lfs_segment.c revision 1.198.2.2 1 1.198.2.2 ad /* $NetBSD: lfs_segment.c,v 1.198.2.2 2007/03/21 20:11:59 ad Exp $ */
2 1.2 cgd
3 1.15 perseant /*-
4 1.101 perseant * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 1.15 perseant * All rights reserved.
6 1.15 perseant *
7 1.15 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.15 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.15 perseant *
10 1.15 perseant * Redistribution and use in source and binary forms, with or without
11 1.15 perseant * modification, are permitted provided that the following conditions
12 1.15 perseant * are met:
13 1.15 perseant * 1. Redistributions of source code must retain the above copyright
14 1.15 perseant * notice, this list of conditions and the following disclaimer.
15 1.15 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.15 perseant * notice, this list of conditions and the following disclaimer in the
17 1.15 perseant * documentation and/or other materials provided with the distribution.
18 1.15 perseant * 3. All advertising materials mentioning features or use of this software
19 1.15 perseant * must display the following acknowledgement:
20 1.103 perseant * This product includes software developed by the NetBSD
21 1.103 perseant * Foundation, Inc. and its contributors.
22 1.15 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.15 perseant * contributors may be used to endorse or promote products derived
24 1.15 perseant * from this software without specific prior written permission.
25 1.15 perseant *
26 1.15 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.15 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.15 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.15 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.15 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.15 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.15 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.15 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.15 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.15 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.15 perseant * POSSIBILITY OF SUCH DAMAGE.
37 1.15 perseant */
38 1.1 mycroft /*
39 1.1 mycroft * Copyright (c) 1991, 1993
40 1.1 mycroft * The Regents of the University of California. All rights reserved.
41 1.1 mycroft *
42 1.1 mycroft * Redistribution and use in source and binary forms, with or without
43 1.1 mycroft * modification, are permitted provided that the following conditions
44 1.1 mycroft * are met:
45 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
46 1.1 mycroft * notice, this list of conditions and the following disclaimer.
47 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
49 1.1 mycroft * documentation and/or other materials provided with the distribution.
50 1.131 agc * 3. Neither the name of the University nor the names of its contributors
51 1.1 mycroft * may be used to endorse or promote products derived from this software
52 1.1 mycroft * without specific prior written permission.
53 1.1 mycroft *
54 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 mycroft * SUCH DAMAGE.
65 1.1 mycroft *
66 1.10 fvdl * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 1.1 mycroft */
68 1.72 lukem
69 1.72 lukem #include <sys/cdefs.h>
70 1.198.2.2 ad __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.198.2.2 2007/03/21 20:11:59 ad Exp $");
71 1.1 mycroft
72 1.158 perseant #ifdef DEBUG
73 1.158 perseant # define vndebug(vp, str) do { \
74 1.158 perseant if (VTOI(vp)->i_flag & IN_CLEANING) \
75 1.158 perseant DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 1.158 perseant VTOI(vp)->i_number, (str), op)); \
77 1.158 perseant } while(0)
78 1.158 perseant #else
79 1.158 perseant # define vndebug(vp, str)
80 1.158 perseant #endif
81 1.158 perseant #define ivndebug(vp, str) \
82 1.158 perseant DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83 1.16 perseant
84 1.68 mrg #if defined(_KERNEL_OPT)
85 1.30 perseant #include "opt_ddb.h"
86 1.65 jdolecek #endif
87 1.65 jdolecek
88 1.1 mycroft #include <sys/param.h>
89 1.1 mycroft #include <sys/systm.h>
90 1.1 mycroft #include <sys/namei.h>
91 1.1 mycroft #include <sys/kernel.h>
92 1.1 mycroft #include <sys/resourcevar.h>
93 1.1 mycroft #include <sys/file.h>
94 1.1 mycroft #include <sys/stat.h>
95 1.1 mycroft #include <sys/buf.h>
96 1.1 mycroft #include <sys/proc.h>
97 1.1 mycroft #include <sys/vnode.h>
98 1.1 mycroft #include <sys/mount.h>
99 1.179 elad #include <sys/kauth.h>
100 1.184 perseant #include <sys/syslog.h>
101 1.1 mycroft
102 1.1 mycroft #include <miscfs/specfs/specdev.h>
103 1.1 mycroft #include <miscfs/fifofs/fifo.h>
104 1.1 mycroft
105 1.1 mycroft #include <ufs/ufs/inode.h>
106 1.1 mycroft #include <ufs/ufs/dir.h>
107 1.1 mycroft #include <ufs/ufs/ufsmount.h>
108 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
109 1.1 mycroft
110 1.1 mycroft #include <ufs/lfs/lfs.h>
111 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
112 1.1 mycroft
113 1.79 perseant #include <uvm/uvm.h>
114 1.74 perseant #include <uvm/uvm_extern.h>
115 1.99 thorpej
116 1.99 thorpej MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117 1.74 perseant
118 1.69 perseant extern int count_lock_queue(void);
119 1.198.2.1 ad extern kmutex_t vnode_free_list_lock; /* XXX */
120 1.198.2.1 ad extern kmutex_t bqueue_lock; /* XXX */
121 1.1 mycroft
122 1.79 perseant static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
123 1.189 perseant static void lfs_free_aiodone(struct buf *);
124 1.79 perseant static void lfs_super_aiodone(struct buf *);
125 1.79 perseant static void lfs_cluster_aiodone(struct buf *);
126 1.74 perseant static void lfs_cluster_callback(struct buf *);
127 1.74 perseant
128 1.1 mycroft /*
129 1.1 mycroft * Determine if it's OK to start a partial in this segment, or if we need
130 1.1 mycroft * to go on to a new segment.
131 1.1 mycroft */
132 1.1 mycroft #define LFS_PARTIAL_FITS(fs) \
133 1.69 perseant ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
134 1.69 perseant fragstofsb((fs), (fs)->lfs_frag))
135 1.1 mycroft
136 1.171 perseant /*
137 1.171 perseant * Figure out whether we should do a checkpoint write or go ahead with
138 1.171 perseant * an ordinary write.
139 1.171 perseant */
140 1.171 perseant #define LFS_SHOULD_CHECKPOINT(fs, flags) \
141 1.186 perseant ((flags & SEGM_CLEAN) == 0 && \
142 1.186 perseant ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
143 1.186 perseant (flags & SEGM_CKP) || \
144 1.186 perseant fs->lfs_nclean < LFS_MAX_ACTIVE)))
145 1.171 perseant
146 1.69 perseant int lfs_match_fake(struct lfs *, struct buf *);
147 1.69 perseant void lfs_newseg(struct lfs *);
148 1.91 fvdl /* XXX ondisk32 */
149 1.104 perseant void lfs_shellsort(struct buf **, int32_t *, int, int);
150 1.69 perseant void lfs_supercallback(struct buf *);
151 1.69 perseant void lfs_updatemeta(struct segment *);
152 1.69 perseant void lfs_writesuper(struct lfs *, daddr_t);
153 1.69 perseant int lfs_writevnodes(struct lfs *fs, struct mount *mp,
154 1.69 perseant struct segment *sp, int dirops);
155 1.1 mycroft
156 1.1 mycroft int lfs_allclean_wakeup; /* Cleaner wakeup address. */
157 1.103 perseant int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
158 1.25 perseant int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
159 1.32 perseant int lfs_dirvcount = 0; /* # active dirops */
160 1.1 mycroft
161 1.1 mycroft /* Statistics Counters */
162 1.15 perseant int lfs_dostats = 1;
163 1.1 mycroft struct lfs_stats lfs_stats;
164 1.1 mycroft
165 1.1 mycroft /* op values to lfs_writevnodes */
166 1.103 perseant #define VN_REG 0
167 1.1 mycroft #define VN_DIROP 1
168 1.1 mycroft #define VN_EMPTY 2
169 1.103 perseant #define VN_CLEAN 3
170 1.15 perseant
171 1.15 perseant /*
172 1.15 perseant * XXX KS - Set modification time on the Ifile, so the cleaner can
173 1.15 perseant * read the fs mod time off of it. We don't set IN_UPDATE here,
174 1.15 perseant * since we don't really need this to be flushed to disk (and in any
175 1.15 perseant * case that wouldn't happen to the Ifile until we checkpoint).
176 1.15 perseant */
177 1.15 perseant void
178 1.69 perseant lfs_imtime(struct lfs *fs)
179 1.15 perseant {
180 1.15 perseant struct timespec ts;
181 1.15 perseant struct inode *ip;
182 1.157 perry
183 1.159 perseant ASSERT_MAYBE_SEGLOCK(fs);
184 1.183 yamt vfs_timestamp(&ts);
185 1.15 perseant ip = VTOI(fs->lfs_ivnode);
186 1.119 fvdl ip->i_ffs1_mtime = ts.tv_sec;
187 1.119 fvdl ip->i_ffs1_mtimensec = ts.tv_nsec;
188 1.15 perseant }
189 1.1 mycroft
190 1.1 mycroft /*
191 1.1 mycroft * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192 1.1 mycroft * single threaded. Currently, there are two paths into lfs_segwrite, sync()
193 1.1 mycroft * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
194 1.1 mycroft * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
195 1.1 mycroft */
196 1.1 mycroft
197 1.15 perseant #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
198 1.15 perseant
199 1.1 mycroft int
200 1.69 perseant lfs_vflush(struct vnode *vp)
201 1.1 mycroft {
202 1.1 mycroft struct inode *ip;
203 1.1 mycroft struct lfs *fs;
204 1.1 mycroft struct segment *sp;
205 1.38 perseant struct buf *bp, *nbp, *tbp, *tnbp;
206 1.30 perseant int error, s;
207 1.101 perseant int flushed;
208 1.171 perseant int relock;
209 1.189 perseant int loopcount;
210 1.19 perseant
211 1.22 perseant ip = VTOI(vp);
212 1.22 perseant fs = VFSTOUFS(vp->v_mount)->um_lfs;
213 1.171 perseant relock = 0;
214 1.22 perseant
215 1.171 perseant top:
216 1.159 perseant ASSERT_NO_SEGLOCK(fs);
217 1.73 chs if (ip->i_flag & IN_CLEANING) {
218 1.19 perseant ivndebug(vp,"vflush/in_cleaning");
219 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
220 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
221 1.56 perseant LFS_SET_UINO(ip, IN_MODIFIED);
222 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
223 1.56 perseant
224 1.38 perseant /*
225 1.38 perseant * Toss any cleaning buffers that have real counterparts
226 1.101 perseant * to avoid losing new data.
227 1.38 perseant */
228 1.38 perseant s = splbio();
229 1.75 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
230 1.75 perseant nbp = LIST_NEXT(bp, b_vnbufs);
231 1.101 perseant if (!LFS_IS_MALLOC_BUF(bp))
232 1.101 perseant continue;
233 1.101 perseant /*
234 1.106 perseant * Look for pages matching the range covered
235 1.106 perseant * by cleaning blocks. It's okay if more dirty
236 1.106 perseant * pages appear, so long as none disappear out
237 1.106 perseant * from under us.
238 1.101 perseant */
239 1.101 perseant if (bp->b_lblkno > 0 && vp->v_type == VREG &&
240 1.101 perseant vp != fs->lfs_ivnode) {
241 1.101 perseant struct vm_page *pg;
242 1.101 perseant voff_t off;
243 1.101 perseant
244 1.198.2.1 ad mutex_enter(&vp->v_interlock);
245 1.101 perseant for (off = lblktosize(fs, bp->b_lblkno);
246 1.101 perseant off < lblktosize(fs, bp->b_lblkno + 1);
247 1.101 perseant off += PAGE_SIZE) {
248 1.101 perseant pg = uvm_pagelookup(&vp->v_uobj, off);
249 1.106 perseant if (pg == NULL)
250 1.106 perseant continue;
251 1.106 perseant if ((pg->flags & PG_CLEAN) == 0 ||
252 1.106 perseant pmap_is_modified(pg)) {
253 1.101 perseant fs->lfs_avail += btofsb(fs,
254 1.101 perseant bp->b_bcount);
255 1.62 perseant wakeup(&fs->lfs_avail);
256 1.101 perseant lfs_freebuf(fs, bp);
257 1.69 perseant bp = NULL;
258 1.198.2.1 ad mutex_exit(&vp->v_interlock);
259 1.101 perseant goto nextbp;
260 1.38 perseant }
261 1.38 perseant }
262 1.198.2.1 ad mutex_exit(&vp->v_interlock);
263 1.38 perseant }
264 1.101 perseant for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
265 1.101 perseant tbp = tnbp)
266 1.101 perseant {
267 1.101 perseant tnbp = LIST_NEXT(tbp, b_vnbufs);
268 1.101 perseant if (tbp->b_vp == bp->b_vp
269 1.101 perseant && tbp->b_lblkno == bp->b_lblkno
270 1.101 perseant && tbp != bp)
271 1.101 perseant {
272 1.101 perseant fs->lfs_avail += btofsb(fs,
273 1.101 perseant bp->b_bcount);
274 1.101 perseant wakeup(&fs->lfs_avail);
275 1.101 perseant lfs_freebuf(fs, bp);
276 1.101 perseant bp = NULL;
277 1.101 perseant break;
278 1.101 perseant }
279 1.101 perseant }
280 1.101 perseant nextbp:
281 1.110 kristerw ;
282 1.38 perseant }
283 1.38 perseant splx(s);
284 1.19 perseant }
285 1.19 perseant
286 1.19 perseant /* If the node is being written, wait until that is done */
287 1.198.2.1 ad mutex_enter(&vp->v_interlock);
288 1.74 perseant s = splbio();
289 1.73 chs if (WRITEINPROG(vp)) {
290 1.19 perseant ivndebug(vp,"vflush/writeinprog");
291 1.198.2.1 ad mtsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
292 1.19 perseant }
293 1.74 perseant splx(s);
294 1.198.2.1 ad mutex_exit(&vp->v_interlock);
295 1.1 mycroft
296 1.15 perseant /* Protect against VXLOCK deadlock in vinvalbuf() */
297 1.1 mycroft lfs_seglock(fs, SEGM_SYNC);
298 1.30 perseant
299 1.30 perseant /* If we're supposed to flush a freed inode, just toss it */
300 1.178 perseant if (ip->i_lfs_iflags & LFSI_DELETED) {
301 1.158 perseant DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
302 1.158 perseant ip->i_number));
303 1.30 perseant s = splbio();
304 1.178 perseant /* Drain v_numoutput */
305 1.198.2.1 ad mutex_enter(&global_v_numoutput_lock);
306 1.178 perseant while (vp->v_numoutput > 0) {
307 1.198.2.2 ad cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
308 1.178 perseant }
309 1.198.2.1 ad mutex_exit(&global_v_numoutput_lock);
310 1.178 perseant KASSERT(vp->v_numoutput == 0);
311 1.178 perseant
312 1.75 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
313 1.75 perseant nbp = LIST_NEXT(bp, b_vnbufs);
314 1.178 perseant
315 1.178 perseant KASSERT((bp->b_flags & B_GATHERED) == 0);
316 1.62 perseant if (bp->b_flags & B_DELWRI) { /* XXX always true? */
317 1.69 perseant fs->lfs_avail += btofsb(fs, bp->b_bcount);
318 1.62 perseant wakeup(&fs->lfs_avail);
319 1.62 perseant }
320 1.30 perseant /* Copied from lfs_writeseg */
321 1.30 perseant if (bp->b_flags & B_CALL) {
322 1.101 perseant biodone(bp);
323 1.30 perseant } else {
324 1.30 perseant bremfree(bp);
325 1.62 perseant LFS_UNLOCK_BUF(bp);
326 1.30 perseant bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
327 1.103 perseant B_GATHERED);
328 1.30 perseant bp->b_flags |= B_DONE;
329 1.30 perseant reassignbuf(bp, vp);
330 1.157 perry brelse(bp);
331 1.30 perseant }
332 1.30 perseant }
333 1.30 perseant splx(s);
334 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
335 1.56 perseant LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 1.47 perseant ip->i_flag &= ~IN_ALLMOD;
337 1.158 perseant DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 1.158 perseant ip->i_number));
339 1.30 perseant lfs_segunlock(fs);
340 1.178 perseant
341 1.178 perseant KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342 1.178 perseant
343 1.30 perseant return 0;
344 1.30 perseant }
345 1.30 perseant
346 1.173 perseant fs->lfs_flushvp = vp;
347 1.171 perseant if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 1.79 perseant error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 1.173 perseant fs->lfs_flushvp = NULL;
350 1.173 perseant KASSERT(fs->lfs_flushvp_fakevref == 0);
351 1.15 perseant lfs_segunlock(fs);
352 1.178 perseant
353 1.178 perseant /* Make sure that any pending buffers get written */
354 1.178 perseant s = splbio();
355 1.198.2.1 ad mutex_enter(&global_v_numoutput_lock);
356 1.178 perseant while (vp->v_numoutput > 0) {
357 1.198.2.2 ad cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
358 1.178 perseant }
359 1.198.2.1 ad mutex_exit(&global_v_numoutput_lock);
360 1.178 perseant splx(s);
361 1.178 perseant
362 1.178 perseant KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
363 1.178 perseant KASSERT(vp->v_numoutput == 0);
364 1.178 perseant
365 1.15 perseant return error;
366 1.15 perseant }
367 1.1 mycroft sp = fs->lfs_sp;
368 1.1 mycroft
369 1.101 perseant flushed = 0;
370 1.101 perseant if (VPISEMPTY(vp)) {
371 1.1 mycroft lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
372 1.101 perseant ++flushed;
373 1.73 chs } else if ((ip->i_flag & IN_CLEANING) &&
374 1.58 perseant (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
375 1.19 perseant ivndebug(vp,"vflush/clean");
376 1.19 perseant lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
377 1.101 perseant ++flushed;
378 1.74 perseant } else if (lfs_dostats) {
379 1.101 perseant if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
380 1.15 perseant ++lfs_stats.vflush_invoked;
381 1.19 perseant ivndebug(vp,"vflush");
382 1.15 perseant }
383 1.15 perseant
384 1.19 perseant #ifdef DIAGNOSTIC
385 1.73 chs if (vp->v_flag & VDIROP) {
386 1.158 perseant DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
387 1.158 perseant /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
388 1.19 perseant }
389 1.73 chs if (vp->v_usecount < 0) {
390 1.69 perseant printf("usecount=%ld\n", (long)vp->v_usecount);
391 1.19 perseant panic("lfs_vflush: usecount<0");
392 1.19 perseant }
393 1.15 perseant #endif
394 1.1 mycroft
395 1.1 mycroft do {
396 1.189 perseant loopcount = 0;
397 1.1 mycroft do {
398 1.171 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
399 1.171 perseant relock = lfs_writefile(fs, sp, vp);
400 1.171 perseant if (relock) {
401 1.171 perseant /*
402 1.171 perseant * Might have to wait for the
403 1.171 perseant * cleaner to run; but we're
404 1.171 perseant * still not done with this vnode.
