt) {
305 return LFS_DT_UNKNOWN;
306 } else {
307 return dh->u_32.dh_type;
308 }
309 }
310
311 static __unused inline uint8_t
312 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
313 {
314 if (fs->lfs_is64) {
315 KASSERT(fs->lfs_hasolddirfmt == 0);
316 return dh->u_64.dh_type;
317 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
318 /* low-order byte of old 16-bit namlen field */
319 return dh->u_32.dh_type;
320 } else {
321 return dh->u_32.dh_namlen;
322 }
323 }
324
325 static __unused inline void
326 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
327 {
328 if (fs->lfs_is64) {
329
330 ino = LFS_SWAP_uint64_t(fs, ino);
331 /*
332 * XXX we can probably write this in a way that's both
333 * still legal and generates better code.
334 */
335 memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
336 memcpy(&dh->u_64.dh_inoB,
337 (char *)&ino + sizeof(dh->u_64.dh_inoA),
338 sizeof(dh->u_64.dh_inoB));
339 } else {
340 dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
341 }
342 }
343
344 static __unused inline void
345 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
346 {
347 if (fs->lfs_is64) {
348 dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
349 } else {
350 dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
351 }
352 }
353
354 static __unused inline void
355 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
356 {
357 if (fs->lfs_is64) {
358 KASSERT(fs->lfs_hasolddirfmt == 0);
359 dh->u_64.dh_type = type;
360 } else if (fs->lfs_hasolddirfmt) {
361 /* do nothing */
362 return;
363 } else {
364 dh->u_32.dh_type = type;
365 }
366 }
367
368 static __unused inline void
369 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
370 {
371 if (fs->lfs_is64) {
372 KASSERT(fs->lfs_hasolddirfmt == 0);
373 dh->u_64.dh_namlen = namlen;
374 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
375 /* low-order byte of old 16-bit namlen field */
376 dh->u_32.dh_type = namlen;
377 } else {
378 dh->u_32.dh_namlen = namlen;
379 }
380 }
381
382 static __unused inline void
383 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
384 unsigned namlen, unsigned reclen)
385 {
386 unsigned spacelen;
387
388 KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
389 spacelen = reclen - LFS_DIRHEADERSIZE(fs);
390
391 /* must always be at least 1 byte as a null terminator */
392 KASSERT(spacelen > namlen);
393
394 memcpy(dest, src, namlen);
395 memset(dest + namlen, '\0', spacelen - namlen);
396 }
397
398 static __unused LFS_DIRHEADER *
399 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
400 {
401 /* XXX blah, be nice to have a way to do this w/o casts */
402 if (fs->lfs_is64) {
403 return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
404 } else {
405 return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
406 }
407 }
408
409 static __unused char *
410 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
411 {
412 if (fs->lfs_is64) {
413 return dt->u_64.dotdot_name;
414 } else {
415 return dt->u_32.dotdot_name;
416 }
417 }
418
419 /*
420 * dinodes
421 */
422
423 /*
424 * Maximum length of a symlink that can be stored within the inode.
425 */
426 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
427 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
428
429 #define LFS_MAXSYMLINKLEN(fs) \
430 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
431
432 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
433
434 #define DINO_IN_BLOCK(fs, base, ix) \
435 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
436
437 static __unused inline void
438 lfs_copy_dinode(STRUCT_LFS *fs,
439 union lfs_dinode *dst, const union lfs_dinode *src)
440 {
441 /*
442 * We can do structure assignment of the structs, but not of
443 * the whole union, as the union is the size of the (larger)
444 * 64-bit struct and on a 32-bit fs the upper half of it might
445 * be off the end of a buffer or otherwise invalid.
