lfs_bio.c revision 1.98.8.1 1 /* $NetBSD: lfs_bio.c,v 1.98.8.1 2007/03/13 17:51:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_bio.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_bio.c,v 1.98.8.1 2007/03/13 17:51:22 ad Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/kauth.h>
81
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ufs/ufs_extern.h>
85
86 #include <ufs/lfs/lfs.h>
87 #include <ufs/lfs/lfs_extern.h>
88
89 #include <uvm/uvm.h>
90
91 /*
92 * LFS block write function.
93 *
94 * XXX
95 * No write cost accounting is done.
96 * This is almost certainly wrong for synchronous operations and NFS.
97 *
98 * protected by lfs_subsys_lock.
99 */
100 int locked_queue_count = 0; /* Count of locked-down buffers. */
101 long locked_queue_bytes = 0L; /* Total size of locked buffers. */
102 int lfs_subsys_pages = 0L; /* Total number LFS-written pages */
103 int lfs_fs_pagetrip = 0; /* # of pages to trip per-fs write */
104 int lfs_writing = 0; /* Set if already kicked off a writer
105 because of buffer space */
106
107 /* Lock and condition variables for above. */
108 kcondvar_t locked_queue_cv;
109 kcondvar_t lfs_writing_cv;
110 kmutex_t lfs_subsys_lock;
111
112 extern int lfs_dostats;
113
114 /*
115 * reserved number/bytes of locked buffers
116 */
117 int locked_queue_rcount = 0;
118 long locked_queue_rbytes = 0L;
119
120 int lfs_fits_buf(struct lfs *, int, int);
121 int lfs_reservebuf(struct lfs *, struct vnode *vp, struct vnode *vp2,
122 int, int);
123 int lfs_reserveavail(struct lfs *, struct vnode *vp, struct vnode *vp2, int);
124
125 int
126 lfs_fits_buf(struct lfs *fs, int n, int bytes)
127 {
128 int count_fit, bytes_fit;
129
130 ASSERT_NO_SEGLOCK(fs);
131 KASSERT(mutex_owned(&lfs_subsys_lock));
132
133 count_fit =
134 (locked_queue_count + locked_queue_rcount + n < LFS_WAIT_BUFS);
135 bytes_fit =
136 (locked_queue_bytes + locked_queue_rbytes + bytes < LFS_WAIT_BYTES);
137
138 #ifdef DEBUG
139 if (!count_fit) {
140 DLOG((DLOG_AVAIL, "lfs_fits_buf: no fit count: %d + %d + %d >= %d\n",
141 locked_queue_count, locked_queue_rcount,
142 n, LFS_WAIT_BUFS));
143 }
144 if (!bytes_fit) {
145 DLOG((DLOG_AVAIL, "lfs_fits_buf: no fit bytes: %ld + %ld + %d >= %ld\n",
146 locked_queue_bytes, locked_queue_rbytes,
147 bytes, LFS_WAIT_BYTES));
148 }
149 #endif /* DEBUG */
150
151 return (count_fit && bytes_fit);
152 }
153
154 /* ARGSUSED */
155 int
156 lfs_reservebuf(struct lfs *fs, struct vnode *vp,
157 struct vnode *vp2, int n, int bytes)
158 {
159 ASSERT_MAYBE_SEGLOCK(fs);
160 KASSERT(locked_queue_rcount >= 0);
161 KASSERT(locked_queue_rbytes >= 0);
162
163 mutex_enter(&lfs_subsys_lock);
164 while (n > 0 && !lfs_fits_buf(fs, n, bytes)) {
165 int error;
166
167 lfs_flush(fs, 0, 0);
168
169 error = cv_timedwait_sig(&locked_queue_cv, &lfs_subsys_lock,
170 hz * LFS_BUFWAIT);
171 if (error && error != EWOULDBLOCK) {
172 mutex_exit(&lfs_subsys_lock);
173 return error;
174 }
175 }
176
177 locked_queue_rcount += n;
178 locked_queue_rbytes += bytes;
179
180 mutex_exit(&lfs_subsys_lock);
181
182 KASSERT(locked_queue_rcount >= 0);
183 KASSERT(locked_queue_rbytes >= 0);
184
185 return 0;
186 }
187
188 /*
189 * Try to reserve some blocks, prior to performing a sensitive operation that
190 * requires the vnode lock to be honored. If there is not enough space, give
191 * up the vnode lock temporarily and wait for the space to become available.
