Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.36
      1 /*	$NetBSD: lfs_accessors.h,v 1.36 2015/10/03 08:29:48 dholland Exp $	*/
      2 
      3 /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4 /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
      5 /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
      6 
      7 /*-
      8  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9  * All rights reserved.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*-
     36  * Copyright (c) 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64  */
     65 /*
     66  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67  * All rights reserved.
     68  *
     69  * This software was developed for the FreeBSD Project by Marshall
     70  * Kirk McKusick and Network Associates Laboratories, the Security
     71  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73  * research program
     74  *
     75  * Copyright (c) 1982, 1989, 1993
     76  *	The Regents of the University of California.  All rights reserved.
     77  * (c) UNIX System Laboratories, Inc.
     78  * All or some portions of this file are derived from material licensed
     79  * to the University of California by American Telephone and Telegraph
     80  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81  * the permission of UNIX System Laboratories, Inc.
     82  *
     83  * Redistribution and use in source and binary forms, with or without
     84  * modification, are permitted provided that the following conditions
     85  * are met:
     86  * 1. Redistributions of source code must retain the above copyright
     87  *    notice, this list of conditions and the following disclaimer.
     88  * 2. Redistributions in binary form must reproduce the above copyright
     89  *    notice, this list of conditions and the following disclaimer in the
     90  *    documentation and/or other materials provided with the distribution.
     91  * 3. Neither the name of the University nor the names of its contributors
     92  *    may be used to endorse or promote products derived from this software
     93  *    without specific prior written permission.
     94  *
     95  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105  * SUCH DAMAGE.
    106  *
    107  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108  */
    109 /*
    110  * Copyright (c) 1982, 1986, 1989, 1993
    111  *	The Regents of the University of California.  All rights reserved.
    112  * (c) UNIX System Laboratories, Inc.
    113  * All or some portions of this file are derived from material licensed
    114  * to the University of California by American Telephone and Telegraph
    115  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116  * the permission of UNIX System Laboratories, Inc.
    117  *
    118  * Redistribution and use in source and binary forms, with or without
    119  * modification, are permitted provided that the following conditions
    120  * are met:
    121  * 1. Redistributions of source code must retain the above copyright
    122  *    notice, this list of conditions and the following disclaimer.
    123  * 2. Redistributions in binary form must reproduce the above copyright
    124  *    notice, this list of conditions and the following disclaimer in the
    125  *    documentation and/or other materials provided with the distribution.
    126  * 3. Neither the name of the University nor the names of its contributors
    127  *    may be used to endorse or promote products derived from this software
    128  *    without specific prior written permission.
    129  *
    130  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140  * SUCH DAMAGE.
    141  *
    142  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143  */
    144 
    145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146 #define _UFS_LFS_LFS_ACCESSORS_H_
    147 
    148 #if defined(_KERNEL_OPT)
    149 #include "opt_lfs.h"
    150 #endif
    151 
    152 #include <sys/bswap.h>
    153 
    154 #if !defined(_KERNEL) && !defined(_STANDALONE)
    155 #include <assert.h>
    156 #define KASSERT assert
    157 #endif
    158 
    159 /*
    160  * STRUCT_LFS is used by the libsa code to get accessors that work
    161  * with struct salfs instead of struct lfs, and by the cleaner to
    162  * get accessors that work with struct clfs.
    163  */
    164 
    165 #ifndef STRUCT_LFS
    166 #define STRUCT_LFS struct lfs
    167 #endif
    168 
    169 /*
    170  * byte order
    171  */
    172 
    173 /*
    174  * For now at least, the bootblocks shall not be endian-independent.
    175  * We can see later if it fits in the size budget. Also disable the
    176  * byteswapping if LFS_EI is off.
    177  *
    178  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    179  * and if that changes will likely break silently.
    180  */
    181 
    182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    183 #define LFS_SWAP_int16_t(fs, val) (val)
    184 #define LFS_SWAP_int32_t(fs, val) (val)
    185 #define LFS_SWAP_int64_t(fs, val) (val)
    186 #define LFS_SWAP_uint16_t(fs, val) (val)
    187 #define LFS_SWAP_uint32_t(fs, val) (val)
    188 #define LFS_SWAP_uint64_t(fs, val) (val)
    189 #else
    190 #define LFS_SWAP_int16_t(fs, val) \
    191 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    192 #define LFS_SWAP_int32_t(fs, val) \
    193 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    194 #define LFS_SWAP_int64_t(fs, val) \
    195 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    196 #define LFS_SWAP_uint16_t(fs, val) \
    197 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    198 #define LFS_SWAP_uint32_t(fs, val) \
    199 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    200 #define LFS_SWAP_uint64_t(fs, val) \
    201 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    202 #endif
    203 
    204 /*
    205  * For handling directories we will need to know if the volume is
    206  * little-endian.