405 1.171 perseant */
406 1.189 perseant KDASSERT(ip->i_number != LFS_IFILE_INUM);
407 1.176 perseant lfs_writeinode(fs, sp, ip);
408 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
409 1.176 perseant LFS_SET_UINO(ip, IN_MODIFIED);
410 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
411 1.171 perseant lfs_writeseg(fs, sp);
412 1.171 perseant lfs_segunlock(fs);
413 1.171 perseant lfs_segunlock_relock(fs);
414 1.171 perseant goto top;
415 1.171 perseant }
416 1.171 perseant }
417 1.174 perseant /*
418 1.174 perseant * If we begin a new segment in the middle of writing
419 1.174 perseant * the Ifile, it creates an inconsistent checkpoint,
420 1.174 perseant * since the Ifile information for the new segment
421 1.174 perseant * is not up-to-date. Take care of this here by
422 1.174 perseant * sending the Ifile through again in case there
423 1.174 perseant * are newly dirtied blocks. But wait, there's more!
424 1.174 perseant * This second Ifile write could *also* cross a segment
425 1.174 perseant * boundary, if the first one was large. The second
426 1.174 perseant * one is guaranteed to be no more than 8 blocks,
427 1.174 perseant * though (two segment blocks and supporting indirects)
428 1.174 perseant * so the third write *will not* cross the boundary.
429 1.174 perseant */
430 1.174 perseant if (vp == fs->lfs_ivnode) {
431 1.174 perseant lfs_writefile(fs, sp, vp);
432 1.174 perseant lfs_writefile(fs, sp, vp);
433 1.174 perseant }
434 1.189 perseant #ifdef DEBUG
435 1.191 perseant if (++loopcount > 2)
436 1.191 perseant log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
437 1.189 perseant #endif
438 1.1 mycroft } while (lfs_writeinode(fs, sp, ip));
439 1.1 mycroft } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
440 1.171 perseant
441 1.73 chs if (lfs_dostats) {
442 1.15 perseant ++lfs_stats.nwrites;
443 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
444 1.15 perseant ++lfs_stats.nsync_writes;
445 1.15 perseant if (sp->seg_flags & SEGM_CKP)
446 1.15 perseant ++lfs_stats.ncheckpoints;
447 1.15 perseant }
448 1.74 perseant /*
449 1.74 perseant * If we were called from somewhere that has already held the seglock
450 1.74 perseant * (e.g., lfs_markv()), the lfs_segunlock will not wait for
451 1.74 perseant * the write to complete because we are still locked.
452 1.74 perseant * Since lfs_vflush() must return the vnode with no dirty buffers,
453 1.74 perseant * we must explicitly wait, if that is the case.
454 1.74 perseant *
455 1.74 perseant * We compare the iocount against 1, not 0, because it is
456 1.74 perseant * artificially incremented by lfs_seglock().
457 1.74 perseant */
458 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
459 1.74 perseant if (fs->lfs_seglock > 1) {
460 1.74 perseant while (fs->lfs_iocount > 1)
461 1.198.2.1 ad (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
462 1.159 perseant "lfs_vflush", 0, &fs->lfs_interlock);
463 1.159 perseant }
464 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
465 1.111 perseant
466 1.15 perseant lfs_segunlock(fs);
467 1.1 mycroft
468 1.120 perseant /* Wait for these buffers to be recovered by aiodoned */
469 1.120 perseant s = splbio();
470 1.198.2.1 ad mutex_enter(&global_v_numoutput_lock);
471 1.120 perseant while (vp->v_numoutput > 0) {
472 1.198.2.2 ad cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
473 1.120 perseant }
474 1.198.2.1 ad mutex_exit(&global_v_numoutput_lock);
475 1.120 perseant splx(s);
476 1.120 perseant
477 1.178 perseant KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
478 1.178 perseant KASSERT(vp->v_numoutput == 0);
479 1.178 perseant
480 1.173 perseant fs->lfs_flushvp = NULL;
481 1.173 perseant KASSERT(fs->lfs_flushvp_fakevref == 0);
482 1.173 perseant
483 1.1 mycroft return (0);
484 1.1 mycroft }
485 1.1 mycroft
486 1.15 perseant int
487 1.69 perseant lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
488 1.1 mycroft {
489 1.1 mycroft struct inode *ip;
490 1.194 reinoud struct vnode *vp;
491 1.73 chs int inodes_written = 0, only_cleaning;
492 1.171 perseant int error = 0;
493 1.1 mycroft
494 1.159 perseant ASSERT_SEGLOCK(fs);
495 1.197 perseant loop:
496 1.194 reinoud /* start at last (newest) vnode. */
497 1.194 reinoud TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
498 1.1 mycroft /*
499 1.1 mycroft * If the vnode that we are about to sync is no longer
500 1.1 mycroft * associated with this mount point, start over.
501 1.1 mycroft */
502 1.58 perseant if (vp->v_mount != mp) {
503 1.158 perseant DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
504 1.113 yamt /*
505 1.113 yamt * After this, pages might be busy
506 1.113 yamt * due to our own previous putpages.
507 1.113 yamt * Start actual segment write here to avoid deadlock.
508 1.113 yamt */
509 1.113 yamt (void)lfs_writeseg(fs, sp);
510 1.1 mycroft goto loop;
511 1.58 perseant }
512 1.157 perry
513 1.85 yamt if (vp->v_type == VNON) {
514 1.85 yamt continue;
515 1.85 yamt }
516 1.1 mycroft
517 1.15 perseant ip = VTOI(vp);
518 1.15 perseant if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
519 1.128 yamt (op != VN_DIROP && op != VN_CLEAN &&
520 1.128 yamt (vp->v_flag & VDIROP))) {
521 1.15 perseant vndebug(vp,"dirop");
522 1.15 perseant continue;
523 1.15 perseant }
524 1.157 perry
525 1.101 perseant if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 1.15 perseant vndebug(vp,"empty");
527 1.15 perseant continue;
528 1.15 perseant }
529 1.1 mycroft
530 1.73 chs if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
531 1.38 perseant && vp != fs->lfs_flushvp
532 1.15 perseant && !(ip->i_flag & IN_CLEANING)) {
533 1.15 perseant vndebug(vp,"cleaning");
534 1.1 mycroft continue;
535 1.15 perseant }
536 1.1 mycroft
537 1.15 perseant if (lfs_vref(vp)) {
538 1.15 perseant vndebug(vp,"vref");
539 1.1 mycroft continue;
540 1.15 perseant }
541 1.1 mycroft
542 1.23 perseant only_cleaning = 0;
543 1.1 mycroft /*
544 1.55 perseant * Write the inode/file if dirty and it's not the IFILE.
545 1.1 mycroft */
546 1.101 perseant if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
547 1.128 yamt only_cleaning =
548 1.128 yamt ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
549 1.20 perseant
550 1.159 perseant if (ip->i_number != LFS_IFILE_INUM) {
551 1.171 perseant error = lfs_writefile(fs, sp, vp);
552 1.171 perseant if (error) {
553 1.171 perseant lfs_vunref(vp);
554 1.171 perseant if (error == EAGAIN) {
555 1.171 perseant /*
556 1.171 perseant * This error from lfs_putpages
557 1.171 perseant * indicates we need to drop
558 1.171 perseant * the segment lock and start
559 1.171 perseant * over after the cleaner has
560 1.171 perseant * had a chance to run.
561 1.171 perseant */
562 1.176 perseant lfs_writeinode(fs, sp, ip);
563 1.171 perseant lfs_writeseg(fs, sp);
564 1.172 perseant if (!VPISEMPTY(vp) &&
565 1.172 perseant !WRITEINPROG(vp) &&
566 1.198.2.1 ad !(ip->i_flag & IN_ALLMOD)) {
567 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
568 1.172 perseant LFS_SET_UINO(ip, IN_MODIFIED);
569 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
570 1.198.2.1 ad }
571 1.171 perseant break;
572 1.171 perseant }
573 1.171 perseant error = 0; /* XXX not quite right */
574 1.171 perseant continue;
575 1.171 perseant }
576 1.171 perseant
577 1.159 perseant if (!VPISEMPTY(vp)) {
578 1.159 perseant if (WRITEINPROG(vp)) {
579 1.159 perseant ivndebug(vp,"writevnodes/write2");
580 1.159 perseant } else if (!(ip->i_flag & IN_ALLMOD)) {
581 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
582 1.159 perseant LFS_SET_UINO(ip, IN_MODIFIED);
583 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
584 1.159 perseant }
585 1.15 perseant }
586 1.159 perseant (void) lfs_writeinode(fs, sp, ip);
587 1.159 perseant inodes_written++;
588 1.15 perseant }
589 1.15 perseant }
590 1.43 perseant
591 1.52 perseant if (lfs_clean_vnhead && only_cleaning)
592 1.20 perseant lfs_vunref_head(vp);
593 1.20 perseant else
594 1.20 perseant lfs_vunref(vp);
595 1.1 mycroft }
596 1.171 perseant return error;
597 1.1 mycroft }
598 1.1 mycroft
599 1.69 perseant /*
600 1.69 perseant * Do a checkpoint.
601 1.69 perseant */
602 1.1 mycroft int
603 1.69 perseant lfs_segwrite(struct mount *mp, int flags)
604 1.1 mycroft {
605 1.1 mycroft struct buf *bp;
606 1.1 mycroft struct inode *ip;
607 1.1 mycroft struct lfs *fs;
608 1.1 mycroft struct segment *sp;
609 1.1 mycroft struct vnode *vp;
610 1.1 mycroft SEGUSE *segusep;
611 1.117 fvdl int do_ckp, did_ckp, error, s;
612 1.117 fvdl unsigned n, segleft, maxseg, sn, i, curseg;
613 1.15 perseant int writer_set = 0;
614 1.61 perseant int dirty;
615 1.74 perseant int redo;
616 1.171 perseant int um_error;
617 1.189 perseant int loopcount;
618 1.157 perry
619 1.1 mycroft fs = VFSTOUFS(mp)->um_lfs;
620 1.159 perseant ASSERT_MAYBE_SEGLOCK(fs);
621 1.1 mycroft
622 1.53 perseant if (fs->lfs_ronly)
623 1.53 perseant return EROFS;
624 1.53 perseant
625 1.15 perseant lfs_imtime(fs);
626 1.58 perseant
627 1.1 mycroft /*
628 1.1 mycroft * Allocate a segment structure and enough space to hold pointers to
629 1.1 mycroft * the maximum possible number of buffers which can be described in a
630 1.1 mycroft * single summary block.
631 1.1 mycroft */
632 1.171 perseant do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
633 1.171 perseant
634 1.1 mycroft lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
635 1.1 mycroft sp = fs->lfs_sp;
636 1.189 perseant if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
637 1.189 perseant do_ckp = 1;
638 1.1 mycroft
639 1.15 perseant /*
640 1.16 perseant * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
641 1.16 perseant * in which case we have to flush *all* buffers off of this vnode.
642 1.37 perseant * We don't care about other nodes, but write any non-dirop nodes
643 1.37 perseant * anyway in anticipation of another getnewvnode().
644 1.37 perseant *
645 1.37 perseant * If we're cleaning we only write cleaning and ifile blocks, and
646 1.37 perseant * no dirops, since otherwise we'd risk corruption in a crash.
647 1.15 perseant */
648 1.73 chs if (sp->seg_flags & SEGM_CLEAN)
649 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_CLEAN);
650 1.105 perseant else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
651 1.171 perseant do {
652 1.171 perseant um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
653 1.171 perseant if (!fs->lfs_dirops || !fs->lfs_flushvp) {
654 1.171 perseant if (!writer_set) {
655 1.171 perseant lfs_writer_enter(fs, "lfs writer");
656 1.171 perseant writer_set = 1;
657 1.171 perseant }
658 1.171 perseant error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
659 1.171 perseant if (um_error == 0)
660 1.171 perseant um_error = error;
661 1.177 perseant /* In case writevnodes errored out */
662 1.177 perseant lfs_flush_dirops(fs);
663 1.171 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
664 1.176 perseant lfs_finalize_fs_seguse(fs);
665 1.171 perseant }
666 1.171 perseant if (do_ckp && um_error) {
667 1.171 perseant lfs_segunlock_relock(fs);
668 1.171 perseant sp = fs->lfs_sp;
669 1.171 perseant }
670 1.171 perseant } while (do_ckp && um_error != 0);
671 1.157 perry }
672 1.1 mycroft
673 1.1 mycroft /*
674 1.1 mycroft * If we are doing a checkpoint, mark everything since the
675 1.1 mycroft * last checkpoint as no longer ACTIVE.
676 1.1 mycroft */
677 1.189 perseant if (do_ckp || fs->lfs_doifile) {
678 1.117 fvdl segleft = fs->lfs_nseg;
679 1.117 fvdl curseg = 0;
680 1.117 fvdl for (n = 0; n < fs->lfs_segtabsz; n++) {
681 1.61 perseant dirty = 0;
682 1.157 perry if (bread(fs->lfs_ivnode,
683 1.117 fvdl fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
684 1.15 perseant panic("lfs_segwrite: ifile read");
685 1.1 mycroft segusep = (SEGUSE *)bp->b_data;
686 1.117 fvdl maxseg = min(segleft, fs->lfs_sepb);
687 1.117 fvdl for (i = 0; i < maxseg; i++) {
688 1.117 fvdl sn = curseg + i;
689 1.134 yamt if (sn != dtosn(fs, fs->lfs_curseg) &&
690 1.117 fvdl segusep->su_flags & SEGUSE_ACTIVE) {
691 1.61 perseant segusep->su_flags &= ~SEGUSE_ACTIVE;
692 1.105 perseant --fs->lfs_nactive;
693 1.61 perseant ++dirty;
694 1.61 perseant }
695 1.105 perseant fs->lfs_suflags[fs->lfs_activesb][sn] =
696 1.105 perseant segusep->su_flags;
697 1.69 perseant if (fs->lfs_version > 1)
698 1.69 perseant ++segusep;
699 1.69 perseant else
700 1.69 perseant segusep = (SEGUSE *)
701 1.69 perseant ((SEGUSE_V1 *)segusep + 1);
702 1.61 perseant }
703 1.157 perry
704 1.61 perseant if (dirty)
705 1.74 perseant error = LFS_BWRITE_LOG(bp); /* Ifile */
706 1.61 perseant else
707 1.61 perseant brelse(bp);
708 1.117 fvdl segleft -= fs->lfs_sepb;
709 1.117 fvdl curseg += fs->lfs_sepb;
710 1.1 mycroft }
711 1.15 perseant }
712 1.61 perseant
713 1.198.2.2 ad KASSERT(LFS_SEGLOCK_HELD(fs));
714 1.159 perseant
715 1.61 perseant did_ckp = 0;
716 1.1 mycroft if (do_ckp || fs->lfs_doifile) {
717 1.159 perseant vp = fs->lfs_ivnode;
718 1.159 perseant vn_lock(vp, LK_EXCLUSIVE);
719 1.189 perseant loopcount = 0;
720 1.63 perseant do {
721 1.74 perseant #ifdef DEBUG
722 1.159 perseant LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
723 1.74 perseant #endif
724 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
725 1.74 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
726 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
727 1.55 perseant
728 1.63 perseant ip = VTOI(vp);
729 1.101 perseant
730 1.171 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
731 1.171 perseant /*
732 1.171 perseant * Ifile has no pages, so we don't need
733 1.171 perseant * to check error return here.
734 1.171 perseant */
735 1.63 perseant lfs_writefile(fs, sp, vp);
736 1.174 perseant /*
737 1.174 perseant * Ensure the Ifile takes the current segment
738 1.174 perseant * into account. See comment in lfs_vflush.