192 *
193 * Called with vp locked. (Note nowever that if fsb < 0, vp is ignored.)
194 *
195 * XXX YAMT - it isn't safe to unlock vp here
196 * because the node might be modified while we sleep.
197 * (eg. cached states like i_offset might be stale,
198 * the vnode might be truncated, etc..)
199 * maybe we should have a way to restart the vnodeop (EVOPRESTART?)
200 * or rearrange vnodeop interface to leave vnode locking to file system
201 * specific code so that each file systems can have their own vnode locking and
202 * vnode re-using strategies.
203 */
204 int
205 lfs_reserveavail(struct lfs *fs, struct vnode *vp,
206 struct vnode *vp2, int fsb)
207 {
208 CLEANERINFO *cip;
209 struct buf *bp;
210 int error, slept;
211
212 ASSERT_MAYBE_SEGLOCK(fs);
213 slept = 0;
214 mutex_enter(&fs->lfs_interlock);
215 while (fsb > 0 && !lfs_fits(fs, fsb + fs->lfs_ravail + fs->lfs_favail)) {
216 mutex_exit(&fs->lfs_interlock);
217 #if 0
218 /*
219 * XXX ideally, we should unlock vnodes here
220 * because we might sleep very long time.
221 */
222 VOP_UNLOCK(vp, 0);
223 if (vp2 != NULL) {
224 VOP_UNLOCK(vp2, 0);
225 }
226 #else
227 /*
228 * XXX since we'll sleep for cleaner with vnode lock holding,
229 * deadlock will occur if cleaner tries to lock the vnode.
230 * (eg. lfs_markv -> lfs_fastvget -> getnewvnode -> vclean)
231 */
232 #endif
233
234 if (!slept) {
235 DLOG((DLOG_AVAIL, "lfs_reserve: waiting for %ld (bfree = %d,"
236 " est_bfree = %d)\n",
237 fsb + fs->lfs_ravail + fs->lfs_favail,
238 fs->lfs_bfree, LFS_EST_BFREE(fs)));
239 }
240 ++slept;
241
242 /* Wake up the cleaner */
243 LFS_CLEANERINFO(cip, fs, bp);
244 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
245 lfs_wakeup_cleaner(fs);
246
247 mutex_enter(&fs->lfs_interlock);
248 /* Cleaner might have run while we were reading, check again */
249 if (lfs_fits(fs, fsb + fs->lfs_ravail + fs->lfs_favail))
250 break;
251
252 error = mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_reserve",
253 0, &fs->lfs_interlock);
254 #if 0
255 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); /* XXX use lockstatus */
256 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); /* XXX use lockstatus */
257 #endif
258 if (error) {
259 mutex_exit(&fs->lfs_interlock);
260 return error;
261 }
262 }
263 #ifdef DEBUG
264 if (slept) {
265 DLOG((DLOG_AVAIL, "lfs_reserve: woke up\n"));
266 }
267 #endif
268 fs->lfs_ravail += fsb;
269 mutex_exit(&fs->lfs_interlock);
270
271 return 0;
272 }
273
274 #ifdef DIAGNOSTIC
275 int lfs_rescount;
276 int lfs_rescountdirop;
277 #endif
278
279 int
280 lfs_reserve(struct lfs *fs, struct vnode *vp, struct vnode *vp2, int fsb)
281 {
282 int error;
283 int cantwait;
284
285 ASSERT_MAYBE_SEGLOCK(fs);
286 if (vp2) {
287 /* Make sure we're not in the process of reclaiming vp2 */
288 mutex_enter(&fs->lfs_interlock);
289 while(fs->lfs_flags & LFS_UNDIROP) {
290 mtsleep(&fs->lfs_flags, PRIBIO + 1, "lfsrundirop", 0,
291 &fs->lfs_interlock);
292 }
293 mutex_exit(&fs->lfs_interlock);
294 }
295
296 KASSERT(fsb < 0 || VOP_ISLOCKED(vp));
297 KASSERT(vp2 == NULL || fsb < 0 || VOP_ISLOCKED(vp2));
298 KASSERT(vp2 == NULL || !(VTOI(vp2)->i_flag & IN_ADIROP));
299 KASSERT(vp2 == NULL || vp2 != fs->lfs_unlockvp);
300
301 cantwait = (VTOI(vp)->i_flag & IN_ADIROP) || fs->lfs_unlockvp == vp;
302 #ifdef DIAGNOSTIC
303 if (cantwait) {
304 if (fsb > 0)
305 lfs_rescountdirop++;
306 else if (fsb < 0)
307 lfs_rescountdirop--;
308 if (lfs_rescountdirop < 0)
309 panic("lfs_rescountdirop");
310 }
311 else {
312 if (fsb > 0)
313 lfs_rescount++;
314 else if (fsb < 0)
315 lfs_rescount--;
316 if (lfs_rescount < 0)
317 panic("lfs_rescount");
318 }
319 #endif
320 if (cantwait)
321 return 0;
322
323 /*
324 * XXX
325 * vref vnodes here so that cleaner doesn't try to reuse them.
