lfs_accessors.h revision 1.45 1 /* $NetBSD: lfs_accessors.h,v 1.45 2016/06/19 22:38:23 dholland Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.24 2013/06/09 17:55:46 dholland Exp */
5 /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #include <ufs/lfs/lfs.h>
155
156 #if !defined(_KERNEL) && !defined(_STANDALONE)
157 #include <assert.h>
158 #include <string.h>
159 #define KASSERT assert
160 #else
161 #include <sys/systm.h>
162 #endif
163
164 /*
165 * STRUCT_LFS is used by the libsa code to get accessors that work
166 * with struct salfs instead of struct lfs, and by the cleaner to
167 * get accessors that work with struct clfs.
168 */
169
170 #ifndef STRUCT_LFS
171 #define STRUCT_LFS struct lfs
172 #endif
173
174 /*
175 * byte order
176 */
177
178 /*
179 * For now at least, the bootblocks shall not be endian-independent.
180 * We can see later if it fits in the size budget. Also disable the
181 * byteswapping if LFS_EI is off.
182 *
183 * Caution: these functions "know" that bswap16/32/64 are unsigned,
184 * and if that changes will likely break silently.
185 */
186
187 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
188 #define LFS_SWAP_int16_t(fs, val) (val)
189 #define LFS_SWAP_int32_t(fs, val) (val)
190 #define LFS_SWAP_int64_t(fs, val) (val)
191 #define LFS_SWAP_uint16_t(fs, val) (val)
192 #define LFS_SWAP_uint32_t(fs, val) (val)
193 #define LFS_SWAP_uint64_t(fs, val) (val)
194 #else
195 #define LFS_SWAP_int16_t(fs, val) \
196 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
197 #define LFS_SWAP_int32_t(fs, val) \
198 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
199 #define LFS_SWAP_int64_t(fs, val) \
200 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
201 #define LFS_SWAP_uint16_t(fs, val) \
202 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
203 #define LFS_SWAP_uint32_t(fs, val) \
204 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
205 #define LFS_SWAP_uint64_t(fs, val) \
206 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
207 #endif
208
209 /*
210 * For handling directories we will need to know if the volume is
211 * little-endian.
212 */
213 #if BYTE_ORDER == LITTLE_ENDIAN
214 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
215 #else
216 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
217 #endif
218
219
220 /*
221 * directories
222 */
223
224 #define LFS_DIRHEADERSIZE(fs) \
225 ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
226
227 /*
228 * The LFS_DIRSIZ macro gives the minimum record length which will hold
229 * the directory entry. This requires the amount of space in struct lfs_direct
230 * without the d_name field, plus enough space for the name with a terminating
231 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
232 */
233 #define LFS_DIRECTSIZ(fs, namlen) \
234 (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
235
236 /*
237 * The size of the largest possible directory entry. This is
238 * used by ulfs_dirhash to figure the size of an array, so we
239 * need a single constant value true for both lfs32 and lfs64.
240 */
241 #define LFS_MAXDIRENTRYSIZE \
242 (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
243
244 #if (BYTE_ORDER == LITTLE_ENDIAN)
245 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
246 (((oldfmt) && !(needswap)) ? \
247 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
248 #else
249 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
250 (((oldfmt) && (needswap)) ? \
251 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
252 #endif
253
254 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
255
256 /* Constants for the first argument of LFS_OLDDIRSIZ */
257 #define LFS_OLDDIRFMT 1
258 #define LFS_NEWDIRFMT 0
259
260 #define LFS_NEXTDIR(fs, dp) \
261 ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
262
263 static __inline char *
264 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
265 {
266 if (fs->lfs_is64) {
267 return (char *)(&dh->u_64 + 1);
268 } else {
269 return (char *)(&dh->u_32 + 1);
270 }
271 }
272
273 static __inline uint64_t
274 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
275 {
276 if (fs->lfs_is64) {
277 uint64_t ino;
278
279 /*
280 * XXX we can probably write this in a way that's both
281 * still legal and generates better code.
