lfs_accessors.h revision 1.49 1 /* $NetBSD: lfs_accessors.h,v 1.49 2020/03/21 06:11:05 riastradh Exp $ */
2
3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
4 /* from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp */
5 /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */
6
7 /*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant (at) hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*-
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95
64 */
65 /*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 * The Regents of the University of California. All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 * notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 * notice, this list of conditions and the following disclaimer in the
90 * documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 * may be used to endorse or promote products derived from this software
93 * without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95
108 */
109 /*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 * The Regents of the University of California. All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 * notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 * notice, this list of conditions and the following disclaimer in the
125 * documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 * may be used to endorse or promote products derived from this software
128 * without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 * @(#)dir.h 8.5 (Berkeley) 4/27/95
143 */
144
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151
152 #include <sys/bswap.h>
153
154 #include <ufs/lfs/lfs.h>
155
156 #if !defined(_KERNEL) && !defined(_STANDALONE)
157 #include <assert.h>
158 #include <string.h>
159 #define KASSERT assert
160 #else
161 #include <sys/systm.h>
162 #endif
163
164 /*
165 * STRUCT_LFS is used by the libsa code to get accessors that work
166 * with struct salfs instead of struct lfs, and by the cleaner to
167 * get accessors that work with struct clfs.
168 */
169
170 #ifndef STRUCT_LFS
171 #define STRUCT_LFS struct lfs
172 #endif
173
174 /*
175 * byte order
176 */
177
178 /*
179 * For now at least, the bootblocks shall not be endian-independent.
180 * We can see later if it fits in the size budget. Also disable the
181 * byteswapping if LFS_EI is off.
182 *
183 * Caution: these functions "know" that bswap16/32/64 are unsigned,
184 * and if that changes will likely break silently.
185 */
186
187 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
188 #define LFS_SWAP_int16_t(fs, val) (val)
189 #define LFS_SWAP_int32_t(fs, val) (val)
190 #define LFS_SWAP_int64_t(fs, val) (val)
191 #define LFS_SWAP_uint16_t(fs, val) (val)
192 #define LFS_SWAP_uint32_t(fs, val) (val)
193 #define LFS_SWAP_uint64_t(fs, val) (val)
194 #else
195 #define LFS_SWAP_int16_t(fs, val) \
196 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
197 #define LFS_SWAP_int32_t(fs, val) \
198 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
199 #define LFS_SWAP_int64_t(fs, val) \
200 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
201 #define LFS_SWAP_uint16_t(fs, val) \
202 ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
203 #define LFS_SWAP_uint32_t(fs, val) \
204 ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
205 #define LFS_SWAP_uint64_t(fs, val) \
206 ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
207 #endif
208
209 /*
210 * For handling directories we will need to know if the volume is
211 * little-endian.
212 */
213 #if BYTE_ORDER == LITTLE_ENDIAN
214 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
215 #else
216 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
217 #endif
218
219
220 /*
221 * directories
222 */
223
224 #define LFS_DIRHEADERSIZE(fs) \
225 ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
226
227 /*
228 * The LFS_DIRSIZ macro gives the minimum record length which will hold
229 * the directory entry. This requires the amount of space in struct lfs_direct
230 * without the d_name field, plus enough space for the name with a terminating
231 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
232 */
233 #define LFS_DIRECTSIZ(fs, namlen) \
234 (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
235
236 /*
237 * The size of the largest possible directory entry. This is
238 * used by ulfs_dirhash to figure the size of an array, so we
239 * need a single constant value true for both lfs32 and lfs64.