326 * (see XXX comment in lfs_reserveavail)
327 */
328 lfs_vref(vp);
329 if (vp2 != NULL) {
330 lfs_vref(vp2);
331 }
332
333 error = lfs_reserveavail(fs, vp, vp2, fsb);
334 if (error)
335 goto done;
336
337 /*
338 * XXX just a guess. should be more precise.
339 */
340 error = lfs_reservebuf(fs, vp, vp2,
341 fragstoblks(fs, fsb), fsbtob(fs, fsb));
342 if (error)
343 lfs_reserveavail(fs, vp, vp2, -fsb);
344
345 done:
346 lfs_vunref(vp);
347 if (vp2 != NULL) {
348 lfs_vunref(vp2);
349 }
350
351 return error;
352 }
353
354 int
355 lfs_bwrite(void *v)
356 {
357 struct vop_bwrite_args /* {
358 struct buf *a_bp;
359 } */ *ap = v;
360 struct buf *bp = ap->a_bp;
361
362 #ifdef DIAGNOSTIC
363 if (VTOI(bp->b_vp)->i_lfs->lfs_ronly == 0 && (bp->b_flags & B_ASYNC)) {
364 panic("bawrite LFS buffer");
365 }
366 #endif /* DIAGNOSTIC */
367 return lfs_bwrite_ext(bp, 0);
368 }
369
370 /*
371 * Determine if there is enough room currently available to write fsb
372 * blocks. We need enough blocks for the new blocks, the current
373 * inode blocks (including potentially the ifile inode), a summary block,
374 * and the segment usage table, plus an ifile block.
375 */
376 int
377 lfs_fits(struct lfs *fs, int fsb)
378 {
379 int needed;
380
381 ASSERT_NO_SEGLOCK(fs);
382 needed = fsb + btofsb(fs, fs->lfs_sumsize) +
383 ((howmany(fs->lfs_uinodes + 1, INOPB(fs)) + fs->lfs_segtabsz +
384 1) << (fs->lfs_blktodb - fs->lfs_fsbtodb));
385
386 if (needed >= fs->lfs_avail) {
387 #ifdef DEBUG
388 DLOG((DLOG_AVAIL, "lfs_fits: no fit: fsb = %ld, uinodes = %ld, "
389 "needed = %ld, avail = %ld\n",
390 (long)fsb, (long)fs->lfs_uinodes, (long)needed,
391 (long)fs->lfs_avail));
392 #endif
393 return 0;
394 }
395 return 1;
396 }
397
398 int
399 lfs_availwait(struct lfs *fs, int fsb)
400 {
401 int error;
402 CLEANERINFO *cip;
403 struct buf *cbp;
404
405 ASSERT_NO_SEGLOCK(fs);
406 /* Push cleaner blocks through regardless */
407 mutex_enter(&fs->lfs_interlock);
408 if (LFS_SEGLOCK_HELD(fs) &&
409 fs->lfs_sp->seg_flags & (SEGM_CLEAN | SEGM_FORCE_CKP)) {
410 mutex_exit(&fs->lfs_interlock);
411 return 0;
412 }
413 mutex_exit(&fs->lfs_interlock);
414
415 while (!lfs_fits(fs, fsb)) {
416 /*
417 * Out of space, need cleaner to run.
418 * Update the cleaner info, then wake it up.
419 * Note the cleanerinfo block is on the ifile
420 * so it CANT_WAIT.