282 */
283 memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
284 memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
285 &dh->u_64.dh_inoB,
286 sizeof(dh->u_64.dh_inoB));
287 return LFS_SWAP_uint64_t(fs, ino);
288 } else {
289 return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
290 }
291 }
292
293 static __inline uint16_t
294 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
295 {
296 if (fs->lfs_is64) {
297 return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
298 } else {
299 return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
300 }
301 }
302
303 static __inline uint8_t
304 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
305 {
306 if (fs->lfs_is64) {
307 KASSERT(fs->lfs_hasolddirfmt == 0);
308 return dh->u_64.dh_type;
309 } else if (fs->lfs_hasolddirfmt) {
310 return LFS_DT_UNKNOWN;
311 } else {
312 return dh->u_32.dh_type;
313 }
314 }
315
316 static __inline uint8_t
317 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
318 {
319 if (fs->lfs_is64) {
320 KASSERT(fs->lfs_hasolddirfmt == 0);
321 return dh->u_64.dh_namlen;
322 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
323 /* low-order byte of old 16-bit namlen field */
324 return dh->u_32.dh_type;
325 } else {
326 return dh->u_32.dh_namlen;
327 }
328 }
329
330 static __inline void
331 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
332 {
333 if (fs->lfs_is64) {
334
335 ino = LFS_SWAP_uint64_t(fs, ino);
336 /*
337 * XXX we can probably write this in a way that's both
338 * still legal and generates better code.
339 */
340 memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
341 memcpy(&dh->u_64.dh_inoB,
342 (char *)&ino + sizeof(dh->u_64.dh_inoA),
343 sizeof(dh->u_64.dh_inoB));
344 } else {
345 dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
346 }
347 }
348
349 static __inline void
350 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
351 {
352 if (fs->lfs_is64) {
353 dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
354 } else {
355 dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
356 }
357 }
358
359 static __inline void
360 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
361 {
362 if (fs->lfs_is64) {
363 KASSERT(fs->lfs_hasolddirfmt == 0);
364 dh->u_64.dh_type = type;
365 } else if (fs->lfs_hasolddirfmt) {
366 /* do nothing */
367 return;
368 } else {
369 dh->u_32.dh_type = type;
370 }
371 }
372
373 static __inline void
374 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
375 {
376 if (fs->lfs_is64) {
377 KASSERT(fs->lfs_hasolddirfmt == 0);
378 dh->u_64.dh_namlen = namlen;
379 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
380 /* low-order byte of old 16-bit namlen field */
381 dh->u_32.dh_type = namlen;
382 } else {
383 dh->u_32.dh_namlen = namlen;
384 }
385 }
386
387 static __inline void
388 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
389 unsigned namlen, unsigned reclen)
390 {
391 unsigned spacelen;
392
393 KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
394 spacelen = reclen - LFS_DIRHEADERSIZE(fs);
395
396 /* must always be at least 1 byte as a null terminator */
397 KASSERT(spacelen > namlen);
398
399 memcpy(dest, src, namlen);
400 memset(dest + namlen, '\0', spacelen - namlen);
401 }
402
403 static __inline LFS_DIRHEADER *
404 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
405 {
406 /* XXX blah, be nice to have a way to do this w/o casts */
407 if (fs->lfs_is64) {
408 return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
409 } else {
410 return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
411 }
412 }
413
414 static __inline char *
415 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
416 {
417 if (fs->lfs_is64) {
418 return dt->u_64.dotdot_name;
419 } else {
420 return dt->u_32.dotdot_name;
421 }
422 }
423
424 /*
425 * dinodes
426 */
427
428 /*
429 * Maximum length of a symlink that can be stored within the inode.
430 */
431 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
432 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
433
434 #define LFS_MAXSYMLINKLEN(fs) \
435 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
436
437 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
438
439 #define DINO_IN_BLOCK(fs, base, ix) \
440 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
441
442 static __inline void
443 lfs_copy_dinode(STRUCT_LFS *fs,
444 union lfs_dinode *dst, const union lfs_dinode *src)
445 {
446 /*
447 * We can do structure assignment of the structs, but not of
448 * the whole union, as the union is the size of the (larger)
449 * 64-bit struct and on a 32-bit fs the upper half of it might
450 * be off the end of a buffer or otherwise invalid.