240 */
241 #define LFS_MAXDIRENTRYSIZE \
242 (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
243
244 #if (BYTE_ORDER == LITTLE_ENDIAN)
245 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
246 (((oldfmt) && !(needswap)) ? \
247 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
248 #else
249 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
250 (((oldfmt) && (needswap)) ? \
251 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
252 #endif
253
254 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
255
256 /* Constants for the first argument of LFS_OLDDIRSIZ */
257 #define LFS_OLDDIRFMT 1
258 #define LFS_NEWDIRFMT 0
259
260 #define LFS_NEXTDIR(fs, dp) \
261 ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
262
263 static __inline char *
264 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
265 {
266 if (fs->lfs_is64) {
267 return (char *)(&dh->u_64 + 1);
268 } else {
269 return (char *)(&dh->u_32 + 1);
270 }
271 }
272
273 static __inline uint64_t
274 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
275 {
276 if (fs->lfs_is64) {
277 return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino);
278 } else {
279 return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
280 }
281 }
282
283 static __inline uint16_t
284 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
285 {
286 if (fs->lfs_is64) {
287 return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
288 } else {
289 return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
290 }
291 }
292
293 static __inline uint8_t
294 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
295 {
296 if (fs->lfs_is64) {
297 KASSERT(fs->lfs_hasolddirfmt == 0);
298 return dh->u_64.dh_type;
299 } else if (fs->lfs_hasolddirfmt) {
300 return LFS_DT_UNKNOWN;
301 } else {
302 return dh->u_32.dh_type;
303 }
304 }
305
306 static __inline uint8_t
307 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
308 {
309 if (fs->lfs_is64) {
310 KASSERT(fs->lfs_hasolddirfmt == 0);
311 return dh->u_64.dh_namlen;
312 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
313 /* low-order byte of old 16-bit namlen field */
314 return dh->u_32.dh_type;
315 } else {
316 return dh->u_32.dh_namlen;
317 }
318 }
319
320 static __inline void
321 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
322 {
323 if (fs->lfs_is64) {
324 dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino);
325 } else {
326 dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
327 }
328 }
329
330 static __inline void
331 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
332 {
333 if (fs->lfs_is64) {
334 dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
335 } else {
336 dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
337 }
338 }
339
340 static __inline void
341 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
342 {
343 if (fs->lfs_is64) {
344 KASSERT(fs->lfs_hasolddirfmt == 0);
345 dh->u_64.dh_type = type;
346 } else if (fs->lfs_hasolddirfmt) {
347 /* do nothing */
348 return;
349 } else {
350 dh->u_32.dh_type = type;
351 }
352 }
353
354 static __inline void
355 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
356 {
357 if (fs->lfs_is64) {
358 KASSERT(fs->lfs_hasolddirfmt == 0);
359 dh->u_64.dh_namlen = namlen;
360 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
361 /* low-order byte of old 16-bit namlen field */
362 dh->u_32.dh_type = namlen;
363 } else {
364 dh->u_32.dh_namlen = namlen;
365 }
366 }
367
368 static __inline void
369 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
370 unsigned namlen, unsigned reclen)
371 {
372 unsigned spacelen;
373
374 KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
375 spacelen = reclen - LFS_DIRHEADERSIZE(fs);
376
377 /* must always be at least 1 byte as a null terminator */
378 KASSERT(spacelen > namlen);
379
380 memcpy(dest, src, namlen);
381 memset(dest + namlen, '\0', spacelen - namlen);
382 }
383
384 static __inline LFS_DIRHEADER *
385 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
386 {
387 /* XXX blah, be nice to have a way to do this w/o casts */
388 if (fs->lfs_is64) {
389 return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
390 } else {
391 return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
392 }
393 }
394
395 static __inline char *
396 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
397 {
398 if (fs->lfs_is64) {
399 return dt->u_64.dotdot_name;
400 } else {
401 return dt->u_32.dotdot_name;
402 }
403 }
404
405 /*
406 * dinodes
407 */
408
409 /*
410 * Maximum length of a symlink that can be stored within the inode.
411 */
412 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
413 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
414
415 #define LFS_MAXSYMLINKLEN(fs) \
416 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
417
418 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
419
420 #define DINO_IN_BLOCK(fs, base, ix) \
421 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
422
423 static __inline void
424 lfs_copy_dinode(STRUCT_LFS *fs,
425 union lfs_dinode *dst, const union lfs_dinode *src)
426 {
427 /*
428 * We can do structure assignment of the structs, but not of
429 * the whole union, as the union is the size of the (larger)
430 * 64-bit struct and on a 32-bit fs the upper half of it might
431 * be off the end of a buffer or otherwise invalid.