    207  */
    208 #if BYTE_ORDER == LITTLE_ENDIAN
    209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
    210 #else
    211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
    212 #endif
    213 
    214 
    215 /*
    216  * directories
    217  */
    218 
    219 #define LFS_DIRHEADERSIZE(fs) \
    220 	((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
    221 
    222 /*
    223  * The LFS_DIRSIZ macro gives the minimum record length which will hold
    224  * the directory entry.  This requires the amount of space in struct lfs_direct
    225  * without the d_name field, plus enough space for the name with a terminating
    226  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
    227  */
    228 #define	LFS_DIRECTSIZ(fs, namlen) \
    229 	(LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
    230 
    231 /*
    232  * The size of the largest possible directory entry. This is
    233  * used by ulfs_dirhash to figure the size of an array, so we
    234  * need a single constant value true for both lfs32 and lfs64.
    235  */
    236 #define LFS_MAXDIRENTRYSIZE \
    237 	(sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
    238 
    239 #if (BYTE_ORDER == LITTLE_ENDIAN)
    240 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    241     (((oldfmt) && !(needswap)) ?		\
    242     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    243 #else
    244 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    245     (((oldfmt) && (needswap)) ?			\
    246     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    247 #endif
    248 
    249 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
    250 
    251 /* Constants for the first argument of LFS_OLDDIRSIZ */
    252 #define LFS_OLDDIRFMT	1
    253 #define LFS_NEWDIRFMT	0
    254 
    255 #define LFS_NEXTDIR(fs, dp) \
    256 	((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
    257 
    258 static __unused inline char *
    259 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
    260 {
    261 	if (fs->lfs_is64) {
    262 		return (char *)(&dh->u_64 + 1);
    263 	} else {
    264 		return (char *)(&dh->u_32 + 1);
    265 	}
    266 }
    267 
    268 static __unused inline uint64_t
    269 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    270 {
    271 	if (fs->lfs_is64) {
    272 		uint64_t ino;
    273 
    274 		/*
    275 		 * XXX we can probably write this in a way that's both
    276 		 * still legal and generates better code.
    277 		 */
    278 		memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
    279 		memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
    280 		       &dh->u_64.dh_inoB,
    281 		       sizeof(dh->u_64.dh_inoB));
    282 		return LFS_SWAP_uint64_t(fs, ino);
    283 	} else {
    284 		return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
    285 	}
    286 }
    287 
    288 static __unused inline uint16_t
    289 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    290 {
    291 	if (fs->lfs_is64) {
    292 		return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
    293 	} else {
    294 		return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
    295 	}
    296 }
    297 
    298 static __unused inline uint8_t
    299 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    300 {
    301 	if (fs->lfs_is64) {
    302 		KASSERT(fs->lfs_hasolddirfmt == 0);
    303 		return dh->u_64.dh_type;
    304 	} else if (fs->lfs_hasolddirfmt) {
    305 		return LFS_DT_UNKNOWN;
    306 	} else {
    307 		return dh->u_32.dh_type;
    308 	}
    309 }
    310 
    311 static __unused inline uint8_t
    312 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    313 {
    314 	if (fs->lfs_is64) {
    315 		KASSERT(fs->lfs_hasolddirfmt == 0);
    316 		return dh->u_64.dh_type;
    317 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    318 		/* low-order byte of old 16-bit namlen field */
    319 		return dh->u_32.dh_type;
    320 	} else {
    321 		return dh->u_32.dh_namlen;
    322 	}
    323 }
    324 
    325 static __unused inline void
    326 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
    327 {
    328 	if (fs->lfs_is64) {
    329 
    330 		ino = LFS_SWAP_uint64_t(fs, ino);
    331 		/*
    332 		 * XXX we can probably write this in a way that's both
    333 		 * still legal and generates better code.
    334 		 */
    335 		memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
    336 		memcpy(&dh->u_64.dh_inoB,
    337 		       (char *)&ino + sizeof(dh->u_64.dh_inoA),
    338 		       sizeof(dh->u_64.dh_inoB));
    339 	} else {
    340 		dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
    341 	}
    342 }
    343 
    344 static __unused inline void
    345 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
    346 {
    347 	if (fs->lfs_is64) {
    348 		dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    349 	} else {
    350 		dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    351 	}
    352 }
    353 
    354 static __unused inline void
    355 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
    356 {
    357 	if (fs->lfs_is64) {
    358 		KASSERT(fs->lfs_hasolddirfmt == 0);
    359 		dh->u_64.dh_type = type;
    360 	} else if (fs->lfs_hasolddirfmt) {
    361 		/* do nothing */
    362 		return;
    363 	} else {
    364 		dh->u_32.dh_type = type;
    365 	}
    366 }
    367 
    368 static __unused inline void
    369 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
    370 {
    371 	if (fs->lfs_is64) {
    372 		KASSERT(fs->lfs_hasolddirfmt == 0);
    373 		dh->u_64.dh_namlen = namlen;
    374 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    375 		/* low-order byte of old 16-bit namlen field */
    376 		dh->u_32.dh_type = namlen;
    377 	} else {
    378 		dh->u_32.dh_namlen = namlen;
    379 	}
    380 }
    381 
    382 static __unused inline void
    383 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
    384 		unsigned namlen, unsigned reclen)
    385 {
    386 	unsigned spacelen;
    387 
    388 	KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
    389 	spacelen = reclen - LFS_DIRHEADERSIZE(fs);
    390 
    391 	/* must always be at least 1 byte as a null terminator */
    392 	KASSERT(spacelen > namlen);
    393 
    394 	memcpy(dest, src, namlen);
    395 	memset(dest + namlen, '\0', spacelen - namlen);
    396 }
    397 
    398 static __unused LFS_DIRHEADER *
    399 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
    400 {
    401 	/* XXX blah, be nice to have a way to do this w/o casts */
    402 	if (fs->lfs_is64) {
    403 		return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
    404 	} else {
    405 		return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
    406 	}
    407 }
    408 
    409 static __unused char *
    410 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
    411 {
    412 	if (fs->lfs_is64) {
    413 		return dt->u_64.dotdot_name;
    414 	} else {
    415 		return dt->u_32.dotdot_name;
    416 	}
    417 }
    418 
    419 /*
    420  * dinodes
    421  */
    422 
    423 /*
    424  * Maximum length of a symlink that can be stored within the inode.
