lfs_segment.c revision 1.212 1 1.212 hannken /* $NetBSD: lfs_segment.c,v 1.212 2008/05/16 09:22:00 hannken Exp $ */
2 1.2 cgd
3 1.15 perseant /*-
4 1.101 perseant * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 1.15 perseant * All rights reserved.
6 1.15 perseant *
7 1.15 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.15 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.15 perseant *
10 1.15 perseant * Redistribution and use in source and binary forms, with or without
11 1.15 perseant * modification, are permitted provided that the following conditions
12 1.15 perseant * are met:
13 1.15 perseant * 1. Redistributions of source code must retain the above copyright
14 1.15 perseant * notice, this list of conditions and the following disclaimer.
15 1.15 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.15 perseant * notice, this list of conditions and the following disclaimer in the
17 1.15 perseant * documentation and/or other materials provided with the distribution.
18 1.15 perseant *
19 1.15 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.15 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.15 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.15 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.15 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.15 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.15 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.15 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.15 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.15 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.15 perseant * POSSIBILITY OF SUCH DAMAGE.
30 1.15 perseant */
31 1.1 mycroft /*
32 1.1 mycroft * Copyright (c) 1991, 1993
33 1.1 mycroft * The Regents of the University of California. All rights reserved.
34 1.1 mycroft *
35 1.1 mycroft * Redistribution and use in source and binary forms, with or without
36 1.1 mycroft * modification, are permitted provided that the following conditions
37 1.1 mycroft * are met:
38 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
39 1.1 mycroft * notice, this list of conditions and the following disclaimer.
40 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
41 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
42 1.1 mycroft * documentation and/or other materials provided with the distribution.
43 1.131 agc * 3. Neither the name of the University nor the names of its contributors
44 1.1 mycroft * may be used to endorse or promote products derived from this software
45 1.1 mycroft * without specific prior written permission.
46 1.1 mycroft *
47 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 1.1 mycroft * SUCH DAMAGE.
58 1.1 mycroft *
59 1.10 fvdl * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 1.1 mycroft */
61 1.72 lukem
62 1.72 lukem #include <sys/cdefs.h>
63 1.212 hannken __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.212 2008/05/16 09:22:00 hannken Exp $");
64 1.1 mycroft
65 1.158 perseant #ifdef DEBUG
66 1.158 perseant # define vndebug(vp, str) do { \
67 1.158 perseant if (VTOI(vp)->i_flag & IN_CLEANING) \
68 1.158 perseant DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 1.158 perseant VTOI(vp)->i_number, (str), op)); \
70 1.158 perseant } while(0)
71 1.158 perseant #else
72 1.158 perseant # define vndebug(vp, str)
73 1.158 perseant #endif
74 1.158 perseant #define ivndebug(vp, str) \
75 1.158 perseant DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76 1.16 perseant
77 1.68 mrg #if defined(_KERNEL_OPT)
78 1.30 perseant #include "opt_ddb.h"
79 1.65 jdolecek #endif
80 1.65 jdolecek
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/namei.h>
84 1.1 mycroft #include <sys/kernel.h>
85 1.1 mycroft #include <sys/resourcevar.h>
86 1.1 mycroft #include <sys/file.h>
87 1.1 mycroft #include <sys/stat.h>
88 1.1 mycroft #include <sys/buf.h>
89 1.1 mycroft #include <sys/proc.h>
90 1.1 mycroft #include <sys/vnode.h>
91 1.1 mycroft #include <sys/mount.h>
92 1.179 elad #include <sys/kauth.h>
93 1.184 perseant #include <sys/syslog.h>
94 1.1 mycroft
95 1.1 mycroft #include <miscfs/specfs/specdev.h>
96 1.1 mycroft #include <miscfs/fifofs/fifo.h>
97 1.1 mycroft
98 1.1 mycroft #include <ufs/ufs/inode.h>
99 1.1 mycroft #include <ufs/ufs/dir.h>
100 1.1 mycroft #include <ufs/ufs/ufsmount.h>
101 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
102 1.1 mycroft
103 1.1 mycroft #include <ufs/lfs/lfs.h>
104 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
105 1.1 mycroft
106 1.79 perseant #include <uvm/uvm.h>
107 1.74 perseant #include <uvm/uvm_extern.h>
108 1.99 thorpej
109 1.201 pooka MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110 1.74 perseant
111 1.69 perseant extern int count_lock_queue(void);
112 1.207 ad extern kmutex_t vnode_free_list_lock; /* XXX */
113 1.1 mycroft
114 1.79 perseant static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
115 1.189 perseant static void lfs_free_aiodone(struct buf *);
116 1.79 perseant static void lfs_super_aiodone(struct buf *);
117 1.79 perseant static void lfs_cluster_aiodone(struct buf *);
118 1.74 perseant static void lfs_cluster_callback(struct buf *);
119 1.74 perseant
120 1.1 mycroft /*
121 1.1 mycroft * Determine if it's OK to start a partial in this segment, or if we need
122 1.1 mycroft * to go on to a new segment.
123 1.1 mycroft */
124 1.1 mycroft #define LFS_PARTIAL_FITS(fs) \
125 1.69 perseant ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
126 1.69 perseant fragstofsb((fs), (fs)->lfs_frag))
127 1.1 mycroft
128 1.171 perseant /*
129 1.171 perseant * Figure out whether we should do a checkpoint write or go ahead with
130 1.171 perseant * an ordinary write.
131 1.171 perseant */
132 1.171 perseant #define LFS_SHOULD_CHECKPOINT(fs, flags) \
133 1.186 perseant ((flags & SEGM_CLEAN) == 0 && \
134 1.186 perseant ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
135 1.186 perseant (flags & SEGM_CKP) || \
136 1.186 perseant fs->lfs_nclean < LFS_MAX_ACTIVE)))
137 1.171 perseant
138 1.69 perseant int lfs_match_fake(struct lfs *, struct buf *);
139 1.69 perseant void lfs_newseg(struct lfs *);
140 1.91 fvdl /* XXX ondisk32 */
141 1.104 perseant void lfs_shellsort(struct buf **, int32_t *, int, int);
142 1.69 perseant void lfs_supercallback(struct buf *);
143 1.69 perseant void lfs_updatemeta(struct segment *);
144 1.69 perseant void lfs_writesuper(struct lfs *, daddr_t);
145 1.69 perseant int lfs_writevnodes(struct lfs *fs, struct mount *mp,
146 1.69 perseant struct segment *sp, int dirops);
147 1.1 mycroft
148 1.1 mycroft int lfs_allclean_wakeup; /* Cleaner wakeup address. */
149 1.103 perseant int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
150 1.25 perseant int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
151 1.32 perseant int lfs_dirvcount = 0; /* # active dirops */
152 1.1 mycroft
153 1.1 mycroft /* Statistics Counters */
154 1.15 perseant int lfs_dostats = 1;
155 1.1 mycroft struct lfs_stats lfs_stats;
156 1.1 mycroft
157 1.1 mycroft /* op values to lfs_writevnodes */
158 1.103 perseant #define VN_REG 0
159 1.1 mycroft #define VN_DIROP 1
160 1.1 mycroft #define VN_EMPTY 2
161 1.103 perseant #define VN_CLEAN 3
162 1.15 perseant
163 1.15 perseant /*
164 1.15 perseant * XXX KS - Set modification time on the Ifile, so the cleaner can
165 1.15 perseant * read the fs mod time off of it. We don't set IN_UPDATE here,
166 1.15 perseant * since we don't really need this to be flushed to disk (and in any
167 1.15 perseant * case that wouldn't happen to the Ifile until we checkpoint).
168 1.15 perseant */
169 1.15 perseant void
170 1.69 perseant lfs_imtime(struct lfs *fs)
171 1.15 perseant {
172 1.15 perseant struct timespec ts;
173 1.15 perseant struct inode *ip;
174 1.157 perry
175 1.159 perseant ASSERT_MAYBE_SEGLOCK(fs);
176 1.183 yamt vfs_timestamp(&ts);
177 1.15 perseant ip = VTOI(fs->lfs_ivnode);
178 1.119 fvdl ip->i_ffs1_mtime = ts.tv_sec;
179 1.119 fvdl ip->i_ffs1_mtimensec = ts.tv_nsec;
180 1.15 perseant }
181 1.1 mycroft
182 1.1 mycroft /*
183 1.1 mycroft * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 1.1 mycroft * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 1.1 mycroft * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 1.1 mycroft * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
187 1.1 mycroft */
188 1.1 mycroft
189 1.15 perseant #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
190 1.15 perseant
191 1.1 mycroft int
192 1.69 perseant lfs_vflush(struct vnode *vp)
193 1.1 mycroft {
194 1.1 mycroft struct inode *ip;
195 1.1 mycroft struct lfs *fs;
196 1.1 mycroft struct segment *sp;
197 1.38 perseant struct buf *bp, *nbp, *tbp, *tnbp;
198 1.207 ad int error;
199 1.101 perseant int flushed;
200 1.171 perseant int relock;
201 1.189 perseant int loopcount;
202 1.19 perseant
203 1.22 perseant ip = VTOI(vp);
204 1.22 perseant fs = VFSTOUFS(vp->v_mount)->um_lfs;
205 1.171 perseant relock = 0;
206 1.22 perseant
207 1.171 perseant top:
208 1.159 perseant ASSERT_NO_SEGLOCK(fs);
209 1.73 chs if (ip->i_flag & IN_CLEANING) {
210 1.19 perseant ivndebug(vp,"vflush/in_cleaning");
211 1.207 ad mutex_enter(&lfs_lock);
212 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
213 1.56 perseant LFS_SET_UINO(ip, IN_MODIFIED);
214 1.207 ad mutex_exit(&lfs_lock);
215 1.56 perseant
216 1.38 perseant /*
217 1.38 perseant * Toss any cleaning buffers that have real counterparts
218 1.101 perseant * to avoid losing new data.
219 1.38 perseant */
220 1.207 ad mutex_enter(&vp->v_interlock);
221 1.75 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 1.75 perseant nbp = LIST_NEXT(bp, b_vnbufs);
223 1.101 perseant if (!LFS_IS_MALLOC_BUF(bp))
224 1.101 perseant continue;
225 1.101 perseant /*
226 1.106 perseant * Look for pages matching the range covered
227 1.106 perseant * by cleaning blocks. It's okay if more dirty
228 1.106 perseant * pages appear, so long as none disappear out
229 1.106 perseant * from under us.