421 */
422 LFS_CLEANERINFO(cip, fs, cbp);
423 LFS_SYNC_CLEANERINFO(cip, fs, cbp, 0);
424
425 #ifdef DEBUG
426 DLOG((DLOG_AVAIL, "lfs_availwait: out of available space, "
427 "waiting on cleaner\n"));
428 #endif
429
430 lfs_wakeup_cleaner(fs);
431 #ifdef DIAGNOSTIC
432 if (LFS_SEGLOCK_HELD(fs))
433 panic("lfs_availwait: deadlock");
434 #endif
435 error = tsleep(&fs->lfs_avail, PCATCH | PUSER, "cleaner", 0);
436 if (error)
437 return (error);
438 }
439 return 0;
440 }
441
442 int
443 lfs_bwrite_ext(struct buf *bp, int flags)
444 {
445 struct lfs *fs;
446 struct inode *ip;
447 int fsb, s;
448
449 fs = VFSTOUFS(bp->b_vp->v_mount)->um_lfs;
450
451 ASSERT_MAYBE_SEGLOCK(fs);
452 KASSERT(bp->b_flags & B_BUSY);
453 KASSERT(flags & BW_CLEAN || !LFS_IS_MALLOC_BUF(bp));
454 KASSERT((bp->b_flags & (B_DELWRI|B_LOCKED)) != B_DELWRI);
455 KASSERT((bp->b_flags & (B_DELWRI|B_LOCKED)) != B_LOCKED);
456
457 /*
458 * Don't write *any* blocks if we're mounted read-only, or
459 * if we are "already unmounted".
460 *
461 * In particular the cleaner can't write blocks either.
462 */
463 if (fs->lfs_ronly || (fs->lfs_pflags & LFS_PF_CLEAN)) {
464 bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
465 LFS_UNLOCK_BUF(bp);
466 if (LFS_IS_MALLOC_BUF(bp))
467 bp->b_flags &= ~B_BUSY;
468 else
469 brelse(bp);
470 return (fs->lfs_ronly ? EROFS : 0);
471 }
472
473 /*
474 * Set the delayed write flag and use reassignbuf to move the buffer
475 * from the clean list to the dirty one.
476 *
477 * Set the B_LOCKED flag and unlock the buffer, causing brelse to move
478 * the buffer onto the LOCKED free list. This is necessary, otherwise
479 * getnewbuf() would try to reclaim the buffers using bawrite, which
480 * isn't going to work.
481 *
482 * XXX we don't let meta-data writes run out of space because they can
483 * come from the segment writer. We need to make sure that there is
484 * enough space reserved so that there's room to write meta-data
485 * blocks.
486 */
487 if (!(bp->b_flags & B_LOCKED)) {
488 fsb = fragstofsb(fs, numfrags(fs, bp->b_bcount));
489
490 ip = VTOI(bp->b_vp);
491 mutex_enter(&fs->lfs_interlock);
492 if (flags & BW_CLEAN) {
493 LFS_SET_UINO(ip, IN_CLEANING);
494 } else {
495 LFS_SET_UINO(ip, IN_MODIFIED);
496 }
497 mutex_exit(&fs->lfs_interlock);
498 fs->lfs_avail -= fsb;
499 bp->b_flags |= B_DELWRI;
500
501 LFS_LOCK_BUF(bp);
502 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
503 s = splbio();
504 reassignbuf(bp, bp->b_vp);
505 splx(s);
506 }
507
508 if (bp->b_flags & B_CALL)
509 bp->b_flags &= ~B_BUSY;
510 else
511 brelse(bp);
512
513 return (0);
514 }
515
516 /*
517 * Called and return with the lfs_interlock held, but the lfs_subsys_lock
518 * not held.
519 */
520 void
521 lfs_flush_fs(struct lfs *fs, int flags)
522 {
523 ASSERT_NO_SEGLOCK(fs);
524 KASSERT(mutex_owned(&fs->lfs_interlock));
525 KASSERT(!mutex_owned(&lfs_subsys_lock));
526 if (fs->lfs_ronly)
527 return;
528
529 mutex_enter(&lfs_subsys_lock);
530 if (lfs_dostats)
531 ++lfs_stats.flush_invoked;
532 mutex_exit(&lfs_subsys_lock);
533
534 mutex_exit(&fs->lfs_interlock);
535 lfs_writer_enter(fs, "fldirop");
536 lfs_segwrite(fs->lfs_ivnode->v_mount, flags);
537 lfs_writer_leave(fs);
538 mutex_enter(&fs->lfs_interlock);
539 fs->lfs_favail = 0; /* XXX */
540 }
541
542 /*
543 * This routine initiates segment writes when LFS is consuming too many
544 * resources. Ideally the pageout daemon would be able to direct LFS
545 * more subtly.