    425  */
    426 #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    427 #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    428 
    429 #define LFS_MAXSYMLINKLEN(fs) \
    430 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
    431 
    432 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    433 
    434 #define DINO_IN_BLOCK(fs, base, ix) \
    435 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    436 
    437 static __unused inline void
    438 lfs_copy_dinode(STRUCT_LFS *fs,
    439     union lfs_dinode *dst, const union lfs_dinode *src)
    440 {
    441 	/*
    442 	 * We can do structure assignment of the structs, but not of
    443 	 * the whole union, as the union is the size of the (larger)
    444 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    445 	 * be off the end of a buffer or otherwise invalid.
    446 	 */
    447 	if (fs->lfs_is64) {
    448 		dst->u_64 = src->u_64;
    449 	} else {
    450 		dst->u_32 = src->u_32;
    451 	}
    452 }
    453 
    454 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    455 	static __unused inline type				\
    456 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    457 	{							\
    458 		if (fs->lfs_is64) {				\
    459 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    460 		} else {					\
    461 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    462 		}						\
    463 	}							\
    464 	static __unused inline void				\
    465 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    466 	{							\
    467 		if (fs->lfs_is64) {				\
    468 			type *p = &dip->u_64.di_##field;	\
    469 			(void)p;				\
    470 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    471 		} else {					\
    472 			type32 *p = &dip->u_32.di_##field;	\
    473 			(void)p;				\
    474 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    475 		}						\
    476 	}							\
    477 
    478 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
    479 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
    480 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
    481 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
    482 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
    483 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
    484 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
    485 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
    486 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
    487 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
    488 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
    489 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
    490 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
    491 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
    492 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
    493 
    494 /* XXX this should be done differently (it's a fake field) */
    495 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
    496 
    497 static __unused inline daddr_t
    498 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    499 {
    500 	KASSERT(ix < ULFS_NDADDR);
    501 	if (fs->lfs_is64) {
    502 		return dip->u_64.di_db[ix];
    503 	} else {
    504 		/* note: this must sign-extend or UNWRITTEN gets trashed */
    505 		return dip->u_32.di_db[ix];
    506 	}
    507 }
    508 
    509 static __unused inline daddr_t
    510 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    511 {
    512 	KASSERT(ix < ULFS_NIADDR);
    513 	if (fs->lfs_is64) {
    514 		return dip->u_64.di_ib[ix];
    515 	} else {
    516 		/* note: this must sign-extend or UNWRITTEN gets trashed */
    517 		return dip->u_32.di_ib[ix];
    518 	}
    519 }
    520 
    521 static __unused inline void
    522 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    523 {
    524 	KASSERT(ix < ULFS_NDADDR);
    525 	if (fs->lfs_is64) {
    526 		dip->u_64.di_db[ix] = val;
    527 	} else {
    528 		dip->u_32.di_db[ix] = val;
    529 	}
    530 }
    531 
    532 static __unused inline void
    533 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    534 {
    535 	KASSERT(ix < ULFS_NIADDR);
    536 	if (fs->lfs_is64) {
    537 		dip->u_64.di_ib[ix] = val;
    538 	} else {
    539 		dip->u_32.di_ib[ix] = val;
    540 	}
    541 }
    542 
    543 /* birthtime is present only in the 64-bit inode */
    544 static __unused inline void
    545 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    546     const struct timespec *ts)
    547 {
    548 	if (fs->lfs_is64) {
    549 		dip->u_64.di_birthtime = ts->tv_sec;
    550 		dip->u_64.di_birthnsec = ts->tv_nsec;
    551 	} else {
    552 		/* drop it on the floor */
    553 	}
    554 }
    555 
    556 /*
    557  * indirect blocks
    558  */
    559 
    560 static __unused inline daddr_t
    561 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    562 {
    563 	if (fs->lfs_is64) {
    564 		// XXX re-enable these asserts after reorging this file
    565 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    566 		return (daddr_t)(((int64_t *)block)[ix]);
    567 	} else {
    568 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    569 		/* must sign-extend or UNWRITTEN gets trashed */
    570 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    571 	}
    572 }
    573 
    574 static __unused inline void
    575 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    576 {
    577 	if (fs->lfs_is64) {
    578 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    579 		((int64_t *)block)[ix] = val;
    580 	} else {
    581 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    582 		((int32_t *)block)[ix] = val;
    583 	}
    584 }
    585 
    586 /*
    587  * "struct buf" associated definitions
    588  */
    589 
    590 # define LFS_LOCK_BUF(bp) do {						\
    591 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    592 		mutex_enter(&lfs_lock);					\
    593 		++locked_queue_count;					\
    594 		locked_queue_bytes += bp->b_bufsize;			\
    595 		mutex_exit(&lfs_lock);					\
    596 	}								\
    597 	(bp)->b_flags |= B_LOCKED;					\
    598 } while (0)
    599 
    600 # define LFS_UNLOCK_BUF(bp) do {					\
    601 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    602 		mutex_enter(&lfs_lock);					\
    603 		--locked_queue_count;					\
    604 		locked_queue_bytes -= bp->b_bufsize;			\