446 */
447 if (fs->lfs_is64) {
448 dst->u_64 = src->u_64;
449 } else {
450 dst->u_32 = src->u_32;
451 }
452 }
453
454 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
455 static __unused inline type \
456 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
457 { \
458 if (fs->lfs_is64) { \
459 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
460 } else { \
461 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
462 } \
463 } \
464 static __unused inline void \
465 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
466 { \
467 if (fs->lfs_is64) { \
468 type *p = &dip->u_64.di_##field; \
469 (void)p; \
470 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
471 } else { \
472 type32 *p = &dip->u_32.di_##field; \
473 (void)p; \
474 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
475 } \
476 } \
477
478 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
479 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
480 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
481 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
482 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
483 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
484 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
485 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
486 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
487 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
488 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
489 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
490 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
491 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
492 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
493
494 /* XXX this should be done differently (it's a fake field) */
495 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
496
497 static __unused inline daddr_t
498 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
499 {
500 KASSERT(ix < ULFS_NDADDR);
501 if (fs->lfs_is64) {
502 return dip->u_64.di_db[ix];
503 } else {
504 return dip->u_32.di_db[ix];
505 }
506 }
507
508 static __unused inline daddr_t
509 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
510 {
511 KASSERT(ix < ULFS_NIADDR);
512 if (fs->lfs_is64) {
513 return dip->u_64.di_ib[ix];
514 } else {
515 return dip->u_32.di_ib[ix];
516 }
517 }
518
519 static __unused inline void
520 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
521 {
522 KASSERT(ix < ULFS_NDADDR);
523 if (fs->lfs_is64) {
524 dip->u_64.di_db[ix] = val;
525 } else {
526 dip->u_32.di_db[ix] = val;
527 }
528 }
529
530 static __unused inline void
531 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
532 {
533 KASSERT(ix < ULFS_NIADDR);
534 if (fs->lfs_is64) {
535 dip->u_64.di_ib[ix] = val;
536 } else {
537 dip->u_32.di_ib[ix] = val;
538 }
539 }
540
541 /* birthtime is present only in the 64-bit inode */
542 static __unused inline void
543 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
544 const struct timespec *ts)
545 {
546 if (fs->lfs_is64) {
547 dip->u_64.di_birthtime = ts->tv_sec;
548 dip->u_64.di_birthnsec = ts->tv_nsec;
549 } else {
550 /* drop it on the floor */
551 }
552 }
553
554 /*
555 * indirect blocks
556 */
557
558 static __unused inline daddr_t
559 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
560 {
561 if (fs->lfs_is64) {
562 // XXX re-enable these asserts after reorging this file
563 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
564 return (daddr_t)(((int64_t *)block)[ix]);
565 } else {
566 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
567 /* must sign-extend or UNWRITTEN gets trashed */
568 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
569 }
570 }
571
572 static __unused inline void
573 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
574 {
575 if (fs->lfs_is64) {
576 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
577 ((int64_t *)block)[ix] = val;
578 } else {
579 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
580 ((int32_t *)block)[ix] = val;
581 }
582 }
583
584 /*
585 * "struct buf" associated definitions
586 */
587
588 # define LFS_LOCK_BUF(bp) do { \
589 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
590 mutex_enter(&lfs_lock); \
591 ++locked_queue_count; \
592 locked_queue_bytes += bp->b_bufsize; \
593 mutex_exit(&lfs_lock); \
594 } \
595 (bp)->b_flags |= B_LOCKED; \
596 } while (0)
597
598 # define LFS_UNLOCK_BUF(bp) do { \
599 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
600 mutex_enter(&lfs_lock); \
601 --locked_queue_count; \
602 locked_queue_bytes -= bp->b_bufsize; \
603 if (locked_queue_count < LFS_WAIT_BUFS && \
604 locked_queue_bytes < LFS_WAIT_BYTES) \
605 cv_broadcast(&locked_queue_cv); \
606 mutex_exit(&lfs_lock); \
607 } \
608 (bp)->b_flags &= ~B_LOCKED; \
609 } while (0)
610
611 /*
612 * "struct inode" associated definitions
613 */
614
615 #define LFS_SET_UINO(ip, flags) do { \
616 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
617 lfs_sb_adduinodes((ip)->i_lfs, 1); \
618 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
619 lfs_sb_adduinodes((ip)->i_lfs, 1); \
620 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
621 lfs_sb_adduinodes((ip)->i_lfs, 1); \
622 (ip)->i_flag |= (flags); \
623 } while (0)
624
625 #define LFS_CLR_UINO(ip, flags) do { \
626 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
627 lfs_sb_subuinodes((ip)->i_lfs, 1); \
628 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
629 lfs_sb_subuinodes((ip)->i_lfs, 1); \
630 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
631 lfs_sb_subuinodes((ip)->i_lfs, 1); \
632 (ip)->i_flag &= ~(flags); \
633 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
634 panic("lfs_uinodes < 0"); \
635 } \
636 } while (0)
637
638 #define LFS_ITIMES(ip, acc, mod, cre) \
639 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
640 lfs_itimes(ip, acc, mod, cre)
641
642 /*
643 * On-disk and in-memory checkpoint segment usage structure.