739 1.174 perseant */
740 1.174 perseant lfs_writefile(fs, sp, vp);
741 1.174 perseant lfs_writefile(fs, sp, vp);
742 1.171 perseant }
743 1.101 perseant
744 1.63 perseant if (ip->i_flag & IN_ALLMOD)
745 1.63 perseant ++did_ckp;
746 1.189 perseant #if 0
747 1.189 perseant redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
748 1.189 perseant #else
749 1.74 perseant redo = lfs_writeinode(fs, sp, ip);
750 1.189 perseant #endif
751 1.101 perseant redo += lfs_writeseg(fs, sp);
752 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
753 1.74 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
754 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
755 1.189 perseant #ifdef DEBUG
756 1.191 perseant if (++loopcount > 2)
757 1.191 perseant log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
758 1.189 perseant loopcount);
759 1.189 perseant #endif
760 1.112 perseant } while (redo && do_ckp);
761 1.112 perseant
762 1.112 perseant /*
763 1.112 perseant * Unless we are unmounting, the Ifile may continue to have
764 1.112 perseant * dirty blocks even after a checkpoint, due to changes to
765 1.112 perseant * inodes' atime. If we're checkpointing, it's "impossible"
766 1.112 perseant * for other parts of the Ifile to be dirty after the loop
767 1.112 perseant * above, since we hold the segment lock.
768 1.112 perseant */
769 1.114 perseant s = splbio();
770 1.112 perseant if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
771 1.112 perseant LFS_CLR_UINO(ip, IN_ALLMOD);
772 1.112 perseant }
773 1.112 perseant #ifdef DIAGNOSTIC
774 1.112 perseant else if (do_ckp) {
775 1.159 perseant int do_panic = 0;
776 1.112 perseant LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
777 1.112 perseant if (bp->b_lblkno < fs->lfs_cleansz +
778 1.112 perseant fs->lfs_segtabsz &&
779 1.112 perseant !(bp->b_flags & B_GATHERED)) {
780 1.159 perseant printf("ifile lbn %ld still dirty (flags %lx)\n",
781 1.159 perseant (long)bp->b_lblkno,
782 1.159 perseant (long)bp->b_flags);
783 1.159 perseant ++do_panic;
784 1.74 perseant }
785 1.74 perseant }
786 1.159 perseant if (do_panic)
787 1.159 perseant panic("dirty blocks");
788 1.74 perseant }
789 1.112 perseant #endif
790 1.114 perseant splx(s);
791 1.159 perseant VOP_UNLOCK(vp, 0);
792 1.15 perseant } else {
793 1.1 mycroft (void) lfs_writeseg(fs, sp);
794 1.15 perseant }
795 1.157 perry
796 1.112 perseant /* Note Ifile no longer needs to be written */
797 1.112 perseant fs->lfs_doifile = 0;
798 1.125 yamt if (writer_set)
799 1.125 yamt lfs_writer_leave(fs);
800 1.61 perseant
801 1.61 perseant /*
802 1.61 perseant * If we didn't write the Ifile, we didn't really do anything.
803 1.61 perseant * That means that (1) there is a checkpoint on disk and (2)
804 1.61 perseant * nothing has changed since it was written.
805 1.61 perseant *
806 1.61 perseant * Take the flags off of the segment so that lfs_segunlock
807 1.61 perseant * doesn't have to write the superblock either.
808 1.61 perseant */
809 1.79 perseant if (do_ckp && !did_ckp) {
810 1.79 perseant sp->seg_flags &= ~SEGM_CKP;
811 1.61 perseant }
812 1.61 perseant
813 1.73 chs if (lfs_dostats) {
814 1.15 perseant ++lfs_stats.nwrites;
815 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
816 1.15 perseant ++lfs_stats.nsync_writes;
817 1.15 perseant if (sp->seg_flags & SEGM_CKP)
818 1.15 perseant ++lfs_stats.ncheckpoints;
819 1.15 perseant }
820 1.1 mycroft lfs_segunlock(fs);
821 1.1 mycroft return (0);
822 1.1 mycroft }
823 1.1 mycroft
824 1.1 mycroft /*
825 1.1 mycroft * Write the dirty blocks associated with a vnode.
826 1.1 mycroft */
827 1.171 perseant int
828 1.69 perseant lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
829 1.1 mycroft {
830 1.1 mycroft struct finfo *fip;
831 1.80 perseant struct inode *ip;
832 1.181 perseant int i, frag;
833 1.171 perseant int error;
834 1.157 perry
835 1.159 perseant ASSERT_SEGLOCK(fs);
836 1.171 perseant error = 0;
837 1.80 perseant ip = VTOI(vp);
838 1.80 perseant
839 1.180 perseant fip = sp->fip;
840 1.181 perseant lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
841 1.1 mycroft
842 1.73 chs if (vp->v_flag & VDIROP)
843 1.15 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
844 1.157 perry
845 1.74 perseant if (sp->seg_flags & SEGM_CLEAN) {
846 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_fake);
847 1.38 perseant /*
848 1.38 perseant * For a file being flushed, we need to write *all* blocks.
849 1.38 perseant * This means writing the cleaning blocks first, and then
850 1.38 perseant * immediately following with any non-cleaning blocks.
851 1.38 perseant * The same is true of the Ifile since checkpoints assume
852 1.38 perseant * that all valid Ifile blocks are written.
853 1.38 perseant */
854 1.178 perseant if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
855 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_data);
856 1.101 perseant /*
857 1.101 perseant * Don't call VOP_PUTPAGES: if we're flushing,
858 1.101 perseant * we've already done it, and the Ifile doesn't
859 1.101 perseant * use the page cache.
860 1.101 perseant */
861 1.101 perseant }
862 1.101 perseant } else {
863 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_data);
864 1.101 perseant /*
865 1.101 perseant * If we're flushing, we've already called VOP_PUTPAGES
866 1.101 perseant * so don't do it again. Otherwise, we want to write
867 1.101 perseant * everything we've got.
868 1.101 perseant */
869 1.101 perseant if (!IS_FLUSHING(fs, vp)) {
870 1.198.2.1 ad mutex_enter(&vp->v_interlock);
871 1.171 perseant error = VOP_PUTPAGES(vp, 0, 0,
872 1.171 perseant PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
873 1.101 perseant }
874 1.101 perseant }
875 1.38 perseant
876 1.1 mycroft /*
877 1.1 mycroft * It may not be necessary to write the meta-data blocks at this point,
878 1.1 mycroft * as the roll-forward recovery code should be able to reconstruct the
879 1.1 mycroft * list.
880 1.15 perseant *
881 1.15 perseant * We have to write them anyway, though, under two conditions: (1) the
882 1.15 perseant * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
883 1.15 perseant * checkpointing.
884 1.80 perseant *
885 1.80 perseant * BUT if we are cleaning, we might have indirect blocks that refer to
886 1.80 perseant * new blocks not being written yet, in addition to fragments being
887 1.80 perseant * moved out of a cleaned segment. If that is the case, don't
888 1.80 perseant * write the indirect blocks, or the finfo will have a small block
889 1.80 perseant * in the middle of it!
890 1.80 perseant * XXX in this case isn't the inode size wrong too?
891 1.1 mycroft */
892 1.80 perseant frag = 0;
893 1.80 perseant if (sp->seg_flags & SEGM_CLEAN) {
894 1.80 perseant for (i = 0; i < NDADDR; i++)
895 1.80 perseant if (ip->i_lfs_fragsize[i] > 0 &&
896 1.80 perseant ip->i_lfs_fragsize[i] < fs->lfs_bsize)
897 1.80 perseant ++frag;
898 1.80 perseant }
899 1.80 perseant #ifdef DIAGNOSTIC
900 1.80 perseant if (frag > 1)
901 1.80 perseant panic("lfs_writefile: more than one fragment!");
902 1.80 perseant #endif
903 1.80 perseant if (IS_FLUSHING(fs, vp) ||
904 1.80 perseant (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
905 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
906 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
907 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
908 1.15 perseant }
909 1.1 mycroft fip = sp->fip;
910 1.180 perseant lfs_release_finfo(fs);
911 1.171 perseant
912 1.171 perseant return error;
913 1.1 mycroft }
914 1.1 mycroft
915 1.189 perseant /*
916 1.189 perseant * Update segment accounting to reflect this inode's change of address.
917 1.189 perseant */
918 1.189 perseant static int
919 1.189 perseant lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
920 1.189 perseant {
921 1.189 perseant struct buf *bp;
922 1.189 perseant daddr_t daddr;
923 1.189 perseant IFILE *ifp;
924 1.189 perseant SEGUSE *sup;
925 1.189 perseant ino_t ino;
926 1.189 perseant int redo_ifile, error;
927 1.189 perseant u_int32_t sn;
928 1.189 perseant
929 1.189 perseant redo_ifile = 0;
930 1.189 perseant
931 1.189 perseant /*
932 1.189 perseant * If updating the ifile, update the super-block. Update the disk
933 1.189 perseant * address and access times for this inode in the ifile.
934 1.189 perseant */
935 1.189 perseant ino = ip->i_number;
936 1.189 perseant if (ino == LFS_IFILE_INUM) {
937 1.189 perseant daddr = fs->lfs_idaddr;
938 1.189 perseant fs->lfs_idaddr = dbtofsb(fs, ndaddr);
939 1.189 perseant } else {
940 1.189 perseant LFS_IENTRY(ifp, fs, ino, bp);
941 1.189 perseant daddr = ifp->if_daddr;
942 1.189 perseant ifp->if_daddr = dbtofsb(fs, ndaddr);
943 1.189 perseant error = LFS_BWRITE_LOG(bp); /* Ifile */
944 1.189 perseant }
945 1.189 perseant
946 1.189 perseant /*
947 1.189 perseant * If this is the Ifile and lfs_offset is set to the first block
948 1.189 perseant * in the segment, dirty the new segment's accounting block
949 1.189 perseant * (XXX should already be dirty?) and tell the caller to do it again.
950 1.189 perseant */
951 1.189 perseant if (ip->i_number == LFS_IFILE_INUM) {
952 1.189 perseant sn = dtosn(fs, fs->lfs_offset);
953 1.189 perseant if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
954 1.189 perseant fs->lfs_offset) {
955 1.189 perseant LFS_SEGENTRY(sup, fs, sn, bp);
956 1.189 perseant KASSERT(bp->b_flags & B_DELWRI);
957 1.189 perseant LFS_WRITESEGENTRY(sup, fs, sn, bp);
958 1.189 perseant /* fs->lfs_flags |= LFS_IFDIRTY; */
959 1.189 perseant redo_ifile |= 1;
960 1.189 perseant }
961 1.189 perseant }
962 1.189 perseant
963 1.189 perseant /*
964 1.189 perseant * The inode's last address should not be in the current partial
965 1.189 perseant * segment, except under exceptional circumstances (lfs_writevnodes
966 1.189 perseant * had to start over, and in the meantime more blocks were written
967 1.189 perseant * to a vnode). Both inodes will be accounted to this segment
968 1.189 perseant * in lfs_writeseg so we need to subtract the earlier version
969 1.189 perseant * here anyway. The segment count can temporarily dip below
970 1.189 perseant * zero here; keep track of how many duplicates we have in
971 1.189 perseant * "dupino" so we don't panic below.
972 1.189 perseant */
973 1.189 perseant if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
974 1.189 perseant ++sp->ndupino;
975 1.189 perseant DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
976 1.189 perseant "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
977 1.189 perseant (long long)daddr, sp->ndupino));
978 1.189 perseant }
979 1.189 perseant /*
980 1.189 perseant * Account the inode: it no longer belongs to its former segment,
981 1.189 perseant * though it will not belong to the new segment until that segment
982 1.189 perseant * is actually written.
983 1.189 perseant */
984 1.189 perseant if (daddr != LFS_UNUSED_DADDR) {
985 1.189 perseant u_int32_t oldsn = dtosn(fs, daddr);
986 1.189 perseant #ifdef DIAGNOSTIC
987 1.189 perseant int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
988 1.189 perseant #endif
989 1.189 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
990 1.189 perseant #ifdef DIAGNOSTIC
991 1.189 perseant if (sup->su_nbytes +
992 1.189 perseant sizeof (struct ufs1_dinode) * ndupino
993 1.189 perseant < sizeof (struct ufs1_dinode)) {
994 1.189 perseant printf("lfs_writeinode: negative bytes "
995 1.189 perseant "(segment %" PRIu32 " short by %d, "
996 1.189 perseant "oldsn=%" PRIu32 ", cursn=%" PRIu32
997 1.189 perseant ", daddr=%" PRId64 ", su_nbytes=%u, "
998 1.189 perseant "ndupino=%d)\n",
999 1.189 perseant dtosn(fs, daddr),
1000 1.189 perseant (int)sizeof (struct ufs1_dinode) *
1001 1.189 perseant (1 - sp->ndupino) - sup->su_nbytes,
1002 1.189 perseant oldsn, sp->seg_number, daddr,
1003 1.189 perseant (unsigned int)sup->su_nbytes,
1004 1.189 perseant sp->ndupino);
1005 1.189 perseant panic("lfs_writeinode: negative bytes");
1006 1.189 perseant sup->su_nbytes = sizeof (struct ufs1_dinode);
1007 1.189 perseant }
1008 1.189 perseant #endif
1009 1.189 perseant DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1010 1.189 perseant dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1011 1.189 perseant sup->su_nbytes -= sizeof (struct ufs1_dinode);
1012 1.189 perseant redo_ifile |=
1013 1.189 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1014 1.189 perseant if (redo_ifile) {
1015 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
1016 1.189 perseant fs->lfs_flags |= LFS_IFDIRTY;
1017 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
1018 1.189 perseant /* Don't double-account */
1019 1.189 perseant fs->lfs_idaddr = 0x0;
1020 1.189 perseant }
1021 1.189 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1022 1.189 perseant }
1023 1.189 perseant
1024 1.189 perseant return redo_ifile;
1025 1.189 perseant }
1026 1.189 perseant
1027 1.1 mycroft int
1028 1.69 perseant lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1029 1.1 mycroft {
1030 1.189 perseant struct buf *bp;
1031 1.119 fvdl struct ufs1_dinode *cdp;
1032 1.91 fvdl daddr_t daddr;
1033 1.91 fvdl int32_t *daddrp; /* XXX ondisk32 */
1034 1.189 perseant int i, ndx;
1035 1.1 mycroft int redo_ifile = 0;
1036 1.69 perseant int gotblk = 0;
1037 1.189 perseant int count;
1038 1.157 perry
1039 1.159 perseant ASSERT_SEGLOCK(fs);
1040 1.47 perseant if (!(ip->i_flag & IN_ALLMOD))
1041 1.73 chs return (0);
1042 1.157 perry
1043 1.189 perseant /* Can't write ifile when writer is not set */
1044 1.189 perseant KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1045 1.189 perseant (sp->seg_flags & SEGM_CLEAN));
1046 1.189 perseant
1047 1.189 perseant /*
1048 1.189 perseant * If this is the Ifile, see if writing it here will generate a
1049 1.189 perseant * temporary misaccounting. If it will, do the accounting and write
1050 1.189 perseant * the blocks, postponing the inode write until the accounting is
1051 1.189 perseant * solid.