432 */
433 if (fs->lfs_is64) {
434 dst->u_64 = src->u_64;
435 } else {
436 dst->u_32 = src->u_32;
437 }
438 }
439
440 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
441 static __inline type \
442 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
443 { \
444 if (fs->lfs_is64) { \
445 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
446 } else { \
447 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
448 } \
449 } \
450 static __inline void \
451 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
452 { \
453 if (fs->lfs_is64) { \
454 type *p = &dip->u_64.di_##field; \
455 (void)p; \
456 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
457 } else { \
458 type32 *p = &dip->u_32.di_##field; \
459 (void)p; \
460 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
461 } \
462 } \
463
464 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
465 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
466 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
467 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
468 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
469 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
470 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
471 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
472 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
473 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
474 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
475 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
476 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
477 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
478 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
479
480 /* XXX this should be done differently (it's a fake field) */
481 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev);
482
483 static __inline daddr_t
484 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
485 {
486 KASSERT(ix < ULFS_NDADDR);
487 if (fs->lfs_is64) {
488 return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]);
489 } else {
490 /* note: this must sign-extend or UNWRITTEN gets trashed */
491 return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]);
492 }
493 }
494
495 static __inline daddr_t
496 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
497 {
498 KASSERT(ix < ULFS_NIADDR);
499 if (fs->lfs_is64) {
500 return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]);
501 } else {
502 /* note: this must sign-extend or UNWRITTEN gets trashed */
503 return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]);
504 }
505 }
506
507 static __inline void
508 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
509 {
510 KASSERT(ix < ULFS_NDADDR);
511 if (fs->lfs_is64) {
512 dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val);
513 } else {
514 dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
515 }
516 }
517
518 static __inline void
519 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
520 {
521 KASSERT(ix < ULFS_NIADDR);
522 if (fs->lfs_is64) {
523 dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val);
524 } else {
525 dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
526 }
527 }
528
529 /* birthtime is present only in the 64-bit inode */
530 static __inline void
531 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
532 const struct timespec *ts)
533 {
534 if (fs->lfs_is64) {
535 dip->u_64.di_birthtime = ts->tv_sec;
536 dip->u_64.di_birthnsec = ts->tv_nsec;
537 } else {
538 /* drop it on the floor */
539 }
540 }
541
542 /*
543 * indirect blocks
544 */
545
546 static __inline daddr_t
547 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
548 {
549 if (fs->lfs_is64) {
550 // XXX re-enable these asserts after reorging this file
551 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
552 return (daddr_t)(((int64_t *)block)[ix]);
553 } else {
554 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
555 /* must sign-extend or UNWRITTEN gets trashed */
556 return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
557 }
558 }
559
560 static __inline void
561 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
562 {
563 if (fs->lfs_is64) {
564 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
565 ((int64_t *)block)[ix] = val;
566 } else {
567 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
568 ((int32_t *)block)[ix] = val;
569 }
570 }
571
572 /*
573 * "struct buf" associated definitions
574 */
575
576 # define LFS_LOCK_BUF(bp) do { \
577 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
578 mutex_enter(&lfs_lock); \
579 ++locked_queue_count; \
580 locked_queue_bytes += bp->b_bufsize; \
581 mutex_exit(&lfs_lock); \
582 } \
583 (bp)->b_flags |= B_LOCKED; \
584 } while (0)
585
586 # define LFS_UNLOCK_BUF(bp) do { \
587 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
588 mutex_enter(&lfs_lock); \
589 --locked_queue_count; \
590 locked_queue_bytes -= bp->b_bufsize; \
591 if (locked_queue_count < LFS_WAIT_BUFS && \
592 locked_queue_bytes < LFS_WAIT_BYTES) \
593 cv_broadcast(&locked_queue_cv); \
594 mutex_exit(&lfs_lock); \
595 } \
596 (bp)->b_flags &= ~B_LOCKED; \
597 } while (0)
598
599 /*
600 * "struct inode" associated definitions
601 */
602
603 #define LFS_SET_UINO(ip, states) do { \
604 if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED)) \
605 lfs_sb_adduinodes((ip)->i_lfs, 1); \
606 if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING)) \
607 lfs_sb_adduinodes((ip)->i_lfs, 1); \
608 if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED)) \
609 lfs_sb_adduinodes((ip)->i_lfs, 1); \
610 (ip)->i_state |= (states); \
611 } while (0)
612
613 #define LFS_CLR_UINO(ip, states) do { \
614 if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED)) \
615 lfs_sb_subuinodes((ip)->i_lfs, 1); \
616 if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING)) \
617 lfs_sb_subuinodes((ip)->i_lfs, 1); \
618 if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED)) \
619 lfs_sb_subuinodes((ip)->i_lfs, 1); \
620 (ip)->i_state &= ~(states); \
621 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
622 panic("lfs_uinodes < 0"); \
623 } \
624 } while (0)
625
626 #define LFS_ITIMES(ip, acc, mod, cre) \
627 while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
628 lfs_itimes(ip, acc, mod, cre)
629
630 /*
631 * On-disk and in-memory checkpoint segment usage structure.
632 */
633
634 #define SEGUPB(fs) (lfs_sb_getsepb(fs))
635 #define SEGTABSIZE_SU(fs) \
636 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
637
638 #ifdef _KERNEL
639 # define SHARE_IFLOCK(F) \
640 do { \
641 rw_enter(&(F)->lfs_iflock, RW_READER); \
642 } while(0)
643 # define UNSHARE_IFLOCK(F) \
644 do { \
645 rw_exit(&(F)->lfs_iflock); \
646 } while(0)
647 #else /* ! _KERNEL */
648 # define SHARE_IFLOCK(F)
649 # define UNSHARE_IFLOCK(F)
650 #endif /* ! _KERNEL */
651
652 /* Read in the block with a specific segment usage entry from the ifile. */
653 #define LFS_SEGENTRY(SP, F, IN, BP) do { \
654 int _e; \
655 SHARE_IFLOCK(F); \
656 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \
657 if ((_e = bread((F)->lfs_ivnode, \
658 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
659 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
660 panic("lfs: ifile read: segentry %llu: error %d\n", \
661 (unsigned long long)(IN), _e); \
662 if (lfs_sb_getversion(F) == 1) \
663 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
664 ((IN) & (lfs_sb_getsepb(F) - 1))); \
665 else \
666 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
667 UNSHARE_IFLOCK(F); \
668 } while (0)
669
670 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
671 if ((SP)->su_nbytes == 0) \
672 (SP)->su_flags |= SEGUSE_EMPTY; \
673 else \
674 (SP)->su_flags &= ~SEGUSE_EMPTY; \
675 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
676 LFS_BWRITE_LOG(BP); \
677 } while (0)
678
679 /*
680 * FINFO (file info) entries.