451 */
452 if (fs->lfs_is64) {
453 dst->u_64 = src->u_64;
454 } else {
455 dst->u_32 = src->u_32;
456 }
457 }
458
459 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
460 static __inline type \
461 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
462 { \
463 if (fs->lfs_is64) { \
464 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
465 } else { \
466 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
467 } \
468 } \
469 static __inline void \
470 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
471 { \
472 if (fs->lfs_is64) { \
473 type *p = &dip->u_64.di_##field; \
474 (void)p; \
475 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
476 } else { \
477 type32 *p = &dip->u_32.di_##field; \
478 (void)p; \
479 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
480 } \
481 } \
482
483 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
484 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
485 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
486 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
487 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
488 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
489 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
490 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
491 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
492 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
493 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
494 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
495 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
496 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
497 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
498
499 /* XXX this should be done differently (it's a fake field) */
500 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev);
501
502 static __inline daddr_t
503 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
504 {
505 KASSERT(ix < ULFS_NDADDR);
506 if (fs->lfs_is64) {
507 return LFS_SWAP_uint64_t(fs, dip->u_64.di_db[ix]);
508 } else {
509 /* note: this must sign-extend or UNWRITTEN gets trashed */
510 return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_db[ix]);
511 }
512 }
513
514 static __inline daddr_t
515 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
516 {
517 KASSERT(ix < ULFS_NIADDR);
518 if (fs->lfs_is64) {
519 return LFS_SWAP_uint64_t(fs, dip->u_64.di_ib[ix]);
520 } else {
521 /* note: this must sign-extend or UNWRITTEN gets trashed */
522 return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_ib[ix]);
523 }
524 }
525
526 static __inline void
527 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
528 {
529 KASSERT(ix < ULFS_NDADDR);
530 if (fs->lfs_is64) {
531 dip->u_64.di_db[ix] = LFS_SWAP_uint64_t(fs, val);
532 } else {
533 dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
534 }
535 }
536
537 static __inline void
538 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
539 {
540 KASSERT(ix < ULFS_NIADDR);
541 if (fs->lfs_is64) {
542 dip->u_64.di_ib[ix] = LFS_SWAP_uint64_t(fs, val);
543 } else {
544 dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
545 }
546 }
547
548 /* birthtime is present only in the 64-bit inode */
549 static __inline void
550 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
551 const struct timespec *ts)
552 {
553 if (fs->lfs_is64) {
554 dip->u_64.di_birthtime = ts->tv_sec;
555 dip->u_64.di_birthnsec = ts->tv_nsec;
556 } else {
557 /* drop it on the floor */
558 }
559 }
560
561 /*
562 * indirect blocks
563 */
564
565 static __inline daddr_t
566 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
567 {
568 if (fs->lfs_is64) {
569 // XXX re-enable these asserts after reorging this file
570 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
571 return (daddr_t)(((int64_t *)block)[ix]);
572 } else {
573 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
574 /* must sign-extend or UNWRITTEN gets trashed */
575 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
576 }
577 }
578
579 static __inline void
580 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
581 {
582 if (fs->lfs_is64) {
583 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
584 ((int64_t *)block)[ix] = val;
585 } else {
586 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
587 ((int32_t *)block)[ix] = val;
588 }
589 }
590
591 /*
592 * "struct buf" associated definitions
593 */
594
595 # define LFS_LOCK_BUF(bp) do { \
596 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
597 mutex_enter(&lfs_lock); \
598 ++locked_queue_count; \
599 locked_queue_bytes += bp->b_bufsize; \
600 mutex_exit(&lfs_lock); \
601 } \
602 (bp)->b_flags |= B_LOCKED; \
603 } while (0)
604
605 # define LFS_UNLOCK_BUF(bp) do { \
606 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
607 mutex_enter(&lfs_lock); \
608 --locked_queue_count; \
609 locked_queue_bytes -= bp->b_bufsize; \
610 if (locked_queue_count < LFS_WAIT_BUFS && \
611 locked_queue_bytes < LFS_WAIT_BYTES) \
612 cv_broadcast(&locked_queue_cv); \
613 mutex_exit(&lfs_lock); \
614 } \
615 (bp)->b_flags &= ~B_LOCKED; \
616 } while (0)
617
618 /*
619 * "struct inode" associated definitions
620 */
621
622 #define LFS_SET_UINO(ip, flags) do { \
623 if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
624 lfs_sb_adduinodes((ip)->i_lfs, 1); \
625 if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
626 lfs_sb_adduinodes((ip)->i_lfs, 1); \
627 if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
628 lfs_sb_adduinodes((ip)->i_lfs, 1); \
629 (ip)->i_flag |= (flags); \
630 } while (0)
631
632 #define LFS_CLR_UINO(ip, flags) do { \
633 if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
634 lfs_sb_subuinodes((ip)->i_lfs, 1); \
635 if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
636 lfs_sb_subuinodes((ip)->i_lfs, 1); \
637 if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
638 lfs_sb_subuinodes((ip)->i_lfs, 1); \
639 (ip)->i_flag &= ~(flags); \
640 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
641 panic("lfs_uinodes < 0"); \
642 } \
643 } while (0)
644
645 #define LFS_ITIMES(ip, acc, mod, cre) \
646 while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
647 lfs_itimes(ip, acc, mod, cre)
648
649 /*
650 * On-disk and in-memory checkpoint segment usage structure.