546 * XXX We have one static count of locked buffers;
547 * XXX need to think more about the multiple filesystem case.
548 *
549 * Called and return with lfs_subsys_lock held.
550 * If fs != NULL, we hold the segment lock for fs.
551 */
552 void
553 lfs_flush(struct lfs *fs, int flags, int only_onefs)
554 {
555 extern u_int64_t locked_fakequeue_count;
556 struct mount *mp, *nmp;
557 struct lfs *tfs;
558
559 KASSERT(mutex_owned(&lfs_subsys_lock));
560 KDASSERT(fs == NULL || !LFS_SEGLOCK_HELD(fs));
561
562 if (lfs_dostats)
563 ++lfs_stats.write_exceeded;
564 /* XXX should we include SEGM_CKP here? */
565 if (lfs_writing && !(flags & SEGM_SYNC)) {
566 DLOG((DLOG_FLUSH, "lfs_flush: not flushing because another flush is active\n"));
567 return;
568 }
569 while (lfs_writing)
570 cv_wait(&lfs_writing_cv, &lfs_subsys_lock);
571 lfs_writing = 1;
572
573 mutex_exit(&lfs_subsys_lock);
574
575 if (only_onefs) {
576 KASSERT(fs != NULL);
577 if (vfs_busy(fs->lfs_ivnode->v_mount, LK_NOWAIT,
578 &mountlist_lock))
579 goto errout;
580 mutex_enter(&fs->lfs_interlock);
581 lfs_flush_fs(fs, flags);
582 mutex_exit(&fs->lfs_interlock);
583 vfs_unbusy(fs->lfs_ivnode->v_mount);
584 } else {
585 locked_fakequeue_count = 0;
586 mutex_enter(&mountlist_lock);
587 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
588 mp = nmp) {
589 if (vfs_busy(mp, LK_NOWAIT, &mountlist_lock)) {
590 DLOG((DLOG_FLUSH, "lfs_flush: fs vfs_busy\n"));
591 nmp = CIRCLEQ_NEXT(mp, mnt_list);
592 continue;
593 }
594 if (strncmp(&mp->mnt_stat.f_fstypename[0], MOUNT_LFS,
595 MFSNAMELEN) == 0) {
596 tfs = VFSTOUFS(mp)->um_lfs;
597 mutex_enter(&tfs->lfs_interlock);
598 lfs_flush_fs(tfs, flags);
599 mutex_exit(&tfs->lfs_interlock);
600 }
601 mutex_enter(&mountlist_lock);
602 nmp = CIRCLEQ_NEXT(mp, mnt_list);
603 vfs_unbusy(mp);
604 }
605 mutex_exit(&mountlist_lock);
606 }
607 LFS_DEBUG_COUNTLOCKED("flush");
608 wakeup(&lfs_subsys_pages);
609
610 errout:
611 mutex_enter(&lfs_subsys_lock);
612 KASSERT(lfs_writing);
613 lfs_writing = 0;
614 wakeup(&lfs_writing);
615 }
616
617 #define INOCOUNT(fs) howmany((fs)->lfs_uinodes, INOPB(fs))
618 #define INOBYTES(fs) ((fs)->lfs_uinodes * sizeof (struct ufs1_dinode))
619
620 /*
621 * make sure that we don't have too many locked buffers.
622 * flush buffers if needed.
623 */
624 int
625 lfs_check(struct vnode *vp, daddr_t blkno, int flags)
626 {
627 int error;
628 struct lfs *fs;
629 struct inode *ip;
630 extern pid_t lfs_writer_daemon;
631
632 error = 0;
633 ip = VTOI(vp);
634
635 /* If out of buffers, wait on writer */
636 /* XXX KS - if it's the Ifile, we're probably the cleaner! */
637 if (ip->i_number == LFS_IFILE_INUM)
638 return 0;
639 /* If we're being called from inside a dirop, don't sleep */
640 if (ip->i_flag & IN_ADIROP)
641 return 0;
642
643 fs = ip->i_lfs;
644
645 ASSERT_NO_SEGLOCK(fs);
646 KASSERT(!mutex_owned(&fs->lfs_interlock));
647
648 /*
649 * If we would flush below, but dirops are active, sleep.