681 */
682
683 /* Size of an on-disk block pointer, e.g. in an indirect block. */
684 /* XXX: move to a more suitable location in this file */
685 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
686
687 /* Size of an on-disk inode number. */
688 /* XXX: move to a more suitable location in this file */
689 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
690
691 /* size of a FINFO, without the block pointers */
692 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
693
694 /* Full size of the provided FINFO record, including its block pointers. */
695 #define FINFO_FULLSIZE(fs, fip) \
696 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
697
698 #define NEXT_FINFO(fs, fip) \
699 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
700
701 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
702 static __inline type \
703 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
704 { \
705 if (fs->lfs_is64) { \
706 return fip->u_64.fi_##field; \
707 } else { \
708 return fip->u_32.fi_##field; \
709 } \
710 } \
711 static __inline void \
712 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
713 { \
714 if (fs->lfs_is64) { \
715 type *p = &fip->u_64.fi_##field; \
716 (void)p; \
717 fip->u_64.fi_##field = val; \
718 } else { \
719 type32 *p = &fip->u_32.fi_##field; \
720 (void)p; \
721 fip->u_32.fi_##field = val; \
722 } \
723 } \
724
725 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
726 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
727 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
728 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
729
730 static __inline daddr_t
731 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
732 {
733 void *firstblock;
734
735 firstblock = (char *)fip + FINFOSIZE(fs);
736 KASSERT(idx < lfs_fi_getnblocks(fs, fip));
737 if (fs->lfs_is64) {
738 return ((int64_t *)firstblock)[idx];
739 } else {
740 return ((int32_t *)firstblock)[idx];
741 }
742 }
743
744 static __inline void
745 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
746 {
747 void *firstblock;
748
749 firstblock = (char *)fip + FINFOSIZE(fs);
750 KASSERT(idx < lfs_fi_getnblocks(fs, fip));
751 if (fs->lfs_is64) {
752 ((int64_t *)firstblock)[idx] = blk;
753 } else {
754 ((int32_t *)firstblock)[idx] = blk;
755 }
756 }
757
758 /*
759 * inode info entries (in the segment summary)
760 */
761
762 #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
763
764 /* iinfos scroll backward from the end of the segment summary block */
765 #define SEGSUM_IINFOSTART(fs, buf) \
766 ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
767
768 #define NEXTLOWER_IINFO(fs, iip) \
769 ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
770
771 #define NTH_IINFO(fs, buf, n) \
772 ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
773
774 static __inline uint64_t
775 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
776 {
777 if (fs->lfs_is64) {
778 return iip->u_64.ii_block;
779 } else {
780 return iip->u_32.ii_block;
781 }
782 }
783
784 static __inline void
785 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
786 {
787 if (fs->lfs_is64) {
788 iip->u_64.ii_block = block;
789 } else {
790 iip->u_32.ii_block = block;
791 }
792 }
793
794 /*
795 * Index file inode entries.
796 */
797
798 #define IFILE_ENTRYSIZE(fs) \
799 ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
800
801 /*
802 * LFSv1 compatibility code is not allowed to touch if_atime, since it
803 * may not be mapped!