644 */
645
646 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
647 #define SEGTABSIZE_SU(fs) \
648 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
649
650 #ifdef _KERNEL
651 # define SHARE_IFLOCK(F) \
652 do { \
653 rw_enter(&(F)->lfs_iflock, RW_READER); \
654 } while(0)
655 # define UNSHARE_IFLOCK(F) \
656 do { \
657 rw_exit(&(F)->lfs_iflock); \
658 } while(0)
659 #else /* ! _KERNEL */
660 # define SHARE_IFLOCK(F)
661 # define UNSHARE_IFLOCK(F)
662 #endif /* ! _KERNEL */
663
664 /* Read in the block with a specific segment usage entry from the ifile. */
665 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
666 int _e; \
667 SHARE_IFLOCK(F); \
668 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
669 if ((_e = bread((F)->lfs_ivnode, \
670 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
671 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
672 panic("lfs: ifile read: %d", _e); \
673 if (lfs_sb_getversion(F) == 1) \
674 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
675 ((IN) & (lfs_sb_getsepb(F) - 1))); \
676 else \
677 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
678 UNSHARE_IFLOCK(F); \
679 } while (0)
680
681 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
682 if ((SP)->su_nbytes == 0) \
683 (SP)->su_flags |= SEGUSE_EMPTY; \
684 else \
685 (SP)->su_flags &= ~SEGUSE_EMPTY; \
686 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
687 LFS_BWRITE_LOG(BP); \
688 } while (0)
689
690 /*
691 * FINFO (file info) entries.
692 */
693
694 /* Size of an on-disk block pointer, e.g. in an indirect block. */
695 /* XXX: move to a more suitable location in this file */
696 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
697
698 /* Size of an on-disk inode number. */
699 /* XXX: move to a more suitable location in this file */
700 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
701
702 /* size of a FINFO, without the block pointers */
703 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
704
705 /* Full size of the provided FINFO record, including its block pointers. */
706 #define FINFO_FULLSIZE(fs, fip) \
707 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
708
709 #define NEXT_FINFO(fs, fip) \
710 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
711
712 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
713 static __unused inline type \
714 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
715 { \
716 if (fs->lfs_is64) { \
717 return fip->u_64.fi_##field; \
718 } else { \
719 return fip->u_32.fi_##field; \
720 } \
721 } \
722 static __unused inline void \
723 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
724 { \
725 if (fs->lfs_is64) { \
726 type *p = &fip->u_64.fi_##field; \
727 (void)p; \
728 fip->u_64.fi_##field = val; \
729 } else { \
730 type32 *p = &fip->u_32.fi_##field; \
731 (void)p; \
732 fip->u_32.fi_##field = val; \
733 } \
734 } \
735
736 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
737 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
738 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
739 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
740
741 static __unused inline daddr_t
742 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
743 {
744 void *firstblock;
745
746 firstblock = (char *)fip + FINFOSIZE(fs);
747 KASSERT(index < lfs_fi_getnblocks(fs, fip));
748 if (fs->lfs_is64) {
749 return ((int64_t *)firstblock)[index];
750 } else {
751 return ((int32_t *)firstblock)[index];
752 }
753 }
754
755 static __unused inline void
756 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
757 {
758 void *firstblock;
759
760 firstblock = (char *)fip + FINFOSIZE(fs);
761 KASSERT(index < lfs_fi_getnblocks(fs, fip));
762 if (fs->lfs_is64) {
763 ((int64_t *)firstblock)[index] = blk;
764 } else {
765 ((int32_t *)firstblock)[index] = blk;
766 }
767 }
768
769 /*
770 * inode info entries (in the segment summary)
771 */
772
773 #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
774
775 /* iinfos scroll backward from the end of the segment summary block */
776 #define SEGSUM_IINFOSTART(fs, buf) \
777 ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
778
779 #define NEXTLOWER_IINFO(fs, iip) \
780 ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
781
782 #define NTH_IINFO(fs, buf, n) \
783 ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
784
785 static __unused inline uint64_t
786 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
787 {
788 if (fs->lfs_is64) {
789 return iip->u_64.ii_block;
790 } else {
791 return iip->u_32.ii_block;
792 }
793 }
794
795 static __unused inline void
796 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
797 {
798 if (fs->lfs_is64) {
799 iip->u_64.ii_block = block;
800 } else {
801 iip->u_32.ii_block = block;
802 }
803 }
804
805 /*
806 * Index file inode entries.