230 1.101 perseant */
231 1.101 perseant if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 1.101 perseant vp != fs->lfs_ivnode) {
233 1.101 perseant struct vm_page *pg;
234 1.101 perseant voff_t off;
235 1.101 perseant
236 1.101 perseant for (off = lblktosize(fs, bp->b_lblkno);
237 1.101 perseant off < lblktosize(fs, bp->b_lblkno + 1);
238 1.101 perseant off += PAGE_SIZE) {
239 1.101 perseant pg = uvm_pagelookup(&vp->v_uobj, off);
240 1.106 perseant if (pg == NULL)
241 1.106 perseant continue;
242 1.106 perseant if ((pg->flags & PG_CLEAN) == 0 ||
243 1.106 perseant pmap_is_modified(pg)) {
244 1.101 perseant fs->lfs_avail += btofsb(fs,
245 1.101 perseant bp->b_bcount);
246 1.62 perseant wakeup(&fs->lfs_avail);
247 1.207 ad mutex_exit(&vp->v_interlock);
248 1.101 perseant lfs_freebuf(fs, bp);
249 1.207 ad mutex_enter(&vp->v_interlock);
250 1.69 perseant bp = NULL;
251 1.207 ad break;
252 1.38 perseant }
253 1.38 perseant }
254 1.38 perseant }
255 1.101 perseant for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
256 1.101 perseant tbp = tnbp)
257 1.101 perseant {
258 1.101 perseant tnbp = LIST_NEXT(tbp, b_vnbufs);
259 1.101 perseant if (tbp->b_vp == bp->b_vp
260 1.101 perseant && tbp->b_lblkno == bp->b_lblkno
261 1.101 perseant && tbp != bp)
262 1.101 perseant {
263 1.101 perseant fs->lfs_avail += btofsb(fs,
264 1.101 perseant bp->b_bcount);
265 1.101 perseant wakeup(&fs->lfs_avail);
266 1.207 ad mutex_exit(&vp->v_interlock);
267 1.101 perseant lfs_freebuf(fs, bp);
268 1.207 ad mutex_enter(&vp->v_interlock);
269 1.101 perseant bp = NULL;
270 1.101 perseant break;
271 1.101 perseant }
272 1.101 perseant }
273 1.38 perseant }
274 1.207 ad } else {
275 1.207 ad mutex_enter(&vp->v_interlock);
276 1.19 perseant }
277 1.19 perseant
278 1.19 perseant /* If the node is being written, wait until that is done */
279 1.207 ad while (WRITEINPROG(vp)) {
280 1.19 perseant ivndebug(vp,"vflush/writeinprog");
281 1.207 ad cv_wait(&vp->v_cv, &vp->v_interlock);
282 1.19 perseant }
283 1.207 ad mutex_exit(&vp->v_interlock);
284 1.1 mycroft
285 1.206 ad /* Protect against VI_XLOCK deadlock in vinvalbuf() */
286 1.1 mycroft lfs_seglock(fs, SEGM_SYNC);
287 1.30 perseant
288 1.30 perseant /* If we're supposed to flush a freed inode, just toss it */
289 1.178 perseant if (ip->i_lfs_iflags & LFSI_DELETED) {
290 1.158 perseant DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
291 1.158 perseant ip->i_number));
292 1.178 perseant /* Drain v_numoutput */
293 1.207 ad mutex_enter(&vp->v_interlock);
294 1.178 perseant while (vp->v_numoutput > 0) {
295 1.207 ad cv_wait(&vp->v_cv, &vp->v_interlock);
296 1.178 perseant }
297 1.178 perseant KASSERT(vp->v_numoutput == 0);
298 1.207 ad mutex_exit(&vp->v_interlock);
299 1.178 perseant
300 1.207 ad mutex_enter(&bufcache_lock);
301 1.75 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
302 1.75 perseant nbp = LIST_NEXT(bp, b_vnbufs);
303 1.178 perseant
304 1.178 perseant KASSERT((bp->b_flags & B_GATHERED) == 0);
305 1.207 ad if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
306 1.69 perseant fs->lfs_avail += btofsb(fs, bp->b_bcount);
307 1.62 perseant wakeup(&fs->lfs_avail);
308 1.62 perseant }
309 1.30 perseant /* Copied from lfs_writeseg */
310 1.207 ad if (bp->b_iodone != NULL) {
311 1.207 ad mutex_exit(&bufcache_lock);
312 1.101 perseant biodone(bp);
313 1.207 ad mutex_enter(&bufcache_lock);
314 1.30 perseant } else {
315 1.30 perseant bremfree(bp);
316 1.62 perseant LFS_UNLOCK_BUF(bp);
317 1.207 ad mutex_enter(&vp->v_interlock);
318 1.207 ad bp->b_flags &= ~(B_READ | B_GATHERED);
319 1.207 ad bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
320 1.203 ad bp->b_error = 0;
321 1.30 perseant reassignbuf(bp, vp);
322 1.207 ad mutex_exit(&vp->v_interlock);
323 1.205 ad brelse(bp, 0);
324 1.30 perseant }
325 1.30 perseant }
326 1.207 ad mutex_exit(&bufcache_lock);
327 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
328 1.56 perseant LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
329 1.47 perseant ip->i_flag &= ~IN_ALLMOD;
330 1.158 perseant DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
331 1.158 perseant ip->i_number));
332 1.30 perseant lfs_segunlock(fs);
333 1.178 perseant
334 1.178 perseant KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
335 1.178 perseant
336 1.30 perseant return 0;
337 1.30 perseant }
338 1.30 perseant
339 1.173 perseant fs->lfs_flushvp = vp;
340 1.171 perseant if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
341 1.79 perseant error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
342 1.173 perseant fs->lfs_flushvp = NULL;
343 1.173 perseant KASSERT(fs->lfs_flushvp_fakevref == 0);
344 1.15 perseant lfs_segunlock(fs);
345 1.178 perseant
346 1.178 perseant /* Make sure that any pending buffers get written */
347 1.207 ad mutex_enter(&vp->v_interlock);
348 1.178 perseant while (vp->v_numoutput > 0) {
349 1.207 ad cv_wait(&vp->v_cv, &vp->v_interlock);
350 1.178 perseant }
351 1.178 perseant KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
352 1.178 perseant KASSERT(vp->v_numoutput == 0);
353 1.207 ad mutex_exit(&vp->v_interlock);
354 1.178 perseant
355 1.15 perseant return error;
356 1.15 perseant }
357 1.1 mycroft sp = fs->lfs_sp;
358 1.1 mycroft
359 1.101 perseant flushed = 0;
360 1.101 perseant if (VPISEMPTY(vp)) {
361 1.1 mycroft lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
362 1.101 perseant ++flushed;
363 1.73 chs } else if ((ip->i_flag & IN_CLEANING) &&
364 1.58 perseant (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
365 1.19 perseant ivndebug(vp,"vflush/clean");
366 1.19 perseant lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
367 1.101 perseant ++flushed;
368 1.74 perseant } else if (lfs_dostats) {
369 1.101 perseant if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
370 1.15 perseant ++lfs_stats.vflush_invoked;
371 1.19 perseant ivndebug(vp,"vflush");
372 1.15 perseant }
373 1.15 perseant
374 1.19 perseant #ifdef DIAGNOSTIC
375 1.206 ad if (vp->v_uflag & VU_DIROP) {
376 1.206 ad DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
377 1.206 ad /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
378 1.19 perseant }
379 1.73 chs if (vp->v_usecount < 0) {
380 1.69 perseant printf("usecount=%ld\n", (long)vp->v_usecount);
381 1.19 perseant panic("lfs_vflush: usecount<0");
382 1.19 perseant }
383 1.15 perseant #endif
384 1.1 mycroft
385 1.1 mycroft do {
386 1.189 perseant loopcount = 0;
387 1.1 mycroft do {
388 1.171 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
389 1.171 perseant relock = lfs_writefile(fs, sp, vp);
390 1.171 perseant if (relock) {
391 1.171 perseant /*
392 1.171 perseant * Might have to wait for the
393 1.171 perseant * cleaner to run; but we're
394 1.171 perseant * still not done with this vnode.
395 1.171 perseant */
396 1.189 perseant KDASSERT(ip->i_number != LFS_IFILE_INUM);
397 1.176 perseant lfs_writeinode(fs, sp, ip);
398 1.207 ad mutex_enter(&lfs_lock);
399 1.176 perseant LFS_SET_UINO(ip, IN_MODIFIED);
400 1.207 ad mutex_exit(&lfs_lock);
401 1.171 perseant lfs_writeseg(fs, sp);
402 1.171 perseant lfs_segunlock(fs);
403 1.171 perseant lfs_segunlock_relock(fs);
404 1.171 perseant goto top;
405 1.171 perseant }
406 1.171 perseant }
407 1.174 perseant /*
408 1.174 perseant * If we begin a new segment in the middle of writing
409 1.174 perseant * the Ifile, it creates an inconsistent checkpoint,
410 1.174 perseant * since the Ifile information for the new segment
411 1.174 perseant * is not up-to-date. Take care of this here by
412 1.174 perseant * sending the Ifile through again in case there
413 1.174 perseant * are newly dirtied blocks. But wait, there's more!
414 1.174 perseant * This second Ifile write could *also* cross a segment
415 1.174 perseant * boundary, if the first one was large. The second
416 1.174 perseant * one is guaranteed to be no more than 8 blocks,
417 1.174 perseant * though (two segment blocks and supporting indirects)
418 1.174 perseant * so the third write *will not* cross the boundary.
419 1.174 perseant */
420 1.174 perseant if (vp == fs->lfs_ivnode) {
421 1.174 perseant lfs_writefile(fs, sp, vp);
422 1.174 perseant lfs_writefile(fs, sp, vp);
423 1.174 perseant }
424 1.189 perseant #ifdef DEBUG
425 1.191 perseant if (++loopcount > 2)
426 1.191 perseant log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
427 1.189 perseant #endif
428 1.1 mycroft } while (lfs_writeinode(fs, sp, ip));
429 1.1 mycroft } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
430 1.171 perseant
431 1.73 chs if (lfs_dostats) {
432 1.15 perseant ++lfs_stats.nwrites;
433 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
434 1.15 perseant ++lfs_stats.nsync_writes;
435 1.15 perseant if (sp->seg_flags & SEGM_CKP)
436 1.15 perseant ++lfs_stats.ncheckpoints;
437 1.15 perseant }
438 1.74 perseant /*
439 1.74 perseant * If we were called from somewhere that has already held the seglock
440 1.74 perseant * (e.g., lfs_markv()), the lfs_segunlock will not wait for
441 1.74 perseant * the write to complete because we are still locked.
442 1.74 perseant * Since lfs_vflush() must return the vnode with no dirty buffers,
443 1.74 perseant * we must explicitly wait, if that is the case.
444 1.74 perseant *
445 1.74 perseant * We compare the iocount against 1, not 0, because it is
446 1.74 perseant * artificially incremented by lfs_seglock().
447 1.74 perseant */
448 1.207 ad mutex_enter(&lfs_lock);
449 1.74 perseant if (fs->lfs_seglock > 1) {
450 1.74 perseant while (fs->lfs_iocount > 1)
451 1.207 ad (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
452 1.207 ad "lfs_vflush", 0, &lfs_lock);
453 1.159 perseant }
454 1.207 ad mutex_exit(&lfs_lock);
455 1.111 perseant
456 1.15 perseant lfs_segunlock(fs);
457 1.1 mycroft
458 1.120 perseant /* Wait for these buffers to be recovered by aiodoned */
459 1.207 ad mutex_enter(&vp->v_interlock);
460 1.120 perseant while (vp->v_numoutput > 0) {
461 1.207 ad cv_wait(&vp->v_cv, &vp->v_interlock);
462 1.120 perseant }
463 1.178 perseant KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
464 1.178 perseant KASSERT(vp->v_numoutput == 0);
465 1.207 ad mutex_exit(&vp->v_interlock);
466 1.178 perseant
467 1.173 perseant fs->lfs_flushvp = NULL;
468 1.173 perseant KASSERT(fs->lfs_flushvp_fakevref == 0);
469 1.173 perseant
470 1.1 mycroft return (0);
471 1.1 mycroft }
472 1.1 mycroft
473 1.15 perseant int
474 1.69 perseant lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
475 1.1 mycroft {
476 1.1 mycroft struct inode *ip;
477 1.194 reinoud struct vnode *vp;
478 1.73 chs int inodes_written = 0, only_cleaning;
479 1.171 perseant int error = 0;
480 1.1 mycroft
481 1.159 perseant ASSERT_SEGLOCK(fs);
482 1.197 perseant loop:
483 1.194 reinoud /* start at last (newest) vnode. */
484 1.207 ad mutex_enter(&mntvnode_lock);
485 1.194 reinoud TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
486 1.1 mycroft /*
487 1.1 mycroft * If the vnode that we are about to sync is no longer
488 1.1 mycroft * associated with this mount point, start over.