    605 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    606 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    607 			cv_broadcast(&locked_queue_cv);			\
    608 		mutex_exit(&lfs_lock);					\
    609 	}								\
    610 	(bp)->b_flags &= ~B_LOCKED;					\
    611 } while (0)
    612 
    613 /*
    614  * "struct inode" associated definitions
    615  */
    616 
    617 #define LFS_SET_UINO(ip, flags) do {					\
    618 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    619 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    620 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    621 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    622 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    623 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    624 	(ip)->i_flag |= (flags);					\
    625 } while (0)
    626 
    627 #define LFS_CLR_UINO(ip, flags) do {					\
    628 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    629 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    630 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    631 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    632 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    633 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    634 	(ip)->i_flag &= ~(flags);					\
    635 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    636 		panic("lfs_uinodes < 0");				\
    637 	}								\
    638 } while (0)
    639 
    640 #define LFS_ITIMES(ip, acc, mod, cre) \
    641 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    642 		lfs_itimes(ip, acc, mod, cre)
    643 
    644 /*
    645  * On-disk and in-memory checkpoint segment usage structure.
    646  */
    647 
    648 #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    649 #define	SEGTABSIZE_SU(fs)						\
    650 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    651 
    652 #ifdef _KERNEL
    653 # define SHARE_IFLOCK(F) 						\
    654   do {									\
    655 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    656   } while(0)
    657 # define UNSHARE_IFLOCK(F)						\
    658   do {									\
    659 	rw_exit(&(F)->lfs_iflock);					\
    660   } while(0)
    661 #else /* ! _KERNEL */
    662 # define SHARE_IFLOCK(F)
    663 # define UNSHARE_IFLOCK(F)
    664 #endif /* ! _KERNEL */
    665 
    666 /* Read in the block with a specific segment usage entry from the ifile. */
    667 #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    668 	int _e;								\
    669 	SHARE_IFLOCK(F);						\
    670 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    671 	if ((_e = bread((F)->lfs_ivnode,				\
    672 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    673 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    674 		panic("lfs: ifile read: %d", _e);			\
    675 	if (lfs_sb_getversion(F) == 1)					\
    676 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    677 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    678 	else								\
    679 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    680 	UNSHARE_IFLOCK(F);						\
    681 } while (0)
    682 
    683 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    684 	if ((SP)->su_nbytes == 0)					\
    685 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    686 	else								\
    687 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    688 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    689 	LFS_BWRITE_LOG(BP);						\
    690 } while (0)
    691 
    692 /*
    693  * FINFO (file info) entries.
    694  */
    695 
    696 /* Size of an on-disk block pointer, e.g. in an indirect block. */
    697 /* XXX: move to a more suitable location in this file */
    698 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    699 
    700 /* Size of an on-disk inode number. */
    701 /* XXX: move to a more suitable location in this file */
    702 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    703 
    704 /* size of a FINFO, without the block pointers */
    705 #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    706 
    707 /* Full size of the provided FINFO record, including its block pointers. */
    708 #define FINFO_FULLSIZE(fs, fip) \
    709 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    710 
    711 #define NEXT_FINFO(fs, fip) \
    712 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    713 
    714 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    715 	static __unused inline type				\
    716 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    717 	{							\
    718 		if (fs->lfs_is64) {				\
    719 			return fip->u_64.fi_##field; 		\
    720 		} else {					\
    721 			return fip->u_32.fi_##field; 		\
    722 		}						\
    723 	}							\
    724 	static __unused inline void				\
    725 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    726 	{							\
    727 		if (fs->lfs_is64) {				\
    728 			type *p = &fip->u_64.fi_##field;	\
    729 			(void)p;				\
    730 			fip->u_64.fi_##field = val;		\
    731 		} else {					\
    732 			type32 *p = &fip->u_32.fi_##field;	\
    733 			(void)p;				\
    734 			fip->u_32.fi_##field = val;		\
    735 		}						\
    736 	}							\
    737 
    738 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    739 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    740 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    741 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    742 
    743 static __unused inline daddr_t
    744 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
    745 {
    746 	void *firstblock;
    747 
    748 	firstblock = (char *)fip + FINFOSIZE(fs);
    749 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    750 	if (fs->lfs_is64) {
    751 		return ((int64_t *)firstblock)[index];
    752 	} else {
    753 		return ((int32_t *)firstblock)[index];
    754 	}
    755 }
    756 
    757 static __unused inline void
    758 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
    759 {
    760 	void *firstblock;
    761 
    762 	firstblock = (char *)fip + FINFOSIZE(fs);
    763 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
    764 	if (fs->lfs_is64) {
    765 		((int64_t *)firstblock)[index] = blk;
    766 	} else {
    767 		((int32_t *)firstblock)[index] = blk;
    768 	}
    769 }
    770 
    771 /*
    772  * inode info entries (in the segment summary)
    773  */
    774 
    775 #define IINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