804 */
805 /* Read in the block with a specific inode from the ifile. */
806 #define LFS_IENTRY(IP, F, IN, BP) do { \
807 int _e; \
808 SHARE_IFLOCK(F); \
809 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \
810 if ((_e = bread((F)->lfs_ivnode, \
811 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
812 lfs_sb_getbsize(F), 0, &(BP))) != 0) \
813 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
814 if ((F)->lfs_is64) { \
815 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
816 (IN) % lfs_sb_getifpb(F)); \
817 } else if (lfs_sb_getversion(F) > 1) { \
818 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
819 (IN) % lfs_sb_getifpb(F)); \
820 } else { \
821 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
822 (IN) % lfs_sb_getifpb(F)); \
823 } \
824 UNSHARE_IFLOCK(F); \
825 } while (0)
826 #define LFS_IENTRY_NEXT(IP, F) do { \
827 if ((F)->lfs_is64) { \
828 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
829 } else if (lfs_sb_getversion(F) > 1) { \
830 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
831 } else { \
832 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
833 } \
834 } while (0)
835
836 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
837 static __inline type \
838 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
839 { \
840 if (fs->lfs_is64) { \
841 return ifp->u_64.if_##field; \
842 } else { \
843 return ifp->u_32.if_##field; \
844 } \
845 } \
846 static __inline void \
847 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
848 { \
849 if (fs->lfs_is64) { \
850 type *p = &ifp->u_64.if_##field; \
851 (void)p; \
852 ifp->u_64.if_##field = val; \
853 } else { \
854 type32 *p = &ifp->u_32.if_##field; \
855 (void)p; \
856 ifp->u_32.if_##field = val; \
857 } \
858 } \
859
860 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version);
861 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
862 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree);
863 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec);
864 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec);
865
866 /*
867 * Cleaner information structure. This resides in the ifile and is used
868 * to pass information from the kernel to the cleaner.
869 */
870
871 #define CLEANSIZE_SU(fs) \
872 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
873 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
874
875 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
876 static __inline type \
877 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
878 { \
879 if (fs->lfs_is64) { \
880 return cip->u_64.field; \
881 } else { \
882 return cip->u_32.field; \
883 } \
884 } \
885 static __inline void \
886 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
887 { \
888 if (fs->lfs_is64) { \
889 type *p = &cip->u_64.field; \
890 (void)p; \
891 cip->u_64.field = val; \
892 } else { \
893 type32 *p = &cip->u_32.field; \
894 (void)p; \
895 cip->u_32.field = val; \
896 } \
897 } \
898
899 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean);
900 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty);
901 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
902 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
903 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head);
904 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail);
905 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags);
906
907 static __inline void
908 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
909 {
910 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
911 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
912 }
913
914 static __inline void
915 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
916 {
917 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
918 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
919 }
920
921 /* Read in the block with the cleaner info from the ifile. */
922 #define LFS_CLEANERINFO(CP, F, BP) do { \
923 int _e; \
924 SHARE_IFLOCK(F); \
925 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \
926 _e = bread((F)->lfs_ivnode, \
927 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \
928 if (_e) \
929 panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \
930 (CP) = (CLEANERINFO *)(BP)->b_data; \
931 UNSHARE_IFLOCK(F); \
932 } while (0)
933
934 /*
935 * Synchronize the Ifile cleaner info with current avail and bfree.
936 */
937 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
938 mutex_enter(&lfs_lock); \
939 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
940 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
941 fs->lfs_favail) { \
942 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
943 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
944 fs->lfs_favail); \
945 if (((bp)->b_flags & B_GATHERED) == 0) { \
946 fs->lfs_flags |= LFS_IFDIRTY; \
947 } \
948 mutex_exit(&lfs_lock); \
949 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \
950 } else { \
951 mutex_exit(&lfs_lock); \
952 brelse(bp, 0); \
953 } \
954 } while (0)
955
956 /*
957 * Get the head of the inode free list.
958 * Always called with the segment lock held.
959 */
960 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
961 if (lfs_sb_getversion(FS) > 1) { \
962 LFS_CLEANERINFO((CIP), (FS), (BP)); \
963 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
964 brelse(BP, 0); \
965 } \
966 *(FREEP) = lfs_sb_getfreehd(FS); \
967 } while (0)
968
969 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
970 lfs_sb_setfreehd(FS, VAL); \
971 if (lfs_sb_getversion(FS) > 1) { \
972 LFS_CLEANERINFO((CIP), (FS), (BP)); \
973 lfs_ci_setfree_head(FS, CIP, VAL); \
974 LFS_BWRITE_LOG(BP); \
975 mutex_enter(&lfs_lock); \
976 (FS)->lfs_flags |= LFS_IFDIRTY; \
977 mutex_exit(&lfs_lock); \
978 } \
979 } while (0)
980
981 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
982 LFS_CLEANERINFO((CIP), (FS), (BP)); \
983 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
984 brelse(BP, 0); \
985 } while (0)
986
987 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
988 LFS_CLEANERINFO((CIP), (FS), (BP)); \
989 lfs_ci_setfree_tail(FS, CIP, VAL); \
990 LFS_BWRITE_LOG(BP); \
991 mutex_enter(&lfs_lock); \
992 (FS)->lfs_flags |= LFS_IFDIRTY; \
993 mutex_exit(&lfs_lock); \
994 } while (0)
995
996 /*
997 * On-disk segment summary information
998 */
999
1000 #define SEGSUM_SIZE(fs) \
1001 (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1002 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1003
1004 /*
1005 * The SEGSUM structure is followed by FINFO structures. Get the pointer
1006 * to the first FINFO.