489 1.1 mycroft */
490 1.58 perseant if (vp->v_mount != mp) {
491 1.158 perseant DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
492 1.113 yamt /*
493 1.113 yamt * After this, pages might be busy
494 1.113 yamt * due to our own previous putpages.
495 1.113 yamt * Start actual segment write here to avoid deadlock.
496 1.113 yamt */
497 1.207 ad mutex_exit(&mntvnode_lock);
498 1.113 yamt (void)lfs_writeseg(fs, sp);
499 1.1 mycroft goto loop;
500 1.58 perseant }
501 1.157 perry
502 1.207 ad mutex_enter(&vp->v_interlock);
503 1.207 ad if (vp->v_type == VNON || vismarker(vp) ||
504 1.207 ad (vp->v_iflag & VI_CLEAN) != 0) {
505 1.207 ad mutex_exit(&vp->v_interlock);
506 1.85 yamt continue;
507 1.85 yamt }
508 1.1 mycroft
509 1.15 perseant ip = VTOI(vp);
510 1.206 ad if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
511 1.128 yamt (op != VN_DIROP && op != VN_CLEAN &&
512 1.206 ad (vp->v_uflag & VU_DIROP))) {
513 1.207 ad mutex_exit(&vp->v_interlock);
514 1.15 perseant vndebug(vp,"dirop");
515 1.15 perseant continue;
516 1.15 perseant }
517 1.157 perry
518 1.101 perseant if (op == VN_EMPTY && !VPISEMPTY(vp)) {
519 1.207 ad mutex_exit(&vp->v_interlock);
520 1.15 perseant vndebug(vp,"empty");
521 1.15 perseant continue;
522 1.15 perseant }
523 1.1 mycroft
524 1.73 chs if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
525 1.38 perseant && vp != fs->lfs_flushvp
526 1.15 perseant && !(ip->i_flag & IN_CLEANING)) {
527 1.207 ad mutex_exit(&vp->v_interlock);
528 1.15 perseant vndebug(vp,"cleaning");
529 1.1 mycroft continue;
530 1.15 perseant }
531 1.1 mycroft
532 1.207 ad mutex_exit(&mntvnode_lock);
533 1.15 perseant if (lfs_vref(vp)) {
534 1.15 perseant vndebug(vp,"vref");
535 1.207 ad mutex_enter(&mntvnode_lock);
536 1.1 mycroft continue;
537 1.15 perseant }
538 1.1 mycroft
539 1.23 perseant only_cleaning = 0;
540 1.1 mycroft /*
541 1.55 perseant * Write the inode/file if dirty and it's not the IFILE.
542 1.1 mycroft */
543 1.101 perseant if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
544 1.128 yamt only_cleaning =
545 1.128 yamt ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
546 1.20 perseant
547 1.159 perseant if (ip->i_number != LFS_IFILE_INUM) {
548 1.171 perseant error = lfs_writefile(fs, sp, vp);
549 1.171 perseant if (error) {
550 1.171 perseant lfs_vunref(vp);
551 1.171 perseant if (error == EAGAIN) {
552 1.171 perseant /*
553 1.171 perseant * This error from lfs_putpages
554 1.171 perseant * indicates we need to drop
555 1.171 perseant * the segment lock and start
556 1.171 perseant * over after the cleaner has
557 1.171 perseant * had a chance to run.
558 1.171 perseant */
559 1.176 perseant lfs_writeinode(fs, sp, ip);
560 1.171 perseant lfs_writeseg(fs, sp);
561 1.172 perseant if (!VPISEMPTY(vp) &&
562 1.172 perseant !WRITEINPROG(vp) &&
563 1.207 ad !(ip->i_flag & IN_ALLMOD)) {
564 1.207 ad mutex_enter(&lfs_lock);
565 1.172 perseant LFS_SET_UINO(ip, IN_MODIFIED);
566 1.207 ad mutex_exit(&lfs_lock);
567 1.207 ad }
568 1.207 ad mutex_enter(&mntvnode_lock);
569 1.171 perseant break;
570 1.171 perseant }
571 1.171 perseant error = 0; /* XXX not quite right */
572 1.207 ad mutex_enter(&mntvnode_lock);
573 1.171 perseant continue;
574 1.171 perseant }
575 1.171 perseant
576 1.159 perseant if (!VPISEMPTY(vp)) {
577 1.159 perseant if (WRITEINPROG(vp)) {
578 1.159 perseant ivndebug(vp,"writevnodes/write2");
579 1.159 perseant } else if (!(ip->i_flag & IN_ALLMOD)) {
580 1.207 ad mutex_enter(&lfs_lock);
581 1.159 perseant LFS_SET_UINO(ip, IN_MODIFIED);
582 1.207 ad mutex_exit(&lfs_lock);
583 1.159 perseant }
584 1.15 perseant }
585 1.159 perseant (void) lfs_writeinode(fs, sp, ip);
586 1.159 perseant inodes_written++;
587 1.15 perseant }
588 1.15 perseant }
589 1.43 perseant
590 1.52 perseant if (lfs_clean_vnhead && only_cleaning)
591 1.20 perseant lfs_vunref_head(vp);
592 1.20 perseant else
593 1.20 perseant lfs_vunref(vp);
594 1.207 ad
595 1.207 ad mutex_enter(&mntvnode_lock);
596 1.1 mycroft }
597 1.207 ad mutex_exit(&mntvnode_lock);
598 1.171 perseant return error;
599 1.1 mycroft }
600 1.1 mycroft
601 1.69 perseant /*
602 1.69 perseant * Do a checkpoint.
603 1.69 perseant */
604 1.1 mycroft int
605 1.69 perseant lfs_segwrite(struct mount *mp, int flags)
606 1.1 mycroft {
607 1.1 mycroft struct buf *bp;
608 1.1 mycroft struct inode *ip;
609 1.1 mycroft struct lfs *fs;
610 1.1 mycroft struct segment *sp;
611 1.1 mycroft struct vnode *vp;
612 1.1 mycroft SEGUSE *segusep;
613 1.207 ad int do_ckp, did_ckp, error;
614 1.117 fvdl unsigned n, segleft, maxseg, sn, i, curseg;
615 1.15 perseant int writer_set = 0;
616 1.61 perseant int dirty;
617 1.74 perseant int redo;
618 1.171 perseant int um_error;
619 1.189 perseant int loopcount;
620 1.157 perry
621 1.1 mycroft fs = VFSTOUFS(mp)->um_lfs;
622 1.159 perseant ASSERT_MAYBE_SEGLOCK(fs);
623 1.1 mycroft
624 1.53 perseant if (fs->lfs_ronly)
625 1.53 perseant return EROFS;
626 1.53 perseant
627 1.15 perseant lfs_imtime(fs);
628 1.58 perseant
629 1.1 mycroft /*
630 1.1 mycroft * Allocate a segment structure and enough space to hold pointers to
631 1.1 mycroft * the maximum possible number of buffers which can be described in a
632 1.1 mycroft * single summary block.
633 1.1 mycroft */
634 1.171 perseant do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
635 1.171 perseant
636 1.1 mycroft lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
637 1.1 mycroft sp = fs->lfs_sp;
638 1.189 perseant if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
639 1.189 perseant do_ckp = 1;
640 1.1 mycroft
641 1.15 perseant /*
642 1.16 perseant * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
643 1.16 perseant * in which case we have to flush *all* buffers off of this vnode.
644 1.37 perseant * We don't care about other nodes, but write any non-dirop nodes
645 1.37 perseant * anyway in anticipation of another getnewvnode().
646 1.37 perseant *
647 1.37 perseant * If we're cleaning we only write cleaning and ifile blocks, and
648 1.37 perseant * no dirops, since otherwise we'd risk corruption in a crash.
649 1.15 perseant */
650 1.73 chs if (sp->seg_flags & SEGM_CLEAN)
651 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_CLEAN);
652 1.105 perseant else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
653 1.171 perseant do {
654 1.171 perseant um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
655 1.200 perseant
656 1.200 perseant if (do_ckp || fs->lfs_dirops == 0) {
657 1.171 perseant if (!writer_set) {
658 1.171 perseant lfs_writer_enter(fs, "lfs writer");
659 1.171 perseant writer_set = 1;
660 1.171 perseant }
661 1.171 perseant error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
662 1.171 perseant if (um_error == 0)
663 1.171 perseant um_error = error;
664 1.177 perseant /* In case writevnodes errored out */
665 1.177 perseant lfs_flush_dirops(fs);
666 1.171 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
667 1.176 perseant lfs_finalize_fs_seguse(fs);
668 1.171 perseant }
669 1.171 perseant if (do_ckp && um_error) {
670 1.171 perseant lfs_segunlock_relock(fs);
671 1.171 perseant sp = fs->lfs_sp;
672 1.171 perseant }
673 1.171 perseant } while (do_ckp && um_error != 0);
674 1.157 perry }
675 1.1 mycroft
676 1.1 mycroft /*
677 1.1 mycroft * If we are doing a checkpoint, mark everything since the
678 1.1 mycroft * last checkpoint as no longer ACTIVE.
679 1.1 mycroft */
680 1.189 perseant if (do_ckp || fs->lfs_doifile) {
681 1.117 fvdl segleft = fs->lfs_nseg;
682 1.117 fvdl curseg = 0;
683 1.117 fvdl for (n = 0; n < fs->lfs_segtabsz; n++) {
684 1.61 perseant dirty = 0;
685 1.212 hannken if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
686 1.212 hannken fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
687 1.15 perseant panic("lfs_segwrite: ifile read");
688 1.1 mycroft segusep = (SEGUSE *)bp->b_data;
689 1.117 fvdl maxseg = min(segleft, fs->lfs_sepb);
690 1.117 fvdl for (i = 0; i < maxseg; i++) {
691 1.117 fvdl sn = curseg + i;
692 1.134 yamt if (sn != dtosn(fs, fs->lfs_curseg) &&
693 1.117 fvdl segusep->su_flags & SEGUSE_ACTIVE) {
694 1.61 perseant segusep->su_flags &= ~SEGUSE_ACTIVE;
695 1.105 perseant --fs->lfs_nactive;
696 1.61 perseant ++dirty;
697 1.61 perseant }
698 1.105 perseant fs->lfs_suflags[fs->lfs_activesb][sn] =
699 1.105 perseant segusep->su_flags;
700 1.69 perseant if (fs->lfs_version > 1)
701 1.69 perseant ++segusep;
702 1.69 perseant else
703 1.69 perseant segusep = (SEGUSE *)
704 1.69 perseant ((SEGUSE_V1 *)segusep + 1);
705 1.61 perseant }
706 1.157 perry
707 1.61 perseant if (dirty)
708 1.74 perseant error = LFS_BWRITE_LOG(bp); /* Ifile */
709 1.61 perseant else
710 1.205 ad brelse(bp, 0);
711 1.117 fvdl segleft -= fs->lfs_sepb;
712 1.117 fvdl curseg += fs->lfs_sepb;
713 1.1 mycroft }
714 1.15 perseant }
715 1.61 perseant
716 1.207 ad KASSERT(LFS_SEGLOCK_HELD(fs));
717 1.159 perseant
718 1.61 perseant did_ckp = 0;
719 1.1 mycroft if (do_ckp || fs->lfs_doifile) {
720 1.159 perseant vp = fs->lfs_ivnode;
721 1.159 perseant vn_lock(vp, LK_EXCLUSIVE);
722 1.189 perseant loopcount = 0;
723 1.63 perseant do {
724 1.74 perseant #ifdef DEBUG
725 1.159 perseant LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
726 1.74 perseant #endif
727 1.207 ad mutex_enter(&lfs_lock);
728 1.74 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
729 1.207 ad mutex_exit(&lfs_lock);
730 1.55 perseant
731 1.63 perseant ip = VTOI(vp);
732 1.101 perseant
733 1.171 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
734 1.171 perseant /*
735 1.171 perseant * Ifile has no pages, so we don't need
736 1.171 perseant * to check error return here.