1052 1.189 perseant */
1053 1.189 perseant count = 0;
1054 1.189 perseant while (ip->i_number == LFS_IFILE_INUM) {
1055 1.189 perseant int redo = 0;
1056 1.189 perseant
1057 1.189 perseant if (sp->idp == NULL && sp->ibp == NULL &&
1058 1.189 perseant (sp->seg_bytes_left < fs->lfs_ibsize ||
1059 1.189 perseant sp->sum_bytes_left < sizeof(int32_t))) {
1060 1.189 perseant (void) lfs_writeseg(fs, sp);
1061 1.189 perseant continue;
1062 1.189 perseant }
1063 1.189 perseant
1064 1.189 perseant /* Look for dirty Ifile blocks */
1065 1.189 perseant LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1066 1.189 perseant if (!(bp->b_flags & B_GATHERED)) {
1067 1.189 perseant redo = 1;
1068 1.189 perseant break;
1069 1.189 perseant }
1070 1.189 perseant }
1071 1.189 perseant
1072 1.189 perseant if (redo == 0)
1073 1.189 perseant redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1074 1.189 perseant if (redo == 0)
1075 1.189 perseant break;
1076 1.189 perseant
1077 1.189 perseant if (sp->idp) {
1078 1.189 perseant sp->idp->di_inumber = 0;
1079 1.189 perseant sp->idp = NULL;
1080 1.189 perseant }
1081 1.189 perseant ++count;
1082 1.191 perseant if (count > 2)
1083 1.191 perseant log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1084 1.189 perseant lfs_writefile(fs, sp, fs->lfs_ivnode);
1085 1.189 perseant }
1086 1.189 perseant
1087 1.1 mycroft /* Allocate a new inode block if necessary. */
1088 1.128 yamt if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1089 1.128 yamt sp->ibp == NULL) {
1090 1.1 mycroft /* Allocate a new segment if necessary. */
1091 1.69 perseant if (sp->seg_bytes_left < fs->lfs_ibsize ||
1092 1.98 yamt sp->sum_bytes_left < sizeof(int32_t))
1093 1.1 mycroft (void) lfs_writeseg(fs, sp);
1094 1.1 mycroft
1095 1.1 mycroft /* Get next inode block. */
1096 1.1 mycroft daddr = fs->lfs_offset;
1097 1.69 perseant fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1098 1.1 mycroft sp->ibp = *sp->cbpp++ =
1099 1.128 yamt getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1100 1.128 yamt fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1101 1.24 perseant gotblk++;
1102 1.24 perseant
1103 1.1 mycroft /* Zero out inode numbers */
1104 1.1 mycroft for (i = 0; i < INOPB(fs); ++i)
1105 1.128 yamt ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1106 1.128 yamt 0;
1107 1.15 perseant
1108 1.1 mycroft ++sp->start_bpp;
1109 1.69 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1110 1.1 mycroft /* Set remaining space counters. */
1111 1.69 perseant sp->seg_bytes_left -= fs->lfs_ibsize;
1112 1.98 yamt sp->sum_bytes_left -= sizeof(int32_t);
1113 1.98 yamt ndx = fs->lfs_sumsize / sizeof(int32_t) -
1114 1.15 perseant sp->ninodes / INOPB(fs) - 1;
1115 1.98 yamt ((int32_t *)(sp->segsum))[ndx] = daddr;
1116 1.1 mycroft }
1117 1.27 perseant
1118 1.189 perseant /* Check VDIROP in case there is a new file with no data blocks */
1119 1.189 perseant if (ITOV(ip)->v_flag & VDIROP)
1120 1.189 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1121 1.189 perseant
1122 1.1 mycroft /* Update the inode times and copy the inode onto the inode page. */
1123 1.74 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
1124 1.74 perseant if (ip->i_number != LFS_IFILE_INUM)
1125 1.166 christos LFS_ITIMES(ip, NULL, NULL, NULL);
1126 1.16 perseant
1127 1.27 perseant /*
1128 1.27 perseant * If this is the Ifile, and we've already written the Ifile in this
1129 1.27 perseant * partial segment, just overwrite it (it's not on disk yet) and
1130 1.27 perseant * continue.
1131 1.27 perseant *
1132 1.27 perseant * XXX we know that the bp that we get the second time around has
1133 1.27 perseant * already been gathered.
1134 1.27 perseant */
1135 1.73 chs if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1136 1.119 fvdl *(sp->idp) = *ip->i_din.ffs1_din;
1137 1.119 fvdl ip->i_lfs_osize = ip->i_size;
1138 1.27 perseant return 0;
1139 1.27 perseant }
1140 1.27 perseant
1141 1.1 mycroft bp = sp->ibp;
1142 1.119 fvdl cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1143 1.119 fvdl *cdp = *ip->i_din.ffs1_din;
1144 1.53 perseant
1145 1.189 perseant /*
1146 1.189 perseant * If cleaning, link counts and directory file sizes cannot change,
1147 1.189 perseant * since those would be directory operations---even if the file
1148 1.189 perseant * we are writing is marked VDIROP we should write the old values.
1149 1.189 perseant * If we're not cleaning, of course, update the values so we get
1150 1.189 perseant * current values the next time we clean.
1151 1.189 perseant */
1152 1.189 perseant if (sp->seg_flags & SEGM_CLEAN) {
1153 1.189 perseant if (ITOV(ip)->v_flag & VDIROP) {
1154 1.189 perseant cdp->di_nlink = ip->i_lfs_odnlink;
1155 1.189 perseant /* if (ITOV(ip)->v_type == VDIR) */
1156 1.189 perseant cdp->di_size = ip->i_lfs_osize;
1157 1.189 perseant }
1158 1.189 perseant } else {
1159 1.189 perseant ip->i_lfs_odnlink = cdp->di_nlink;
1160 1.189 perseant ip->i_lfs_osize = ip->i_size;
1161 1.189 perseant }
1162 1.189 perseant
1163 1.189 perseant
1164 1.176 perseant /* We can finish the segment accounting for truncations now */
1165 1.176 perseant lfs_finalize_ino_seguse(fs, ip);
1166 1.176 perseant
1167 1.53 perseant /*
1168 1.53 perseant * If we are cleaning, ensure that we don't write UNWRITTEN disk
1169 1.160 perseant * addresses to disk; possibly change the on-disk record of
1170 1.160 perseant * the inode size, either by reverting to the previous size
1171 1.160 perseant * (in the case of cleaning) or by verifying the inode's block
1172 1.160 perseant * holdings (in the case of files being allocated as they are being
1173 1.160 perseant * written).
1174 1.160 perseant * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1175 1.103 perseant * XXX count on disk wrong by the same amount. We should be
1176 1.101 perseant * XXX able to "borrow" from lfs_avail and return it after the
1177 1.101 perseant * XXX Ifile is written. See also in lfs_writeseg.
1178 1.53 perseant */
1179 1.160 perseant
1180 1.160 perseant /* Check file size based on highest allocated block */
1181 1.160 perseant if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1182 1.161 perseant (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1183 1.160 perseant ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1184 1.160 perseant cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1185 1.160 perseant DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1186 1.160 perseant PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1187 1.160 perseant }
1188 1.119 fvdl if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1189 1.160 perseant DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1190 1.160 perseant " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1191 1.160 perseant ip->i_ffs1_blocks, fs->lfs_offset));
1192 1.53 perseant for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1193 1.53 perseant daddrp++) {
1194 1.53 perseant if (*daddrp == UNWRITTEN) {
1195 1.158 perseant DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1196 1.53 perseant *daddrp = 0;
1197 1.53 perseant }
1198 1.53 perseant }
1199 1.53 perseant }
1200 1.157 perry
1201 1.160 perseant #ifdef DIAGNOSTIC
1202 1.160 perseant /*
1203 1.160 perseant * Check dinode held blocks against dinode size.
1204 1.160 perseant * This should be identical to the check in lfs_vget().
1205 1.160 perseant */
1206 1.160 perseant for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1207 1.160 perseant i < NDADDR; i++) {
1208 1.160 perseant KASSERT(i >= 0);
1209 1.160 perseant if ((cdp->di_mode & IFMT) == IFLNK)
1210 1.160 perseant continue;
1211 1.160 perseant if (((cdp->di_mode & IFMT) == IFBLK ||
1212 1.160 perseant (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1213 1.160 perseant continue;
1214 1.160 perseant if (cdp->di_db[i] != 0) {
1215 1.160 perseant # ifdef DEBUG
1216 1.160 perseant lfs_dump_dinode(cdp);
1217 1.160 perseant # endif
1218 1.160 perseant panic("writing inconsistent inode");
1219 1.160 perseant }
1220 1.160 perseant }
1221 1.160 perseant #endif /* DIAGNOSTIC */
1222 1.160 perseant
1223 1.73 chs if (ip->i_flag & IN_CLEANING)
1224 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
1225 1.55 perseant else {
1226 1.56 perseant /* XXX IN_ALLMOD */
1227 1.56 perseant LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1228 1.154 mycroft IN_UPDATE | IN_MODIFY);
1229 1.119 fvdl if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1230 1.56 perseant LFS_CLR_UINO(ip, IN_MODIFIED);
1231 1.192 christos else {
1232 1.192 christos DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1233 1.192 christos "blks=%d, eff=%d\n", ip->i_number,
1234 1.192 christos ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1235 1.192 christos }
1236 1.55 perseant }
1237 1.55 perseant
1238 1.189 perseant if (ip->i_number == LFS_IFILE_INUM) {
1239 1.189 perseant /* We know sp->idp == NULL */
1240 1.157 perry sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1241 1.53 perseant (sp->ninodes % INOPB(fs));
1242 1.189 perseant
1243 1.189 perseant /* Not dirty any more */
1244 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
1245 1.189 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
1246 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
1247 1.189 perseant }
1248 1.189 perseant
1249 1.73 chs if (gotblk) {
1250 1.62 perseant LFS_LOCK_BUF(bp);
1251 1.24 perseant brelse(bp);
1252 1.24 perseant }
1253 1.157 perry
1254 1.1 mycroft /* Increment inode count in segment summary block. */
1255 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_ninos;
1256 1.157 perry
1257 1.1 mycroft /* If this page is full, set flag to allocate a new page. */
1258 1.1 mycroft if (++sp->ninodes % INOPB(fs) == 0)
1259 1.1 mycroft sp->ibp = NULL;
1260 1.157 perry
1261 1.189 perseant redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1262 1.157 perry
1263 1.189 perseant KASSERT(redo_ifile == 0);
1264 1.1 mycroft return (redo_ifile);
1265 1.1 mycroft }
1266 1.1 mycroft
1267 1.1 mycroft int
1268 1.69 perseant lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1269 1.1 mycroft {
1270 1.1 mycroft struct lfs *fs;
1271 1.164 christos int vers;
1272 1.101 perseant int j, blksinblk;
1273 1.101 perseant
1274 1.159 perseant ASSERT_SEGLOCK(sp->fs);
1275 1.1 mycroft /*
1276 1.1 mycroft * If full, finish this segment. We may be doing I/O, so
1277 1.1 mycroft * release and reacquire the splbio().
1278 1.1 mycroft */
1279 1.1 mycroft #ifdef DIAGNOSTIC
1280 1.1 mycroft if (sp->vp == NULL)
1281 1.1 mycroft panic ("lfs_gatherblock: Null vp in segment");
1282 1.1 mycroft #endif
1283 1.1 mycroft fs = sp->fs;
1284 1.101 perseant blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1285 1.101 perseant if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1286 1.10 fvdl sp->seg_bytes_left < bp->b_bcount) {
1287 1.1 mycroft if (sptr)
1288 1.1 mycroft splx(*sptr);
1289 1.1 mycroft lfs_updatemeta(sp);
1290 1.157 perry
1291 1.164 christos vers = sp->fip->fi_version;
1292 1.1 mycroft (void) lfs_writeseg(fs, sp);
1293 1.157 perry
1294 1.1 mycroft /* Add the current file to the segment summary. */
1295 1.180 perseant lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1296 1.157 perry
1297 1.1 mycroft if (sptr)
1298 1.1 mycroft *sptr = splbio();
1299 1.73 chs return (1);
1300 1.1 mycroft }
1301 1.157 perry
1302 1.73 chs if (bp->b_flags & B_GATHERED) {
1303 1.158 perseant DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1304 1.158 perseant " lbn %" PRId64 "\n",
1305 1.158 perseant sp->fip->fi_ino, bp->b_lblkno));
1306 1.73 chs return (0);
1307 1.15 perseant }
1308 1.158 perseant
1309 1.1 mycroft /* Insert into the buffer list, update the FINFO block. */
1310 1.1 mycroft bp->b_flags |= B_GATHERED;
1311 1.74 perseant
1312 1.1 mycroft *sp->cbpp++ = bp;
1313 1.162 perseant for (j = 0; j < blksinblk; j++) {
1314 1.104 perseant sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1315 1.162 perseant /* This block's accounting moves from lfs_favail to lfs_avail */
1316 1.162 perseant lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1317 1.162 perseant }
1318 1.157 perry
1319 1.104 perseant sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1320 1.10 fvdl sp->seg_bytes_left -= bp->b_bcount;
1321 1.73 chs return (0);
1322 1.1 mycroft }
1323 1.1 mycroft
1324 1.15 perseant int
1325 1.128 yamt lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1326 1.128 yamt int (*match)(struct lfs *, struct buf *))
1327 1.1 mycroft {
1328 1.77 perseant struct buf *bp, *nbp;
1329 1.73 chs int s, count = 0;
1330 1.157 perry
1331 1.159 perseant ASSERT_SEGLOCK(fs);
1332 1.172 perseant if (vp->v_type == VBLK)
1333 1.172 perseant return 0;
1334 1.141 yamt KASSERT(sp->vp == NULL);
1335 1.1 mycroft sp->vp = vp;
1336 1.1 mycroft s = splbio();
1337 1.15 perseant
1338 1.15 perseant #ifndef LFS_NO_BACKBUF_HACK
1339 1.10 fvdl /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1340 1.128 yamt # define BUF_OFFSET \
1341 1.198 christos (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1342 1.128 yamt # define BACK_BUF(BP) \
1343 1.198 christos ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1344 1.128 yamt # define BEG_OF_LIST \
1345 1.198 christos ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1346 1.128 yamt
1347 1.128 yamt loop:
1348 1.128 yamt /* Find last buffer. */
1349 1.128 yamt for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1350 1.128 yamt bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1351 1.128 yamt bp = LIST_NEXT(bp, b_vnbufs))
1352 1.128 yamt /* nothing */;
1353 1.77 perseant for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1354 1.77 perseant nbp = BACK_BUF(bp);
1355 1.77 perseant #else /* LFS_NO_BACKBUF_HACK */
1356 1.128 yamt loop:
1357 1.128 yamt for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1358 1.77 perseant nbp = LIST_NEXT(bp, b_vnbufs);
1359 1.15 perseant #endif /* LFS_NO_BACKBUF_HACK */
1360 1.74 perseant if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1361 1.158 perseant #ifdef DEBUG
1362 1.128 yamt if (vp == fs->lfs_ivnode &&
1363 1.128 yamt (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1364 1.189 perseant log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1365 1.189 perseant PRId64 " busy (%x) at 0x%x",
1366 1.189 perseant bp->b_lblkno, bp->b_flags,
1367 1.189 perseant (unsigned)fs->lfs_offset);
1368 1.74 perseant #endif
1369 1.1 mycroft continue;
1370 1.74 perseant }
1371 1.1 mycroft #ifdef DIAGNOSTIC
1372 1.109 perseant # ifdef LFS_USE_B_INVAL
1373 1.172 perseant if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1374 1.172 perseant DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1375 1.172 perseant " is B_INVAL\n", bp->b_lblkno));
1376 1.172 perseant VOP_PRINT(bp->b_vp);
1377 1.172 perseant }
1378 1.109 perseant # endif /* LFS_USE_B_INVAL */
1379 1.172 perseant if (!(bp->b_flags & B_DELWRI))
1380 1.172 perseant panic("lfs_gather: bp not B_DELWRI");
1381 1.172 perseant if (!(bp->b_flags & B_LOCKED)) {
1382 1.172 perseant DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1383 1.172 perseant " blk %" PRId64 " not B_LOCKED\n",
1384 1.172 perseant bp->b_lblkno,
1385 1.172 perseant dbtofsb(fs, bp->b_blkno)));
1386 1.172 perseant VOP_PRINT(bp->b_vp);
1387 1.172 perseant panic("lfs_gather: bp not B_LOCKED");
1388 1.172 perseant }
1389 1.1 mycroft #endif
1390 1.172 perseant if (lfs_gatherblock(sp, bp, &s)) {
1391 1.172 perseant goto loop;
1392 1.30 perseant }
1393 1.15 perseant count++;
1394 1.1 mycroft }
1395 1.1 mycroft splx(s);
1396 1.1 mycroft lfs_updatemeta(sp);
1397 1.141 yamt KASSERT(sp->vp == vp);
1398 1.1 mycroft sp->vp = NULL;
1399 1.15 perseant return count;
1400 1.1 mycroft }
1401 1.1 mycroft
1402 1.101 perseant #if DEBUG
1403 1.101 perseant # define DEBUG_OOFF(n) do { \
1404 1.101 perseant if (ooff == 0) { \
1405 1.158 perseant DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1406 1.105 perseant "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1407 1.105 perseant ", was 0x0 (or %" PRId64 ")\n", \
1408 1.158 perseant (n), ip->i_number, lbn, ndaddr, daddr)); \
1409 1.101 perseant } \
1410 1.115 perseant } while (0)
1411 1.101 perseant #else
1412 1.101 perseant # define DEBUG_OOFF(n)
1413 1.101 perseant #endif
1414 1.101 perseant
1415 1.101 perseant /*
1416 1.101 perseant * Change the given block's address to ndaddr, finding its previous
1417 1.101 perseant * location using ufs_bmaparray().
1418 1.101 perseant *
1419 1.101 perseant * Account for this change in the segment table.
1420 1.143 yamt *
1421 1.143 yamt * called with sp == NULL by roll-forwarding code.