807 */
808
809 #define IFILE_ENTRYSIZE(fs) \
810 ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
811
812 /*
813 * LFSv1 compatibility code is not allowed to touch if_atime, since it
814 * may not be mapped!
815 */
816 /* Read in the block with a specific inode from the ifile. */
817 #define LFS_IENTRY(IP, F, IN, BP) do { \
818 int _e; \
819 SHARE_IFLOCK(F); \
820 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
821 if ((_e = bread((F)->lfs_ivnode, \
822 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
823 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
824 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
825 if ((F)->lfs_is64) { \
826 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
827 (IN) % lfs_sb_getifpb(F)); \
828 } else if (lfs_sb_getversion(F) > 1) { \
829 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
830 (IN) % lfs_sb_getifpb(F)); \
831 } else { \
832 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
833 (IN) % lfs_sb_getifpb(F)); \
834 } \
835 UNSHARE_IFLOCK(F); \
836 } while (0)
837 #define LFS_IENTRY_NEXT(IP, F) do { \
838 if ((F)->lfs_is64) { \
839 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
840 } else if (lfs_sb_getversion(F) > 1) { \
841 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
842 } else { \
843 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
844 } \
845 } while (0)
846
847 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
848 static __unused inline type \
849 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
850 { \
851 if (fs->lfs_is64) { \
852 return ifp->u_64.if_##field; \
853 } else { \
854 return ifp->u_32.if_##field; \
855 } \
856 } \
857 static __unused inline void \
858 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
859 { \
860 if (fs->lfs_is64) { \
861 type *p = &ifp->u_64.if_##field; \
862 (void)p; \
863 ifp->u_64.if_##field = val; \
864 } else { \
865 type32 *p = &ifp->u_32.if_##field; \
866 (void)p; \
867 ifp->u_32.if_##field = val; \
868 } \
869 } \
870
871 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
872 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
873 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
874 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
875 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
876
877 /*
878 * Cleaner information structure. This resides in the ifile and is used
879 * to pass information from the kernel to the cleaner.
880 */
881
882 #define CLEANSIZE_SU(fs) \
883 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
884 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
885
886 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
887 static __unused inline type \
888 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
889 { \
890 if (fs->lfs_is64) { \
891 return cip->u_64.field; \
892 } else { \
893 return cip->u_32.field; \
894 } \
895 } \
896 static __unused inline void \
897 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
898 { \
899 if (fs->lfs_is64) { \
900 type *p = &cip->u_64.field; \
901 (void)p; \
902 cip->u_64.field = val; \
903 } else { \
904 type32 *p = &cip->u_32.field; \
905 (void)p; \
906 cip->u_32.field = val; \
907 } \
908 } \
909
910 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
911 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
912 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
913 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
914 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
915 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
916 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
917
918 static __unused inline void
919 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
920 {
921 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
922 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
923 }
924
925 static __unused inline void
926 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
927 {
928 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
929 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
930 }
931
932 /* Read in the block with the cleaner info from the ifile. */
933 #define LFS_CLEANERINFO(CP, F, BP) do { \
934 SHARE_IFLOCK(F); \
935 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
936 if (bread((F)->lfs_ivnode, \
937 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \
938 panic("lfs: ifile read"); \
939 (CP) = (CLEANERINFO *)(BP)->b_data; \
940 UNSHARE_IFLOCK(F); \
941 } while (0)
942
943 /*
944 * Synchronize the Ifile cleaner info with current avail and bfree.
945 */
946 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
947 mutex_enter(&lfs_lock); \
948 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
949 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
950 fs->lfs_favail) { \
951 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
952 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
953 fs->lfs_favail); \
954 if (((bp)->b_flags & B_GATHERED) == 0) { \
955 fs->lfs_flags |= LFS_IFDIRTY; \
956 } \
957 mutex_exit(&lfs_lock); \
958 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
959 } else { \
960 mutex_exit(&lfs_lock); \
961 brelse(bp, 0); \
962 } \
963 } while (0)
964
965 /*
966 * Get the head of the inode free list.
967 * Always called with the segment lock held.
