Home | History | Annotate | Line # | Download | only in lfs
lfs_accessors.h revision 1.46
      1 /*	$NetBSD: lfs_accessors.h,v 1.46 2016/06/20 03:25:46 dholland Exp $	*/
      2 
      3 /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4 /*  from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp  */
      5 /*  from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp  */
      6 
      7 /*-
      8  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9  * All rights reserved.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*-
     36  * Copyright (c) 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64  */
     65 /*
     66  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67  * All rights reserved.
     68  *
     69  * This software was developed for the FreeBSD Project by Marshall
     70  * Kirk McKusick and Network Associates Laboratories, the Security
     71  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73  * research program
     74  *
     75  * Copyright (c) 1982, 1989, 1993
     76  *	The Regents of the University of California.  All rights reserved.
     77  * (c) UNIX System Laboratories, Inc.
     78  * All or some portions of this file are derived from material licensed
     79  * to the University of California by American Telephone and Telegraph
     80  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81  * the permission of UNIX System Laboratories, Inc.
     82  *
     83  * Redistribution and use in source and binary forms, with or without
     84  * modification, are permitted provided that the following conditions
     85  * are met:
     86  * 1. Redistributions of source code must retain the above copyright
     87  *    notice, this list of conditions and the following disclaimer.
     88  * 2. Redistributions in binary form must reproduce the above copyright
     89  *    notice, this list of conditions and the following disclaimer in the
     90  *    documentation and/or other materials provided with the distribution.
     91  * 3. Neither the name of the University nor the names of its contributors
     92  *    may be used to endorse or promote products derived from this software
     93  *    without specific prior written permission.
     94  *
     95  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105  * SUCH DAMAGE.
    106  *
    107  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108  */
    109 /*
    110  * Copyright (c) 1982, 1986, 1989, 1993
    111  *	The Regents of the University of California.  All rights reserved.
    112  * (c) UNIX System Laboratories, Inc.
    113  * All or some portions of this file are derived from material licensed
    114  * to the University of California by American Telephone and Telegraph
    115  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116  * the permission of UNIX System Laboratories, Inc.
    117  *
    118  * Redistribution and use in source and binary forms, with or without
    119  * modification, are permitted provided that the following conditions
    120  * are met:
    121  * 1. Redistributions of source code must retain the above copyright
    122  *    notice, this list of conditions and the following disclaimer.
    123  * 2. Redistributions in binary form must reproduce the above copyright
    124  *    notice, this list of conditions and the following disclaimer in the
    125  *    documentation and/or other materials provided with the distribution.
    126  * 3. Neither the name of the University nor the names of its contributors
    127  *    may be used to endorse or promote products derived from this software
    128  *    without specific prior written permission.
    129  *
    130  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140  * SUCH DAMAGE.
    141  *
    142  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143  */
    144 
    145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146 #define _UFS_LFS_LFS_ACCESSORS_H_
    147 
    148 #if defined(_KERNEL_OPT)
    149 #include "opt_lfs.h"
    150 #endif
    151 
    152 #include <sys/bswap.h>
    153 
    154 #include <ufs/lfs/lfs.h>
    155 
    156 #if !defined(_KERNEL) && !defined(_STANDALONE)
    157 #include <assert.h>
    158 #include <string.h>
    159 #define KASSERT assert
    160 #else
    161 #include <sys/systm.h>
    162 #endif
    163 
    164 /*
    165  * STRUCT_LFS is used by the libsa code to get accessors that work
    166  * with struct salfs instead of struct lfs, and by the cleaner to
    167  * get accessors that work with struct clfs.
    168  */
    169 
    170 #ifndef STRUCT_LFS
    171 #define STRUCT_LFS struct lfs
    172 #endif
    173 
    174 /*
    175  * byte order
    176  */
    177 
    178 /*
    179  * For now at least, the bootblocks shall not be endian-independent.
    180  * We can see later if it fits in the size budget. Also disable the
    181  * byteswapping if LFS_EI is off.
    182  *
    183  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    184  * and if that changes will likely break silently.
    185  */
    186 
    187 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    188 #define LFS_SWAP_int16_t(fs, val) (val)
    189 #define LFS_SWAP_int32_t(fs, val) (val)
    190 #define LFS_SWAP_int64_t(fs, val) (val)
    191 #define LFS_SWAP_uint16_t(fs, val) (val)
    192 #define LFS_SWAP_uint32_t(fs, val) (val)
    193 #define LFS_SWAP_uint64_t(fs, val) (val)
    194 #else
    195 #define LFS_SWAP_int16_t(fs, val) \
    196 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    197 #define LFS_SWAP_int32_t(fs, val) \
    198 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    199 #define LFS_SWAP_int64_t(fs, val) \
    200 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    201 #define LFS_SWAP_uint16_t(fs, val) \
    202 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    203 #define LFS_SWAP_uint32_t(fs, val) \
    204 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    205 #define LFS_SWAP_uint64_t(fs, val) \
    206 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    207 #endif
    208 
    209 /*
    210  * For handling directories we will need to know if the volume is
    211  * little-endian.