    776 
    777 /* iinfos scroll backward from the end of the segment summary block */
    778 #define SEGSUM_IINFOSTART(fs, buf) \
    779 	((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
    780 
    781 #define NEXTLOWER_IINFO(fs, iip) \
    782 	((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
    783 
    784 #define NTH_IINFO(fs, buf, n) \
    785 	((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
    786 
    787 static __unused inline uint64_t
    788 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
    789 {
    790 	if (fs->lfs_is64) {
    791 		return iip->u_64.ii_block;
    792 	} else {
    793 		return iip->u_32.ii_block;
    794 	}
    795 }
    796 
    797 static __unused inline void
    798 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
    799 {
    800 	if (fs->lfs_is64) {
    801 		iip->u_64.ii_block = block;
    802 	} else {
    803 		iip->u_32.ii_block = block;
    804 	}
    805 }
    806 
    807 /*
    808  * Index file inode entries.
    809  */
    810 
    811 #define IFILE_ENTRYSIZE(fs) \
    812 	((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
    813 
    814 /*
    815  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    816  * may not be mapped!
    817  */
    818 /* Read in the block with a specific inode from the ifile. */
    819 #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    820 	int _e;								\
    821 	SHARE_IFLOCK(F);						\
    822 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    823 	if ((_e = bread((F)->lfs_ivnode,				\
    824 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    825 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    826 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    827 	if ((F)->lfs_is64) {						\
    828 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    829 				 (IN) % lfs_sb_getifpb(F));		\
    830 	} else if (lfs_sb_getversion(F) > 1) {				\
    831 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    832 				(IN) % lfs_sb_getifpb(F)); 		\
    833 	} else {							\
    834 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    835 				 (IN) % lfs_sb_getifpb(F));		\
    836 	}								\
    837 	UNSHARE_IFLOCK(F);						\
    838 } while (0)
    839 #define LFS_IENTRY_NEXT(IP, F) do { \
    840 	if ((F)->lfs_is64) {						\
    841 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    842 	} else if (lfs_sb_getversion(F) > 1) {				\
    843 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    844 	} else {							\
    845 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    846 	}								\
    847 } while (0)
    848 
    849 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    850 	static __unused inline type				\
    851 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    852 	{							\
    853 		if (fs->lfs_is64) {				\
    854 			return ifp->u_64.if_##field; 		\
    855 		} else {					\
    856 			return ifp->u_32.if_##field; 		\
    857 		}						\
    858 	}							\
    859 	static __unused inline void				\
    860 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    861 	{							\
    862 		if (fs->lfs_is64) {				\
    863 			type *p = &ifp->u_64.if_##field;	\
    864 			(void)p;				\
    865 			ifp->u_64.if_##field = val;		\
    866 		} else {					\
    867 			type32 *p = &ifp->u_32.if_##field;	\
    868 			(void)p;				\
    869 			ifp->u_32.if_##field = val;		\
    870 		}						\
    871 	}							\
    872 
    873 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
    874 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    875 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
    876 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
    877 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
    878 
    879 /*
    880  * Cleaner information structure.  This resides in the ifile and is used
    881  * to pass information from the kernel to the cleaner.
    882  */
    883 
    884 #define	CLEANSIZE_SU(fs)						\
    885 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    886 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    887 
    888 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    889 	static __unused inline type				\
    890 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    891 	{							\
    892 		if (fs->lfs_is64) {				\
    893 			return cip->u_64.field; 		\
    894 		} else {					\
    895 			return cip->u_32.field; 		\
    896 		}						\
    897 	}							\
    898 	static __unused inline void				\
    899 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    900 	{							\
    901 		if (fs->lfs_is64) {				\
    902 			type *p = &cip->u_64.field;		\
    903 			(void)p;				\
    904 			cip->u_64.field = val;			\
    905 		} else {					\
    906 			type32 *p = &cip->u_32.field;		\
    907 			(void)p;				\
    908 			cip->u_32.field = val;			\
    909 		}						\
    910 	}							\
    911 
    912 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
    913 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
    914 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    915 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    916 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
    917 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
    918 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
    919 
    920 static __unused inline void
    921 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    922 {
    923 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    924 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    925 }
    926 
    927 static __unused inline void
    928 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    929 {
    930 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    931 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    932 }
    933 
    934 /* Read in the block with the cleaner info from the ifile. */
    935 #define LFS_CLEANERINFO(CP, F, BP) do {					\
    936 	SHARE_IFLOCK(F);						\
    937 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    938 	if (bread((F)->lfs_ivnode,					\
    939 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
    940 		panic("lfs: ifile read");				\
    941 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    942 	UNSHARE_IFLOCK(F);						\
    943 } while (0)
    944 
    945 /*
    946  * Synchronize the Ifile cleaner info with current avail and bfree.