737 1.171 perseant */
738 1.63 perseant lfs_writefile(fs, sp, vp);
739 1.174 perseant /*
740 1.174 perseant * Ensure the Ifile takes the current segment
741 1.174 perseant * into account. See comment in lfs_vflush.
742 1.174 perseant */
743 1.174 perseant lfs_writefile(fs, sp, vp);
744 1.174 perseant lfs_writefile(fs, sp, vp);
745 1.171 perseant }
746 1.101 perseant
747 1.63 perseant if (ip->i_flag & IN_ALLMOD)
748 1.63 perseant ++did_ckp;
749 1.189 perseant #if 0
750 1.189 perseant redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
751 1.189 perseant #else
752 1.74 perseant redo = lfs_writeinode(fs, sp, ip);
753 1.189 perseant #endif
754 1.101 perseant redo += lfs_writeseg(fs, sp);
755 1.207 ad mutex_enter(&lfs_lock);
756 1.74 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
757 1.207 ad mutex_exit(&lfs_lock);
758 1.189 perseant #ifdef DEBUG
759 1.191 perseant if (++loopcount > 2)
760 1.191 perseant log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
761 1.189 perseant loopcount);
762 1.189 perseant #endif
763 1.112 perseant } while (redo && do_ckp);
764 1.112 perseant
765 1.112 perseant /*
766 1.112 perseant * Unless we are unmounting, the Ifile may continue to have
767 1.112 perseant * dirty blocks even after a checkpoint, due to changes to
768 1.112 perseant * inodes' atime. If we're checkpointing, it's "impossible"
769 1.112 perseant * for other parts of the Ifile to be dirty after the loop
770 1.112 perseant * above, since we hold the segment lock.
771 1.112 perseant */
772 1.207 ad mutex_enter(&vp->v_interlock);
773 1.112 perseant if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
774 1.112 perseant LFS_CLR_UINO(ip, IN_ALLMOD);
775 1.112 perseant }
776 1.112 perseant #ifdef DIAGNOSTIC
777 1.112 perseant else if (do_ckp) {
778 1.159 perseant int do_panic = 0;
779 1.112 perseant LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
780 1.112 perseant if (bp->b_lblkno < fs->lfs_cleansz +
781 1.112 perseant fs->lfs_segtabsz &&
782 1.112 perseant !(bp->b_flags & B_GATHERED)) {
783 1.159 perseant printf("ifile lbn %ld still dirty (flags %lx)\n",
784 1.159 perseant (long)bp->b_lblkno,
785 1.159 perseant (long)bp->b_flags);
786 1.159 perseant ++do_panic;
787 1.74 perseant }
788 1.74 perseant }
789 1.159 perseant if (do_panic)
790 1.159 perseant panic("dirty blocks");
791 1.74 perseant }
792 1.112 perseant #endif
793 1.207 ad mutex_exit(&vp->v_interlock);
794 1.159 perseant VOP_UNLOCK(vp, 0);
795 1.15 perseant } else {
796 1.1 mycroft (void) lfs_writeseg(fs, sp);
797 1.15 perseant }
798 1.157 perry
799 1.112 perseant /* Note Ifile no longer needs to be written */
800 1.112 perseant fs->lfs_doifile = 0;
801 1.125 yamt if (writer_set)
802 1.125 yamt lfs_writer_leave(fs);
803 1.61 perseant
804 1.61 perseant /*
805 1.61 perseant * If we didn't write the Ifile, we didn't really do anything.
806 1.61 perseant * That means that (1) there is a checkpoint on disk and (2)
807 1.61 perseant * nothing has changed since it was written.
808 1.61 perseant *
809 1.61 perseant * Take the flags off of the segment so that lfs_segunlock
810 1.61 perseant * doesn't have to write the superblock either.
811 1.61 perseant */
812 1.79 perseant if (do_ckp && !did_ckp) {
813 1.79 perseant sp->seg_flags &= ~SEGM_CKP;
814 1.61 perseant }
815 1.61 perseant
816 1.73 chs if (lfs_dostats) {
817 1.15 perseant ++lfs_stats.nwrites;
818 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
819 1.15 perseant ++lfs_stats.nsync_writes;
820 1.15 perseant if (sp->seg_flags & SEGM_CKP)
821 1.15 perseant ++lfs_stats.ncheckpoints;
822 1.15 perseant }
823 1.1 mycroft lfs_segunlock(fs);
824 1.1 mycroft return (0);
825 1.1 mycroft }
826 1.1 mycroft
827 1.1 mycroft /*
828 1.1 mycroft * Write the dirty blocks associated with a vnode.
829 1.1 mycroft */
830 1.171 perseant int
831 1.69 perseant lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
832 1.1 mycroft {
833 1.1 mycroft struct finfo *fip;
834 1.80 perseant struct inode *ip;
835 1.181 perseant int i, frag;
836 1.171 perseant int error;
837 1.157 perry
838 1.159 perseant ASSERT_SEGLOCK(fs);
839 1.171 perseant error = 0;
840 1.80 perseant ip = VTOI(vp);
841 1.80 perseant
842 1.180 perseant fip = sp->fip;
843 1.181 perseant lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
844 1.1 mycroft
845 1.206 ad if (vp->v_uflag & VU_DIROP)
846 1.15 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
847 1.157 perry
848 1.74 perseant if (sp->seg_flags & SEGM_CLEAN) {
849 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_fake);
850 1.38 perseant /*
851 1.38 perseant * For a file being flushed, we need to write *all* blocks.
852 1.38 perseant * This means writing the cleaning blocks first, and then
853 1.38 perseant * immediately following with any non-cleaning blocks.
854 1.38 perseant * The same is true of the Ifile since checkpoints assume
855 1.38 perseant * that all valid Ifile blocks are written.
856 1.38 perseant */
857 1.178 perseant if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
858 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_data);
859 1.101 perseant /*
860 1.101 perseant * Don't call VOP_PUTPAGES: if we're flushing,
861 1.101 perseant * we've already done it, and the Ifile doesn't
862 1.101 perseant * use the page cache.
863 1.101 perseant */
864 1.101 perseant }
865 1.101 perseant } else {
866 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_data);
867 1.101 perseant /*
868 1.101 perseant * If we're flushing, we've already called VOP_PUTPAGES
869 1.101 perseant * so don't do it again. Otherwise, we want to write
870 1.101 perseant * everything we've got.
871 1.101 perseant */
872 1.101 perseant if (!IS_FLUSHING(fs, vp)) {
873 1.207 ad mutex_enter(&vp->v_interlock);
874 1.171 perseant error = VOP_PUTPAGES(vp, 0, 0,
875 1.171 perseant PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
876 1.101 perseant }
877 1.101 perseant }
878 1.38 perseant
879 1.1 mycroft /*
880 1.1 mycroft * It may not be necessary to write the meta-data blocks at this point,
881 1.1 mycroft * as the roll-forward recovery code should be able to reconstruct the
882 1.1 mycroft * list.
883 1.15 perseant *
884 1.15 perseant * We have to write them anyway, though, under two conditions: (1) the
885 1.15 perseant * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
886 1.15 perseant * checkpointing.
887 1.80 perseant *
888 1.80 perseant * BUT if we are cleaning, we might have indirect blocks that refer to
889 1.80 perseant * new blocks not being written yet, in addition to fragments being
890 1.80 perseant * moved out of a cleaned segment. If that is the case, don't
891 1.80 perseant * write the indirect blocks, or the finfo will have a small block
892 1.80 perseant * in the middle of it!
893 1.80 perseant * XXX in this case isn't the inode size wrong too?
894 1.1 mycroft */
895 1.80 perseant frag = 0;
896 1.80 perseant if (sp->seg_flags & SEGM_CLEAN) {
897 1.80 perseant for (i = 0; i < NDADDR; i++)
898 1.80 perseant if (ip->i_lfs_fragsize[i] > 0 &&
899 1.80 perseant ip->i_lfs_fragsize[i] < fs->lfs_bsize)
900 1.80 perseant ++frag;
901 1.80 perseant }
902 1.80 perseant #ifdef DIAGNOSTIC
903 1.80 perseant if (frag > 1)
904 1.80 perseant panic("lfs_writefile: more than one fragment!");
905 1.80 perseant #endif
906 1.80 perseant if (IS_FLUSHING(fs, vp) ||
907 1.80 perseant (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
908 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
909 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
910 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
911 1.15 perseant }
912 1.1 mycroft fip = sp->fip;
913 1.180 perseant lfs_release_finfo(fs);
914 1.171 perseant
915 1.171 perseant return error;
916 1.1 mycroft }
917 1.1 mycroft
918 1.189 perseant /*
919 1.189 perseant * Update segment accounting to reflect this inode's change of address.
920 1.189 perseant */
921 1.189 perseant static int
922 1.189 perseant lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
923 1.189 perseant {
924 1.189 perseant struct buf *bp;
925 1.189 perseant daddr_t daddr;
926 1.189 perseant IFILE *ifp;
927 1.189 perseant SEGUSE *sup;
928 1.189 perseant ino_t ino;
929 1.189 perseant int redo_ifile, error;
930 1.189 perseant u_int32_t sn;
931 1.189 perseant
932 1.189 perseant redo_ifile = 0;
933 1.189 perseant
934 1.189 perseant /*
935 1.189 perseant * If updating the ifile, update the super-block. Update the disk
936 1.189 perseant * address and access times for this inode in the ifile.
937 1.189 perseant */
938 1.189 perseant ino = ip->i_number;
939 1.189 perseant if (ino == LFS_IFILE_INUM) {
940 1.189 perseant daddr = fs->lfs_idaddr;
941 1.189 perseant fs->lfs_idaddr = dbtofsb(fs, ndaddr);
942 1.189 perseant } else {
943 1.189 perseant LFS_IENTRY(ifp, fs, ino, bp);
944 1.189 perseant daddr = ifp->if_daddr;
945 1.189 perseant ifp->if_daddr = dbtofsb(fs, ndaddr);
946 1.189 perseant error = LFS_BWRITE_LOG(bp); /* Ifile */
947 1.189 perseant }
948 1.189 perseant
949 1.189 perseant /*
950 1.189 perseant * If this is the Ifile and lfs_offset is set to the first block
951 1.189 perseant * in the segment, dirty the new segment's accounting block
952 1.189 perseant * (XXX should already be dirty?) and tell the caller to do it again.