651 */
652
653 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
654 #define SEGTABSIZE_SU(fs) \
655 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
656
657 #ifdef _KERNEL
658 # define SHARE_IFLOCK(F) \
659 do { \
660 rw_enter(&(F)->lfs_iflock, RW_READER); \
661 } while(0)
662 # define UNSHARE_IFLOCK(F) \
663 do { \
664 rw_exit(&(F)->lfs_iflock); \
665 } while(0)
666 #else /* ! _KERNEL */
667 # define SHARE_IFLOCK(F)
668 # define UNSHARE_IFLOCK(F)
669 #endif /* ! _KERNEL */
670
671 /* Read in the block with a specific segment usage entry from the ifile. */
672 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
673 int _e; \
674 SHARE_IFLOCK(F); \
675 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
676 if ((_e = bread((F)->lfs_ivnode, \
677 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
678 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
679 panic("lfs: ifile read: segentry %llu: error %d\n", \
680 (unsigned long long)(IN), _e); \
681 if (lfs_sb_getversion(F) == 1) \
682 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
683 ((IN) & (lfs_sb_getsepb(F) - 1))); \
684 else \
685 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
686 UNSHARE_IFLOCK(F); \
687 } while (0)
688
689 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
690 if ((SP)->su_nbytes == 0) \
691 (SP)->su_flags |= SEGUSE_EMPTY; \
692 else \
693 (SP)->su_flags &= ~SEGUSE_EMPTY; \
694 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
695 LFS_BWRITE_LOG(BP); \
696 } while (0)
697
698 /*
699 * FINFO (file info) entries.
700 */
701
702 /* Size of an on-disk block pointer, e.g. in an indirect block. */
703 /* XXX: move to a more suitable location in this file */
704 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
705
706 /* Size of an on-disk inode number. */
707 /* XXX: move to a more suitable location in this file */
708 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
709
710 /* size of a FINFO, without the block pointers */
711 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
712
713 /* Full size of the provided FINFO record, including its block pointers. */
714 #define FINFO_FULLSIZE(fs, fip) \
715 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
716
717 #define NEXT_FINFO(fs, fip) \
718 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
719
720 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
721 static __inline type \
722 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
723 { \
724 if (fs->lfs_is64) { \
725 return fip->u_64.fi_##field; \
726 } else { \
727 return fip->u_32.fi_##field; \
728 } \
729 } \
730 static __inline void \
731 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
732 { \
733 if (fs->lfs_is64) { \
734 type *p = &fip->u_64.fi_##field; \
735 (void)p; \
736 fip->u_64.fi_##field = val; \
737 } else { \
738 type32 *p = &fip->u_32.fi_##field; \
739 (void)p; \
740 fip->u_32.fi_##field = val; \
741 } \
742 } \
743
744 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
745 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
746 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
747 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
748
749 static __inline daddr_t
750 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
751 {
752 void *firstblock;
753
754 firstblock = (char *)fip + FINFOSIZE(fs);
755 KASSERT(idx < lfs_fi_getnblocks(fs, fip));
756 if (fs->lfs_is64) {
757 return ((int64_t *)firstblock)[idx];
758 } else {
759 return ((int32_t *)firstblock)[idx];
760 }
761 }
762
763 static __inline void
764 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
765 {
766 void *firstblock;
767
768 firstblock = (char *)fip + FINFOSIZE(fs);
769 KASSERT(idx < lfs_fi_getnblocks(fs, fip));
770 if (fs->lfs_is64) {
771 ((int64_t *)firstblock)[idx] = blk;
772 } else {
773 ((int32_t *)firstblock)[idx] = blk;
774 }
775 }
776
777 /*
778 * inode info entries (in the segment summary)
779 */
780
781 #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
782
783 /* iinfos scroll backward from the end of the segment summary block */
784 #define SEGSUM_IINFOSTART(fs, buf) \
785 ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
786
787 #define NEXTLOWER_IINFO(fs, iip) \
788 ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
789
790 #define NTH_IINFO(fs, buf, n) \
791 ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
792
793 static __inline uint64_t
794 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
795 {
796 if (fs->lfs_is64) {
797 return iip->u_64.ii_block;
798 } else {
799 return iip->u_32.ii_block;
800 }
801 }
802
803 static __inline void
804 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
805 {
806 if (fs->lfs_is64) {
807 iip->u_64.ii_block = block;
808 } else {
809 iip->u_32.ii_block = block;
810 }
811 }
812
813 /*
814 * Index file inode entries.