    212  */
    213 #if BYTE_ORDER == LITTLE_ENDIAN
    214 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
    215 #else
    216 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
    217 #endif
    218 
    219 
    220 /*
    221  * directories
    222  */
    223 
    224 #define LFS_DIRHEADERSIZE(fs) \
    225 	((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
    226 
    227 /*
    228  * The LFS_DIRSIZ macro gives the minimum record length which will hold
    229  * the directory entry.  This requires the amount of space in struct lfs_direct
    230  * without the d_name field, plus enough space for the name with a terminating
    231  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
    232  */
    233 #define	LFS_DIRECTSIZ(fs, namlen) \
    234 	(LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
    235 
    236 /*
    237  * The size of the largest possible directory entry. This is
    238  * used by ulfs_dirhash to figure the size of an array, so we
    239  * need a single constant value true for both lfs32 and lfs64.
    240  */
    241 #define LFS_MAXDIRENTRYSIZE \
    242 	(sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
    243 
    244 #if (BYTE_ORDER == LITTLE_ENDIAN)
    245 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    246     (((oldfmt) && !(needswap)) ?		\
    247     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    248 #else
    249 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    250     (((oldfmt) && (needswap)) ?			\
    251     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    252 #endif
    253 
    254 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
    255 
    256 /* Constants for the first argument of LFS_OLDDIRSIZ */
    257 #define LFS_OLDDIRFMT	1
    258 #define LFS_NEWDIRFMT	0
    259 
    260 #define LFS_NEXTDIR(fs, dp) \
    261 	((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
    262 
    263 static __inline char *
    264 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
    265 {
    266 	if (fs->lfs_is64) {
    267 		return (char *)(&dh->u_64 + 1);
    268 	} else {
    269 		return (char *)(&dh->u_32 + 1);
    270 	}
    271 }
    272 
    273 static __inline uint64_t
    274 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    275 {
    276 	if (fs->lfs_is64) {
    277 		uint64_t ino;
    278 
    279 		/*
    280 		 * XXX we can probably write this in a way that's both
    281 		 * still legal and generates better code.
    282 		 */
    283 		memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
    284 		memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
    285 		       &dh->u_64.dh_inoB,
    286 		       sizeof(dh->u_64.dh_inoB));
    287 		return LFS_SWAP_uint64_t(fs, ino);
    288 	} else {
    289 		return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
    290 	}
    291 }
    292 
    293 static __inline uint16_t
    294 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    295 {
    296 	if (fs->lfs_is64) {
    297 		return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
    298 	} else {
    299 		return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
    300 	}
    301 }
    302 
    303 static __inline uint8_t
    304 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    305 {
    306 	if (fs->lfs_is64) {
    307 		KASSERT(fs->lfs_hasolddirfmt == 0);
    308 		return dh->u_64.dh_type;
    309 	} else if (fs->lfs_hasolddirfmt) {
    310 		return LFS_DT_UNKNOWN;
    311 	} else {
    312 		return dh->u_32.dh_type;
    313 	}
    314 }
    315 
    316 static __inline uint8_t
    317 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    318 {
    319 	if (fs->lfs_is64) {
    320 		KASSERT(fs->lfs_hasolddirfmt == 0);
    321 		return dh->u_64.dh_namlen;
    322 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    323 		/* low-order byte of old 16-bit namlen field */
    324 		return dh->u_32.dh_type;
    325 	} else {
    326 		return dh->u_32.dh_namlen;
    327 	}
    328 }
    329 
    330 static __inline void
    331 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
    332 {
    333 	if (fs->lfs_is64) {
    334 
    335 		ino = LFS_SWAP_uint64_t(fs, ino);
    336 		/*
    337 		 * XXX we can probably write this in a way that's both
    338 		 * still legal and generates better code.
    339 		 */
    340 		memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
    341 		memcpy(&dh->u_64.dh_inoB,
    342 		       (char *)&ino + sizeof(dh->u_64.dh_inoA),
    343 		       sizeof(dh->u_64.dh_inoB));
    344 	} else {
    345 		dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
    346 	}
    347 }
    348 
    349 static __inline void
    350 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
    351 {
    352 	if (fs->lfs_is64) {
    353 		dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    354 	} else {
    355 		dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    356 	}
    357 }
    358 
    359 static __inline void
    360 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
    361 {
    362 	if (fs->lfs_is64) {
    363 		KASSERT(fs->lfs_hasolddirfmt == 0);
    364 		dh->u_64.dh_type = type;
    365 	} else if (fs->lfs_hasolddirfmt) {
    366 		/* do nothing */
    367 		return;
    368 	} else {
    369 		dh->u_32.dh_type = type;
    370 	}
    371 }
    372 
    373 static __inline void
    374 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
    375 {
    376 	if (fs->lfs_is64) {
    377 		KASSERT(fs->lfs_hasolddirfmt == 0);
    378 		dh->u_64.dh_namlen = namlen;
    379 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    380 		/* low-order byte of old 16-bit namlen field */
    381 		dh->u_32.dh_type = namlen;
    382 	} else {
    383 		dh->u_32.dh_namlen = namlen;
    384 	}
    385 }
    386 
    387 static __inline void
    388 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
    389 		unsigned namlen, unsigned reclen)
    390 {
    391 	unsigned spacelen;
    392 
    393 	KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
    394 	spacelen = reclen - LFS_DIRHEADERSIZE(fs);
    395 
    396 	/* must always be at least 1 byte as a null terminator */
    397 	KASSERT(spacelen > namlen);
    398 
    399 	memcpy(dest, src, namlen);
    400 	memset(dest + namlen, '\0', spacelen - namlen);
    401 }
    402 
    403 static __inline LFS_DIRHEADER *
    404 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
    405 {
    406 	/* XXX blah, be nice to have a way to do this w/o casts */
    407 	if (fs->lfs_is64) {
    408 		return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
    409 	} else {
    410 		return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
    411 	}
    412 }
    413 
    414 static __inline char *
    415 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
    416 {
    417 	if (fs->lfs_is64) {
    418 		return dt->u_64.dotdot_name;
    419 	} else {
    420 		return dt->u_32.dotdot_name;
    421 	}
    422 }
    423 
    424 /*
    425  * dinodes
    426  */
    427 
    428 /*
    429  * Maximum length of a symlink that can be stored within the inode.