1422 1.101 perseant */
1423 1.101 perseant void
1424 1.195 christos lfs_update_single(struct lfs *fs, struct segment *sp,
1425 1.193 christos struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1426 1.101 perseant {
1427 1.101 perseant SEGUSE *sup;
1428 1.101 perseant struct buf *bp;
1429 1.101 perseant struct indir a[NIADDR + 2], *ap;
1430 1.101 perseant struct inode *ip;
1431 1.101 perseant daddr_t daddr, ooff;
1432 1.104 perseant int num, error;
1433 1.101 perseant int bb, osize, obb;
1434 1.157 perry
1435 1.159 perseant ASSERT_SEGLOCK(fs);
1436 1.143 yamt KASSERT(sp == NULL || sp->vp == vp);
1437 1.101 perseant ip = VTOI(vp);
1438 1.101 perseant
1439 1.121 yamt error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1440 1.101 perseant if (error)
1441 1.101 perseant panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1442 1.116 perseant
1443 1.156 perseant daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1444 1.116 perseant KASSERT(daddr <= LFS_MAX_DADDR);
1445 1.101 perseant if (daddr > 0)
1446 1.101 perseant daddr = dbtofsb(fs, daddr);
1447 1.157 perry
1448 1.101 perseant bb = fragstofsb(fs, numfrags(fs, size));
1449 1.101 perseant switch (num) {
1450 1.101 perseant case 0:
1451 1.119 fvdl ooff = ip->i_ffs1_db[lbn];
1452 1.101 perseant DEBUG_OOFF(0);
1453 1.101 perseant if (ooff == UNWRITTEN)
1454 1.119 fvdl ip->i_ffs1_blocks += bb;
1455 1.101 perseant else {
1456 1.101 perseant /* possible fragment truncation or extension */
1457 1.101 perseant obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1458 1.119 fvdl ip->i_ffs1_blocks += (bb - obb);
1459 1.101 perseant }
1460 1.119 fvdl ip->i_ffs1_db[lbn] = ndaddr;
1461 1.101 perseant break;
1462 1.101 perseant case 1:
1463 1.119 fvdl ooff = ip->i_ffs1_ib[a[0].in_off];
1464 1.101 perseant DEBUG_OOFF(1);
1465 1.101 perseant if (ooff == UNWRITTEN)
1466 1.119 fvdl ip->i_ffs1_blocks += bb;
1467 1.119 fvdl ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1468 1.101 perseant break;
1469 1.101 perseant default:
1470 1.101 perseant ap = &a[num - 1];
1471 1.101 perseant if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1472 1.101 perseant panic("lfs_updatemeta: bread bno %" PRId64,
1473 1.101 perseant ap->in_lbn);
1474 1.101 perseant
1475 1.101 perseant /* XXX ondisk32 */
1476 1.101 perseant ooff = ((int32_t *)bp->b_data)[ap->in_off];
1477 1.101 perseant DEBUG_OOFF(num);
1478 1.101 perseant if (ooff == UNWRITTEN)
1479 1.119 fvdl ip->i_ffs1_blocks += bb;
1480 1.101 perseant /* XXX ondisk32 */
1481 1.101 perseant ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1482 1.101 perseant (void) VOP_BWRITE(bp);
1483 1.101 perseant }
1484 1.106 perseant
1485 1.150 yamt KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1486 1.150 yamt
1487 1.160 perseant /* Update hiblk when extending the file */
1488 1.160 perseant if (lbn > ip->i_lfs_hiblk)
1489 1.160 perseant ip->i_lfs_hiblk = lbn;
1490 1.160 perseant
1491 1.106 perseant /*
1492 1.106 perseant * Though we'd rather it couldn't, this *can* happen right now
1493 1.106 perseant * if cleaning blocks and regular blocks coexist.
1494 1.106 perseant */
1495 1.106 perseant /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1496 1.101 perseant
1497 1.101 perseant /*
1498 1.101 perseant * Update segment usage information, based on old size
1499 1.101 perseant * and location.
1500 1.101 perseant */
1501 1.101 perseant if (daddr > 0) {
1502 1.101 perseant u_int32_t oldsn = dtosn(fs, daddr);
1503 1.101 perseant #ifdef DIAGNOSTIC
1504 1.143 yamt int ndupino;
1505 1.143 yamt
1506 1.143 yamt if (sp && sp->seg_number == oldsn) {
1507 1.143 yamt ndupino = sp->ndupino;
1508 1.143 yamt } else {
1509 1.143 yamt ndupino = 0;
1510 1.143 yamt }
1511 1.101 perseant #endif
1512 1.190 christos KASSERT(oldsn < fs->lfs_nseg);
1513 1.101 perseant if (lbn >= 0 && lbn < NDADDR)
1514 1.101 perseant osize = ip->i_lfs_fragsize[lbn];
1515 1.101 perseant else
1516 1.101 perseant osize = fs->lfs_bsize;
1517 1.101 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
1518 1.101 perseant #ifdef DIAGNOSTIC
1519 1.119 fvdl if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1520 1.119 fvdl < osize) {
1521 1.101 perseant printf("lfs_updatemeta: negative bytes "
1522 1.101 perseant "(segment %" PRIu32 " short by %" PRId64
1523 1.101 perseant ")\n", dtosn(fs, daddr),
1524 1.101 perseant (int64_t)osize -
1525 1.143 yamt (sizeof (struct ufs1_dinode) * ndupino +
1526 1.101 perseant sup->su_nbytes));
1527 1.165 christos printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1528 1.101 perseant ", addr = 0x%" PRIx64 "\n",
1529 1.165 christos (unsigned long long)ip->i_number, lbn, daddr);
1530 1.101 perseant printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1531 1.101 perseant panic("lfs_updatemeta: negative bytes");
1532 1.119 fvdl sup->su_nbytes = osize -
1533 1.143 yamt sizeof (struct ufs1_dinode) * ndupino;
1534 1.101 perseant }
1535 1.101 perseant #endif
1536 1.158 perseant DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1537 1.158 perseant " db 0x%" PRIx64 "\n",
1538 1.158 perseant dtosn(fs, daddr), osize,
1539 1.158 perseant ip->i_number, lbn, daddr));
1540 1.101 perseant sup->su_nbytes -= osize;
1541 1.159 perseant if (!(bp->b_flags & B_GATHERED)) {
1542 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
1543 1.101 perseant fs->lfs_flags |= LFS_IFDIRTY;
1544 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
1545 1.159 perseant }
1546 1.101 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1547 1.101 perseant }
1548 1.101 perseant /*
1549 1.101 perseant * Now that this block has a new address, and its old
1550 1.101 perseant * segment no longer owns it, we can forget about its
1551 1.101 perseant * old size.
1552 1.101 perseant */
1553 1.101 perseant if (lbn >= 0 && lbn < NDADDR)
1554 1.101 perseant ip->i_lfs_fragsize[lbn] = size;
1555 1.101 perseant }
1556 1.101 perseant
1557 1.1 mycroft /*
1558 1.1 mycroft * Update the metadata that points to the blocks listed in the FINFO
1559 1.1 mycroft * array.
1560 1.1 mycroft */
1561 1.1 mycroft void
1562 1.69 perseant lfs_updatemeta(struct segment *sp)
1563 1.1 mycroft {
1564 1.101 perseant struct buf *sbp;
1565 1.1 mycroft struct lfs *fs;
1566 1.1 mycroft struct vnode *vp;
1567 1.101 perseant daddr_t lbn;
1568 1.101 perseant int i, nblocks, num;
1569 1.101 perseant int bb;
1570 1.101 perseant int bytesleft, size;
1571 1.157 perry
1572 1.159 perseant ASSERT_SEGLOCK(sp->fs);
1573 1.1 mycroft vp = sp->vp;
1574 1.1 mycroft nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1575 1.101 perseant KASSERT(nblocks >= 0);
1576 1.141 yamt KASSERT(vp != NULL);
1577 1.141 yamt if (nblocks == 0)
1578 1.1 mycroft return;
1579 1.104 perseant
1580 1.104 perseant /*
1581 1.104 perseant * This count may be high due to oversize blocks from lfs_gop_write.
1582 1.104 perseant * Correct for this. (XXX we should be able to keep track of these.)
1583 1.104 perseant */
1584 1.104 perseant fs = sp->fs;
1585 1.104 perseant for (i = 0; i < nblocks; i++) {
1586 1.104 perseant if (sp->start_bpp[i] == NULL) {
1587 1.158 perseant DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1588 1.104 perseant nblocks = i;
1589 1.104 perseant break;
1590 1.104 perseant }
1591 1.104 perseant num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1592 1.118 yamt KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1593 1.104 perseant nblocks -= num - 1;
1594 1.104 perseant }
1595 1.118 yamt
1596 1.118 yamt KASSERT(vp->v_type == VREG ||
1597 1.118 yamt nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1598 1.118 yamt KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1599 1.157 perry
1600 1.15 perseant /*
1601 1.101 perseant * Sort the blocks.
1602 1.101 perseant *
1603 1.101 perseant * We have to sort even if the blocks come from the
1604 1.15 perseant * cleaner, because there might be other pending blocks on the
1605 1.15 perseant * same inode...and if we don't sort, and there are fragments
1606 1.15 perseant * present, blocks may be written in the wrong place.
1607 1.15 perseant */
1608 1.104 perseant lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1609 1.157 perry
1610 1.1 mycroft /*
1611 1.10 fvdl * Record the length of the last block in case it's a fragment.
1612 1.10 fvdl * If there are indirect blocks present, they sort last. An
1613 1.10 fvdl * indirect block will be lfs_bsize and its presence indicates
1614 1.10 fvdl * that you cannot have fragments.
1615 1.80 perseant *
1616 1.80 perseant * XXX This last is a lie. A cleaned fragment can coexist with
1617 1.103 perseant * XXX a later indirect block. This will continue to be
1618 1.80 perseant * XXX true until lfs_markv is fixed to do everything with
1619 1.80 perseant * XXX fake blocks (including fake inodes and fake indirect blocks).
1620 1.10 fvdl */
1621 1.101 perseant sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1622 1.101 perseant fs->lfs_bmask) + 1;
1623 1.157 perry
1624 1.10 fvdl /*
1625 1.1 mycroft * Assign disk addresses, and update references to the logical
1626 1.1 mycroft * block and the segment usage information.
1627 1.1 mycroft */
1628 1.1 mycroft for (i = nblocks; i--; ++sp->start_bpp) {
1629 1.101 perseant sbp = *sp->start_bpp;
1630 1.104 perseant lbn = *sp->start_lbp;
1631 1.118 yamt KASSERT(sbp->b_lblkno == lbn);
1632 1.104 perseant
1633 1.80 perseant sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1634 1.80 perseant
1635 1.80 perseant /*
1636 1.80 perseant * If we write a frag in the wrong place, the cleaner won't
1637 1.80 perseant * be able to correctly identify its size later, and the
1638 1.103 perseant * segment will be uncleanable. (Even worse, it will assume
1639 1.80 perseant * that the indirect block that actually ends the list
1640 1.80 perseant * is of a smaller size!)
1641 1.80 perseant */
1642 1.101 perseant if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1643 1.82 provos panic("lfs_updatemeta: fragment is not last block");
1644 1.119 fvdl
1645 1.80 perseant /*
1646 1.101 perseant * For each subblock in this possibly oversized block,
1647 1.101 perseant * update its address on disk.
1648 1.80 perseant */
1649 1.101 perseant KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1650 1.141 yamt KASSERT(vp == sbp->b_vp);
1651 1.101 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
1652 1.101 perseant bytesleft -= fs->lfs_bsize) {
1653 1.101 perseant size = MIN(bytesleft, fs->lfs_bsize);
1654 1.101 perseant bb = fragstofsb(fs, numfrags(fs, size));
1655 1.104 perseant lbn = *sp->start_lbp++;
1656 1.143 yamt lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1657 1.143 yamt size);
1658 1.101 perseant fs->lfs_offset += bb;
1659 1.1 mycroft }
1660 1.101 perseant
1661 1.1 mycroft }
1662 1.1 mycroft }
1663 1.1 mycroft
1664 1.1 mycroft /*
1665 1.163 perseant * Move lfs_offset to a segment earlier than sn.
1666 1.163 perseant */
1667 1.163 perseant int
1668 1.163 perseant lfs_rewind(struct lfs *fs, int newsn)
1669 1.163 perseant {
1670 1.163 perseant int sn, osn, isdirty;
1671 1.163 perseant struct buf *bp;
1672 1.163 perseant SEGUSE *sup;
1673 1.163 perseant
1674 1.163 perseant ASSERT_SEGLOCK(fs);
1675 1.163 perseant
1676 1.163 perseant osn = dtosn(fs, fs->lfs_offset);
1677 1.163 perseant if (osn < newsn)
1678 1.163 perseant return 0;
1679 1.163 perseant
1680 1.163 perseant /* lfs_avail eats the remaining space in this segment */
1681 1.163 perseant fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1682 1.163 perseant
1683 1.163 perseant /* Find a low-numbered segment */
1684 1.163 perseant for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1685 1.163 perseant LFS_SEGENTRY(sup, fs, sn, bp);
1686 1.163 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
1687 1.163 perseant brelse(bp);
1688 1.163 perseant
1689 1.163 perseant if (!isdirty)
1690 1.163 perseant break;
1691 1.163 perseant }
1692 1.163 perseant if (sn == fs->lfs_nseg)
1693 1.163 perseant panic("lfs_rewind: no clean segments");
1694 1.184 perseant if (newsn >= 0 && sn >= newsn)
1695 1.163 perseant return ENOENT;
1696 1.163 perseant fs->lfs_nextseg = sn;
1697 1.163 perseant lfs_newseg(fs);
1698 1.163 perseant fs->lfs_offset = fs->lfs_curseg;
1699 1.163 perseant
1700 1.163 perseant return 0;
1701 1.163 perseant }
1702 1.163 perseant
1703 1.163 perseant /*
1704 1.139 yamt * Start a new partial segment.
1705 1.139 yamt *
1706 1.139 yamt * Return 1 when we entered to a new segment.
1707 1.139 yamt * Otherwise, return 0.
1708 1.1 mycroft */
1709 1.1 mycroft int
1710 1.69 perseant lfs_initseg(struct lfs *fs)
1711 1.1 mycroft {
1712 1.139 yamt struct segment *sp = fs->lfs_sp;
1713 1.1 mycroft SEGSUM *ssp;
1714 1.139 yamt struct buf *sbp; /* buffer for SEGSUM */
1715 1.139 yamt int repeat = 0; /* return value */
1716 1.107 perseant
1717 1.159 perseant ASSERT_SEGLOCK(fs);
1718 1.1 mycroft /* Advance to the next segment. */
1719 1.1 mycroft if (!LFS_PARTIAL_FITS(fs)) {
1720 1.139 yamt SEGUSE *sup;
1721 1.139 yamt struct buf *bp;
1722 1.139 yamt
1723 1.55 perseant /* lfs_avail eats the remaining space */
1724 1.69 perseant fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1725 1.55 perseant fs->lfs_curseg);
1726 1.1 mycroft /* Wake up any cleaning procs waiting on this file system. */
1727 1.185 perseant lfs_wakeup_cleaner(fs);
1728 1.1 mycroft lfs_newseg(fs);
1729 1.1 mycroft repeat = 1;
1730 1.1 mycroft fs->lfs_offset = fs->lfs_curseg;
1731 1.157 perry
1732 1.69 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
1733 1.69 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1734 1.101 perseant
1735 1.1 mycroft /*
1736 1.1 mycroft * If the segment contains a superblock, update the offset
1737 1.1 mycroft * and summary address to skip over it.
1738 1.1 mycroft */
1739 1.1 mycroft LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1740 1.1 mycroft if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1741 1.69 perseant fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1742 1.1 mycroft sp->seg_bytes_left -= LFS_SBPAD;
1743 1.1 mycroft }
1744 1.1 mycroft brelse(bp);
1745 1.69 perseant /* Segment zero could also contain the labelpad */
1746 1.69 perseant if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1747 1.69 perseant fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1748 1.128 yamt fs->lfs_offset +=
1749 1.128 yamt btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1750 1.128 yamt sp->seg_bytes_left -=
1751 1.128 yamt LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1752 1.69 perseant }
1753 1.1 mycroft } else {
1754 1.69 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
1755 1.69 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1756 1.58 perseant (fs->lfs_offset - fs->lfs_curseg));
1757 1.1 mycroft }
1758 1.1 mycroft fs->lfs_lastpseg = fs->lfs_offset;
1759 1.157 perry
1760 1.107 perseant /* Record first address of this partial segment */
1761 1.107 perseant if (sp->seg_flags & SEGM_CLEAN) {
1762 1.107 perseant fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1763 1.107 perseant if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1764 1.107 perseant /* "1" is the artificial inc in lfs_seglock */
1765 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
1766 1.107 perseant while (fs->lfs_iocount > 1) {
1767 1.198.2.1 ad mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1768 1.159 perseant "lfs_initseg", 0, &fs->lfs_interlock);
1769 1.107 perseant }
1770 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
1771 1.107 perseant fs->lfs_cleanind = 0;
1772 1.107 perseant }
1773 1.107 perseant }
1774 1.107 perseant
1775 1.1 mycroft sp->fs = fs;
1776 1.1 mycroft sp->ibp = NULL;
1777 1.27 perseant sp->idp = NULL;
1778 1.1 mycroft sp->ninodes = 0;
1779 1.80 perseant sp->ndupino = 0;
1780 1.69 perseant
1781 1.1 mycroft sp->cbpp = sp->bpp;
1782 1.139 yamt
1783 1.139 yamt /* Get a new buffer for SEGSUM */
1784 1.145 yamt sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1785 1.128 yamt fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1786 1.139 yamt
1787 1.139 yamt /* ... and enter it into the buffer list. */
1788 1.139 yamt *sp->cbpp = sbp;
1789 1.139 yamt sp->cbpp++;
1790 1.69 perseant fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1791 1.139 yamt
1792 1.139 yamt sp->start_bpp = sp->cbpp;
1793 1.157 perry
1794 1.1 mycroft /* Set point to SEGSUM, initialize it. */
1795 1.139 yamt ssp = sp->segsum = sbp->b_data;
1796 1.139 yamt memset(ssp, 0, fs->lfs_sumsize);
1797 1.1 mycroft ssp->ss_next = fs->lfs_nextseg;
1798 1.1 mycroft ssp->ss_nfinfo = ssp->ss_ninos = 0;
1799 1.10 fvdl ssp->ss_magic = SS_MAGIC;
1800 1.1 mycroft
1801 1.1 mycroft /* Set pointer to first FINFO, initialize it. */
1802 1.198 christos sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1803 1.1 mycroft sp->fip->fi_nblocks = 0;
1804 1.1 mycroft sp->start_lbp = &sp->fip->fi_blocks[0];
1805 1.10 fvdl sp->fip->fi_lastlength = 0;
1806 1.157 perry
1807 1.69 perseant sp->seg_bytes_left -= fs->lfs_sumsize;
1808 1.69 perseant sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1809 1.104 perseant
1810 1.73 chs return (repeat);
1811 1.1 mycroft }
1812 1.1 mycroft
1813 1.1 mycroft /*
1814 1.163 perseant * Remove SEGUSE_INVAL from all segments.