815 */
816
817 #define IFILE_ENTRYSIZE(fs) \
818 ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
819
820 /*
821 * LFSv1 compatibility code is not allowed to touch if_atime, since it
822 * may not be mapped!
823 */
824 /* Read in the block with a specific inode from the ifile. */
825 #define LFS_IENTRY(IP, F, IN, BP) do { \
826 int _e; \
827 SHARE_IFLOCK(F); \
828 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
829 if ((_e = bread((F)->lfs_ivnode, \
830 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
831 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
832 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
833 if ((F)->lfs_is64) { \
834 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
835 (IN) % lfs_sb_getifpb(F)); \
836 } else if (lfs_sb_getversion(F) > 1) { \
837 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
838 (IN) % lfs_sb_getifpb(F)); \
839 } else { \
840 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
841 (IN) % lfs_sb_getifpb(F)); \
842 } \
843 UNSHARE_IFLOCK(F); \
844 } while (0)
845 #define LFS_IENTRY_NEXT(IP, F) do { \
846 if ((F)->lfs_is64) { \
847 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
848 } else if (lfs_sb_getversion(F) > 1) { \
849 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
850 } else { \
851 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
852 } \
853 } while (0)
854
855 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
856 static __inline type \
857 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
858 { \
859 if (fs->lfs_is64) { \
860 return ifp->u_64.if_##field; \
861 } else { \
862 return ifp->u_32.if_##field; \
863 } \
864 } \
865 static __inline void \
866 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
867 { \
868 if (fs->lfs_is64) { \
869 type *p = &ifp->u_64.if_##field; \
870 (void)p; \
871 ifp->u_64.if_##field = val; \
872 } else { \
873 type32 *p = &ifp->u_32.if_##field; \
874 (void)p; \
875 ifp->u_32.if_##field = val; \
876 } \
877 } \
878
879 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
880 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
881 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
882 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
883 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
884
885 /*
886 * Cleaner information structure. This resides in the ifile and is used
887 * to pass information from the kernel to the cleaner.
888 */
889
890 #define CLEANSIZE_SU(fs) \
891 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
892 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
893
894 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
895 static __inline type \
896 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
897 { \
898 if (fs->lfs_is64) { \
899 return cip->u_64.field; \
900 } else { \
901 return cip->u_32.field; \
902 } \
903 } \
904 static __inline void \
905 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
906 { \
907 if (fs->lfs_is64) { \
908 type *p = &cip->u_64.field; \
909 (void)p; \
910 cip->u_64.field = val; \
911 } else { \
912 type32 *p = &cip->u_32.field; \
913 (void)p; \
914 cip->u_32.field = val; \
915 } \
916 } \
917
918 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
919 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
920 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
921 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
922 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
923 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
924 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
925
926 static __inline void
927 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
928 {
929 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
930 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
931 }
932
933 static __inline void
934 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
935 {
936 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
937 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
938 }
939
940 /* Read in the block with the cleaner info from the ifile. */
941 #define LFS_CLEANERINFO(CP, F, BP) do { \
942 int _e; \
943 SHARE_IFLOCK(F); \
944 VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
945 _e = bread((F)->lfs_ivnode, \
946 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \
947 if (_e) \
948 panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \
949 (CP) = (CLEANERINFO *)(BP)->b_data; \
950 UNSHARE_IFLOCK(F); \
951 } while (0)
952
953 /*
954 * Synchronize the Ifile cleaner info with current avail and bfree.
955 */
956 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
957 mutex_enter(&lfs_lock); \
958 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
959 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
960 fs->lfs_favail) { \
961 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
962 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
963 fs->lfs_favail); \
964 if (((bp)->b_flags & B_GATHERED) == 0) { \
965 fs->lfs_flags |= LFS_IFDIRTY; \
966 } \
967 mutex_exit(&lfs_lock); \
968 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
969 } else { \
970 mutex_exit(&lfs_lock); \
971 brelse(bp, 0); \
972 } \
973 } while (0)
974
975 /*
976 * Get the head of the inode free list.