1007 *
1008 * XXX this can't be a macro yet; this file needs to be resorted.
1009 */
1010 #if 0
1011 static __inline FINFO *
1012 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1013 {
1014 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1015 }
1016 #else
1017 #define SEGSUM_FINFOBASE(fs, ssp) \
1018 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1019 #endif
1020
1021 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1022 static __inline type \
1023 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
1024 { \
1025 if (fs->lfs_is64) { \
1026 return ssp->u_64.ss_##field; \
1027 } else { \
1028 return ssp->u_32.ss_##field; \
1029 } \
1030 } \
1031 static __inline void \
1032 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1033 { \
1034 if (fs->lfs_is64) { \
1035 type *p = &ssp->u_64.ss_##field; \
1036 (void)p; \
1037 ssp->u_64.ss_##field = val; \
1038 } else { \
1039 type32 *p = &ssp->u_32.ss_##field; \
1040 (void)p; \
1041 ssp->u_32.ss_##field = val; \
1042 } \
1043 } \
1044
1045 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1046 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1047 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1048 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1049 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1050 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1051 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1052 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1053 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1054 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1055 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1056
1057 static __inline size_t
1058 lfs_ss_getsumstart(STRUCT_LFS *fs)
1059 {
1060 /* These are actually all the same. */
1061 if (fs->lfs_is64) {
1062 return offsetof(SEGSUM64, ss_datasum);
1063 } else /* if (lfs_sb_getversion(fs) > 1) */ {
1064 return offsetof(SEGSUM32, ss_datasum);
1065 } /* else {
1066 return offsetof(SEGSUM_V1, ss_datasum);
1067 } */
1068 /*
1069 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1070 * defined yet.
1071 */
1072 }
1073
1074 static __inline uint32_t
1075 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1076 {
1077 KASSERT(fs->lfs_is64 == 0);
1078 /* XXX need to resort this file before we can do this */
1079 //KASSERT(lfs_sb_getversion(fs) == 1);
1080
1081 return ssp->u_v1.ss_create;
1082 }
1083
1084 static __inline void
1085 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1086 {
1087 KASSERT(fs->lfs_is64 == 0);
1088 /* XXX need to resort this file before we can do this */
1089 //KASSERT(lfs_sb_getversion(fs) == 1);
1090
1091 ssp->u_v1.ss_create = val;
1092 }
1093
1094
1095 /*
1096 * Super block.
1097 */
1098
1099 /*
1100 * Generate accessors for the on-disk superblock fields with cpp.
1101 */
1102
1103 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1104 static __inline type \
1105 lfs_sb_get##field(STRUCT_LFS *fs) \
1106 { \
1107 if (fs->lfs_is64) { \
1108 return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1109 } else { \
1110 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1111 } \
1112 } \
1113 static __inline void \
1114 lfs_sb_set##field(STRUCT_LFS *fs, type val) \
1115 { \
1116 if (fs->lfs_is64) { \
1117 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
1118 } else { \
1119 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
1120 } \
1121 } \
1122 static __inline void \
1123 lfs_sb_add##field(STRUCT_LFS *fs, type val) \
1124 { \
1125 if (fs->lfs_is64) { \
1126 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1127 *p64 += val; \
1128 } else { \
1129 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1130 *p32 += val; \
1131 } \
1132 } \
1133 static __inline void \
1134 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
1135 { \
1136 if (fs->lfs_is64) { \
1137 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1138 *p64 -= val; \
1139 } else { \
1140 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1141 *p32 -= val; \
1142 } \
1143 }
1144
1145 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1146
1147 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1148 static __inline type \
1149 lfs_sb_get##field(STRUCT_LFS *fs) \
1150 { \
1151 if (fs->lfs_is64) { \
1152 return val64; \
1153 } else { \
1154 return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1155 } \
1156 }
1157
1158 LFS_DEF_SB_ACCESSOR(uint32_t, version);
1159 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size);
1160 LFS_DEF_SB_ACCESSOR(uint32_t, ssize);
1161 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize);
1162 LFS_DEF_SB_ACCESSOR(uint32_t, bsize);
1163 LFS_DEF_SB_ACCESSOR(uint32_t, fsize);
1164 LFS_DEF_SB_ACCESSOR(uint32_t, frag);
1165 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1166 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1167 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1168 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1169 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1170 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1171 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM);
1172 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1173 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1174 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1175 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1176 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1177 LFS_DEF_SB_ACCESSOR(uint32_t, inopf);