953 1.189 perseant */
954 1.189 perseant if (ip->i_number == LFS_IFILE_INUM) {
955 1.189 perseant sn = dtosn(fs, fs->lfs_offset);
956 1.189 perseant if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
957 1.189 perseant fs->lfs_offset) {
958 1.189 perseant LFS_SEGENTRY(sup, fs, sn, bp);
959 1.207 ad KASSERT(bp->b_oflags & BO_DELWRI);
960 1.189 perseant LFS_WRITESEGENTRY(sup, fs, sn, bp);
961 1.189 perseant /* fs->lfs_flags |= LFS_IFDIRTY; */
962 1.189 perseant redo_ifile |= 1;
963 1.189 perseant }
964 1.189 perseant }
965 1.189 perseant
966 1.189 perseant /*
967 1.189 perseant * The inode's last address should not be in the current partial
968 1.189 perseant * segment, except under exceptional circumstances (lfs_writevnodes
969 1.189 perseant * had to start over, and in the meantime more blocks were written
970 1.189 perseant * to a vnode). Both inodes will be accounted to this segment
971 1.189 perseant * in lfs_writeseg so we need to subtract the earlier version
972 1.189 perseant * here anyway. The segment count can temporarily dip below
973 1.189 perseant * zero here; keep track of how many duplicates we have in
974 1.189 perseant * "dupino" so we don't panic below.
975 1.189 perseant */
976 1.189 perseant if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
977 1.189 perseant ++sp->ndupino;
978 1.189 perseant DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
979 1.189 perseant "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
980 1.189 perseant (long long)daddr, sp->ndupino));
981 1.189 perseant }
982 1.189 perseant /*
983 1.189 perseant * Account the inode: it no longer belongs to its former segment,
984 1.189 perseant * though it will not belong to the new segment until that segment
985 1.189 perseant * is actually written.
986 1.189 perseant */
987 1.189 perseant if (daddr != LFS_UNUSED_DADDR) {
988 1.189 perseant u_int32_t oldsn = dtosn(fs, daddr);
989 1.189 perseant #ifdef DIAGNOSTIC
990 1.189 perseant int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
991 1.189 perseant #endif
992 1.189 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
993 1.189 perseant #ifdef DIAGNOSTIC
994 1.189 perseant if (sup->su_nbytes +
995 1.189 perseant sizeof (struct ufs1_dinode) * ndupino
996 1.189 perseant < sizeof (struct ufs1_dinode)) {
997 1.189 perseant printf("lfs_writeinode: negative bytes "
998 1.189 perseant "(segment %" PRIu32 " short by %d, "
999 1.189 perseant "oldsn=%" PRIu32 ", cursn=%" PRIu32
1000 1.189 perseant ", daddr=%" PRId64 ", su_nbytes=%u, "
1001 1.189 perseant "ndupino=%d)\n",
1002 1.189 perseant dtosn(fs, daddr),
1003 1.189 perseant (int)sizeof (struct ufs1_dinode) *
1004 1.189 perseant (1 - sp->ndupino) - sup->su_nbytes,
1005 1.189 perseant oldsn, sp->seg_number, daddr,
1006 1.189 perseant (unsigned int)sup->su_nbytes,
1007 1.189 perseant sp->ndupino);
1008 1.189 perseant panic("lfs_writeinode: negative bytes");
1009 1.189 perseant sup->su_nbytes = sizeof (struct ufs1_dinode);
1010 1.189 perseant }
1011 1.189 perseant #endif
1012 1.189 perseant DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1013 1.189 perseant dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1014 1.189 perseant sup->su_nbytes -= sizeof (struct ufs1_dinode);
1015 1.189 perseant redo_ifile |=
1016 1.189 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1017 1.189 perseant if (redo_ifile) {
1018 1.207 ad mutex_enter(&lfs_lock);
1019 1.189 perseant fs->lfs_flags |= LFS_IFDIRTY;
1020 1.207 ad mutex_exit(&lfs_lock);
1021 1.189 perseant /* Don't double-account */
1022 1.189 perseant fs->lfs_idaddr = 0x0;
1023 1.189 perseant }
1024 1.189 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1025 1.189 perseant }
1026 1.189 perseant
1027 1.189 perseant return redo_ifile;
1028 1.189 perseant }
1029 1.189 perseant
1030 1.1 mycroft int
1031 1.69 perseant lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1032 1.1 mycroft {
1033 1.189 perseant struct buf *bp;
1034 1.119 fvdl struct ufs1_dinode *cdp;
1035 1.91 fvdl daddr_t daddr;
1036 1.91 fvdl int32_t *daddrp; /* XXX ondisk32 */
1037 1.189 perseant int i, ndx;
1038 1.1 mycroft int redo_ifile = 0;
1039 1.69 perseant int gotblk = 0;
1040 1.189 perseant int count;
1041 1.157 perry
1042 1.159 perseant ASSERT_SEGLOCK(fs);
1043 1.47 perseant if (!(ip->i_flag & IN_ALLMOD))
1044 1.73 chs return (0);
1045 1.157 perry
1046 1.189 perseant /* Can't write ifile when writer is not set */
1047 1.189 perseant KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1048 1.189 perseant (sp->seg_flags & SEGM_CLEAN));
1049 1.189 perseant
1050 1.189 perseant /*
1051 1.189 perseant * If this is the Ifile, see if writing it here will generate a
1052 1.189 perseant * temporary misaccounting. If it will, do the accounting and write
1053 1.189 perseant * the blocks, postponing the inode write until the accounting is
1054 1.189 perseant * solid.
1055 1.189 perseant */
1056 1.189 perseant count = 0;
1057 1.189 perseant while (ip->i_number == LFS_IFILE_INUM) {
1058 1.189 perseant int redo = 0;
1059 1.189 perseant
1060 1.189 perseant if (sp->idp == NULL && sp->ibp == NULL &&
1061 1.189 perseant (sp->seg_bytes_left < fs->lfs_ibsize ||
1062 1.189 perseant sp->sum_bytes_left < sizeof(int32_t))) {
1063 1.189 perseant (void) lfs_writeseg(fs, sp);
1064 1.189 perseant continue;
1065 1.189 perseant }
1066 1.189 perseant
1067 1.189 perseant /* Look for dirty Ifile blocks */
1068 1.189 perseant LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1069 1.189 perseant if (!(bp->b_flags & B_GATHERED)) {
1070 1.189 perseant redo = 1;
1071 1.189 perseant break;
1072 1.189 perseant }
1073 1.189 perseant }
1074 1.189 perseant
1075 1.189 perseant if (redo == 0)
1076 1.189 perseant redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1077 1.189 perseant if (redo == 0)
1078 1.189 perseant break;
1079 1.189 perseant
1080 1.189 perseant if (sp->idp) {
1081 1.189 perseant sp->idp->di_inumber = 0;
1082 1.189 perseant sp->idp = NULL;
1083 1.189 perseant }
1084 1.189 perseant ++count;
1085 1.191 perseant if (count > 2)
1086 1.191 perseant log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1087 1.189 perseant lfs_writefile(fs, sp, fs->lfs_ivnode);
1088 1.189 perseant }
1089 1.189 perseant
1090 1.1 mycroft /* Allocate a new inode block if necessary. */
1091 1.128 yamt if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1092 1.128 yamt sp->ibp == NULL) {
1093 1.1 mycroft /* Allocate a new segment if necessary. */
1094 1.69 perseant if (sp->seg_bytes_left < fs->lfs_ibsize ||
1095 1.98 yamt sp->sum_bytes_left < sizeof(int32_t))
1096 1.1 mycroft (void) lfs_writeseg(fs, sp);
1097 1.1 mycroft
1098 1.1 mycroft /* Get next inode block. */
1099 1.1 mycroft daddr = fs->lfs_offset;
1100 1.69 perseant fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1101 1.1 mycroft sp->ibp = *sp->cbpp++ =
1102 1.128 yamt getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1103 1.128 yamt fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1104 1.24 perseant gotblk++;
1105 1.24 perseant
1106 1.1 mycroft /* Zero out inode numbers */
1107 1.1 mycroft for (i = 0; i < INOPB(fs); ++i)
1108 1.128 yamt ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1109 1.128 yamt 0;
1110 1.15 perseant
1111 1.1 mycroft ++sp->start_bpp;
1112 1.69 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1113 1.1 mycroft /* Set remaining space counters. */
1114 1.69 perseant sp->seg_bytes_left -= fs->lfs_ibsize;
1115 1.98 yamt sp->sum_bytes_left -= sizeof(int32_t);
1116 1.98 yamt ndx = fs->lfs_sumsize / sizeof(int32_t) -
1117 1.15 perseant sp->ninodes / INOPB(fs) - 1;
1118 1.98 yamt ((int32_t *)(sp->segsum))[ndx] = daddr;
1119 1.1 mycroft }
1120 1.27 perseant
1121 1.206 ad /* Check VU_DIROP in case there is a new file with no data blocks */
1122 1.206 ad if (ITOV(ip)->v_uflag & VU_DIROP)
1123 1.189 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1124 1.189 perseant
1125 1.1 mycroft /* Update the inode times and copy the inode onto the inode page. */
1126 1.74 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
1127 1.74 perseant if (ip->i_number != LFS_IFILE_INUM)
1128 1.166 christos LFS_ITIMES(ip, NULL, NULL, NULL);
1129 1.16 perseant
1130 1.27 perseant /*
1131 1.27 perseant * If this is the Ifile, and we've already written the Ifile in this
1132 1.27 perseant * partial segment, just overwrite it (it's not on disk yet) and
1133 1.27 perseant * continue.
1134 1.27 perseant *
1135 1.27 perseant * XXX we know that the bp that we get the second time around has
1136 1.27 perseant * already been gathered.
1137 1.27 perseant */
1138 1.73 chs if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1139 1.119 fvdl *(sp->idp) = *ip->i_din.ffs1_din;
1140 1.119 fvdl ip->i_lfs_osize = ip->i_size;
1141 1.27 perseant return 0;
1142 1.27 perseant }
1143 1.27 perseant
1144 1.1 mycroft bp = sp->ibp;
1145 1.119 fvdl cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1146 1.119 fvdl *cdp = *ip->i_din.ffs1_din;
1147 1.53 perseant
1148 1.189 perseant /*
1149 1.189 perseant * If cleaning, link counts and directory file sizes cannot change,
1150 1.189 perseant * since those would be directory operations---even if the file
1151 1.206 ad * we are writing is marked VU_DIROP we should write the old values.
1152 1.189 perseant * If we're not cleaning, of course, update the values so we get
1153 1.189 perseant * current values the next time we clean.