977 * Always called with the segment lock held.
978 */
979 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
980 if (lfs_sb_getversion(FS) > 1) { \
981 LFS_CLEANERINFO((CIP), (FS), (BP)); \
982 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
983 brelse(BP, 0); \
984 } \
985 *(FREEP) = lfs_sb_getfreehd(FS); \
986 } while (0)
987
988 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
989 lfs_sb_setfreehd(FS, VAL); \
990 if (lfs_sb_getversion(FS) > 1) { \
991 LFS_CLEANERINFO((CIP), (FS), (BP)); \
992 lfs_ci_setfree_head(FS, CIP, VAL); \
993 LFS_BWRITE_LOG(BP); \
994 mutex_enter(&lfs_lock); \
995 (FS)->lfs_flags |= LFS_IFDIRTY; \
996 mutex_exit(&lfs_lock); \
997 } \
998 } while (0)
999
1000 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
1001 LFS_CLEANERINFO((CIP), (FS), (BP)); \
1002 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
1003 brelse(BP, 0); \
1004 } while (0)
1005
1006 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
1007 LFS_CLEANERINFO((CIP), (FS), (BP)); \
1008 lfs_ci_setfree_tail(FS, CIP, VAL); \
1009 LFS_BWRITE_LOG(BP); \
1010 mutex_enter(&lfs_lock); \
1011 (FS)->lfs_flags |= LFS_IFDIRTY; \
1012 mutex_exit(&lfs_lock); \
1013 } while (0)
1014
1015 /*
1016 * On-disk segment summary information
1017 */
1018
1019 #define SEGSUM_SIZE(fs) \
1020 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1021 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1022
1023 /*
1024 * The SEGSUM structure is followed by FINFO structures. Get the pointer
1025 * to the first FINFO.
1026 *
1027 * XXX this can't be a macro yet; this file needs to be resorted.
1028 */
1029 #if 0
1030 static __inline FINFO *
1031 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1032 {
1033 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1034 }
1035 #else
1036 #define SEGSUM_FINFOBASE(fs, ssp) \
1037 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1038 #endif
1039
1040 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1041 static __inline type \
1042 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
1043 { \
1044 if (fs->lfs_is64) { \
1045 return ssp->u_64.ss_##field; \
1046 } else { \
1047 return ssp->u_32.ss_##field; \
1048 } \
1049 } \
1050 static __inline void \
1051 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1052 { \
1053 if (fs->lfs_is64) { \
1054 type *p = &ssp->u_64.ss_##field; \
1055 (void)p; \
1056 ssp->u_64.ss_##field = val; \
1057 } else { \
1058 type32 *p = &ssp->u_32.ss_##field; \
1059 (void)p; \
1060 ssp->u_32.ss_##field = val; \
1061 } \
1062 } \
1063
1064 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1065 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1066 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1067 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1068 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1069 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1070 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1071 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1072 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1073 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1074 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1075
1076 static __inline size_t
1077 lfs_ss_getsumstart(STRUCT_LFS *fs)
1078 {
1079 /* These are actually all the same. */
1080 if (fs->lfs_is64) {
1081 return offsetof(SEGSUM64, ss_datasum);
1082 } else /* if (lfs_sb_getversion(fs) > 1) */ {
1083 return offsetof(SEGSUM32, ss_datasum);
1084 } /* else {
1085 return offsetof(SEGSUM_V1, ss_datasum);
1086 } */
1087 /*
1088 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1089 * defined yet.
1090 */
1091 }
1092
1093 static __inline uint32_t
1094 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1095 {
1096 KASSERT(fs->lfs_is64 == 0);
1097 /* XXX need to resort this file before we can do this */
1098 //KASSERT(lfs_sb_getversion(fs) == 1);
1099
1100 return ssp->u_v1.ss_create;
1101 }
1102
1103 static __inline void
1104 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1105 {
1106 KASSERT(fs->lfs_is64 == 0);
1107 /* XXX need to resort this file before we can do this */
1108 //KASSERT(lfs_sb_getversion(fs) == 1);
1109
1110 ssp->u_v1.ss_create = val;
1111 }
1112
1113
1114 /*
1115 * Super block.
1116 */
1117
1118 /*
1119 * Generate accessors for the on-disk superblock fields with cpp.