    430  */
    431 #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    432 #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    433 
    434 #define LFS_MAXSYMLINKLEN(fs) \
    435 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
    436 
    437 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    438 
    439 #define DINO_IN_BLOCK(fs, base, ix) \
    440 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    441 
    442 static __inline void
    443 lfs_copy_dinode(STRUCT_LFS *fs,
    444     union lfs_dinode *dst, const union lfs_dinode *src)
    445 {
    446 	/*
    447 	 * We can do structure assignment of the structs, but not of
    448 	 * the whole union, as the union is the size of the (larger)
    449 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    450 	 * be off the end of a buffer or otherwise invalid.
    451 	 */
    452 	if (fs->lfs_is64) {
    453 		dst->u_64 = src->u_64;
    454 	} else {
    455 		dst->u_32 = src->u_32;
    456 	}
    457 }
    458 
    459 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    460 	static __inline type				\
    461 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    462 	{							\
    463 		if (fs->lfs_is64) {				\
    464 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    465 		} else {					\
    466 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    467 		}						\
    468 	}							\
    469 	static __inline void				\
    470 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    471 	{							\
    472 		if (fs->lfs_is64) {				\
    473 			type *p = &dip->u_64.di_##field;	\
    474 			(void)p;				\
    475 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    476 		} else {					\
    477 			type32 *p = &dip->u_32.di_##field;	\
    478 			(void)p;				\
    479 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    480 		}						\
    481 	}							\
    482 
    483 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
    484 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
    485 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
    486 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
    487 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
    488 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
    489 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
    490 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
    491 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
    492 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
    493 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
    494 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
    495 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
    496 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
    497 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
    498 
    499 /* XXX this should be done differently (it's a fake field) */
    500 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev);
    501 
    502 static __inline daddr_t
    503 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    504 {
    505 	KASSERT(ix < ULFS_NDADDR);
    506 	if (fs->lfs_is64) {
    507 		return LFS_SWAP_uint64_t(fs, dip->u_64.di_db[ix]);
    508 	} else {
    509 		/* note: this must sign-extend or UNWRITTEN gets trashed */
    510 		return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_db[ix]);
    511 	}
    512 }
    513 
    514 static __inline daddr_t
    515 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    516 {
    517 	KASSERT(ix < ULFS_NIADDR);
    518 	if (fs->lfs_is64) {
    519 		return LFS_SWAP_uint64_t(fs, dip->u_64.di_ib[ix]);
    520 	} else {
    521 		/* note: this must sign-extend or UNWRITTEN gets trashed */
    522 		return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_ib[ix]);
    523 	}
    524 }
    525 
    526 static __inline void
    527 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    528 {
    529 	KASSERT(ix < ULFS_NDADDR);
    530 	if (fs->lfs_is64) {
    531 		dip->u_64.di_db[ix] = LFS_SWAP_uint64_t(fs, val);
    532 	} else {
    533 		dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
    534 	}
    535 }
    536 
    537 static __inline void
    538 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    539 {
    540 	KASSERT(ix < ULFS_NIADDR);
    541 	if (fs->lfs_is64) {
    542 		dip->u_64.di_ib[ix] = LFS_SWAP_uint64_t(fs, val);
    543 	} else {
    544 		dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
    545 	}
    546 }
    547 
    548 /* birthtime is present only in the 64-bit inode */
    549 static __inline void
    550 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    551     const struct timespec *ts)
    552 {
    553 	if (fs->lfs_is64) {
    554 		dip->u_64.di_birthtime = ts->tv_sec;
    555 		dip->u_64.di_birthnsec = ts->tv_nsec;
    556 	} else {
    557 		/* drop it on the floor */
    558 	}
    559 }
    560 
    561 /*
    562  * indirect blocks
    563  */
    564 
    565 static __inline daddr_t
    566 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    567 {
    568 	if (fs->lfs_is64) {
    569 		// XXX re-enable these asserts after reorging this file
    570 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    571 		return (daddr_t)(((int64_t *)block)[ix]);
    572 	} else {
    573 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    574 		/* must sign-extend or UNWRITTEN gets trashed */
    575 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    576 	}
    577 }
    578 
    579 static __inline void
    580 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    581 {
    582 	if (fs->lfs_is64) {
    583 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    584 		((int64_t *)block)[ix] = val;
    585 	} else {
    586 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    587 		((int32_t *)block)[ix] = val;
    588 	}
    589 }
    590 
    591 /*
    592  * "struct buf" associated definitions
    593  */
    594 
    595 # define LFS_LOCK_BUF(bp) do {						\
    596 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    597 		mutex_enter(&lfs_lock);					\
    598 		++locked_queue_count;					\
    599 		locked_queue_bytes += bp->b_bufsize;			\
    600 		mutex_exit(&lfs_lock);					\
    601 	}								\
    602 	(bp)->b_flags |= B_LOCKED;					\
    603 } while (0)
    604 
    605 # define LFS_UNLOCK_BUF(bp) do {					\
    606 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    607 		mutex_enter(&lfs_lock);					\
    608 		--locked_queue_count;					\
    609 		locked_queue_bytes -= bp->b_bufsize;			\
    610 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    611 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    612 			cv_broadcast(&locked_queue_cv);			\
    613 		mutex_exit(&lfs_lock);					\
    614 	}								\
    615 	(bp)->b_flags &= ~B_LOCKED;					\
    616 } while (0)
    617 
    618 /*
    619  * "struct inode" associated definitions
    620  */
    621 
    622 #define LFS_SET_UINO(ip, flags) do {					\
    623 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
    624 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    625 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
    626 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    627 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
    628 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    629 	(ip)->i_flag |= (flags);					\
    630 } while (0)
    631 
    632 #define LFS_CLR_UINO(ip, flags) do {					\
    633 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
    634 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    635 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
    636 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    637 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
    638 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    639 	(ip)->i_flag &= ~(flags);					\
    640 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    641 		panic("lfs_uinodes < 0");				\
    642 	}								\
    643 } while (0)
    644 
    645 #define LFS_ITIMES(ip, acc, mod, cre) \
    646 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    647 		lfs_itimes(ip, acc, mod, cre)
    648 
    649 /*
    650  * On-disk and in-memory checkpoint segment usage structure.