    947  */
    948 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    949     mutex_enter(&lfs_lock);						\
    950     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    951 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    952 	fs->lfs_favail) {	 					\
    953 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    954 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    955 		fs->lfs_favail);				 	\
    956 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    957 		fs->lfs_flags |= LFS_IFDIRTY;				\
    958 	}								\
    959 	mutex_exit(&lfs_lock);						\
    960 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    961     } else {							 	\
    962 	mutex_exit(&lfs_lock);						\
    963 	brelse(bp, 0);						 	\
    964     }									\
    965 } while (0)
    966 
    967 /*
    968  * Get the head of the inode free list.
    969  * Always called with the segment lock held.
    970  */
    971 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    972 	if (lfs_sb_getversion(FS) > 1) {				\
    973 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    974 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    975 		brelse(BP, 0);						\
    976 	}								\
    977 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    978 } while (0)
    979 
    980 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    981 	lfs_sb_setfreehd(FS, VAL);					\
    982 	if (lfs_sb_getversion(FS) > 1) {				\
    983 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    984 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    985 		LFS_BWRITE_LOG(BP);					\
    986 		mutex_enter(&lfs_lock);					\
    987 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    988 		mutex_exit(&lfs_lock);					\
    989 	}								\
    990 } while (0)
    991 
    992 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
    993 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
    994 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
    995 	brelse(BP, 0);							\
    996 } while (0)
    997 
    998 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
    999 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
   1000 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
   1001 	LFS_BWRITE_LOG(BP);						\
   1002 	mutex_enter(&lfs_lock);						\
   1003 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
   1004 	mutex_exit(&lfs_lock);						\
   1005 } while (0)
   1006 
   1007 /*
   1008  * On-disk segment summary information
   1009  */
   1010 
   1011 #define SEGSUM_SIZE(fs) \
   1012 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
   1013 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
   1014 
   1015 /*
   1016  * The SEGSUM structure is followed by FINFO structures. Get the pointer
   1017  * to the first FINFO.
   1018  *
   1019  * XXX this can't be a macro yet; this file needs to be resorted.
   1020  */
   1021 #if 0
   1022 static __unused inline FINFO *
   1023 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
   1024 {
   1025 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
   1026 }
   1027 #else
   1028 #define SEGSUM_FINFOBASE(fs, ssp) \
   1029 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
   1030 #endif
   1031 
   1032 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
   1033 	static __unused inline type				\
   1034 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
   1035 	{							\
   1036 		if (fs->lfs_is64) {				\
   1037 			return ssp->u_64.ss_##field; 		\
   1038 		} else {					\
   1039 			return ssp->u_32.ss_##field; 		\
   1040 		}						\
   1041 	}							\
   1042 	static __unused inline void				\
   1043 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
   1044 	{							\
   1045 		if (fs->lfs_is64) {				\
   1046 			type *p = &ssp->u_64.ss_##field;	\
   1047 			(void)p;				\
   1048 			ssp->u_64.ss_##field = val;		\
   1049 		} else {					\
   1050 			type32 *p = &ssp->u_32.ss_##field;	\
   1051 			(void)p;				\
   1052 			ssp->u_32.ss_##field = val;		\
   1053 		}						\
   1054 	}							\
   1055 
   1056 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
   1057 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
   1058 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
   1059 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
   1060 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
   1061 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
   1062 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
   1063 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
   1064 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
   1065 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
   1066 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
   1067 
   1068 static __unused inline size_t
   1069 lfs_ss_getsumstart(STRUCT_LFS *fs)
   1070 {
   1071 	/* These are actually all the same. */
   1072 	if (fs->lfs_is64) {
   1073 		return offsetof(SEGSUM64, ss_datasum);
   1074 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
   1075 		return offsetof(SEGSUM32, ss_datasum);
   1076 	} /* else {
   1077 		return offsetof(SEGSUM_V1, ss_datasum);
   1078 	} */
   1079 	/*
   1080 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
   1081 	 * defined yet.
   1082 	 */
   1083 }
   1084 
   1085 static __unused inline uint32_t
   1086 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
   1087 {
   1088 	KASSERT(fs->lfs_is64 == 0);
   1089 	/* XXX need to resort this file before we can do this */
   1090 	//KASSERT(lfs_sb_getversion(fs) == 1);
   1091 
   1092 	return ssp->u_v1.ss_create;
   1093 }
   1094 
   1095 static __unused inline void
   1096 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
   1097 {
   1098 	KASSERT(fs->lfs_is64 == 0);
   1099 	/* XXX need to resort this file before we can do this */
   1100 	//KASSERT(lfs_sb_getversion(fs) == 1);
   1101 
   1102 	ssp->u_v1.ss_create = val;
   1103 }
   1104 
   1105 
   1106 /*
   1107  * Super block.
   1108  */
   1109 
   1110 /*
   1111  * Generate accessors for the on-disk superblock fields with cpp.