1120 */
1121
1122 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1123 static __inline type \
1124 lfs_sb_get##field(STRUCT_LFS *fs) \
1125 { \
1126 if (fs->lfs_is64) { \
1127 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1128 } else { \
1129 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1130 } \
1131 } \
1132 static __inline void \
1133 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1134 { \
1135 if (fs->lfs_is64) { \
1136 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1137 } else { \
1138 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1139 } \
1140 } \
1141 static __inline void \
1142 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1143 { \
1144 if (fs->lfs_is64) { \
1145 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1146 *p64 += val; \
1147 } else { \
1148 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1149 *p32 += val; \
1150 } \
1151 } \
1152 static __inline void \
1153 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1154 { \
1155 if (fs->lfs_is64) { \
1156 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1157 *p64 -= val; \
1158 } else { \
1159 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1160 *p32 -= val; \
1161 } \
1162 }
1163
1164 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1165
1166 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1167 static __inline type \
1168 lfs_sb_get##field(STRUCT_LFS *fs) \
1169 { \
1170 if (fs->lfs_is64) { \
1171 return val64; \
1172 } else { \
1173 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1174 } \
1175 }
1176
1177 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1178 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1179 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1180 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1181 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1182 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1183 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1184 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1185 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1186 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1187 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1188 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1189 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1190 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1191 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1192 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1193 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1194 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1195 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1196 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1197 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1198 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1199 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1200 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1201 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1202 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1203 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1204 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1205 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1206 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1207 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1208 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1209 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1210 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1211 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1212 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1213 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1214 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1215 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1216 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1217 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1218 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1219 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1220 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1221 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1222 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1223 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1224 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1225 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1226 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1227 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1228 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1229 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1230 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1231 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1232 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1233 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1234
1235 /* special-case accessors */
1236
1237 /*
1238 * the v1 otstamp field lives in what's now dlfs_inopf
1239 */
1240 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1241 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1242
1243 /*
1244 * lfs_sboffs is an array
1245 */
1246 static __inline int32_t
1247 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1248 {
1249 #ifdef KASSERT /* ugh */
1250 KASSERT(n < LFS_MAXNUMSB);
1251 #endif
1252 if (fs->lfs_is64) {
1253 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1254 } else {
1255 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1256 }
1257 }
1258 static __inline void
1259 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1260 {
1261 #ifdef KASSERT /* ugh */
1262 KASSERT(n < LFS_MAXNUMSB);
1263 #endif
1264 if (fs->lfs_is64) {
1265 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1266 } else {
1267 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1268 }
1269 }
1270
1271 /*
1272 * lfs_fsmnt is a string
1273 */
1274 static __inline const char *
1275 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1276 {
1277 if (fs->lfs_is64) {
1278 return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1279 } else {
1280 return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1281 }
1282 }
1283
1284 static __inline void
1285 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1286 {
1287 if (fs->lfs_is64) {
1288 (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1289 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1290 } else {
1291 (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1292 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1293 }
1294 }
1295
1296 /* Highest addressable fsb */
1297 #define LFS_MAX_DADDR(fs) \
1298 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1299
1300 /* LFS_NINDIR is the number of indirects in a file system block. */
1301 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1302
1303 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1304 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1305 /* LFS_INOPF is the number of inodes in a fragment. */