    651  */
    652 
    653 #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    654 #define	SEGTABSIZE_SU(fs)						\
    655 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    656 
    657 #ifdef _KERNEL
    658 # define SHARE_IFLOCK(F) 						\
    659   do {									\
    660 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    661   } while(0)
    662 # define UNSHARE_IFLOCK(F)						\
    663   do {									\
    664 	rw_exit(&(F)->lfs_iflock);					\
    665   } while(0)
    666 #else /* ! _KERNEL */
    667 # define SHARE_IFLOCK(F)
    668 # define UNSHARE_IFLOCK(F)
    669 #endif /* ! _KERNEL */
    670 
    671 /* Read in the block with a specific segment usage entry from the ifile. */
    672 #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    673 	int _e;								\
    674 	SHARE_IFLOCK(F);						\
    675 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    676 	if ((_e = bread((F)->lfs_ivnode,				\
    677 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    678 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    679 		panic("lfs: ifile read: segentry %llu: error %d\n",	\
    680 			 (unsigned long long)(IN), _e);			\
    681 	if (lfs_sb_getversion(F) == 1)					\
    682 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    683 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    684 	else								\
    685 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    686 	UNSHARE_IFLOCK(F);						\
    687 } while (0)
    688 
    689 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    690 	if ((SP)->su_nbytes == 0)					\
    691 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    692 	else								\
    693 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    694 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    695 	LFS_BWRITE_LOG(BP);						\
    696 } while (0)
    697 
    698 /*
    699  * FINFO (file info) entries.
    700  */
    701 
    702 /* Size of an on-disk block pointer, e.g. in an indirect block. */
    703 /* XXX: move to a more suitable location in this file */
    704 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    705 
    706 /* Size of an on-disk inode number. */
    707 /* XXX: move to a more suitable location in this file */
    708 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    709 
    710 /* size of a FINFO, without the block pointers */
    711 #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    712 
    713 /* Full size of the provided FINFO record, including its block pointers. */
    714 #define FINFO_FULLSIZE(fs, fip) \
    715 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    716 
    717 #define NEXT_FINFO(fs, fip) \
    718 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    719 
    720 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    721 	static __inline type				\
    722 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    723 	{							\
    724 		if (fs->lfs_is64) {				\
    725 			return fip->u_64.fi_##field; 		\
    726 		} else {					\
    727 			return fip->u_32.fi_##field; 		\
    728 		}						\
    729 	}							\
    730 	static __inline void				\
    731 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    732 	{							\
    733 		if (fs->lfs_is64) {				\
    734 			type *p = &fip->u_64.fi_##field;	\
    735 			(void)p;				\
    736 			fip->u_64.fi_##field = val;		\
    737 		} else {					\
    738 			type32 *p = &fip->u_32.fi_##field;	\
    739 			(void)p;				\
    740 			fip->u_32.fi_##field = val;		\
    741 		}						\
    742 	}							\
    743 
    744 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
    745 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
    746 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
    747 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
    748 
    749 static __inline daddr_t
    750 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
    751 {
    752 	void *firstblock;
    753 
    754 	firstblock = (char *)fip + FINFOSIZE(fs);
    755 	KASSERT(idx < lfs_fi_getnblocks(fs, fip));
    756 	if (fs->lfs_is64) {
    757 		return ((int64_t *)firstblock)[idx];
    758 	} else {
    759 		return ((int32_t *)firstblock)[idx];
    760 	}
    761 }
    762 
    763 static __inline void
    764 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
    765 {
    766 	void *firstblock;
    767 
    768 	firstblock = (char *)fip + FINFOSIZE(fs);
    769 	KASSERT(idx < lfs_fi_getnblocks(fs, fip));
    770 	if (fs->lfs_is64) {
    771 		((int64_t *)firstblock)[idx] = blk;
    772 	} else {
    773 		((int32_t *)firstblock)[idx] = blk;
    774 	}
    775 }
    776 
    777 /*
    778  * inode info entries (in the segment summary)
    779  */
    780 
    781 #define IINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
    782 
    783 /* iinfos scroll backward from the end of the segment summary block */
    784 #define SEGSUM_IINFOSTART(fs, buf) \
    785 	((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
    786 
    787 #define NEXTLOWER_IINFO(fs, iip) \
    788 	((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
    789 
    790 #define NTH_IINFO(fs, buf, n) \
    791 	((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
    792 
    793 static __inline uint64_t
    794 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
    795 {
    796 	if (fs->lfs_is64) {
    797 		return iip->u_64.ii_block;
    798 	} else {
    799 		return iip->u_32.ii_block;
    800 	}
    801 }
    802 
    803 static __inline void
    804 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
    805 {
    806 	if (fs->lfs_is64) {
    807 		iip->u_64.ii_block = block;
    808 	} else {
    809 		iip->u_32.ii_block = block;
    810 	}
    811 }
    812 
    813 /*
    814  * Index file inode entries.