1154 1.189 perseant */
1155 1.189 perseant if (sp->seg_flags & SEGM_CLEAN) {
1156 1.206 ad if (ITOV(ip)->v_uflag & VU_DIROP) {
1157 1.189 perseant cdp->di_nlink = ip->i_lfs_odnlink;
1158 1.189 perseant /* if (ITOV(ip)->v_type == VDIR) */
1159 1.189 perseant cdp->di_size = ip->i_lfs_osize;
1160 1.189 perseant }
1161 1.189 perseant } else {
1162 1.189 perseant ip->i_lfs_odnlink = cdp->di_nlink;
1163 1.189 perseant ip->i_lfs_osize = ip->i_size;
1164 1.189 perseant }
1165 1.189 perseant
1166 1.189 perseant
1167 1.176 perseant /* We can finish the segment accounting for truncations now */
1168 1.176 perseant lfs_finalize_ino_seguse(fs, ip);
1169 1.176 perseant
1170 1.53 perseant /*
1171 1.53 perseant * If we are cleaning, ensure that we don't write UNWRITTEN disk
1172 1.160 perseant * addresses to disk; possibly change the on-disk record of
1173 1.160 perseant * the inode size, either by reverting to the previous size
1174 1.160 perseant * (in the case of cleaning) or by verifying the inode's block
1175 1.160 perseant * holdings (in the case of files being allocated as they are being
1176 1.160 perseant * written).
1177 1.160 perseant * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1178 1.103 perseant * XXX count on disk wrong by the same amount. We should be
1179 1.101 perseant * XXX able to "borrow" from lfs_avail and return it after the
1180 1.101 perseant * XXX Ifile is written. See also in lfs_writeseg.
1181 1.53 perseant */
1182 1.160 perseant
1183 1.160 perseant /* Check file size based on highest allocated block */
1184 1.160 perseant if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1185 1.161 perseant (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1186 1.160 perseant ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1187 1.160 perseant cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1188 1.160 perseant DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1189 1.160 perseant PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1190 1.160 perseant }
1191 1.119 fvdl if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1192 1.160 perseant DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1193 1.160 perseant " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1194 1.160 perseant ip->i_ffs1_blocks, fs->lfs_offset));
1195 1.53 perseant for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1196 1.53 perseant daddrp++) {
1197 1.53 perseant if (*daddrp == UNWRITTEN) {
1198 1.158 perseant DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1199 1.53 perseant *daddrp = 0;
1200 1.53 perseant }
1201 1.53 perseant }
1202 1.53 perseant }
1203 1.157 perry
1204 1.160 perseant #ifdef DIAGNOSTIC
1205 1.160 perseant /*
1206 1.160 perseant * Check dinode held blocks against dinode size.
1207 1.160 perseant * This should be identical to the check in lfs_vget().
1208 1.160 perseant */
1209 1.160 perseant for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1210 1.160 perseant i < NDADDR; i++) {
1211 1.160 perseant KASSERT(i >= 0);
1212 1.160 perseant if ((cdp->di_mode & IFMT) == IFLNK)
1213 1.160 perseant continue;
1214 1.160 perseant if (((cdp->di_mode & IFMT) == IFBLK ||
1215 1.160 perseant (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1216 1.160 perseant continue;
1217 1.160 perseant if (cdp->di_db[i] != 0) {
1218 1.160 perseant # ifdef DEBUG
1219 1.160 perseant lfs_dump_dinode(cdp);
1220 1.160 perseant # endif
1221 1.160 perseant panic("writing inconsistent inode");
1222 1.160 perseant }
1223 1.160 perseant }
1224 1.160 perseant #endif /* DIAGNOSTIC */
1225 1.160 perseant
1226 1.73 chs if (ip->i_flag & IN_CLEANING)
1227 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
1228 1.55 perseant else {
1229 1.56 perseant /* XXX IN_ALLMOD */
1230 1.56 perseant LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1231 1.154 mycroft IN_UPDATE | IN_MODIFY);
1232 1.119 fvdl if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1233 1.56 perseant LFS_CLR_UINO(ip, IN_MODIFIED);
1234 1.192 christos else {
1235 1.192 christos DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1236 1.192 christos "blks=%d, eff=%d\n", ip->i_number,
1237 1.192 christos ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1238 1.192 christos }
1239 1.55 perseant }
1240 1.55 perseant
1241 1.189 perseant if (ip->i_number == LFS_IFILE_INUM) {
1242 1.189 perseant /* We know sp->idp == NULL */
1243 1.157 perry sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1244 1.53 perseant (sp->ninodes % INOPB(fs));
1245 1.189 perseant
1246 1.189 perseant /* Not dirty any more */
1247 1.207 ad mutex_enter(&lfs_lock);
1248 1.189 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
1249 1.207 ad mutex_exit(&lfs_lock);
1250 1.189 perseant }
1251 1.189 perseant
1252 1.73 chs if (gotblk) {
1253 1.207 ad mutex_enter(&bufcache_lock);
1254 1.62 perseant LFS_LOCK_BUF(bp);
1255 1.207 ad brelsel(bp, 0);
1256 1.207 ad mutex_exit(&bufcache_lock);
1257 1.24 perseant }
1258 1.157 perry
1259 1.1 mycroft /* Increment inode count in segment summary block. */
1260 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_ninos;
1261 1.157 perry
1262 1.1 mycroft /* If this page is full, set flag to allocate a new page. */
1263 1.1 mycroft if (++sp->ninodes % INOPB(fs) == 0)
1264 1.1 mycroft sp->ibp = NULL;
1265 1.157 perry
1266 1.189 perseant redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1267 1.157 perry
1268 1.189 perseant KASSERT(redo_ifile == 0);
1269 1.1 mycroft return (redo_ifile);
1270 1.1 mycroft }
1271 1.1 mycroft
1272 1.1 mycroft int
1273 1.207 ad lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1274 1.1 mycroft {
1275 1.1 mycroft struct lfs *fs;
1276 1.164 christos int vers;
1277 1.101 perseant int j, blksinblk;
1278 1.101 perseant
1279 1.159 perseant ASSERT_SEGLOCK(sp->fs);
1280 1.1 mycroft /*
1281 1.1 mycroft * If full, finish this segment. We may be doing I/O, so
1282 1.1 mycroft * release and reacquire the splbio().
1283 1.1 mycroft */
1284 1.1 mycroft #ifdef DIAGNOSTIC
1285 1.1 mycroft if (sp->vp == NULL)
1286 1.1 mycroft panic ("lfs_gatherblock: Null vp in segment");
1287 1.1 mycroft #endif
1288 1.1 mycroft fs = sp->fs;
1289 1.101 perseant blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1290 1.101 perseant if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1291 1.10 fvdl sp->seg_bytes_left < bp->b_bcount) {
1292 1.207 ad if (mptr)
1293 1.207 ad mutex_exit(mptr);
1294 1.1 mycroft lfs_updatemeta(sp);
1295 1.157 perry
1296 1.164 christos vers = sp->fip->fi_version;
1297 1.1 mycroft (void) lfs_writeseg(fs, sp);
1298 1.157 perry
1299 1.1 mycroft /* Add the current file to the segment summary. */
1300 1.180 perseant lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1301 1.157 perry
1302 1.207 ad if (mptr)
1303 1.207 ad mutex_enter(mptr);
1304 1.73 chs return (1);
1305 1.1 mycroft }
1306 1.157 perry
1307 1.73 chs if (bp->b_flags & B_GATHERED) {
1308 1.158 perseant DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1309 1.158 perseant " lbn %" PRId64 "\n",
1310 1.158 perseant sp->fip->fi_ino, bp->b_lblkno));
1311 1.73 chs return (0);
1312 1.15 perseant }
1313 1.158 perseant
1314 1.1 mycroft /* Insert into the buffer list, update the FINFO block. */
1315 1.1 mycroft bp->b_flags |= B_GATHERED;
1316 1.74 perseant
1317 1.1 mycroft *sp->cbpp++ = bp;
1318 1.162 perseant for (j = 0; j < blksinblk; j++) {
1319 1.104 perseant sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1320 1.162 perseant /* This block's accounting moves from lfs_favail to lfs_avail */
1321 1.162 perseant lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1322 1.162 perseant }
1323 1.157 perry
1324 1.104 perseant sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1325 1.10 fvdl sp->seg_bytes_left -= bp->b_bcount;
1326 1.73 chs return (0);
1327 1.1 mycroft }
1328 1.1 mycroft
1329 1.15 perseant int
1330 1.128 yamt lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1331 1.128 yamt int (*match)(struct lfs *, struct buf *))
1332 1.1 mycroft {
1333 1.77 perseant struct buf *bp, *nbp;
1334 1.207 ad int count = 0;
1335 1.157 perry
1336 1.159 perseant ASSERT_SEGLOCK(fs);
1337 1.172 perseant if (vp->v_type == VBLK)
1338 1.172 perseant return 0;
1339 1.141 yamt KASSERT(sp->vp == NULL);
1340 1.1 mycroft sp->vp = vp;
1341 1.207 ad mutex_enter(&bufcache_lock);
1342 1.15 perseant
1343 1.15 perseant #ifndef LFS_NO_BACKBUF_HACK
1344 1.10 fvdl /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1345 1.128 yamt # define BUF_OFFSET \
1346 1.198 christos (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1347 1.128 yamt # define BACK_BUF(BP) \
1348 1.198 christos ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1349 1.128 yamt # define BEG_OF_LIST \
1350 1.198 christos ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1351 1.128 yamt
1352 1.128 yamt loop:
1353 1.128 yamt /* Find last buffer. */
1354 1.128 yamt for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1355 1.128 yamt bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1356 1.128 yamt bp = LIST_NEXT(bp, b_vnbufs))
1357 1.128 yamt /* nothing */;
1358 1.77 perseant for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1359 1.77 perseant nbp = BACK_BUF(bp);
1360 1.77 perseant #else /* LFS_NO_BACKBUF_HACK */
1361 1.128 yamt loop:
1362 1.128 yamt for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1363 1.77 perseant nbp = LIST_NEXT(bp, b_vnbufs);
1364 1.15 perseant #endif /* LFS_NO_BACKBUF_HACK */
1365 1.207 ad if ((bp->b_cflags & BC_BUSY) != 0 ||
1366 1.207 ad (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1367 1.158 perseant #ifdef DEBUG
1368 1.128 yamt if (vp == fs->lfs_ivnode &&
1369 1.207 ad (bp->b_cflags & BC_BUSY) != 0 &&
1370 1.207 ad (bp->b_flags & B_GATHERED) == 0)
1371 1.189 perseant log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1372 1.189 perseant PRId64 " busy (%x) at 0x%x",
1373 1.189 perseant bp->b_lblkno, bp->b_flags,
1374 1.189 perseant (unsigned)fs->lfs_offset);
1375 1.74 perseant #endif
1376 1.1 mycroft continue;
1377 1.74 perseant }
1378 1.1 mycroft #ifdef DIAGNOSTIC
1379 1.109 perseant # ifdef LFS_USE_B_INVAL
1380 1.207 ad if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1381 1.172 perseant DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1382 1.207 ad " is BC_INVAL\n", bp->b_lblkno));
1383 1.172 perseant VOP_PRINT(bp->b_vp);
1384 1.172 perseant }
1385 1.109 perseant # endif /* LFS_USE_B_INVAL */
1386 1.207 ad if (!(bp->b_oflags & BO_DELWRI))
1387 1.207 ad panic("lfs_gather: bp not BO_DELWRI");
1388 1.209 ad if (!(bp->b_flags & B_LOCKED)) {
1389 1.172 perseant DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1390 1.209 ad " blk %" PRId64 " not B_LOCKED\n",
1391 1.172 perseant bp->b_lblkno,
1392 1.172 perseant dbtofsb(fs, bp->b_blkno)));
1393 1.172 perseant VOP_PRINT(bp->b_vp);
1394 1.209 ad panic("lfs_gather: bp not B_LOCKED");
1395 1.172 perseant }
1396 1.1 mycroft #endif
1397 1.207 ad if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1398 1.172 perseant goto loop;
1399 1.30 perseant }
1400 1.15 perseant count++;
1401 1.1 mycroft }
1402 1.207 ad mutex_exit(&bufcache_lock);
1403 1.1 mycroft lfs_updatemeta(sp);
1404 1.141 yamt KASSERT(sp->vp == vp);
1405 1.1 mycroft sp->vp = NULL;
1406 1.15 perseant return count;
1407 1.1 mycroft }
1408 1.1 mycroft
1409 1.101 perseant #if DEBUG
1410 1.101 perseant # define DEBUG_OOFF(n) do { \
1411 1.101 perseant if (ooff == 0) { \
1412 1.158 perseant DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1413 1.105 perseant "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1414 1.105 perseant ", was 0x0 (or %" PRId64 ")\n", \
1415 1.158 perseant (n), ip->i_number, lbn, ndaddr, daddr)); \
1416 1.101 perseant } \
1417 1.115 perseant } while (0)
1418 1.101 perseant #else
1419 1.101 perseant # define DEBUG_OOFF(n)
1420 1.101 perseant #endif
1421 1.101 perseant
1422 1.101 perseant /*
1423 1.101 perseant * Change the given block's address to ndaddr, finding its previous
1424 1.101 perseant * location using ufs_bmaparray().