968 */
969 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
970 if (lfs_sb_getversion(FS) > 1) { \
971 LFS_CLEANERINFO((CIP), (FS), (BP)); \
972 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
973 brelse(BP, 0); \
974 } \
975 *(FREEP) = lfs_sb_getfreehd(FS); \
976 } while (0)
977
978 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
979 lfs_sb_setfreehd(FS, VAL); \
980 if (lfs_sb_getversion(FS) > 1) { \
981 LFS_CLEANERINFO((CIP), (FS), (BP)); \
982 lfs_ci_setfree_head(FS, CIP, VAL); \
983 LFS_BWRITE_LOG(BP); \
984 mutex_enter(&lfs_lock); \
985 (FS)->lfs_flags |= LFS_IFDIRTY; \
986 mutex_exit(&lfs_lock); \
987 } \
988 } while (0)
989
990 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
991 LFS_CLEANERINFO((CIP), (FS), (BP)); \
992 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
993 brelse(BP, 0); \
994 } while (0)
995
996 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
997 LFS_CLEANERINFO((CIP), (FS), (BP)); \
998 lfs_ci_setfree_tail(FS, CIP, VAL); \
999 LFS_BWRITE_LOG(BP); \
1000 mutex_enter(&lfs_lock); \
1001 (FS)->lfs_flags |= LFS_IFDIRTY; \
1002 mutex_exit(&lfs_lock); \
1003 } while (0)
1004
1005 /*
1006 * On-disk segment summary information
1007 */
1008
1009 #define SEGSUM_SIZE(fs) \
1010 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1011 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1012
1013 /*
1014 * The SEGSUM structure is followed by FINFO structures. Get the pointer
1015 * to the first FINFO.
1016 *
1017 * XXX this can't be a macro yet; this file needs to be resorted.
1018 */
1019 #if 0
1020 static __unused inline FINFO *
1021 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1022 {
1023 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1024 }
1025 #else
1026 #define SEGSUM_FINFOBASE(fs, ssp) \
1027 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1028 #endif
1029
1030 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1031 static __unused inline type \
1032 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
1033 { \
1034 if (fs->lfs_is64) { \
1035 return ssp->u_64.ss_##field; \
1036 } else { \
1037 return ssp->u_32.ss_##field; \
1038 } \
1039 } \
1040 static __unused inline void \
1041 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1042 { \
1043 if (fs->lfs_is64) { \
1044 type *p = &ssp->u_64.ss_##field; \
1045 (void)p; \
1046 ssp->u_64.ss_##field = val; \
1047 } else { \
1048 type32 *p = &ssp->u_32.ss_##field; \
1049 (void)p; \
1050 ssp->u_32.ss_##field = val; \
1051 } \
1052 } \
1053
1054 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1055 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1056 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1057 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1058 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1059 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1060 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1061 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1062 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1063 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1064 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1065
1066 static __unused inline size_t
1067 lfs_ss_getsumstart(STRUCT_LFS *fs)
1068 {
1069 /* These are actually all the same. */
1070 if (fs->lfs_is64) {
1071 return offsetof(SEGSUM64, ss_datasum);
1072 } else /* if (lfs_sb_getversion(fs) > 1) */ {
1073 return offsetof(SEGSUM32, ss_datasum);
1074 } /* else {
1075 return offsetof(SEGSUM_V1, ss_datasum);
1076 } */
1077 /*
1078 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1079 * defined yet.
1080 */
1081 }
1082
1083 static __unused inline uint32_t
1084 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1085 {
1086 KASSERT(fs->lfs_is64 == 0);
1087 /* XXX need to resort this file before we can do this */
1088 //KASSERT(lfs_sb_getversion(fs) == 1);
1089
1090 return ssp->u_v1.ss_create;
1091 }
1092
1093 static __unused inline void
1094 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1095 {
1096 KASSERT(fs->lfs_is64 == 0);
1097 /* XXX need to resort this file before we can do this */
1098 //KASSERT(lfs_sb_getversion(fs) == 1);
1099
1100 ssp->u_v1.ss_create = val;
1101 }
1102
1103
1104 /*
1105 * Super block.
1106 */
1107
1108 /*
1109 * Generate accessors for the on-disk superblock fields with cpp.