    815  */
    816 
    817 #define IFILE_ENTRYSIZE(fs) \
    818 	((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
    819 
    820 /*
    821  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    822  * may not be mapped!
    823  */
    824 /* Read in the block with a specific inode from the ifile. */
    825 #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    826 	int _e;								\
    827 	SHARE_IFLOCK(F);						\
    828 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    829 	if ((_e = bread((F)->lfs_ivnode,				\
    830 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    831 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    832 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    833 	if ((F)->lfs_is64) {						\
    834 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    835 				 (IN) % lfs_sb_getifpb(F));		\
    836 	} else if (lfs_sb_getversion(F) > 1) {				\
    837 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    838 				(IN) % lfs_sb_getifpb(F)); 		\
    839 	} else {							\
    840 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    841 				 (IN) % lfs_sb_getifpb(F));		\
    842 	}								\
    843 	UNSHARE_IFLOCK(F);						\
    844 } while (0)
    845 #define LFS_IENTRY_NEXT(IP, F) do { \
    846 	if ((F)->lfs_is64) {						\
    847 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    848 	} else if (lfs_sb_getversion(F) > 1) {				\
    849 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    850 	} else {							\
    851 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    852 	}								\
    853 } while (0)
    854 
    855 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    856 	static __inline type				\
    857 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    858 	{							\
    859 		if (fs->lfs_is64) {				\
    860 			return ifp->u_64.if_##field; 		\
    861 		} else {					\
    862 			return ifp->u_32.if_##field; 		\
    863 		}						\
    864 	}							\
    865 	static __inline void				\
    866 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    867 	{							\
    868 		if (fs->lfs_is64) {				\
    869 			type *p = &ifp->u_64.if_##field;	\
    870 			(void)p;				\
    871 			ifp->u_64.if_##field = val;		\
    872 		} else {					\
    873 			type32 *p = &ifp->u_32.if_##field;	\
    874 			(void)p;				\
    875 			ifp->u_32.if_##field = val;		\
    876 		}						\
    877 	}							\
    878 
    879 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version);
    880 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
    881 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree);
    882 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec);
    883 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec);
    884 
    885 /*
    886  * Cleaner information structure.  This resides in the ifile and is used
    887  * to pass information from the kernel to the cleaner.
    888  */
    889 
    890 #define	CLEANSIZE_SU(fs)						\
    891 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    892 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    893 
    894 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    895 	static __inline type				\
    896 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    897 	{							\
    898 		if (fs->lfs_is64) {				\
    899 			return cip->u_64.field; 		\
    900 		} else {					\
    901 			return cip->u_32.field; 		\
    902 		}						\
    903 	}							\
    904 	static __inline void				\
    905 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    906 	{							\
    907 		if (fs->lfs_is64) {				\
    908 			type *p = &cip->u_64.field;		\
    909 			(void)p;				\
    910 			cip->u_64.field = val;			\
    911 		} else {					\
    912 			type32 *p = &cip->u_32.field;		\
    913 			(void)p;				\
    914 			cip->u_32.field = val;			\
    915 		}						\
    916 	}							\
    917 
    918 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean);
    919 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty);
    920 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
    921 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
    922 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head);
    923 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail);
    924 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags);
    925 
    926 static __inline void
    927 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    928 {
    929 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    930 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    931 }
    932 
    933 static __inline void
    934 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    935 {
    936 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    937 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    938 }
    939 
    940 /* Read in the block with the cleaner info from the ifile. */
    941 #define LFS_CLEANERINFO(CP, F, BP) do {					\
    942 	int _e;								\
    943 	SHARE_IFLOCK(F);						\
    944 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
    945 	_e = bread((F)->lfs_ivnode,					\
    946 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP));			\
    947 	if (_e)								\
    948 		panic("lfs: ifile read: cleanerinfo: error %d\n", _e);	\
    949 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    950 	UNSHARE_IFLOCK(F);						\
    951 } while (0)
    952 
    953 /*
    954  * Synchronize the Ifile cleaner info with current avail and bfree.
    955  */
    956 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    957     mutex_enter(&lfs_lock);						\
    958     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    959 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    960 	fs->lfs_favail) {	 					\
    961 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    962 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    963 		fs->lfs_favail);				 	\
    964 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    965 		fs->lfs_flags |= LFS_IFDIRTY;				\
    966 	}								\
    967 	mutex_exit(&lfs_lock);						\
    968 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    969     } else {							 	\
    970 	mutex_exit(&lfs_lock);						\
    971 	brelse(bp, 0);						 	\
    972     }									\
    973 } while (0)
    974 
    975 /*
    976  * Get the head of the inode free list.
    977  * Always called with the segment lock held.