1425 1.101 perseant *
1426 1.101 perseant * Account for this change in the segment table.
1427 1.143 yamt *
1428 1.143 yamt * called with sp == NULL by roll-forwarding code.
1429 1.101 perseant */
1430 1.101 perseant void
1431 1.195 christos lfs_update_single(struct lfs *fs, struct segment *sp,
1432 1.193 christos struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1433 1.101 perseant {
1434 1.101 perseant SEGUSE *sup;
1435 1.101 perseant struct buf *bp;
1436 1.101 perseant struct indir a[NIADDR + 2], *ap;
1437 1.101 perseant struct inode *ip;
1438 1.101 perseant daddr_t daddr, ooff;
1439 1.104 perseant int num, error;
1440 1.101 perseant int bb, osize, obb;
1441 1.157 perry
1442 1.159 perseant ASSERT_SEGLOCK(fs);
1443 1.143 yamt KASSERT(sp == NULL || sp->vp == vp);
1444 1.101 perseant ip = VTOI(vp);
1445 1.101 perseant
1446 1.121 yamt error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1447 1.101 perseant if (error)
1448 1.101 perseant panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1449 1.116 perseant
1450 1.156 perseant daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1451 1.116 perseant KASSERT(daddr <= LFS_MAX_DADDR);
1452 1.101 perseant if (daddr > 0)
1453 1.101 perseant daddr = dbtofsb(fs, daddr);
1454 1.157 perry
1455 1.101 perseant bb = fragstofsb(fs, numfrags(fs, size));
1456 1.101 perseant switch (num) {
1457 1.101 perseant case 0:
1458 1.119 fvdl ooff = ip->i_ffs1_db[lbn];
1459 1.101 perseant DEBUG_OOFF(0);
1460 1.101 perseant if (ooff == UNWRITTEN)
1461 1.119 fvdl ip->i_ffs1_blocks += bb;
1462 1.101 perseant else {
1463 1.101 perseant /* possible fragment truncation or extension */
1464 1.101 perseant obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1465 1.119 fvdl ip->i_ffs1_blocks += (bb - obb);
1466 1.101 perseant }
1467 1.119 fvdl ip->i_ffs1_db[lbn] = ndaddr;
1468 1.101 perseant break;
1469 1.101 perseant case 1:
1470 1.119 fvdl ooff = ip->i_ffs1_ib[a[0].in_off];
1471 1.101 perseant DEBUG_OOFF(1);
1472 1.101 perseant if (ooff == UNWRITTEN)
1473 1.119 fvdl ip->i_ffs1_blocks += bb;
1474 1.119 fvdl ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1475 1.101 perseant break;
1476 1.101 perseant default:
1477 1.101 perseant ap = &a[num - 1];
1478 1.212 hannken if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1479 1.212 hannken B_MODIFY, &bp))
1480 1.101 perseant panic("lfs_updatemeta: bread bno %" PRId64,
1481 1.101 perseant ap->in_lbn);
1482 1.101 perseant
1483 1.101 perseant /* XXX ondisk32 */
1484 1.101 perseant ooff = ((int32_t *)bp->b_data)[ap->in_off];
1485 1.101 perseant DEBUG_OOFF(num);
1486 1.101 perseant if (ooff == UNWRITTEN)
1487 1.119 fvdl ip->i_ffs1_blocks += bb;
1488 1.101 perseant /* XXX ondisk32 */
1489 1.101 perseant ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1490 1.101 perseant (void) VOP_BWRITE(bp);
1491 1.101 perseant }
1492 1.106 perseant
1493 1.150 yamt KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1494 1.150 yamt
1495 1.160 perseant /* Update hiblk when extending the file */
1496 1.160 perseant if (lbn > ip->i_lfs_hiblk)
1497 1.160 perseant ip->i_lfs_hiblk = lbn;
1498 1.160 perseant
1499 1.106 perseant /*
1500 1.106 perseant * Though we'd rather it couldn't, this *can* happen right now
1501 1.106 perseant * if cleaning blocks and regular blocks coexist.
1502 1.106 perseant */
1503 1.106 perseant /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1504 1.101 perseant
1505 1.101 perseant /*
1506 1.101 perseant * Update segment usage information, based on old size
1507 1.101 perseant * and location.
1508 1.101 perseant */
1509 1.101 perseant if (daddr > 0) {
1510 1.101 perseant u_int32_t oldsn = dtosn(fs, daddr);
1511 1.101 perseant #ifdef DIAGNOSTIC
1512 1.143 yamt int ndupino;
1513 1.143 yamt
1514 1.143 yamt if (sp && sp->seg_number == oldsn) {
1515 1.143 yamt ndupino = sp->ndupino;
1516 1.143 yamt } else {
1517 1.143 yamt ndupino = 0;
1518 1.143 yamt }
1519 1.101 perseant #endif
1520 1.190 christos KASSERT(oldsn < fs->lfs_nseg);
1521 1.101 perseant if (lbn >= 0 && lbn < NDADDR)
1522 1.101 perseant osize = ip->i_lfs_fragsize[lbn];
1523 1.101 perseant else
1524 1.101 perseant osize = fs->lfs_bsize;
1525 1.101 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
1526 1.101 perseant #ifdef DIAGNOSTIC
1527 1.119 fvdl if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1528 1.119 fvdl < osize) {
1529 1.101 perseant printf("lfs_updatemeta: negative bytes "
1530 1.101 perseant "(segment %" PRIu32 " short by %" PRId64
1531 1.101 perseant ")\n", dtosn(fs, daddr),
1532 1.101 perseant (int64_t)osize -
1533 1.143 yamt (sizeof (struct ufs1_dinode) * ndupino +
1534 1.101 perseant sup->su_nbytes));
1535 1.165 christos printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1536 1.101 perseant ", addr = 0x%" PRIx64 "\n",
1537 1.165 christos (unsigned long long)ip->i_number, lbn, daddr);
1538 1.101 perseant printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1539 1.101 perseant panic("lfs_updatemeta: negative bytes");
1540 1.119 fvdl sup->su_nbytes = osize -
1541 1.143 yamt sizeof (struct ufs1_dinode) * ndupino;
1542 1.101 perseant }
1543 1.101 perseant #endif
1544 1.158 perseant DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1545 1.158 perseant " db 0x%" PRIx64 "\n",
1546 1.158 perseant dtosn(fs, daddr), osize,
1547 1.158 perseant ip->i_number, lbn, daddr));
1548 1.101 perseant sup->su_nbytes -= osize;
1549 1.159 perseant if (!(bp->b_flags & B_GATHERED)) {
1550 1.207 ad mutex_enter(&lfs_lock);
1551 1.101 perseant fs->lfs_flags |= LFS_IFDIRTY;
1552 1.207 ad mutex_exit(&lfs_lock);
1553 1.159 perseant }
1554 1.101 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1555 1.101 perseant }
1556 1.101 perseant /*
1557 1.101 perseant * Now that this block has a new address, and its old
1558 1.101 perseant * segment no longer owns it, we can forget about its
1559 1.101 perseant * old size.
1560 1.101 perseant */
1561 1.101 perseant if (lbn >= 0 && lbn < NDADDR)
1562 1.101 perseant ip->i_lfs_fragsize[lbn] = size;
1563 1.101 perseant }
1564 1.101 perseant
1565 1.1 mycroft /*
1566 1.1 mycroft * Update the metadata that points to the blocks listed in the FINFO
1567 1.1 mycroft * array.
1568 1.1 mycroft */
1569 1.1 mycroft void
1570 1.69 perseant lfs_updatemeta(struct segment *sp)
1571 1.1 mycroft {
1572 1.101 perseant struct buf *sbp;
1573 1.1 mycroft struct lfs *fs;
1574 1.1 mycroft struct vnode *vp;
1575 1.101 perseant daddr_t lbn;
1576 1.101 perseant int i, nblocks, num;
1577 1.101 perseant int bb;
1578 1.101 perseant int bytesleft, size;
1579 1.157 perry
1580 1.159 perseant ASSERT_SEGLOCK(sp->fs);
1581 1.1 mycroft vp = sp->vp;
1582 1.1 mycroft nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1583 1.101 perseant KASSERT(nblocks >= 0);
1584 1.141 yamt KASSERT(vp != NULL);
1585 1.141 yamt if (nblocks == 0)
1586 1.1 mycroft return;
1587 1.104 perseant
1588 1.104 perseant /*
1589 1.104 perseant * This count may be high due to oversize blocks from lfs_gop_write.
1590 1.104 perseant * Correct for this. (XXX we should be able to keep track of these.)
1591 1.104 perseant */
1592 1.104 perseant fs = sp->fs;
1593 1.104 perseant for (i = 0; i < nblocks; i++) {
1594 1.104 perseant if (sp->start_bpp[i] == NULL) {
1595 1.158 perseant DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1596 1.104 perseant nblocks = i;
1597 1.104 perseant break;
1598 1.104 perseant }
1599 1.104 perseant num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1600 1.118 yamt KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1601 1.104 perseant nblocks -= num - 1;
1602 1.104 perseant }
1603 1.118 yamt
1604 1.118 yamt KASSERT(vp->v_type == VREG ||
1605 1.118 yamt nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1606 1.118 yamt KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1607 1.157 perry
1608 1.15 perseant /*
1609 1.101 perseant * Sort the blocks.
1610 1.101 perseant *
1611 1.101 perseant * We have to sort even if the blocks come from the
1612 1.15 perseant * cleaner, because there might be other pending blocks on the
1613 1.15 perseant * same inode...and if we don't sort, and there are fragments
1614 1.15 perseant * present, blocks may be written in the wrong place.
1615 1.15 perseant */
1616 1.104 perseant lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1617 1.157 perry
1618 1.1 mycroft /*
1619 1.10 fvdl * Record the length of the last block in case it's a fragment.
1620 1.10 fvdl * If there are indirect blocks present, they sort last. An
1621 1.10 fvdl * indirect block will be lfs_bsize and its presence indicates
1622 1.10 fvdl * that you cannot have fragments.