1178 LFS_DEF_SB_ACCESSOR(uint32_t, minfree);
1179 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1180 LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg);
1181 LFS_DEF_SB_ACCESSOR(uint32_t, inopb);
1182 LFS_DEF_SB_ACCESSOR(uint32_t, ifpb);
1183 LFS_DEF_SB_ACCESSOR(uint32_t, sepb);
1184 LFS_DEF_SB_ACCESSOR(uint32_t, nindir);
1185 LFS_DEF_SB_ACCESSOR(uint32_t, nseg);
1186 LFS_DEF_SB_ACCESSOR(uint32_t, nspf);
1187 LFS_DEF_SB_ACCESSOR(uint32_t, cleansz);
1188 LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz);
1189 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0);
1190 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0);
1191 LFS_DEF_SB_ACCESSOR(uint64_t, bmask);
1192 LFS_DEF_SB_ACCESSOR(uint32_t, bshift);
1193 LFS_DEF_SB_ACCESSOR(uint64_t, ffmask);
1194 LFS_DEF_SB_ACCESSOR(uint32_t, ffshift);
1195 LFS_DEF_SB_ACCESSOR(uint64_t, fbmask);
1196 LFS_DEF_SB_ACCESSOR(uint32_t, fbshift);
1197 LFS_DEF_SB_ACCESSOR(uint32_t, blktodb);
1198 LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb);
1199 LFS_DEF_SB_ACCESSOR(uint32_t, sushift);
1200 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1201 LFS_DEF_SB_ACCESSOR(uint32_t, cksum);
1202 LFS_DEF_SB_ACCESSOR(uint16_t, pflags);
1203 LFS_DEF_SB_ACCESSOR(uint32_t, nclean);
1204 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1205 LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg);
1206 LFS_DEF_SB_ACCESSOR(uint32_t, sumsize);
1207 LFS_DEF_SB_ACCESSOR(uint64_t, serial);
1208 LFS_DEF_SB_ACCESSOR(uint32_t, ibsize);
1209 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1210 LFS_DEF_SB_ACCESSOR(uint64_t, tstamp);
1211 LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt);
1212 LFS_DEF_SB_ACCESSOR(uint32_t, interleave);
1213 LFS_DEF_SB_ACCESSOR(uint32_t, ident);
1214 LFS_DEF_SB_ACCESSOR(uint32_t, resvseg);
1215
1216 /* special-case accessors */
1217
1218 /*
1219 * the v1 otstamp field lives in what's now dlfs_inopf
1220 */
1221 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1222 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1223
1224 /*
1225 * lfs_sboffs is an array
1226 */
1227 static __inline int32_t
1228 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1229 {
1230 #ifdef KASSERT /* ugh */
1231 KASSERT(n < LFS_MAXNUMSB);
1232 #endif
1233 if (fs->lfs_is64) {
1234 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1235 } else {
1236 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1237 }
1238 }
1239 static __inline void
1240 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1241 {
1242 #ifdef KASSERT /* ugh */
1243 KASSERT(n < LFS_MAXNUMSB);
1244 #endif
1245 if (fs->lfs_is64) {
1246 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1247 } else {
1248 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1249 }
1250 }
1251
1252 /*
1253 * lfs_fsmnt is a string
1254 */
1255 static __inline const char *
1256 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1257 {
1258 if (fs->lfs_is64) {
1259 return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1260 } else {
1261 return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1262 }
1263 }
1264
1265 static __inline void
1266 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1267 {
1268 if (fs->lfs_is64) {
1269 (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1270 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1271 } else {
1272 (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1273 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1274 }
1275 }
1276
1277 /* Highest addressable fsb */
1278 #define LFS_MAX_DADDR(fs) \
1279 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1280
1281 /* LFS_NINDIR is the number of indirects in a file system block. */
1282 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
1283
1284 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1285 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
1286 /* LFS_INOPF is the number of inodes in a fragment. */
1287 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
1288
1289 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
1290 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
1291 ((int)((loc) & lfs_sb_getffmask(fs)))
1292
1293 /* XXX: lowercase these as they're no longer macros */
1294 /* Frags to diskblocks */
1295 static __inline uint64_t
1296 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1297 {
1298 #if defined(_KERNEL)
1299 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1300 #else
1301 return b << lfs_sb_getfsbtodb(fs);
1302 #endif
1303 }
1304 /* Diskblocks to frags */
1305 static __inline uint64_t
1306 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1307 {
1308 #if defined(_KERNEL)
1309 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1310 #else
1311 return b >> lfs_sb_getfsbtodb(fs);
1312 #endif
1313 }
1314
1315 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
1316 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
1317
1318 /* Frags to bytes */
1319 static __inline uint64_t
1320 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1321 {
1322 return b << lfs_sb_getffshift(fs);
1323 }
1324 /* Bytes to frags */
1325 static __inline uint64_t
1326 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1327 {
1328 return b >> lfs_sb_getffshift(fs);
1329 }
1330
1331 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
1332 ((loc) >> lfs_sb_getffshift(fs))