    978  */
    979 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    980 	if (lfs_sb_getversion(FS) > 1) {				\
    981 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    982 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    983 		brelse(BP, 0);						\
    984 	}								\
    985 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    986 } while (0)
    987 
    988 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    989 	lfs_sb_setfreehd(FS, VAL);					\
    990 	if (lfs_sb_getversion(FS) > 1) {				\
    991 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    992 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    993 		LFS_BWRITE_LOG(BP);					\
    994 		mutex_enter(&lfs_lock);					\
    995 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
    996 		mutex_exit(&lfs_lock);					\
    997 	}								\
    998 } while (0)
    999 
   1000 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
   1001 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
   1002 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
   1003 	brelse(BP, 0);							\
   1004 } while (0)
   1005 
   1006 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
   1007 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
   1008 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
   1009 	LFS_BWRITE_LOG(BP);						\
   1010 	mutex_enter(&lfs_lock);						\
   1011 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
   1012 	mutex_exit(&lfs_lock);						\
   1013 } while (0)
   1014 
   1015 /*
   1016  * On-disk segment summary information
   1017  */
   1018 
   1019 #define SEGSUM_SIZE(fs) \
   1020 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
   1021 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
   1022 
   1023 /*
   1024  * The SEGSUM structure is followed by FINFO structures. Get the pointer
   1025  * to the first FINFO.
   1026  *
   1027  * XXX this can't be a macro yet; this file needs to be resorted.
   1028  */
   1029 #if 0
   1030 static __inline FINFO *
   1031 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
   1032 {
   1033 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
   1034 }
   1035 #else
   1036 #define SEGSUM_FINFOBASE(fs, ssp) \
   1037 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
   1038 #endif
   1039 
   1040 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
   1041 	static __inline type				\
   1042 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
   1043 	{							\
   1044 		if (fs->lfs_is64) {				\
   1045 			return ssp->u_64.ss_##field; 		\
   1046 		} else {					\
   1047 			return ssp->u_32.ss_##field; 		\
   1048 		}						\
   1049 	}							\
   1050 	static __inline void				\
   1051 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
   1052 	{							\
   1053 		if (fs->lfs_is64) {				\
   1054 			type *p = &ssp->u_64.ss_##field;	\
   1055 			(void)p;				\
   1056 			ssp->u_64.ss_##field = val;		\
   1057 		} else {					\
   1058 			type32 *p = &ssp->u_32.ss_##field;	\
   1059 			(void)p;				\
   1060 			ssp->u_32.ss_##field = val;		\
   1061 		}						\
   1062 	}							\
   1063 
   1064 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
   1065 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
   1066 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
   1067 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
   1068 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
   1069 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
   1070 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
   1071 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
   1072 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
   1073 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
   1074 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
   1075 
   1076 static __inline size_t
   1077 lfs_ss_getsumstart(STRUCT_LFS *fs)
   1078 {
   1079 	/* These are actually all the same. */
   1080 	if (fs->lfs_is64) {
   1081 		return offsetof(SEGSUM64, ss_datasum);
   1082 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
   1083 		return offsetof(SEGSUM32, ss_datasum);
   1084 	} /* else {
   1085 		return offsetof(SEGSUM_V1, ss_datasum);
   1086 	} */
   1087 	/*
   1088 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
   1089 	 * defined yet.
   1090 	 */
   1091 }
   1092 
   1093 static __inline uint32_t
   1094 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
   1095 {
   1096 	KASSERT(fs->lfs_is64 == 0);
   1097 	/* XXX need to resort this file before we can do this */
   1098 	//KASSERT(lfs_sb_getversion(fs) == 1);
   1099 
   1100 	return ssp->u_v1.ss_create;
   1101 }
   1102 
   1103 static __inline void
   1104 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
   1105 {
   1106 	KASSERT(fs->lfs_is64 == 0);
   1107 	/* XXX need to resort this file before we can do this */
   1108 	//KASSERT(lfs_sb_getversion(fs) == 1);
   1109 
   1110 	ssp->u_v1.ss_create = val;
   1111 }
   1112 
   1113 
   1114 /*
   1115  * Super block.
   1116  */
   1117 
   1118 /*
   1119  * Generate accessors for the on-disk superblock fields with cpp.