1306 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1307
1308 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1309 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1310 ((int)((loc) & lfs_sb_getffmask(fs)))
1311
1312 /* XXX: lowercase these as they're no longer macros */
1313 /* Frags to diskblocks */
1314 static __inline uint64_t
1315 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1316 {
1317 #if defined(_KERNEL)
1318 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1319 #else
1320 return b << lfs_sb_getfsbtodb(fs);
1321 #endif
1322 }
1323 /* Diskblocks to frags */
1324 static __inline uint64_t
1325 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1326 {
1327 #if defined(_KERNEL)
1328 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1329 #else
1330 return b >> lfs_sb_getfsbtodb(fs);
1331 #endif
1332 }
1333
1334 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1335 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1336
1337 /* Frags to bytes */
1338 static __inline uint64_t
1339 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1340 {
1341 return b << lfs_sb_getffshift(fs);
1342 }
1343 /* Bytes to frags */
1344 static __inline uint64_t
1345 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1346 {
1347 return b >> lfs_sb_getffshift(fs);
1348 }
1349
1350 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1351 ((loc) >> lfs_sb_getffshift(fs))
1352 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1353 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1354 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1355 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1356 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1357 ((frags) >> lfs_sb_getfbshift(fs))
1358 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1359 ((blks) << lfs_sb_getfbshift(fs))
1360 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1361 ((fsb) & ((fs)->lfs_frag - 1))
1362 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1363 ((fsb) &~ ((fs)->lfs_frag - 1))
1364 #define lfs_dblksize(fs, dp, lbn) \
1365 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1366 ? lfs_sb_getbsize(fs) \
1367 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1368
1369 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1370 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1371 lfs_sb_getssize(fs))
1372 /* XXX segtod produces a result in frags despite the 'd' */
1373 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1374 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1375 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1376 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1377 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1378
1379 /* XXX, blah. make this appear only if struct inode is defined */
1380 #ifdef _UFS_LFS_LFS_INODE_H_
1381 static __inline uint32_t
1382 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1383 {
1384 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1385 return lfs_sb_getbsize(fs);
1386 } else {
1387 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1388 }
1389 }
1390 #endif
1391
1392 /*
1393 * union lfs_blocks
1394 */
1395
1396 static __inline void
1397 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1398 {
1399 if (fs->lfs_is64) {
1400 bp->b64 = p;
1401 } else {
1402 bp->b32 = p;
1403 }
1404 }
1405
1406 static __inline void
1407 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1408 {
1409 void *firstblock;
1410
1411 firstblock = (char *)fip + FINFOSIZE(fs);
1412 if (fs->lfs_is64) {
1413 bp->b64 = (int64_t *)firstblock;
1414 } else {
1415 bp->b32 = (int32_t *)firstblock;
1416 }
1417 }
1418
1419 static __inline daddr_t
1420 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
1421 {
1422 if (fs->lfs_is64) {
1423 return bp->b64[idx];
1424 } else {
1425 return bp->b32[idx];
1426 }
1427 }
1428
1429 static __inline void
1430 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
1431 {
1432 if (fs->lfs_is64) {
1433 bp->b64[idx] = val;
1434 } else {
1435 bp->b32[idx] = val;
1436 }
1437 }
1438
1439 static __inline void
1440 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1441 {
1442 if (fs->lfs_is64) {
1443 bp->b64++;
1444 } else {
1445 bp->b32++;
1446 }
1447 }
1448
1449 static __inline int
1450 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1451 {
1452 if (fs->lfs_is64) {
1453 return bp1->b64 == bp2->b64;
1454 } else {
1455 return bp1->b32 == bp2->b32;
1456 }
1457 }
1458
1459 static __inline int
1460 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1461 {
1462 /* (remember that the pointers are typed) */
1463 if (fs->lfs_is64) {
1464 return bp1->b64 - bp2->b64;
1465 } else {
1466 return bp1->b32 - bp2->b32;
1467 }
1468 }
1469
1470 /*
1471 * struct segment
1472 */
1473
1474
1475 /*
1476 * Macros for determining free space on the disk, with the variable metadata
1477 * of segment summaries and inode blocks taken into account.
1478 */
1479 /*
1480 * Estimate number of clean blocks not available for writing because
1481 * they will contain metadata or overhead. This is calculated as
1482 *
1483 * E = ((C * M / D) * D + (0) * (T - D)) / T
1484 * or more simply
1485 * E = (C * M) / T
1486 *
1487 * where
1488 * C is the clean space,
1489 * D is the dirty space,
1490 * M is the dirty metadata, and
1491 * T = C + D is the total space on disk.
1492 *
1493 * This approximates the old formula of E = C * M / D when D is close to T,
1494 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1495 */
1496 #define LFS_EST_CMETA(F) (( \
1497 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1498 (lfs_sb_getnseg(F))))
1499
1500 /* Estimate total size of the disk not including metadata */
1501 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1502
1503 /* Estimate number of blocks actually available for writing */
1504 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1505 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1506
1507 /* Amount of non-meta space not available to mortal man */
1508 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
1509 (u_int64_t)lfs_sb_getminfree(F)) / \
1510 100)
1511
1512 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1513 #define ISSPACE(F, BB, C) \
1514 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1515 LFS_EST_BFREE(F) >= (BB)) || \
1516 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1517
1518 /* Can an ordinary user write BB blocks */
1519 #define IS_FREESPACE(F, BB) \
1520 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1521
1522 /*
1523 * The minimum number of blocks to create a new inode. This is:
1524 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1525 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1526 */
1527 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1528
1529
1530
1531 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1532