1333 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1334 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1335 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1336 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1337 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1338 ((frags) >> lfs_sb_getfbshift(fs))
1339 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1340 ((blks) << lfs_sb_getfbshift(fs))
1341 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
1342 ((fsb) & ((fs)->lfs_frag - 1))
1343 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
1344 ((fsb) &~ ((fs)->lfs_frag - 1))
1345 #define lfs_dblksize(fs, dp, lbn) \
1346 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1347 ? lfs_sb_getbsize(fs) \
1348 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1349
1350 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
1351 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
1352 lfs_sb_getssize(fs))
1353 /* XXX segtod produces a result in frags despite the 'd' */
1354 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1355 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \
1356 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1357 #define lfs_sntod(fs, sn) /* segment number to disk address */ \
1358 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1359
1360 /* XXX, blah. make this appear only if struct inode is defined */
1361 #ifdef _UFS_LFS_LFS_INODE_H_
1362 static __inline uint32_t
1363 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1364 {
1365 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1366 return lfs_sb_getbsize(fs);
1367 } else {
1368 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1369 }
1370 }
1371 #endif
1372
1373 /*
1374 * union lfs_blocks
1375 */
1376
1377 static __inline void
1378 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1379 {
1380 if (fs->lfs_is64) {
1381 bp->b64 = p;
1382 } else {
1383 bp->b32 = p;
1384 }
1385 }
1386
1387 static __inline void
1388 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1389 {
1390 void *firstblock;
1391
1392 firstblock = (char *)fip + FINFOSIZE(fs);
1393 if (fs->lfs_is64) {
1394 bp->b64 = (int64_t *)firstblock;
1395 } else {
1396 bp->b32 = (int32_t *)firstblock;
1397 }
1398 }
1399
1400 static __inline daddr_t
1401 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
1402 {
1403 if (fs->lfs_is64) {
1404 return bp->b64[idx];
1405 } else {
1406 return bp->b32[idx];
1407 }
1408 }
1409
1410 static __inline void
1411 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
1412 {
1413 if (fs->lfs_is64) {
1414 bp->b64[idx] = val;
1415 } else {
1416 bp->b32[idx] = val;
1417 }
1418 }
1419
1420 static __inline void
1421 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1422 {
1423 if (fs->lfs_is64) {
1424 bp->b64++;
1425 } else {
1426 bp->b32++;
1427 }
1428 }
1429
1430 static __inline int
1431 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1432 {
1433 if (fs->lfs_is64) {
1434 return bp1->b64 == bp2->b64;
1435 } else {
1436 return bp1->b32 == bp2->b32;
1437 }
1438 }
1439
1440 static __inline int
1441 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1442 {
1443 /* (remember that the pointers are typed) */
1444 if (fs->lfs_is64) {
1445 return bp1->b64 - bp2->b64;
1446 } else {
1447 return bp1->b32 - bp2->b32;
1448 }
1449 }
1450
1451 /*
1452 * struct segment
1453 */
1454
1455
1456 /*
1457 * Macros for determining free space on the disk, with the variable metadata
1458 * of segment summaries and inode blocks taken into account.
1459 */
1460 /*
1461 * Estimate number of clean blocks not available for writing because
1462 * they will contain metadata or overhead. This is calculated as
1463 *
1464 * E = ((C * M / D) * D + (0) * (T - D)) / T
1465 * or more simply
1466 * E = (C * M) / T
1467 *
1468 * where
1469 * C is the clean space,
1470 * D is the dirty space,
1471 * M is the dirty metadata, and
1472 * T = C + D is the total space on disk.
1473 *
1474 * This approximates the old formula of E = C * M / D when D is close to T,
1475 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1476 */
1477 #define LFS_EST_CMETA(F) (( \
1478 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
1479 (lfs_sb_getnseg(F))))
1480
1481 /* Estimate total size of the disk not including metadata */
1482 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1483
1484 /* Estimate number of blocks actually available for writing */
1485 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
1486 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1487
1488 /* Amount of non-meta space not available to mortal man */
1489 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
1490 (uint64_t)lfs_sb_getminfree(F)) / \
1491 100)
1492
1493 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1494 #define ISSPACE(F, BB, C) \
1495 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
1496 LFS_EST_BFREE(F) >= (BB)) || \
1497 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1498
1499 /* Can an ordinary user write BB blocks */
1500 #define IS_FREESPACE(F, BB) \
1501 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1502
1503 /*
1504 * The minimum number of blocks to create a new inode. This is:
1505 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1506 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1507 */
1508 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1509
1510
1511
1512 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1513