1815 1.163 perseant */
1816 1.163 perseant void
1817 1.163 perseant lfs_unset_inval_all(struct lfs *fs)
1818 1.163 perseant {
1819 1.163 perseant SEGUSE *sup;
1820 1.163 perseant struct buf *bp;
1821 1.163 perseant int i;
1822 1.163 perseant
1823 1.163 perseant for (i = 0; i < fs->lfs_nseg; i++) {
1824 1.163 perseant LFS_SEGENTRY(sup, fs, i, bp);
1825 1.163 perseant if (sup->su_flags & SEGUSE_INVAL) {
1826 1.163 perseant sup->su_flags &= ~SEGUSE_INVAL;
1827 1.189 perseant LFS_WRITESEGENTRY(sup, fs, i, bp);
1828 1.163 perseant } else
1829 1.163 perseant brelse(bp);
1830 1.163 perseant }
1831 1.163 perseant }
1832 1.163 perseant
1833 1.163 perseant /*
1834 1.1 mycroft * Return the next segment to write.
1835 1.1 mycroft */
1836 1.1 mycroft void
1837 1.69 perseant lfs_newseg(struct lfs *fs)
1838 1.1 mycroft {
1839 1.1 mycroft CLEANERINFO *cip;
1840 1.1 mycroft SEGUSE *sup;
1841 1.1 mycroft struct buf *bp;
1842 1.163 perseant int curseg, isdirty, sn, skip_inval;
1843 1.157 perry
1844 1.159 perseant ASSERT_SEGLOCK(fs);
1845 1.175 perseant
1846 1.175 perseant /* Honor LFCNWRAPSTOP */
1847 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
1848 1.189 perseant while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1849 1.189 perseant if (fs->lfs_wrappass) {
1850 1.189 perseant log(LOG_NOTICE, "%s: wrappass=%d\n",
1851 1.189 perseant fs->lfs_fsmnt, fs->lfs_wrappass);
1852 1.189 perseant fs->lfs_wrappass = 0;
1853 1.189 perseant break;
1854 1.189 perseant }
1855 1.189 perseant fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1856 1.175 perseant wakeup(&fs->lfs_nowrap);
1857 1.189 perseant log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1858 1.198.2.1 ad mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1859 1.175 perseant &fs->lfs_interlock);
1860 1.175 perseant }
1861 1.189 perseant fs->lfs_wrapstatus = LFS_WRAP_GOING;
1862 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
1863 1.175 perseant
1864 1.69 perseant LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1865 1.158 perseant DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1866 1.158 perseant dtosn(fs, fs->lfs_nextseg)));
1867 1.15 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1868 1.1 mycroft sup->su_nbytes = 0;
1869 1.1 mycroft sup->su_nsums = 0;
1870 1.1 mycroft sup->su_ninos = 0;
1871 1.101 perseant LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1872 1.1 mycroft
1873 1.1 mycroft LFS_CLEANERINFO(cip, fs, bp);
1874 1.1 mycroft --cip->clean;
1875 1.1 mycroft ++cip->dirty;
1876 1.15 perseant fs->lfs_nclean = cip->clean;
1877 1.61 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1878 1.101 perseant
1879 1.1 mycroft fs->lfs_lastseg = fs->lfs_curseg;
1880 1.1 mycroft fs->lfs_curseg = fs->lfs_nextseg;
1881 1.163 perseant skip_inval = 1;
1882 1.69 perseant for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1883 1.1 mycroft sn = (sn + 1) % fs->lfs_nseg;
1884 1.174 perseant
1885 1.163 perseant if (sn == curseg) {
1886 1.163 perseant if (skip_inval)
1887 1.163 perseant skip_inval = 0;
1888 1.163 perseant else
1889 1.163 perseant panic("lfs_nextseg: no clean segments");
1890 1.163 perseant }
1891 1.1 mycroft LFS_SEGENTRY(sup, fs, sn, bp);
1892 1.163 perseant isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1893 1.101 perseant /* Check SEGUSE_EMPTY as we go along */
1894 1.128 yamt if (isdirty && sup->su_nbytes == 0 &&
1895 1.128 yamt !(sup->su_flags & SEGUSE_EMPTY))
1896 1.101 perseant LFS_WRITESEGENTRY(sup, fs, sn, bp);
1897 1.101 perseant else
1898 1.101 perseant brelse(bp);
1899 1.101 perseant
1900 1.1 mycroft if (!isdirty)
1901 1.1 mycroft break;
1902 1.1 mycroft }
1903 1.163 perseant if (skip_inval == 0)
1904 1.163 perseant lfs_unset_inval_all(fs);
1905 1.157 perry
1906 1.1 mycroft ++fs->lfs_nactive;
1907 1.69 perseant fs->lfs_nextseg = sntod(fs, sn);
1908 1.73 chs if (lfs_dostats) {
1909 1.15 perseant ++lfs_stats.segsused;
1910 1.15 perseant }
1911 1.1 mycroft }
1912 1.1 mycroft
1913 1.74 perseant static struct buf *
1914 1.193 christos lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1915 1.195 christos int n)
1916 1.74 perseant {
1917 1.74 perseant struct lfs_cluster *cl;
1918 1.74 perseant struct buf **bpp, *bp;
1919 1.74 perseant
1920 1.159 perseant ASSERT_SEGLOCK(fs);
1921 1.101 perseant cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1922 1.101 perseant bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1923 1.79 perseant memset(cl, 0, sizeof(*cl));
1924 1.74 perseant cl->fs = fs;
1925 1.74 perseant cl->bpp = bpp;
1926 1.74 perseant cl->bufcount = 0;
1927 1.74 perseant cl->bufsize = 0;
1928 1.74 perseant
1929 1.79 perseant /* If this segment is being written synchronously, note that */
1930 1.79 perseant if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1931 1.79 perseant cl->flags |= LFS_CL_SYNC;
1932 1.79 perseant cl->seg = fs->lfs_sp;
1933 1.79 perseant ++cl->seg->seg_iocount;
1934 1.79 perseant }
1935 1.79 perseant
1936 1.74 perseant /* Get an empty buffer header, or maybe one with something on it */
1937 1.169 yamt bp = getiobuf();
1938 1.130 yamt bp->b_flags = B_BUSY | B_CALL;
1939 1.130 yamt bp->b_dev = NODEV;
1940 1.74 perseant bp->b_blkno = bp->b_lblkno = addr;
1941 1.74 perseant bp->b_iodone = lfs_cluster_callback;
1942 1.144 yamt bp->b_private = cl;
1943 1.130 yamt bp->b_vp = vp;
1944 1.74 perseant
1945 1.74 perseant return bp;
1946 1.74 perseant }
1947 1.74 perseant
1948 1.1 mycroft int
1949 1.69 perseant lfs_writeseg(struct lfs *fs, struct segment *sp)
1950 1.1 mycroft {
1951 1.109 perseant struct buf **bpp, *bp, *cbp, *newbp;
1952 1.1 mycroft SEGUSE *sup;
1953 1.1 mycroft SEGSUM *ssp;
1954 1.101 perseant int i, s;
1955 1.101 perseant int do_again, nblocks, byteoffset;
1956 1.70 jdolecek size_t el_size;
1957 1.103 perseant struct lfs_cluster *cl;
1958 1.1 mycroft u_short ninos;
1959 1.15 perseant struct vnode *devvp;
1960 1.142 christos char *p = NULL;
1961 1.69 perseant struct vnode *vp;
1962 1.91 fvdl int32_t *daddrp; /* XXX ondisk32 */
1963 1.55 perseant int changed;
1964 1.152 yamt u_int32_t sum;
1965 1.180 perseant #ifdef DEBUG
1966 1.180 perseant FINFO *fip;
1967 1.180 perseant int findex;
1968 1.180 perseant #endif
1969 1.74 perseant
1970 1.159 perseant ASSERT_SEGLOCK(fs);
1971 1.188 perseant
1972 1.189 perseant ssp = (SEGSUM *)sp->segsum;
1973 1.189 perseant
1974 1.189 perseant /*
1975 1.189 perseant * If there are no buffers other than the segment summary to write,
1976 1.189 perseant * don't do anything. If we are the end of a dirop sequence, however,
1977 1.189 perseant * write the empty segment summary anyway, to help out the
1978 1.189 perseant * roll-forward agent.
1979 1.189 perseant */
1980 1.189 perseant if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1981 1.189 perseant if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1982 1.189 perseant return 0;
1983 1.189 perseant }
1984 1.189 perseant
1985 1.188 perseant /* Note if partial segment is being written by the cleaner */
1986 1.188 perseant if (sp->seg_flags & SEGM_CLEAN)
1987 1.189 perseant ssp->ss_flags |= SS_CLEAN;
1988 1.157 perry
1989 1.27 perseant devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1990 1.27 perseant
1991 1.10 fvdl /* Update the segment usage information. */
1992 1.10 fvdl LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1993 1.157 perry
1994 1.10 fvdl /* Loop through all blocks, except the segment summary. */
1995 1.27 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1996 1.73 chs if ((*bpp)->b_vp != devvp) {
1997 1.27 perseant sup->su_nbytes += (*bpp)->b_bcount;
1998 1.158 perseant DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1999 1.158 perseant " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2000 1.158 perseant sp->seg_number, (*bpp)->b_bcount,
2001 1.158 perseant VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2002 1.158 perseant (*bpp)->b_blkno));
2003 1.69 perseant }
2004 1.27 perseant }
2005 1.157 perry
2006 1.180 perseant #ifdef DEBUG
2007 1.181 perseant /* Check for zero-length and zero-version FINFO entries. */
2008 1.198 christos fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2009 1.180 perseant for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2010 1.180 perseant KDASSERT(fip->fi_nblocks > 0);
2011 1.181 perseant KDASSERT(fip->fi_version > 0);
2012 1.198 christos fip = (FINFO *)((char *)fip + FINFOSIZE +
2013 1.180 perseant sizeof(int32_t) * fip->fi_nblocks);
2014 1.180 perseant }
2015 1.180 perseant #endif /* DEBUG */
2016 1.180 perseant
2017 1.1 mycroft ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2018 1.158 perseant DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2019 1.158 perseant sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2020 1.158 perseant ssp->ss_ninos));
2021 1.119 fvdl sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2022 1.69 perseant /* sup->su_nbytes += fs->lfs_sumsize; */
2023 1.69 perseant if (fs->lfs_version == 1)
2024 1.182 kardel sup->su_olastmod = time_second;
2025 1.69 perseant else
2026 1.182 kardel sup->su_lastmod = time_second;
2027 1.1 mycroft sup->su_ninos += ninos;
2028 1.1 mycroft ++sup->su_nsums;
2029 1.69 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2030 1.15 perseant
2031 1.1 mycroft do_again = !(bp->b_flags & B_GATHERED);
2032 1.101 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2033 1.101 perseant
2034 1.1 mycroft /*
2035 1.53 perseant * Mark blocks B_BUSY, to prevent then from being changed between
2036 1.53 perseant * the checksum computation and the actual write.
2037 1.53 perseant *
2038 1.53 perseant * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2039 1.53 perseant * there are any, replace them with copies that have UNASSIGNED
2040 1.53 perseant * instead.
2041 1.53 perseant */
2042 1.53 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2043 1.53 perseant ++bpp;
2044 1.101 perseant bp = *bpp;
2045 1.101 perseant if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
2046 1.101 perseant bp->b_flags |= B_BUSY;
2047 1.53 perseant continue;
2048 1.101 perseant }
2049 1.159 perseant
2050 1.198.2.1 ad mutex_enter(&bp->b_interlock);
2051 1.53 perseant s = splbio();
2052 1.159 perseant while (bp->b_flags & B_BUSY) {
2053 1.158 perseant DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2054 1.158 perseant " data summary corruption for ino %d, lbn %"
2055 1.158 perseant PRId64 "\n",
2056 1.158 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2057 1.53 perseant bp->b_flags |= B_WANTED;
2058 1.198.2.1 ad mtsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
2059 1.159 perseant &bp->b_interlock);
2060 1.53 perseant splx(s);
2061 1.159 perseant s = splbio();
2062 1.53 perseant }
2063 1.53 perseant bp->b_flags |= B_BUSY;
2064 1.53 perseant splx(s);
2065 1.198.2.1 ad mutex_exit(&bp->b_interlock);
2066 1.159 perseant
2067 1.101 perseant /*
2068 1.101 perseant * Check and replace indirect block UNWRITTEN bogosity.
2069 1.101 perseant * XXX See comment in lfs_writefile.
2070 1.101 perseant */
2071 1.73 chs if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2072 1.119 fvdl VTOI(bp->b_vp)->i_ffs1_blocks !=
2073 1.53 perseant VTOI(bp->b_vp)->i_lfs_effnblks) {
2074 1.158 perseant DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2075 1.158 perseant VTOI(bp->b_vp)->i_number,
2076 1.158 perseant VTOI(bp->b_vp)->i_lfs_effnblks,
2077 1.158 perseant VTOI(bp->b_vp)->i_ffs1_blocks));
2078 1.53 perseant /* Make a copy we'll make changes to */
2079 1.69 perseant newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2080 1.101 perseant bp->b_bcount, LFS_NB_IBLOCK);
2081 1.53 perseant newbp->b_blkno = bp->b_blkno;
2082 1.53 perseant memcpy(newbp->b_data, bp->b_data,
2083 1.53 perseant newbp->b_bcount);
2084 1.53 perseant
2085 1.55 perseant changed = 0;
2086 1.91 fvdl /* XXX ondisk32 */
2087 1.91 fvdl for (daddrp = (int32_t *)(newbp->b_data);
2088 1.198 christos daddrp < (int32_t *)((char *)newbp->b_data +
2089 1.53 perseant newbp->b_bcount); daddrp++) {
2090 1.53 perseant if (*daddrp == UNWRITTEN) {
2091 1.55 perseant ++changed;
2092 1.53 perseant *daddrp = 0;
2093 1.53 perseant }
2094 1.53 perseant }
2095 1.55 perseant /*
2096 1.55 perseant * Get rid of the old buffer. Don't mark it clean,
2097 1.55 perseant * though, if it still has dirty data on it.
2098 1.55 perseant */
2099 1.55 perseant if (changed) {
2100 1.158 perseant DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2101 1.158 perseant " bp = %p newbp = %p\n", changed, bp,
2102 1.158 perseant newbp));
2103 1.101 perseant *bpp = newbp;
2104 1.120 perseant bp->b_flags &= ~(B_ERROR | B_GATHERED);
2105 1.69 perseant if (bp->b_flags & B_CALL) {
2106 1.158 perseant DLOG((DLOG_SEG, "lfs_writeseg: "
2107 1.158 perseant "indir bp should not be B_CALL\n"));
2108 1.101 perseant s = splbio();
2109 1.101 perseant biodone(bp);
2110 1.101 perseant splx(s);
2111 1.69 perseant bp = NULL;
2112 1.69 perseant } else {
2113 1.57 perseant /* Still on free list, leave it there */
2114 1.57 perseant s = splbio();
2115 1.57 perseant bp->b_flags &= ~B_BUSY;
2116 1.57 perseant if (bp->b_flags & B_WANTED)
2117 1.57 perseant wakeup(bp);
2118 1.103 perseant splx(s);
2119 1.62 perseant /*
2120 1.62 perseant * We have to re-decrement lfs_avail
2121 1.62 perseant * since this block is going to come
2122 1.62 perseant * back around to us in the next
2123 1.62 perseant * segment.
2124 1.62 perseant */
2125 1.128 yamt fs->lfs_avail -=
2126 1.128 yamt btofsb(fs, bp->b_bcount);
2127 1.57 perseant }
2128 1.55 perseant } else {
2129 1.101 perseant lfs_freebuf(fs, newbp);
2130 1.55 perseant }
2131 1.53 perseant }
2132 1.53 perseant }
2133 1.53 perseant /*
2134 1.1 mycroft * Compute checksum across data and then across summary; the first
2135 1.1 mycroft * block (the summary block) is skipped. Set the create time here
2136 1.1 mycroft * so that it's guaranteed to be later than the inode mod times.