1110 */
1111
1112 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1113 static __unused inline type \
1114 lfs_sb_get##field(STRUCT_LFS *fs) \
1115 { \
1116 if (fs->lfs_is64) { \
1117 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1118 } else { \
1119 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1120 } \
1121 } \
1122 static __unused inline void \
1123 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1124 { \
1125 if (fs->lfs_is64) { \
1126 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1127 } else { \
1128 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1129 } \
1130 } \
1131 static __unused inline void \
1132 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1133 { \
1134 if (fs->lfs_is64) { \
1135 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1136 *p64 += val; \
1137 } else { \
1138 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1139 *p32 += val; \
1140 } \
1141 } \
1142 static __unused inline void \
1143 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1144 { \
1145 if (fs->lfs_is64) { \
1146 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1147 *p64 -= val; \
1148 } else { \
1149 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1150 *p32 -= val; \
1151 } \
1152 }
1153
1154 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1155
1156 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1157 static __unused inline type \
1158 lfs_sb_get##field(STRUCT_LFS *fs) \
1159 { \
1160 if (fs->lfs_is64) { \
1161 return val64; \
1162 } else { \
1163 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1164 } \
1165 }
1166
1167 #define lfs_magic lfs_dlfs.dlfs_magic
1168 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1169 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1170 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1171 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1172 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1173 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1174 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1175 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1176 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1177 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1178 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1179 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1180 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1181 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1182 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1183 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1184 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1185 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1186 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1187 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1188 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1189 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1190 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1191 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1192 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1193 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1194 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1195 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1196 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1197 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1198 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1199 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1200 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1201 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1202 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1203 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1204 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1205 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1206 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1207 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1208 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1209 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1210 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1211 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1212 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1213 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1214 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1215 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1216 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1217 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1218 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1219 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1220 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1221 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1222 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1223 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1224 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1225
1226 /* special-case accessors */
1227
1228 /*
1229 * the v1 otstamp field lives in what's now dlfs_inopf
1230 */
1231 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1232 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1233
1234 /*
1235 * lfs_sboffs is an array
1236 */
1237 static __unused inline int32_t
1238 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1239 {
1240 #ifdef KASSERT /* ugh */
1241 KASSERT(n < LFS_MAXNUMSB);
1242 #endif
1243 if (fs->lfs_is64) {
1244 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1245 } else {
1246 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1247 }
1248 }
1249 static __unused inline void
1250 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1251 {
1252 #ifdef KASSERT /* ugh */
1253 KASSERT(n < LFS_MAXNUMSB);
1254 #endif
1255 if (fs->lfs_is64) {
1256 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1257 } else {
1258 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1259 }
1260 }
1261
1262 /*
1263 * lfs_fsmnt is a string
1264 */
1265 static __unused inline const char *
1266 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1267 {
1268 if (fs->lfs_is64) {
1269 return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1270 } else {
1271 return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1272 }
1273 }
1274
1275 static __unused inline void
1276 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1277 {
1278 if (fs->lfs_is64) {
1279 (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1280 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1281 } else {
1282 (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1283 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1284 }
1285 }
1286
1287 /* Highest addressable fsb */
1288 #define LFS_MAX_DADDR(fs) \
1289 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1290
1291 /* LFS_NINDIR is the number of indirects in a file system block. */
1292 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1293
1294 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1295 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1296 /* LFS_INOPF is the number of inodes in a fragment. */