650 * Note that a dirop cannot ever reach this code!
651 */
652 mutex_enter(&fs->lfs_interlock);
653 mutex_enter(&lfs_subsys_lock);
654 while (fs->lfs_dirops > 0 &&
655 (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
656 locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES ||
657 lfs_subsys_pages > LFS_MAX_PAGES ||
658 fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
659 lfs_dirvcount > LFS_MAX_DIROP || fs->lfs_diropwait > 0))
660 {
661 mutex_exit(&lfs_subsys_lock);
662 ++fs->lfs_diropwait;
663 mtsleep(&fs->lfs_writer, PRIBIO+1, "bufdirop", 0,
664 &fs->lfs_interlock);
665 --fs->lfs_diropwait;
666 mutex_enter(&lfs_subsys_lock);
667 }
668
669 #ifdef DEBUG
670 if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS)
671 DLOG((DLOG_FLUSH, "lfs_check: lqc = %d, max %d\n",
672 locked_queue_count + INOCOUNT(fs), LFS_MAX_BUFS));
673 if (locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES)
674 DLOG((DLOG_FLUSH, "lfs_check: lqb = %ld, max %ld\n",
675 locked_queue_bytes + INOBYTES(fs), LFS_MAX_BYTES));
676 if (lfs_subsys_pages > LFS_MAX_PAGES)
677 DLOG((DLOG_FLUSH, "lfs_check: lssp = %d, max %d\n",
678 lfs_subsys_pages, LFS_MAX_PAGES));
679 if (lfs_fs_pagetrip && fs->lfs_pages > lfs_fs_pagetrip)
680 DLOG((DLOG_FLUSH, "lfs_check: fssp = %d, trip at %d\n",
681 fs->lfs_pages, lfs_fs_pagetrip));
682 if (lfs_dirvcount > LFS_MAX_DIROP)
683 DLOG((DLOG_FLUSH, "lfs_check: ldvc = %d, max %d\n",
684 lfs_dirvcount, LFS_MAX_DIROP));
685 if (fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs))
686 DLOG((DLOG_FLUSH, "lfs_check: lfdvc = %d, max %d\n",
687 fs->lfs_dirvcount, LFS_MAX_FSDIROP(fs)));
688 if (fs->lfs_diropwait > 0)
689 DLOG((DLOG_FLUSH, "lfs_check: ldvw = %d\n",
690 fs->lfs_diropwait));
691 #endif
692
693 if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
694 locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES ||
695 lfs_subsys_pages > LFS_MAX_PAGES ||
696 fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
697 lfs_dirvcount > LFS_MAX_DIROP || fs->lfs_diropwait > 0) {
698 mutex_exit(&fs->lfs_interlock);
699 lfs_flush(fs, flags, 0);
700 } else if (lfs_fs_pagetrip && fs->lfs_pages > lfs_fs_pagetrip) {
701 /*
702 * If we didn't flush the whole thing, some filesystems
703 * still might want to be flushed.
704 */
705 ++fs->lfs_pdflush;
706 wakeup(&lfs_writer_daemon);
707 mutex_exit(&fs->lfs_interlock);
708 } else
709 mutex_exit(&fs->lfs_interlock);
710
711 while (locked_queue_count + INOCOUNT(fs) > LFS_WAIT_BUFS ||
712 locked_queue_bytes + INOBYTES(fs) > LFS_WAIT_BYTES ||
713 lfs_subsys_pages > LFS_WAIT_PAGES ||
714 fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
715 lfs_dirvcount > LFS_MAX_DIROP) {
716
717 if (lfs_dostats)
718 ++lfs_stats.wait_exceeded;
719 DLOG((DLOG_AVAIL, "lfs_check: waiting: count=%d, bytes=%ld\n",
720 locked_queue_count, locked_queue_bytes));
721 error = cv_timedwait_sig(&locked_queue_cv, &lfs_subsys_lock,
722 hz * LFS_BUFWAIT);
723 if (error != EWOULDBLOCK)
724 break;
725
726 /*
727 * lfs_flush might not flush all the buffers, if some of the
728 * inodes were locked or if most of them were Ifile blocks
729 * and we weren't asked to checkpoint. Try flushing again
730 * to keep us from blocking indefinitely.