2137 1.1 mycroft */
2138 1.152 yamt sum = 0;
2139 1.69 perseant if (fs->lfs_version == 1)
2140 1.69 perseant el_size = sizeof(u_long);
2141 1.69 perseant else
2142 1.69 perseant el_size = sizeof(u_int32_t);
2143 1.101 perseant for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2144 1.101 perseant ++bpp;
2145 1.101 perseant /* Loop through gop_write cluster blocks */
2146 1.101 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2147 1.101 perseant byteoffset += fs->lfs_bsize) {
2148 1.109 perseant #ifdef LFS_USE_B_INVAL
2149 1.101 perseant if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2150 1.101 perseant (B_CALL | B_INVAL)) {
2151 1.198 christos if (copyin((void *)(*bpp)->b_saveaddr +
2152 1.101 perseant byteoffset, dp, el_size)) {
2153 1.128 yamt panic("lfs_writeseg: copyin failed [1]:"
2154 1.128 yamt " ino %d blk %" PRId64,
2155 1.101 perseant VTOI((*bpp)->b_vp)->i_number,
2156 1.101 perseant (*bpp)->b_lblkno);
2157 1.101 perseant }
2158 1.109 perseant } else
2159 1.109 perseant #endif /* LFS_USE_B_INVAL */
2160 1.109 perseant {
2161 1.198 christos sum = lfs_cksum_part((char *)
2162 1.152 yamt (*bpp)->b_data + byteoffset, el_size, sum);
2163 1.101 perseant }
2164 1.101 perseant }
2165 1.69 perseant }
2166 1.69 perseant if (fs->lfs_version == 1)
2167 1.182 kardel ssp->ss_ocreate = time_second;
2168 1.69 perseant else {
2169 1.182 kardel ssp->ss_create = time_second;
2170 1.69 perseant ssp->ss_serial = ++fs->lfs_serial;
2171 1.69 perseant ssp->ss_ident = fs->lfs_ident;
2172 1.1 mycroft }
2173 1.152 yamt ssp->ss_datasum = lfs_cksum_fold(sum);
2174 1.152 yamt ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2175 1.152 yamt fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2176 1.156 perseant
2177 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2178 1.69 perseant fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2179 1.69 perseant btofsb(fs, fs->lfs_sumsize));
2180 1.170 tls fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2181 1.170 tls btofsb(fs, fs->lfs_sumsize));
2182 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2183 1.1 mycroft
2184 1.1 mycroft /*
2185 1.103 perseant * When we simply write the blocks we lose a rotation for every block
2186 1.109 perseant * written. To avoid this problem, we cluster the buffers into a
2187 1.109 perseant * chunk and write the chunk. MAXPHYS is the largest size I/O
2188 1.109 perseant * devices can handle, use that for the size of the chunks.
2189 1.103 perseant *
2190 1.109 perseant * Blocks that are already clusters (from GOP_WRITE), however, we
2191 1.109 perseant * don't bother to copy into other clusters.
2192 1.1 mycroft */
2193 1.15 perseant
2194 1.15 perseant #define CHUNKSIZE MAXPHYS
2195 1.15 perseant
2196 1.73 chs if (devvp == NULL)
2197 1.15 perseant panic("devvp is NULL");
2198 1.74 perseant for (bpp = sp->bpp, i = nblocks; i;) {
2199 1.74 perseant cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2200 1.144 yamt cl = cbp->b_private;
2201 1.74 perseant
2202 1.1 mycroft cbp->b_flags |= B_ASYNC | B_BUSY;
2203 1.10 fvdl cbp->b_bcount = 0;
2204 1.1 mycroft
2205 1.74 perseant #if defined(DEBUG) && defined(DIAGNOSTIC)
2206 1.104 perseant if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2207 1.104 perseant / sizeof(int32_t)) {
2208 1.104 perseant panic("lfs_writeseg: real bpp overwrite");
2209 1.104 perseant }
2210 1.151 yamt if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2211 1.104 perseant panic("lfs_writeseg: theoretical bpp overwrite");
2212 1.104 perseant }
2213 1.17 perseant #endif
2214 1.17 perseant
2215 1.74 perseant /*
2216 1.74 perseant * Construct the cluster.
2217 1.74 perseant */
2218 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2219 1.1 mycroft ++fs->lfs_iocount;
2220 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2221 1.115 perseant while (i && cbp->b_bcount < CHUNKSIZE) {
2222 1.10 fvdl bp = *bpp;
2223 1.15 perseant
2224 1.15 perseant if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2225 1.10 fvdl break;
2226 1.109 perseant if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2227 1.109 perseant break;
2228 1.10 fvdl
2229 1.109 perseant /* Clusters from GOP_WRITE are expedited */
2230 1.109 perseant if (bp->b_bcount > fs->lfs_bsize) {
2231 1.109 perseant if (cbp->b_bcount > 0)
2232 1.109 perseant /* Put in its own buffer */
2233 1.109 perseant break;
2234 1.109 perseant else {
2235 1.109 perseant cbp->b_data = bp->b_data;
2236 1.109 perseant }
2237 1.109 perseant } else if (cbp->b_bcount == 0) {
2238 1.109 perseant p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2239 1.109 perseant LFS_NB_CLUSTER);
2240 1.109 perseant cl->flags |= LFS_CL_MALLOC;
2241 1.109 perseant }
2242 1.101 perseant #ifdef DIAGNOSTIC
2243 1.101 perseant if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2244 1.101 perseant btodb(bp->b_bcount - 1))) !=
2245 1.101 perseant sp->seg_number) {
2246 1.155 yamt printf("blk size %d daddr %" PRIx64
2247 1.128 yamt " not in seg %d\n",
2248 1.128 yamt bp->b_bcount, bp->b_blkno,
2249 1.128 yamt sp->seg_number);
2250 1.101 perseant panic("segment overwrite");
2251 1.101 perseant }
2252 1.101 perseant #endif
2253 1.101 perseant
2254 1.109 perseant #ifdef LFS_USE_B_INVAL
2255 1.1 mycroft /*
2256 1.1 mycroft * Fake buffers from the cleaner are marked as B_INVAL.
2257 1.1 mycroft * We need to copy the data from user space rather than
2258 1.1 mycroft * from the buffer indicated.
2259 1.1 mycroft * XXX == what do I do on an error?
2260 1.1 mycroft */
2261 1.128 yamt if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2262 1.128 yamt (B_CALL|B_INVAL)) {
2263 1.1 mycroft if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2264 1.128 yamt panic("lfs_writeseg: "
2265 1.128 yamt "copyin failed [2]");
2266 1.109 perseant } else
2267 1.109 perseant #endif /* LFS_USE_B_INVAL */
2268 1.109 perseant if (cl->flags & LFS_CL_MALLOC) {
2269 1.137 yamt /* copy data into our cluster. */
2270 1.137 yamt memcpy(p, bp->b_data, bp->b_bcount);
2271 1.137 yamt p += bp->b_bcount;
2272 1.103 perseant }
2273 1.157 perry
2274 1.109 perseant cbp->b_bcount += bp->b_bcount;
2275 1.109 perseant cl->bufsize += bp->b_bcount;
2276 1.109 perseant
2277 1.74 perseant bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2278 1.74 perseant cl->bpp[cl->bufcount++] = bp;
2279 1.74 perseant vp = bp->b_vp;
2280 1.79 perseant s = splbio();
2281 1.135 yamt reassignbuf(bp, vp);
2282 1.100 pk V_INCR_NUMOUTPUT(vp);
2283 1.79 perseant splx(s);
2284 1.26 perseant
2285 1.26 perseant bpp++;
2286 1.109 perseant i--;
2287 1.1 mycroft }
2288 1.147 yamt if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2289 1.147 yamt BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2290 1.147 yamt else
2291 1.147 yamt BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2292 1.79 perseant s = splbio();
2293 1.109 perseant V_INCR_NUMOUTPUT(devvp);
2294 1.1 mycroft splx(s);
2295 1.149 yamt VOP_STRATEGY(devvp, cbp);
2296 1.109 perseant curproc->p_stats->p_ru.ru_oublock++;
2297 1.1 mycroft }
2298 1.74 perseant
2299 1.73 chs if (lfs_dostats) {
2300 1.15 perseant ++lfs_stats.psegwrites;
2301 1.15 perseant lfs_stats.blocktot += nblocks - 1;
2302 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2303 1.15 perseant ++lfs_stats.psyncwrites;
2304 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2305 1.15 perseant ++lfs_stats.pcleanwrites;
2306 1.15 perseant lfs_stats.cleanblocks += nblocks - 1;
2307 1.15 perseant }
2308 1.1 mycroft }
2309 1.1 mycroft return (lfs_initseg(fs) || do_again);
2310 1.1 mycroft }
2311 1.1 mycroft
2312 1.1 mycroft void
2313 1.69 perseant lfs_writesuper(struct lfs *fs, daddr_t daddr)
2314 1.1 mycroft {
2315 1.1 mycroft struct buf *bp;
2316 1.1 mycroft int s;
2317 1.149 yamt struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2318 1.1 mycroft
2319 1.159 perseant ASSERT_MAYBE_SEGLOCK(fs);
2320 1.156 perseant #ifdef DIAGNOSTIC
2321 1.156 perseant KASSERT(fs->lfs_magic == LFS_MAGIC);
2322 1.156 perseant #endif
2323 1.15 perseant /*
2324 1.15 perseant * If we can write one superblock while another is in
2325 1.15 perseant * progress, we risk not having a complete checkpoint if we crash.
2326 1.15 perseant * So, block here if a superblock write is in progress.
2327 1.15 perseant */
2328 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2329 1.36 perseant s = splbio();
2330 1.73 chs while (fs->lfs_sbactive) {
2331 1.198.2.1 ad mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2332 1.159 perseant &fs->lfs_interlock);
2333 1.15 perseant }
2334 1.15 perseant fs->lfs_sbactive = daddr;
2335 1.36 perseant splx(s);
2336 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2337 1.1 mycroft
2338 1.15 perseant /* Set timestamp of this version of the superblock */
2339 1.69 perseant if (fs->lfs_version == 1)
2340 1.182 kardel fs->lfs_otstamp = time_second;
2341 1.182 kardel fs->lfs_tstamp = time_second;
2342 1.15 perseant
2343 1.1 mycroft /* Checksum the superblock and copy it into a buffer. */
2344 1.12 pk fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2345 1.149 yamt bp = lfs_newbuf(fs, devvp,
2346 1.128 yamt fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2347 1.198 christos memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2348 1.128 yamt LFS_SBPAD - sizeof(struct dlfs));
2349 1.12 pk *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2350 1.157 perry
2351 1.1 mycroft bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2352 1.1 mycroft bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2353 1.1 mycroft bp->b_iodone = lfs_supercallback;
2354 1.15 perseant
2355 1.147 yamt if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2356 1.147 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2357 1.147 yamt else
2358 1.147 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2359 1.109 perseant curproc->p_stats->p_ru.ru_oublock++;
2360 1.1 mycroft s = splbio();
2361 1.100 pk V_INCR_NUMOUTPUT(bp->b_vp);
2362 1.79 perseant splx(s);
2363 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2364 1.52 perseant ++fs->lfs_iocount;
2365 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2366 1.149 yamt VOP_STRATEGY(devvp, bp);
2367 1.1 mycroft }
2368 1.1 mycroft
2369 1.1 mycroft /*
2370 1.1 mycroft * Logical block number match routines used when traversing the dirty block
2371 1.1 mycroft * chain.
2372 1.1 mycroft */
2373 1.1 mycroft int
2374 1.69 perseant lfs_match_fake(struct lfs *fs, struct buf *bp)
2375 1.15 perseant {
2376 1.129 yamt
2377 1.159 perseant ASSERT_SEGLOCK(fs);
2378 1.101 perseant return LFS_IS_MALLOC_BUF(bp);
2379 1.15 perseant }
2380 1.15 perseant
2381 1.101 perseant #if 0
2382 1.101 perseant int
2383 1.101 perseant lfs_match_real(struct lfs *fs, struct buf *bp)
2384 1.101 perseant {
2385 1.129 yamt
2386 1.159 perseant ASSERT_SEGLOCK(fs);
2387 1.101 perseant return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2388 1.101 perseant }
2389 1.101 perseant #endif
2390 1.101 perseant
2391 1.15 perseant int
2392 1.69 perseant lfs_match_data(struct lfs *fs, struct buf *bp)
2393 1.1 mycroft {
2394 1.129 yamt
2395 1.159 perseant ASSERT_SEGLOCK(fs);
2396 1.1 mycroft return (bp->b_lblkno >= 0);
2397 1.1 mycroft }
2398 1.1 mycroft
2399 1.1 mycroft int
2400 1.69 perseant lfs_match_indir(struct lfs *fs, struct buf *bp)
2401 1.1 mycroft {
2402 1.91 fvdl daddr_t lbn;
2403 1.1 mycroft
2404 1.159 perseant ASSERT_SEGLOCK(fs);
2405 1.1 mycroft lbn = bp->b_lblkno;
2406 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2407 1.1 mycroft }
2408 1.1 mycroft
2409 1.1 mycroft int
2410 1.69 perseant lfs_match_dindir(struct lfs *fs, struct buf *bp)
2411 1.1 mycroft {
2412 1.91 fvdl daddr_t lbn;
2413 1.1 mycroft
2414 1.159 perseant ASSERT_SEGLOCK(fs);
2415 1.1 mycroft lbn = bp->b_lblkno;
2416 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2417 1.1 mycroft }
2418 1.1 mycroft
2419 1.1 mycroft int
2420 1.69 perseant lfs_match_tindir(struct lfs *fs, struct buf *bp)
2421 1.1 mycroft {
2422 1.91 fvdl daddr_t lbn;
2423 1.1 mycroft
2424 1.159 perseant ASSERT_SEGLOCK(fs);
2425 1.1 mycroft lbn = bp->b_lblkno;
2426 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2427 1.1 mycroft }
2428 1.1 mycroft
2429 1.189 perseant static void
2430 1.189 perseant lfs_free_aiodone(struct buf *bp)
2431 1.1 mycroft {
2432 1.101 perseant struct lfs *fs;
2433 1.101 perseant
2434 1.144 yamt fs = bp->b_private;
2435 1.159 perseant ASSERT_NO_SEGLOCK(fs);
2436 1.101 perseant lfs_freebuf(fs, bp);
2437 1.1 mycroft }
2438 1.1 mycroft
2439 1.79 perseant static void
2440 1.79 perseant lfs_super_aiodone(struct buf *bp)
2441 1.1 mycroft {
2442 1.15 perseant struct lfs *fs;
2443 1.15 perseant
2444 1.144 yamt fs = bp->b_private;
2445 1.159 perseant ASSERT_NO_SEGLOCK(fs);
2446 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2447 1.45 thorpej fs->lfs_sbactive = 0;
2448 1.107 perseant if (--fs->lfs_iocount <= 1)
2449 1.52 perseant wakeup(&fs->lfs_iocount);
2450 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2451 1.159 perseant wakeup(&fs->lfs_sbactive);
2452 1.101 perseant lfs_freebuf(fs, bp);
2453 1.74 perseant }
2454 1.74 perseant
2455 1.74 perseant static void
2456 1.79 perseant lfs_cluster_aiodone(struct buf *bp)
2457 1.74 perseant {
2458 1.74 perseant struct lfs_cluster *cl;
2459 1.74 perseant struct lfs *fs;
2460 1.109 perseant struct buf *tbp, *fbp;
2461 1.198.2.1 ad struct vnode *vp, *devvp, *ovp;
2462 1.109 perseant struct inode *ip;
2463 1.79 perseant int s, error=0;
2464 1.74 perseant
2465 1.115 perseant if (bp->b_flags & B_ERROR)
2466 1.74 perseant error = bp->b_error;
2467 1.74 perseant
2468 1.144 yamt cl = bp->b_private;
2469 1.74 perseant fs = cl->fs;
2470 1.101 perseant devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2471 1.159 perseant ASSERT_NO_SEGLOCK(fs);
2472 1.74 perseant
2473 1.74 perseant /* Put the pages back, and release the buffer */
2474 1.115 perseant while (cl->bufcount--) {
2475 1.74 perseant tbp = cl->bpp[cl->bufcount];
2476 1.153 yamt KASSERT(tbp->b_flags & B_BUSY);
2477 1.115 perseant if (error) {
2478 1.74 perseant tbp->b_flags |= B_ERROR;
2479 1.74 perseant tbp->b_error = error;
2480 1.74 perseant }
2481 1.74 perseant
2482 1.74 perseant /*
2483 1.103 perseant * We're done with tbp. If it has not been re-dirtied since
2484 1.74 perseant * the cluster was written, free it. Otherwise, keep it on
2485 1.74 perseant * the locked list to be written again.
2486 1.74 perseant */
2487 1.101 perseant vp = tbp->b_vp;
2488 1.114 perseant
2489 1.74 perseant tbp->b_flags &= ~B_GATHERED;
2490 1.74 perseant
2491 1.74 perseant LFS_BCLEAN_LOG(fs, tbp);
2492 1.74 perseant
2493 1.115 perseant if (!(tbp->b_flags & B_CALL)) {
2494 1.136 yamt KASSERT(tbp->b_flags & B_LOCKED);
2495 1.198.2.1 ad mutex_enter(&bqueue_lock);
2496 1.74 perseant bremfree(tbp);
2497 1.198.2.1 ad mutex_exit(&bqueue_lock);
2498 1.115 perseant if (vp)
2499 1.74 perseant reassignbuf(tbp, vp);
2500 1.74 perseant tbp->b_flags |= B_ASYNC; /* for biodone */
2501 1.74 perseant }
2502 1.132 yamt
2503 1.132 yamt if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2504 1.132 yamt LFS_UNLOCK_BUF(tbp);
2505 1.132 yamt
2506 1.74 perseant if (tbp->b_flags & B_DONE) {
2507 1.158 perseant DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2508 1.158 perseant cl->bufcount, (long)tbp->b_flags));
2509 1.74 perseant }
2510 1.109 perseant
2511 1.153 yamt if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2512 1.109 perseant /*
2513 1.153 yamt * A buffer from the page daemon.