1297 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1298
1299 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1300 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1301 ((int)((loc) & lfs_sb_getffmask(fs)))
1302
1303 /* XXX: lowercase these as they're no longer macros */
1304 /* Frags to diskblocks */
1305 static __unused inline uint64_t
1306 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1307 {
1308 #if defined(_KERNEL)
1309 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1310 #else
1311 return b << lfs_sb_getfsbtodb(fs);
1312 #endif
1313 }
1314 /* Diskblocks to frags */
1315 static __unused inline uint64_t
1316 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1317 {
1318 #if defined(_KERNEL)
1319 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1320 #else
1321 return b >> lfs_sb_getfsbtodb(fs);
1322 #endif
1323 }
1324
1325 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1326 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1327
1328 /* Frags to bytes */
1329 static __unused inline uint64_t
1330 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1331 {
1332 return b << lfs_sb_getffshift(fs);
1333 }
1334 /* Bytes to frags */
1335 static __unused inline uint64_t
1336 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1337 {
1338 return b >> lfs_sb_getffshift(fs);
1339 }
1340
1341 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1342 ((loc) >> lfs_sb_getffshift(fs))
1343 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1344 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1345 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1346 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1347 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1348 ((frags) >> lfs_sb_getfbshift(fs))
1349 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1350 ((blks) << lfs_sb_getfbshift(fs))
1351 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1352 ((fsb) & ((fs)->lfs_frag - 1))
1353 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1354 ((fsb) &~ ((fs)->lfs_frag - 1))
1355 #define lfs_dblksize(fs, dp, lbn) \
1356 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1357 ? lfs_sb_getbsize(fs) \
1358 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1359
1360 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1361 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1362 lfs_sb_getssize(fs))
1363 /* XXX segtod produces a result in frags despite the 'd' */
1364 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1365 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1366 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1367 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1368 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1369
1370 /* XXX, blah. make this appear only if struct inode is defined */
1371 #ifdef _UFS_LFS_LFS_INODE_H_
1372 static __unused inline uint32_t
1373 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1374 {
1375 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1376 return lfs_sb_getbsize(fs);
1377 } else {
1378 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1379 }
1380 }
1381 #endif
1382
1383 /*
1384 * union lfs_blocks
1385 */
1386
1387 static __unused inline void
1388 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1389 {
1390 if (fs->lfs_is64) {
1391 bp->b64 = p;
1392 } else {
1393 bp->b32 = p;
1394 }
1395 }
1396
1397 static __unused inline void
1398 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1399 {
1400 void *firstblock;
1401
1402 firstblock = (char *)fip + FINFOSIZE(fs);
1403 if (fs->lfs_is64) {
1404 bp->b64 = (int64_t *)firstblock;
1405 } else {
1406 bp->b32 = (int32_t *)firstblock;
1407 }
1408 }
1409
1410 static __unused inline daddr_t
1411 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1412 {
1413 if (fs->lfs_is64) {
1414 return bp->b64[index];
1415 } else {
1416 return bp->b32[index];
1417 }
1418 }
1419
1420 static __unused inline void
1421 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1422 {
1423 if (fs->lfs_is64) {
1424 bp->b64[index] = val;
1425 } else {
1426 bp->b32[index] = val;
1427 }
1428 }
1429
1430 static __unused inline void
1431 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1432 {
1433 if (fs->lfs_is64) {
1434 bp->b64++;
1435 } else {
1436 bp->b32++;
1437 }
1438 }
1439
1440 static __unused inline int
1441 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1442 {
1443 if (fs->lfs_is64) {
1444 return bp1->b64 == bp2->b64;
1445 } else {
1446 return bp1->b32 == bp2->b32;
1447 }
1448 }
1449
1450 static __unused inline int
1451 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1452 {
1453 /* (remember that the pointers are typed) */
1454 if (fs->lfs_is64) {
1455 return bp1->b64 - bp2->b64;
1456 } else {
1457 return bp1->b32 - bp2->b32;
1458 }
1459 }
1460
1461 /*
1462 * struct segment
1463 */
1464
1465
1466 /*
1467 * Macros for determining free space on the disk, with the variable metadata
1468 * of segment summaries and inode blocks taken into account.
1469 */
1470 /*
1471 * Estimate number of clean blocks not available for writing because
1472 * they will contain metadata or overhead. This is calculated as
1473 *
1474 * E = ((C * M / D) * D + (0) * (T - D)) / T
1475 * or more simply
1476 * E = (C * M) / T
1477 *
1478 * where
1479 * C is the clean space,
1480 * D is the dirty space,
1481 * M is the dirty metadata, and
1482 * T = C + D is the total space on disk.
1483 *
1484 * This approximates the old formula of E = C * M / D when D is close to T,
1485 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1486 */
1487 #define LFS_EST_CMETA(F) (( \
1488 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1489 (lfs_sb_getnseg(F))))
1490
1491 /* Estimate total size of the disk not including metadata */
1492 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1493
1494 /* Estimate number of blocks actually available for writing */
1495 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1496 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1497
1498 /* Amount of non-meta space not available to mortal man */
1499 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
1500 (u_int64_t)lfs_sb_getminfree(F)) / \
1501 100)
1502
1503 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1504 #define ISSPACE(F, BB, C) \
1505 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1506 LFS_EST_BFREE(F) >= (BB)) || \
1507 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1508
1509 /* Can an ordinary user write BB blocks */
1510 #define IS_FREESPACE(F, BB) \
1511 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1512
1513 /*
1514 * The minimum number of blocks to create a new inode. This is:
1515 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1516 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1517 */
1518 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1519
1520
1521
1522 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1523