   1120  */
   1121 
   1122 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
   1123 	static __inline type				\
   1124 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1125 	{							\
   1126 		if (fs->lfs_is64) {				\
   1127 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1128 		} else {					\
   1129 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1130 		}						\
   1131 	}							\
   1132 	static __inline void				\
   1133 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
   1134 	{							\
   1135 		if (fs->lfs_is64) {				\
   1136 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
   1137 		} else {					\
   1138 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
   1139 		}						\
   1140 	}							\
   1141 	static __inline void				\
   1142 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
   1143 	{							\
   1144 		if (fs->lfs_is64) {				\
   1145 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1146 			*p64 += val;				\
   1147 		} else {					\
   1148 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1149 			*p32 += val;				\
   1150 		}						\
   1151 	}							\
   1152 	static __inline void				\
   1153 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
   1154 	{							\
   1155 		if (fs->lfs_is64) {				\
   1156 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1157 			*p64 -= val;				\
   1158 		} else {					\
   1159 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1160 			*p32 -= val;				\
   1161 		}						\
   1162 	}
   1163 
   1164 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
   1165 
   1166 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
   1167 	static __inline type				\
   1168 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1169 	{							\
   1170 		if (fs->lfs_is64) {				\
   1171 			return val64;				\
   1172 		} else {					\
   1173 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1174 		}						\
   1175 	}
   1176 
   1177 LFS_DEF_SB_ACCESSOR(uint32_t, version);
   1178 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size);
   1179 LFS_DEF_SB_ACCESSOR(uint32_t, ssize);
   1180 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize);
   1181 LFS_DEF_SB_ACCESSOR(uint32_t, bsize);
   1182 LFS_DEF_SB_ACCESSOR(uint32_t, fsize);
   1183 LFS_DEF_SB_ACCESSOR(uint32_t, frag);
   1184 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
   1185 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
   1186 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
   1187 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
   1188 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
   1189 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
   1190 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM);
   1191 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
   1192 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
   1193 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
   1194 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
   1195 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
   1196 LFS_DEF_SB_ACCESSOR(uint32_t, inopf);
   1197 LFS_DEF_SB_ACCESSOR(uint32_t, minfree);
   1198 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
   1199 LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg);
   1200 LFS_DEF_SB_ACCESSOR(uint32_t, inopb);
   1201 LFS_DEF_SB_ACCESSOR(uint32_t, ifpb);
   1202 LFS_DEF_SB_ACCESSOR(uint32_t, sepb);
   1203 LFS_DEF_SB_ACCESSOR(uint32_t, nindir);
   1204 LFS_DEF_SB_ACCESSOR(uint32_t, nseg);
   1205 LFS_DEF_SB_ACCESSOR(uint32_t, nspf);
   1206 LFS_DEF_SB_ACCESSOR(uint32_t, cleansz);
   1207 LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz);
   1208 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0);
   1209 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0);
   1210 LFS_DEF_SB_ACCESSOR(uint64_t, bmask);
   1211 LFS_DEF_SB_ACCESSOR(uint32_t, bshift);
   1212 LFS_DEF_SB_ACCESSOR(uint64_t, ffmask);
   1213 LFS_DEF_SB_ACCESSOR(uint32_t, ffshift);
   1214 LFS_DEF_SB_ACCESSOR(uint64_t, fbmask);
   1215 LFS_DEF_SB_ACCESSOR(uint32_t, fbshift);
   1216 LFS_DEF_SB_ACCESSOR(uint32_t, blktodb);
   1217 LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb);
   1218 LFS_DEF_SB_ACCESSOR(uint32_t, sushift);
   1219 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
   1220 LFS_DEF_SB_ACCESSOR(uint32_t, cksum);
   1221 LFS_DEF_SB_ACCESSOR(uint16_t, pflags);
   1222 LFS_DEF_SB_ACCESSOR(uint32_t, nclean);
   1223 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
   1224 LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg);
   1225 LFS_DEF_SB_ACCESSOR(uint32_t, sumsize);
   1226 LFS_DEF_SB_ACCESSOR(uint64_t, serial);
   1227 LFS_DEF_SB_ACCESSOR(uint32_t, ibsize);
   1228 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
   1229 LFS_DEF_SB_ACCESSOR(uint64_t, tstamp);
   1230 LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt);
   1231 LFS_DEF_SB_ACCESSOR(uint32_t, interleave);
   1232 LFS_DEF_SB_ACCESSOR(uint32_t, ident);
   1233 LFS_DEF_SB_ACCESSOR(uint32_t, resvseg);
   1234 
   1235 /* special-case accessors */
   1236 
   1237 /*
   1238  * the v1 otstamp field lives in what's now dlfs_inopf
   1239  */
   1240 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
   1241 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
   1242 
   1243 /*
   1244  * lfs_sboffs is an array
   1245  */
   1246 static __inline int32_t
   1247 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
   1248 {
   1249 #ifdef KASSERT /* ugh */
   1250 	KASSERT(n < LFS_MAXNUMSB);
   1251 #endif
   1252 	if (fs->lfs_is64) {
   1253 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
   1254 	} else {
   1255 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
   1256 	}
   1257 }
   1258 static __inline void
   1259 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
   1260 {
   1261 #ifdef KASSERT /* ugh */
   1262 	KASSERT(n < LFS_MAXNUMSB);
   1263 #endif
   1264 	if (fs->lfs_is64) {
   1265 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1266 	} else {
   1267 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1268 	}
   1269 }
   1270 
   1271 /*
   1272  * lfs_fsmnt is a string
   1273  */
   1274 static __inline const char *
   1275 lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1276 {
   1277 	if (fs->lfs_is64) {
   1278 		return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1279 	} else {
   1280 		return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1281 	}
   1282 }
   1283 
   1284 static __inline void
   1285 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1286 {
   1287 	if (fs->lfs_is64) {
   1288 		(void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1289 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1290 	} else {
   1291 		(void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1292 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1293 	}
   1294 }
   1295 
   1296 /* Highest addressable fsb */
   1297 #define LFS_MAX_DADDR(fs) \
   1298 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1299 
   1300 /* LFS_NINDIR is the number of indirects in a file system block. */
   1301 #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1302 
   1303 /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1304 #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1305 /* LFS_INOPF is the number of inodes in a fragment. */
   1306 #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1307 