   1112  */
   1113 
   1114 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
   1115 	static __unused inline type				\
   1116 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1117 	{							\
   1118 		if (fs->lfs_is64) {				\
   1119 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1120 		} else {					\
   1121 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1122 		}						\
   1123 	}							\
   1124 	static __unused inline void				\
   1125 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
   1126 	{							\
   1127 		if (fs->lfs_is64) {				\
   1128 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
   1129 		} else {					\
   1130 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
   1131 		}						\
   1132 	}							\
   1133 	static __unused inline void				\
   1134 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
   1135 	{							\
   1136 		if (fs->lfs_is64) {				\
   1137 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1138 			*p64 += val;				\
   1139 		} else {					\
   1140 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1141 			*p32 += val;				\
   1142 		}						\
   1143 	}							\
   1144 	static __unused inline void				\
   1145 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
   1146 	{							\
   1147 		if (fs->lfs_is64) {				\
   1148 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1149 			*p64 -= val;				\
   1150 		} else {					\
   1151 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1152 			*p32 -= val;				\
   1153 		}						\
   1154 	}
   1155 
   1156 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
   1157 
   1158 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
   1159 	static __unused inline type				\
   1160 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1161 	{							\
   1162 		if (fs->lfs_is64) {				\
   1163 			return val64;				\
   1164 		} else {					\
   1165 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1166 		}						\
   1167 	}
   1168 
   1169 #define lfs_magic lfs_dlfs.dlfs_magic
   1170 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
   1171 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
   1172 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
   1173 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
   1174 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
   1175 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
   1176 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
   1177 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
   1178 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
   1179 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
   1180 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
   1181 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
   1182 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
   1183 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
   1184 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
   1185 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
   1186 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
   1187 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
   1188 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
   1189 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
   1190 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
   1191 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
   1192 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
   1193 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
   1194 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
   1195 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
   1196 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
   1197 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
   1198 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
   1199 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
   1200 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
   1201 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
   1202 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
   1203 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
   1204 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
   1205 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
   1206 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
   1207 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
   1208 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
   1209 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
   1210 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
   1211 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
   1212 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
   1213 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
   1214 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
   1215 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
   1216 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
   1217 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
   1218 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
   1219 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
   1220 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
   1221 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
   1222 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
   1223 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
   1224 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
   1225 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
   1226 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
   1227 
   1228 /* special-case accessors */
   1229 
   1230 /*
   1231  * the v1 otstamp field lives in what's now dlfs_inopf
   1232  */
   1233 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
   1234 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
   1235 
   1236 /*
   1237  * lfs_sboffs is an array
   1238  */
   1239 static __unused inline int32_t
   1240 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
   1241 {
   1242 #ifdef KASSERT /* ugh */
   1243 	KASSERT(n < LFS_MAXNUMSB);
   1244 #endif
   1245 	if (fs->lfs_is64) {
   1246 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
   1247 	} else {
   1248 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
   1249 	}
   1250 }
   1251 static __unused inline void
   1252 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
   1253 {
   1254 #ifdef KASSERT /* ugh */
   1255 	KASSERT(n < LFS_MAXNUMSB);
   1256 #endif
   1257 	if (fs->lfs_is64) {
   1258 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1259 	} else {
   1260 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1261 	}
   1262 }
   1263 
   1264 /*
   1265  * lfs_fsmnt is a string
   1266  */
   1267 static __unused inline const char *
   1268 lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1269 {
   1270 	if (fs->lfs_is64) {
   1271 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1272 	} else {
   1273 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1274 	}
   1275 }
   1276 
   1277 static __unused inline void
   1278 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1279 {
   1280 	if (fs->lfs_is64) {
   1281 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1282 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1283 	} else {
   1284 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1285 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1286 	}
   1287 }
   1288 
   1289 /* Highest addressable fsb */
   1290 #define LFS_MAX_DADDR(fs) \
   1291 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1292 
   1293 /* LFS_NINDIR is the number of indirects in a file system block. */
   1294 #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1295 