731 */
732 if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
733 locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES) {
734 lfs_flush(fs, flags | SEGM_CKP, 0);
735 }
736 }
737 mutex_exit(&lfs_subsys_lock);
738 return (error);
739 }
740
741 /*
742 * Allocate a new buffer header.
743 */
744 struct buf *
745 lfs_newbuf(struct lfs *fs, struct vnode *vp, daddr_t daddr, size_t size, int type)
746 {
747 struct buf *bp;
748 size_t nbytes;
749 int s;
750
751 ASSERT_MAYBE_SEGLOCK(fs);
752 nbytes = roundup(size, fsbtob(fs, 1));
753
754 bp = getiobuf();
755 if (nbytes) {
756 bp->b_data = lfs_malloc(fs, nbytes, type);
757 /* memset(bp->b_data, 0, nbytes); */
758 }
759 #ifdef DIAGNOSTIC
760 if (vp == NULL)
761 panic("vp is NULL in lfs_newbuf");
762 if (bp == NULL)
763 panic("bp is NULL after malloc in lfs_newbuf");
764 #endif
765 bp->b_vp = NULL;
766 s = splbio();
767 bgetvp(vp, bp);
768 splx(s);
769
770 bp->b_bufsize = size;
771 bp->b_bcount = size;
772 bp->b_lblkno = daddr;
773 bp->b_blkno = daddr;
774 bp->b_error = 0;
775 bp->b_resid = 0;
776 bp->b_iodone = lfs_callback;
777 bp->b_flags = B_BUSY | B_CALL | B_NOCACHE;
778 bp->b_private = fs;
779
780 return (bp);
781 }
782
783 void
784 lfs_freebuf(struct lfs *fs, struct buf *bp)
785 {
786 int s;
787
788 s = splbio();
789 if (bp->b_vp)
790 brelvp(bp);
791 if (!(bp->b_flags & B_INVAL)) { /* B_INVAL indicates a "fake" buffer */
792 lfs_free(fs, bp->b_data, LFS_NB_UNKNOWN);
793 bp->b_data = NULL;
794 }
795 splx(s);
796 putiobuf(bp);
797 }
798
799 /*
800 * Definitions for the buffer free lists.
801 */
802 #define BQUEUES 4 /* number of free buffer queues */
803
804 #define BQ_LOCKED 0 /* super-blocks &c */
805 #define BQ_LRU 1 /* lru, useful buffers */
806 #define BQ_AGE 2 /* rubbish */
807 #define BQ_EMPTY 3 /* buffer headers with no memory */
808
809 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
810 extern kmutex_t bqueue_lock;
811
812 /*
813 * Count buffers on the "locked" queue, and compare it to a pro-forma count.
814 * Don't count malloced buffers, since they don't detract from the total.
815 */
816 void
817 lfs_countlocked(int *count, long *bytes, const char *msg)
818 {
819 struct buf *bp;
820 int n = 0;
821 long int size = 0L;
822
823 mutex_enter(&bqueue_lock);
824 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist) {
825 KASSERT(!(bp->b_flags & B_CALL));
826 n++;
827 size += bp->b_bufsize;
828 #ifdef DIAGNOSTIC
829 if (n > nbuf)
830 panic("lfs_countlocked: this can't happen: more"
831 " buffers locked than exist");
832 #endif
833 }
834 /*
835 * Theoretically this function never really does anything.
836 * Give a warning if we have to fix the accounting.
837 */
838 if (n != *count) {
839 DLOG((DLOG_LLIST, "lfs_countlocked: %s: adjusted buf count"
840 " from %d to %d\n", msg, *count, n));
841 }
842 if (size != *bytes) {
843 DLOG((DLOG_LLIST, "lfs_countlocked: %s: adjusted byte count"
844 " from %ld to %ld\n", msg, *bytes, size));
845 }
846 *count = n;
847 *bytes = size;
848 mutex_exit(&bqueue_lock);
849 return;
850 }
851
852 int
853 lfs_wait_pages(void)
854 {
855 int active, inactive;
856
857 uvm_estimatepageable(&active, &inactive);
858 return LFS_WAIT_RESOURCE(active + inactive + uvmexp.free, 1);
859 }
860
861 int
862 lfs_max_pages(void)
863 {
864 int active, inactive;
865
866 uvm_estimatepageable(&active, &inactive);
867 return LFS_MAX_RESOURCE(active + inactive + uvmexp.free, 1);
868 }
869