   1308 #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1309 #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1310     ((int)((loc) & lfs_sb_getffmask(fs)))
   1311 
   1312 /* XXX: lowercase these as they're no longer macros */
   1313 /* Frags to diskblocks */
   1314 static __inline uint64_t
   1315 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1316 {
   1317 #if defined(_KERNEL)
   1318 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1319 #else
   1320 	return b << lfs_sb_getfsbtodb(fs);
   1321 #endif
   1322 }
   1323 /* Diskblocks to frags */
   1324 static __inline uint64_t
   1325 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1326 {
   1327 #if defined(_KERNEL)
   1328 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1329 #else
   1330 	return b >> lfs_sb_getfsbtodb(fs);
   1331 #endif
   1332 }
   1333 
   1334 #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1335 #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1336 
   1337 /* Frags to bytes */
   1338 static __inline uint64_t
   1339 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1340 {
   1341 	return b << lfs_sb_getffshift(fs);
   1342 }
   1343 /* Bytes to frags */
   1344 static __inline uint64_t
   1345 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1346 {
   1347 	return b >> lfs_sb_getffshift(fs);
   1348 }
   1349 
   1350 #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1351 	((loc) >> lfs_sb_getffshift(fs))
   1352 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1353 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1354 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1355 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1356 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1357 	((frags) >> lfs_sb_getfbshift(fs))
   1358 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1359 	((blks) << lfs_sb_getfbshift(fs))
   1360 #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1361 	((fsb) & ((fs)->lfs_frag - 1))
   1362 #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1363 	((fsb) &~ ((fs)->lfs_frag - 1))
   1364 #define lfs_dblksize(fs, dp, lbn) \
   1365 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1366 	    ? lfs_sb_getbsize(fs) \
   1367 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1368 
   1369 #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1370 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1371 			   lfs_sb_getssize(fs))
   1372 /* XXX segtod produces a result in frags despite the 'd' */
   1373 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1374 #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1375 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1376 #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1377 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1378 
   1379 /* XXX, blah. make this appear only if struct inode is defined */
   1380 #ifdef _UFS_LFS_LFS_INODE_H_
   1381 static __inline uint32_t
   1382 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1383 {
   1384 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1385 		return lfs_sb_getbsize(fs);
   1386 	} else {
   1387 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1388 	}
   1389 }
   1390 #endif
   1391 
   1392 /*
   1393  * union lfs_blocks
   1394  */
   1395 
   1396 static __inline void
   1397 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1398 {
   1399 	if (fs->lfs_is64) {
   1400 		bp->b64 = p;
   1401 	} else {
   1402 		bp->b32 = p;
   1403 	}
   1404 }
   1405 
   1406 static __inline void
   1407 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1408 {
   1409 	void *firstblock;
   1410 
   1411 	firstblock = (char *)fip + FINFOSIZE(fs);
   1412 	if (fs->lfs_is64) {
   1413 		bp->b64 = (int64_t *)firstblock;
   1414 	}  else {
   1415 		bp->b32 = (int32_t *)firstblock;
   1416 	}
   1417 }
   1418 
   1419 static __inline daddr_t
   1420 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
   1421 {
   1422 	if (fs->lfs_is64) {
   1423 		return bp->b64[idx];
   1424 	} else {
   1425 		return bp->b32[idx];
   1426 	}
   1427 }
   1428 
   1429 static __inline void
   1430 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
   1431 {
   1432 	if (fs->lfs_is64) {
   1433 		bp->b64[idx] = val;
   1434 	} else {
   1435 		bp->b32[idx] = val;
   1436 	}
   1437 }
   1438 
   1439 static __inline void
   1440 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1441 {
   1442 	if (fs->lfs_is64) {
   1443 		bp->b64++;
   1444 	} else {
   1445 		bp->b32++;
   1446 	}
   1447 }
   1448 
   1449 static __inline int
   1450 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1451 {
   1452 	if (fs->lfs_is64) {
   1453 		return bp1->b64 == bp2->b64;
   1454 	} else {
   1455 		return bp1->b32 == bp2->b32;
   1456 	}
   1457 }
   1458 
   1459 static __inline int
   1460 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1461 {
   1462 	/* (remember that the pointers are typed) */
   1463 	if (fs->lfs_is64) {
   1464 		return bp1->b64 - bp2->b64;
   1465 	} else {
   1466 		return bp1->b32 - bp2->b32;
   1467 	}
   1468 }
   1469 
   1470 /*
   1471  * struct segment
   1472  */
   1473 
   1474 
   1475 /*
   1476  * Macros for determining free space on the disk, with the variable metadata
   1477  * of segment summaries and inode blocks taken into account.
   1478  */
   1479 /*
   1480  * Estimate number of clean blocks not available for writing because
   1481  * they will contain metadata or overhead.  This is calculated as
   1482  *
   1483  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1484  * or more simply
   1485  *		E = (C * M) / T
   1486  *
   1487  * where
   1488  * C is the clean space,
   1489  * D is the dirty space,
   1490  * M is the dirty metadata, and
   1491  * T = C + D is the total space on disk.
   1492  *
   1493  * This approximates the old formula of E = C * M / D when D is close to T,
   1494  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1495  */
   1496 #define LFS_EST_CMETA(F) ((						\
   1497 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1498 	(lfs_sb_getnseg(F))))
   1499 
   1500 /* Estimate total size of the disk not including metadata */
   1501 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1502 
   1503 /* Estimate number of blocks actually available for writing */
   1504 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1505 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1506 
   1507 /* Amount of non-meta space not available to mortal man */
   1508 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) *			     \
   1509 				   (uint64_t)lfs_sb_getminfree(F)) /	     \
   1510 				  100)
   1511 
   1512 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1513 #define ISSPACE(F, BB, C)						\
   1514 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1515 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1516 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1517 
   1518 /* Can an ordinary user write BB blocks */
   1519 #define IS_FREESPACE(F, BB)						\
   1520 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1521 
   1522 /*
   1523  * The minimum number of blocks to create a new inode.  This is:
   1524  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1525  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1526  */
   1527 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1528 
   1529 
   1530 
   1531 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1532