   1296 /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1297 #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1298 /* LFS_INOPF is the number of inodes in a fragment. */
   1299 #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1300 
   1301 #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1302 #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1303     ((int)((loc) & lfs_sb_getffmask(fs)))
   1304 
   1305 /* XXX: lowercase these as they're no longer macros */
   1306 /* Frags to diskblocks */
   1307 static __unused inline uint64_t
   1308 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1309 {
   1310 #if defined(_KERNEL)
   1311 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1312 #else
   1313 	return b << lfs_sb_getfsbtodb(fs);
   1314 #endif
   1315 }
   1316 /* Diskblocks to frags */
   1317 static __unused inline uint64_t
   1318 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1319 {
   1320 #if defined(_KERNEL)
   1321 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1322 #else
   1323 	return b >> lfs_sb_getfsbtodb(fs);
   1324 #endif
   1325 }
   1326 
   1327 #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1328 #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1329 
   1330 /* Frags to bytes */
   1331 static __unused inline uint64_t
   1332 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1333 {
   1334 	return b << lfs_sb_getffshift(fs);
   1335 }
   1336 /* Bytes to frags */
   1337 static __unused inline uint64_t
   1338 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1339 {
   1340 	return b >> lfs_sb_getffshift(fs);
   1341 }
   1342 
   1343 #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1344 	((loc) >> lfs_sb_getffshift(fs))
   1345 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1346 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1347 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1348 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1349 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1350 	((frags) >> lfs_sb_getfbshift(fs))
   1351 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1352 	((blks) << lfs_sb_getfbshift(fs))
   1353 #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1354 	((fsb) & ((fs)->lfs_frag - 1))
   1355 #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1356 	((fsb) &~ ((fs)->lfs_frag - 1))
   1357 #define lfs_dblksize(fs, dp, lbn) \
   1358 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1359 	    ? lfs_sb_getbsize(fs) \
   1360 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1361 
   1362 #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1363 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1364 			   lfs_sb_getssize(fs))
   1365 /* XXX segtod produces a result in frags despite the 'd' */
   1366 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1367 #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1368 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1369 #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1370 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1371 
   1372 /* XXX, blah. make this appear only if struct inode is defined */
   1373 #ifdef _UFS_LFS_LFS_INODE_H_
   1374 static __unused inline uint32_t
   1375 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1376 {
   1377 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1378 		return lfs_sb_getbsize(fs);
   1379 	} else {
   1380 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1381 	}
   1382 }
   1383 #endif
   1384 
   1385 /*
   1386  * union lfs_blocks
   1387  */
   1388 
   1389 static __unused inline void
   1390 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1391 {
   1392 	if (fs->lfs_is64) {
   1393 		bp->b64 = p;
   1394 	} else {
   1395 		bp->b32 = p;
   1396 	}
   1397 }
   1398 
   1399 static __unused inline void
   1400 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1401 {
   1402 	void *firstblock;
   1403 
   1404 	firstblock = (char *)fip + FINFOSIZE(fs);
   1405 	if (fs->lfs_is64) {
   1406 		bp->b64 = (int64_t *)firstblock;
   1407 	}  else {
   1408 		bp->b32 = (int32_t *)firstblock;
   1409 	}
   1410 }
   1411 
   1412 static __unused inline daddr_t
   1413 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
   1414 {
   1415 	if (fs->lfs_is64) {
   1416 		return bp->b64[index];
   1417 	} else {
   1418 		return bp->b32[index];
   1419 	}
   1420 }
   1421 
   1422 static __unused inline void
   1423 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
   1424 {
   1425 	if (fs->lfs_is64) {
   1426 		bp->b64[index] = val;
   1427 	} else {
   1428 		bp->b32[index] = val;
   1429 	}
   1430 }
   1431 
   1432 static __unused inline void
   1433 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1434 {
   1435 	if (fs->lfs_is64) {
   1436 		bp->b64++;
   1437 	} else {
   1438 		bp->b32++;
   1439 	}
   1440 }
   1441 
   1442 static __unused inline int
   1443 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1444 {
   1445 	if (fs->lfs_is64) {
   1446 		return bp1->b64 == bp2->b64;
   1447 	} else {
   1448 		return bp1->b32 == bp2->b32;
   1449 	}
   1450 }
   1451 
   1452 static __unused inline int
   1453 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1454 {
   1455 	/* (remember that the pointers are typed) */
   1456 	if (fs->lfs_is64) {
   1457 		return bp1->b64 - bp2->b64;
   1458 	} else {
   1459 		return bp1->b32 - bp2->b32;
   1460 	}
   1461 }
   1462 
   1463 /*
   1464  * struct segment
   1465  */
   1466 
   1467 
   1468 /*
   1469  * Macros for determining free space on the disk, with the variable metadata
   1470  * of segment summaries and inode blocks taken into account.
   1471  */
   1472 /*
   1473  * Estimate number of clean blocks not available for writing because
   1474  * they will contain metadata or overhead.  This is calculated as
   1475  *
   1476  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1477  * or more simply
   1478  *		E = (C * M) / T
   1479  *
   1480  * where
   1481  * C is the clean space,
   1482  * D is the dirty space,
   1483  * M is the dirty metadata, and
   1484  * T = C + D is the total space on disk.
   1485  *
   1486  * This approximates the old formula of E = C * M / D when D is close to T,
   1487  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1488  */
   1489 #define LFS_EST_CMETA(F) ((						\
   1490 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1491 	(lfs_sb_getnseg(F))))
   1492 
   1493 /* Estimate total size of the disk not including metadata */
   1494 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1495 
   1496 /* Estimate number of blocks actually available for writing */
   1497 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1498 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1499 
   1500 /* Amount of non-meta space not available to mortal man */
   1501 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) *			     \
   1502 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
   1503 				  100)
   1504 
   1505 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1506 #define ISSPACE(F, BB, C)						\
   1507 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1508 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1509 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1510 
   1511 /* Can an ordinary user write BB blocks */
   1512 #define IS_FREESPACE(F, BB)						\
   1513 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1514 
   1515 /*
   1516  * The minimum number of blocks to create a new inode.  This is:
   1517  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1518  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1519  */
   1520 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1521 
   1522 
   1523 
   1524 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1525