2514 1.153 yamt * We use the same iodone as it does,
2515 1.153 yamt * so we must manually disassociate its
2516 1.153 yamt * buffers from the vp.
2517 1.109 perseant */
2518 1.153 yamt if (tbp->b_vp) {
2519 1.153 yamt /* This is just silly */
2520 1.198.2.1 ad ovp = tbp->b_vp;
2521 1.153 yamt s = splbio();
2522 1.153 yamt brelvp(tbp);
2523 1.153 yamt tbp->b_vp = vp;
2524 1.153 yamt splx(s);
2525 1.198.2.1 ad HOLDRELE(ovp);
2526 1.153 yamt }
2527 1.153 yamt /* Put it back the way it was */
2528 1.153 yamt tbp->b_flags |= B_ASYNC;
2529 1.153 yamt /* Master buffers have B_AGE */
2530 1.153 yamt if (tbp->b_private == tbp)
2531 1.153 yamt tbp->b_flags |= B_AGE;
2532 1.153 yamt }
2533 1.198.2.1 ad
2534 1.153 yamt biodone(tbp);
2535 1.153 yamt
2536 1.153 yamt /*
2537 1.153 yamt * If this is the last block for this vnode, but
2538 1.153 yamt * there are other blocks on its dirty list,
2539 1.153 yamt * set IN_MODIFIED/IN_CLEANING depending on what
2540 1.153 yamt * sort of block. Only do this for our mount point,
2541 1.153 yamt * not for, e.g., inode blocks that are attached to
2542 1.153 yamt * the devvp.
2543 1.153 yamt * XXX KS - Shouldn't we set *both* if both types
2544 1.153 yamt * of blocks are present (traverse the dirty list?)
2545 1.153 yamt */
2546 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2547 1.198.2.1 ad mutex_enter(&global_v_numoutput_lock);
2548 1.153 yamt if (vp != devvp && vp->v_numoutput == 0 &&
2549 1.153 yamt (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2550 1.153 yamt ip = VTOI(vp);
2551 1.158 perseant DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2552 1.158 perseant ip->i_number));
2553 1.153 yamt if (LFS_IS_MALLOC_BUF(fbp))
2554 1.153 yamt LFS_SET_UINO(ip, IN_CLEANING);
2555 1.153 yamt else
2556 1.153 yamt LFS_SET_UINO(ip, IN_MODIFIED);
2557 1.74 perseant }
2558 1.153 yamt wakeup(vp);
2559 1.198.2.1 ad mutex_exit(&global_v_numoutput_lock);
2560 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2561 1.74 perseant }
2562 1.74 perseant
2563 1.74 perseant /* Fix up the cluster buffer, and release it */
2564 1.109 perseant if (cl->flags & LFS_CL_MALLOC)
2565 1.101 perseant lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2566 1.169 yamt putiobuf(bp);
2567 1.74 perseant
2568 1.79 perseant /* Note i/o done */
2569 1.79 perseant if (cl->flags & LFS_CL_SYNC) {
2570 1.157 perry if (--cl->seg->seg_iocount == 0)
2571 1.79 perseant wakeup(&cl->seg->seg_iocount);
2572 1.79 perseant }
2573 1.198.2.1 ad mutex_enter(&fs->lfs_interlock);
2574 1.74 perseant #ifdef DIAGNOSTIC
2575 1.74 perseant if (fs->lfs_iocount == 0)
2576 1.82 provos panic("lfs_cluster_aiodone: zero iocount");
2577 1.74 perseant #endif
2578 1.107 perseant if (--fs->lfs_iocount <= 1)
2579 1.74 perseant wakeup(&fs->lfs_iocount);
2580 1.198.2.1 ad mutex_exit(&fs->lfs_interlock);
2581 1.79 perseant
2582 1.101 perseant pool_put(&fs->lfs_bpppool, cl->bpp);
2583 1.101 perseant cl->bpp = NULL;
2584 1.101 perseant pool_put(&fs->lfs_clpool, cl);
2585 1.79 perseant }
2586 1.79 perseant
2587 1.79 perseant static void
2588 1.79 perseant lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2589 1.79 perseant {
2590 1.79 perseant /* reset b_iodone for when this is a single-buf i/o. */
2591 1.79 perseant bp->b_iodone = aiodone;
2592 1.79 perseant
2593 1.196 yamt workqueue_enqueue(uvm.aiodone_queue, &bp->b_work);
2594 1.79 perseant }
2595 1.79 perseant
2596 1.79 perseant static void
2597 1.79 perseant lfs_cluster_callback(struct buf *bp)
2598 1.79 perseant {
2599 1.129 yamt
2600 1.79 perseant lfs_generic_callback(bp, lfs_cluster_aiodone);
2601 1.79 perseant }
2602 1.79 perseant
2603 1.79 perseant void
2604 1.79 perseant lfs_supercallback(struct buf *bp)
2605 1.79 perseant {
2606 1.129 yamt
2607 1.79 perseant lfs_generic_callback(bp, lfs_super_aiodone);
2608 1.1 mycroft }
2609 1.1 mycroft
2610 1.1 mycroft /*
2611 1.189 perseant * The only buffers that are going to hit these functions are the
2612 1.189 perseant * segment write blocks, or the segment summaries, or the superblocks.
2613 1.189 perseant *
2614 1.189 perseant * All of the above are created by lfs_newbuf, and so do not need to be
2615 1.189 perseant * released via brelse.
2616 1.189 perseant */
2617 1.189 perseant void
2618 1.189 perseant lfs_callback(struct buf *bp)
2619 1.189 perseant {
2620 1.189 perseant
2621 1.189 perseant lfs_generic_callback(bp, lfs_free_aiodone);
2622 1.189 perseant }
2623 1.189 perseant
2624 1.189 perseant /*
2625 1.1 mycroft * Shellsort (diminishing increment sort) from Data Structures and
2626 1.1 mycroft * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2627 1.1 mycroft * see also Knuth Vol. 3, page 84. The increments are selected from
2628 1.1 mycroft * formula (8), page 95. Roughly O(N^3/2).
2629 1.1 mycroft */
2630 1.1 mycroft /*
2631 1.1 mycroft * This is our own private copy of shellsort because we want to sort
2632 1.1 mycroft * two parallel arrays (the array of buffer pointers and the array of
2633 1.1 mycroft * logical block numbers) simultaneously. Note that we cast the array
2634 1.1 mycroft * of logical block numbers to a unsigned in this routine so that the
2635 1.1 mycroft * negative block numbers (meta data blocks) sort AFTER the data blocks.
2636 1.1 mycroft */
2637 1.15 perseant
2638 1.1 mycroft void
2639 1.104 perseant lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2640 1.1 mycroft {
2641 1.1 mycroft static int __rsshell_increments[] = { 4, 1, 0 };
2642 1.42 augustss int incr, *incrp, t1, t2;
2643 1.1 mycroft struct buf *bp_temp;
2644 1.118 yamt
2645 1.118 yamt #ifdef DEBUG
2646 1.118 yamt incr = 0;
2647 1.118 yamt for (t1 = 0; t1 < nmemb; t1++) {
2648 1.118 yamt for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2649 1.118 yamt if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2650 1.118 yamt /* dump before panic */
2651 1.118 yamt printf("lfs_shellsort: nmemb=%d, size=%d\n",
2652 1.118 yamt nmemb, size);
2653 1.118 yamt incr = 0;
2654 1.118 yamt for (t1 = 0; t1 < nmemb; t1++) {
2655 1.118 yamt const struct buf *bp = bp_array[t1];
2656 1.118 yamt
2657 1.118 yamt printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2658 1.118 yamt PRIu64 "\n", t1,
2659 1.118 yamt (uint64_t)bp->b_bcount,
2660 1.118 yamt (uint64_t)bp->b_lblkno);
2661 1.118 yamt printf("lbns:");
2662 1.118 yamt for (t2 = 0; t2 * size < bp->b_bcount;
2663 1.118 yamt t2++) {
2664 1.118 yamt printf(" %" PRId32,
2665 1.118 yamt lb_array[incr++]);
2666 1.118 yamt }
2667 1.118 yamt printf("\n");
2668 1.118 yamt }
2669 1.118 yamt panic("lfs_shellsort: inconsistent input");
2670 1.118 yamt }
2671 1.118 yamt }
2672 1.118 yamt }
2673 1.118 yamt #endif
2674 1.1 mycroft
2675 1.4 christos for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2676 1.1 mycroft for (t1 = incr; t1 < nmemb; ++t1)
2677 1.1 mycroft for (t2 = t1 - incr; t2 >= 0;)
2678 1.104 perseant if ((u_int32_t)bp_array[t2]->b_lblkno >
2679 1.104 perseant (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2680 1.1 mycroft bp_temp = bp_array[t2];
2681 1.1 mycroft bp_array[t2] = bp_array[t2 + incr];
2682 1.1 mycroft bp_array[t2 + incr] = bp_temp;
2683 1.1 mycroft t2 -= incr;
2684 1.1 mycroft } else
2685 1.1 mycroft break;
2686 1.104 perseant
2687 1.104 perseant /* Reform the list of logical blocks */
2688 1.104 perseant incr = 0;
2689 1.104 perseant for (t1 = 0; t1 < nmemb; t1++) {
2690 1.104 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2691 1.104 perseant lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2692 1.104 perseant }
2693 1.104 perseant }
2694 1.1 mycroft }
2695 1.1 mycroft
2696 1.1 mycroft /*
2697 1.173 perseant * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2698 1.173 perseant * however, we must press on. Just fake success in that case.
2699 1.1 mycroft */
2700 1.4 christos int
2701 1.69 perseant lfs_vref(struct vnode *vp)
2702 1.1 mycroft {
2703 1.173 perseant int error;
2704 1.173 perseant struct lfs *fs;
2705 1.173 perseant
2706 1.173 perseant fs = VTOI(vp)->i_lfs;
2707 1.173 perseant
2708 1.173 perseant ASSERT_MAYBE_SEGLOCK(fs);
2709 1.173 perseant
2710 1.15 perseant /*
2711 1.15 perseant * If we return 1 here during a flush, we risk vinvalbuf() not
2712 1.15 perseant * being able to flush all of the pages from this vnode, which
2713 1.15 perseant * will cause it to panic. So, return 0 if a flush is in progress.
2714 1.15 perseant */
2715 1.173 perseant error = vget(vp, LK_NOWAIT);
2716 1.173 perseant if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2717 1.173 perseant ++fs->lfs_flushvp_fakevref;
2718 1.173 perseant return 0;
2719 1.15 perseant }
2720 1.173 perseant return error;
2721 1.1 mycroft }
2722 1.1 mycroft
2723 1.10 fvdl /*
2724 1.10 fvdl * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2725 1.10 fvdl * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2726 1.10 fvdl */
2727 1.1 mycroft void
2728 1.69 perseant lfs_vunref(struct vnode *vp)
2729 1.1 mycroft {
2730 1.173 perseant struct lfs *fs;
2731 1.173 perseant
2732 1.173 perseant fs = VTOI(vp)->i_lfs;
2733 1.173 perseant ASSERT_MAYBE_SEGLOCK(fs);
2734 1.173 perseant
2735 1.17 perseant /*
2736 1.17 perseant * Analogous to lfs_vref, if the node is flushing, fake it.
2737 1.17 perseant */
2738 1.173 perseant if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2739 1.173 perseant --fs->lfs_flushvp_fakevref;
2740 1.17 perseant return;
2741 1.17 perseant }
2742 1.17 perseant
2743 1.198.2.1 ad mutex_enter(&vp->v_interlock);
2744 1.15 perseant #ifdef DIAGNOSTIC
2745 1.73 chs if (vp->v_usecount <= 0) {
2746 1.165 christos printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2747 1.165 christos VTOI(vp)->i_number);
2748 1.69 perseant printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2749 1.69 perseant printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2750 1.158 perseant panic("lfs_vunref: v_usecount < 0");
2751 1.15 perseant }
2752 1.15 perseant #endif
2753 1.10 fvdl vp->v_usecount--;
2754 1.10 fvdl if (vp->v_usecount > 0) {
2755 1.198.2.1 ad mutex_exit(&vp->v_interlock);
2756 1.15 perseant return;
2757 1.15 perseant }
2758 1.15 perseant /*
2759 1.10 fvdl * insert at tail of LRU list
2760 1.1 mycroft */
2761 1.198.2.1 ad mutex_enter(&vnode_free_list_lock);
2762 1.40 perseant if (vp->v_holdcnt > 0)
2763 1.40 perseant TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2764 1.40 perseant else
2765 1.40 perseant TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2766 1.198.2.1 ad mutex_exit(&vnode_free_list_lock);
2767 1.198.2.1 ad mutex_exit(&vp->v_interlock);
2768 1.1 mycroft }
2769 1.15 perseant
2770 1.15 perseant /*
2771 1.15 perseant * We use this when we have vnodes that were loaded in solely for cleaning.
2772 1.15 perseant * There is no reason to believe that these vnodes will be referenced again
2773 1.15 perseant * soon, since the cleaning process is unrelated to normal filesystem
2774 1.15 perseant * activity. Putting cleaned vnodes at the tail of the list has the effect
2775 1.15 perseant * of flushing the vnode LRU. So, put vnodes that were loaded only for
2776 1.15 perseant * cleaning at the head of the list, instead.
2777 1.15 perseant */
2778 1.15 perseant void
2779 1.69 perseant lfs_vunref_head(struct vnode *vp)
2780 1.15 perseant {
2781 1.129 yamt
2782 1.159 perseant ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2783 1.198.2.1 ad mutex_enter(&vp->v_interlock);
2784 1.15 perseant #ifdef DIAGNOSTIC
2785 1.73 chs if (vp->v_usecount == 0) {
2786 1.15 perseant panic("lfs_vunref: v_usecount<0");
2787 1.15 perseant }
2788 1.15 perseant #endif
2789 1.15 perseant vp->v_usecount--;
2790 1.15 perseant if (vp->v_usecount > 0) {
2791 1.198.2.1 ad mutex_exit(&vp->v_interlock);
2792 1.15 perseant return;
2793 1.15 perseant }
2794 1.15 perseant /*
2795 1.15 perseant * insert at head of LRU list
2796 1.15 perseant */
2797 1.198.2.1 ad mutex_enter(&vnode_free_list_lock);
2798 1.77 perseant if (vp->v_holdcnt > 0)
2799 1.77 perseant TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2800 1.77 perseant else
2801 1.77 perseant TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2802 1.198.2.1 ad mutex_exit(&vnode_free_list_lock);
2803 1.198.2.1 ad mutex_exit(&vp->v_interlock);
2804 1.15 perseant }
2805 1.15 perseant
2806 1.180 perseant
2807 1.180 perseant /*
2808 1.180 perseant * Set up an FINFO entry for a new file. The fip pointer is assumed to
2809 1.180 perseant * point at uninitialized space.
2810 1.180 perseant */
2811 1.180 perseant void
2812 1.180 perseant lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2813 1.180 perseant {
2814 1.180 perseant struct segment *sp = fs->lfs_sp;
2815 1.180 perseant
2816 1.181 perseant KASSERT(vers > 0);
2817 1.181 perseant
2818 1.180 perseant if (sp->seg_bytes_left < fs->lfs_bsize ||
2819 1.180 perseant sp->sum_bytes_left < sizeof(struct finfo))
2820 1.180 perseant (void) lfs_writeseg(fs, fs->lfs_sp);
2821 1.180 perseant
2822 1.180 perseant sp->sum_bytes_left -= FINFOSIZE;
2823 1.180 perseant ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2824 1.180 perseant sp->fip->fi_nblocks = 0;
2825 1.180 perseant sp->fip->fi_ino = ino;
2826 1.180 perseant sp->fip->fi_version = vers;
2827 1.180 perseant }
2828 1.180 perseant
2829 1.180 perseant /*
2830 1.180 perseant * Release the FINFO entry, either clearing out an unused entry or
2831 1.180 perseant * advancing us to the next available entry.
2832 1.180 perseant */
2833 1.180 perseant void
2834 1.180 perseant lfs_release_finfo(struct lfs *fs)
2835 1.180 perseant {
2836 1.180 perseant struct segment *sp = fs->lfs_sp;
2837 1.180 perseant
2838 1.180 perseant if (sp->fip->fi_nblocks != 0) {
2839 1.198 christos sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2840 1.180 perseant sizeof(int32_t) * sp->fip->fi_nblocks);
2841 1.180 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
2842 1.180 perseant } else {
2843 1.180 perseant sp->sum_bytes_left += FINFOSIZE;
2844 1.180 perseant --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2845 1.180 perseant }
2846 1.180 perseant }
2847