1623 1.80 perseant *
1624 1.80 perseant * XXX This last is a lie. A cleaned fragment can coexist with
1625 1.103 perseant * XXX a later indirect block. This will continue to be
1626 1.80 perseant * XXX true until lfs_markv is fixed to do everything with
1627 1.80 perseant * XXX fake blocks (including fake inodes and fake indirect blocks).
1628 1.10 fvdl */
1629 1.101 perseant sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1630 1.101 perseant fs->lfs_bmask) + 1;
1631 1.157 perry
1632 1.10 fvdl /*
1633 1.1 mycroft * Assign disk addresses, and update references to the logical
1634 1.1 mycroft * block and the segment usage information.
1635 1.1 mycroft */
1636 1.1 mycroft for (i = nblocks; i--; ++sp->start_bpp) {
1637 1.101 perseant sbp = *sp->start_bpp;
1638 1.104 perseant lbn = *sp->start_lbp;
1639 1.118 yamt KASSERT(sbp->b_lblkno == lbn);
1640 1.104 perseant
1641 1.80 perseant sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1642 1.80 perseant
1643 1.80 perseant /*
1644 1.80 perseant * If we write a frag in the wrong place, the cleaner won't
1645 1.80 perseant * be able to correctly identify its size later, and the
1646 1.103 perseant * segment will be uncleanable. (Even worse, it will assume
1647 1.80 perseant * that the indirect block that actually ends the list
1648 1.80 perseant * is of a smaller size!)
1649 1.80 perseant */
1650 1.101 perseant if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1651 1.82 provos panic("lfs_updatemeta: fragment is not last block");
1652 1.119 fvdl
1653 1.80 perseant /*
1654 1.101 perseant * For each subblock in this possibly oversized block,
1655 1.101 perseant * update its address on disk.
1656 1.80 perseant */
1657 1.101 perseant KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1658 1.141 yamt KASSERT(vp == sbp->b_vp);
1659 1.101 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
1660 1.101 perseant bytesleft -= fs->lfs_bsize) {
1661 1.101 perseant size = MIN(bytesleft, fs->lfs_bsize);
1662 1.101 perseant bb = fragstofsb(fs, numfrags(fs, size));
1663 1.104 perseant lbn = *sp->start_lbp++;
1664 1.143 yamt lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1665 1.143 yamt size);
1666 1.101 perseant fs->lfs_offset += bb;
1667 1.1 mycroft }
1668 1.101 perseant
1669 1.1 mycroft }
1670 1.199 perseant
1671 1.199 perseant /* This inode has been modified */
1672 1.199 perseant LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1673 1.1 mycroft }
1674 1.1 mycroft
1675 1.1 mycroft /*
1676 1.163 perseant * Move lfs_offset to a segment earlier than sn.
1677 1.163 perseant */
1678 1.163 perseant int
1679 1.163 perseant lfs_rewind(struct lfs *fs, int newsn)
1680 1.163 perseant {
1681 1.163 perseant int sn, osn, isdirty;
1682 1.163 perseant struct buf *bp;
1683 1.163 perseant SEGUSE *sup;
1684 1.163 perseant
1685 1.163 perseant ASSERT_SEGLOCK(fs);
1686 1.163 perseant
1687 1.163 perseant osn = dtosn(fs, fs->lfs_offset);
1688 1.163 perseant if (osn < newsn)
1689 1.163 perseant return 0;
1690 1.163 perseant
1691 1.163 perseant /* lfs_avail eats the remaining space in this segment */
1692 1.163 perseant fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1693 1.163 perseant
1694 1.163 perseant /* Find a low-numbered segment */
1695 1.163 perseant for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1696 1.163 perseant LFS_SEGENTRY(sup, fs, sn, bp);
1697 1.163 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
1698 1.205 ad brelse(bp, 0);
1699 1.163 perseant
1700 1.163 perseant if (!isdirty)
1701 1.163 perseant break;
1702 1.163 perseant }
1703 1.163 perseant if (sn == fs->lfs_nseg)
1704 1.163 perseant panic("lfs_rewind: no clean segments");
1705 1.184 perseant if (newsn >= 0 && sn >= newsn)
1706 1.163 perseant return ENOENT;
1707 1.163 perseant fs->lfs_nextseg = sn;
1708 1.163 perseant lfs_newseg(fs);
1709 1.163 perseant fs->lfs_offset = fs->lfs_curseg;
1710 1.163 perseant
1711 1.163 perseant return 0;
1712 1.163 perseant }
1713 1.163 perseant
1714 1.163 perseant /*
1715 1.139 yamt * Start a new partial segment.
1716 1.139 yamt *
1717 1.139 yamt * Return 1 when we entered to a new segment.
1718 1.139 yamt * Otherwise, return 0.
1719 1.1 mycroft */
1720 1.1 mycroft int
1721 1.69 perseant lfs_initseg(struct lfs *fs)
1722 1.1 mycroft {
1723 1.139 yamt struct segment *sp = fs->lfs_sp;
1724 1.1 mycroft SEGSUM *ssp;
1725 1.139 yamt struct buf *sbp; /* buffer for SEGSUM */
1726 1.139 yamt int repeat = 0; /* return value */
1727 1.107 perseant
1728 1.159 perseant ASSERT_SEGLOCK(fs);
1729 1.1 mycroft /* Advance to the next segment. */
1730 1.1 mycroft if (!LFS_PARTIAL_FITS(fs)) {
1731 1.139 yamt SEGUSE *sup;
1732 1.139 yamt struct buf *bp;
1733 1.139 yamt
1734 1.55 perseant /* lfs_avail eats the remaining space */
1735 1.69 perseant fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1736 1.55 perseant fs->lfs_curseg);
1737 1.1 mycroft /* Wake up any cleaning procs waiting on this file system. */
1738 1.185 perseant lfs_wakeup_cleaner(fs);
1739 1.1 mycroft lfs_newseg(fs);
1740 1.1 mycroft repeat = 1;
1741 1.1 mycroft fs->lfs_offset = fs->lfs_curseg;
1742 1.157 perry
1743 1.69 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
1744 1.69 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1745 1.101 perseant
1746 1.1 mycroft /*
1747 1.1 mycroft * If the segment contains a superblock, update the offset
1748 1.1 mycroft * and summary address to skip over it.
1749 1.1 mycroft */
1750 1.1 mycroft LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1751 1.1 mycroft if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1752 1.69 perseant fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1753 1.1 mycroft sp->seg_bytes_left -= LFS_SBPAD;
1754 1.1 mycroft }
1755 1.205 ad brelse(bp, 0);
1756 1.69 perseant /* Segment zero could also contain the labelpad */
1757 1.69 perseant if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1758 1.69 perseant fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1759 1.128 yamt fs->lfs_offset +=
1760 1.128 yamt btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1761 1.128 yamt sp->seg_bytes_left -=
1762 1.128 yamt LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1763 1.69 perseant }
1764 1.1 mycroft } else {
1765 1.69 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
1766 1.69 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1767 1.58 perseant (fs->lfs_offset - fs->lfs_curseg));
1768 1.1 mycroft }
1769 1.1 mycroft fs->lfs_lastpseg = fs->lfs_offset;
1770 1.157 perry
1771 1.107 perseant /* Record first address of this partial segment */
1772 1.107 perseant if (sp->seg_flags & SEGM_CLEAN) {
1773 1.107 perseant fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1774 1.107 perseant if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1775 1.107 perseant /* "1" is the artificial inc in lfs_seglock */
1776 1.207 ad mutex_enter(&lfs_lock);
1777 1.107 perseant while (fs->lfs_iocount > 1) {
1778 1.207 ad mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1779 1.207 ad "lfs_initseg", 0, &lfs_lock);
1780 1.107 perseant }
1781 1.207 ad mutex_exit(&lfs_lock);
1782 1.107 perseant fs->lfs_cleanind = 0;
1783 1.107 perseant }
1784 1.107 perseant }
1785 1.107 perseant
1786 1.1 mycroft sp->fs = fs;
1787 1.1 mycroft sp->ibp = NULL;
1788 1.27 perseant sp->idp = NULL;
1789 1.1 mycroft sp->ninodes = 0;
1790 1.80 perseant sp->ndupino = 0;
1791 1.69 perseant
1792 1.1 mycroft sp->cbpp = sp->bpp;
1793 1.139 yamt
1794 1.139 yamt /* Get a new buffer for SEGSUM */
1795 1.145 yamt sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1796 1.128 yamt fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1797 1.139 yamt
1798 1.139 yamt /* ... and enter it into the buffer list. */
1799 1.139 yamt *sp->cbpp = sbp;
1800 1.139 yamt sp->cbpp++;
1801 1.69 perseant fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1802 1.139 yamt
1803 1.139 yamt sp->start_bpp = sp->cbpp;
1804 1.157 perry
1805 1.1 mycroft /* Set point to SEGSUM, initialize it. */
1806 1.139 yamt ssp = sp->segsum = sbp->b_data;
1807 1.139 yamt memset(ssp, 0, fs->lfs_sumsize);
1808 1.1 mycroft ssp->ss_next = fs->lfs_nextseg;
1809 1.1 mycroft ssp->ss_nfinfo = ssp->ss_ninos = 0;
1810 1.10 fvdl ssp->ss_magic = SS_MAGIC;
1811 1.1 mycroft
1812 1.1 mycroft /* Set pointer to first FINFO, initialize it. */
1813 1.198 christos sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1814 1.1 mycroft sp->fip->fi_nblocks = 0;
1815 1.1 mycroft sp->start_lbp = &sp->fip->fi_blocks[0];
1816 1.10 fvdl sp->fip->fi_lastlength = 0;
1817 1.157 perry
1818 1.69 perseant sp->seg_bytes_left -= fs->lfs_sumsize;
1819 1.69 perseant sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1820 1.104 perseant
1821 1.73 chs return (repeat);
1822 1.1 mycroft }
1823 1.1 mycroft
1824 1.1 mycroft /*
1825 1.163 perseant * Remove SEGUSE_INVAL from all segments.
1826 1.163 perseant */
1827 1.163 perseant void
1828 1.163 perseant lfs_unset_inval_all(struct lfs *fs)
1829 1.163 perseant {
1830 1.163 perseant SEGUSE *sup;
1831 1.163 perseant struct buf *bp;
1832 1.163 perseant int i;
1833 1.163 perseant
1834 1.163 perseant for (i = 0; i < fs->lfs_nseg; i++) {
1835 1.163 perseant LFS_SEGENTRY(sup, fs, i, bp);
1836 1.163 perseant if (sup->su_flags & SEGUSE_INVAL) {
1837 1.163 perseant sup->su_flags &= ~SEGUSE_INVAL;
1838 1.189 perseant LFS_WRITESEGENTRY(sup, fs, i, bp);
1839 1.163 perseant } else
1840 1.205 ad brelse(bp, 0);
1841 1.163 perseant }
1842 1.163 perseant }
1843 1.163 perseant
1844 1.163 perseant /*
1845 1.1 mycroft * Return the next segment to write.
1846 1.1 mycroft */
1847 1.1 mycroft void
1848 1.69 perseant lfs_newseg(struct lfs *fs)
1849 1.1 mycroft {
1850 1.1 mycroft CLEANERINFO *cip;
1851 1.1 mycroft SEGUSE *sup;
1852 1.1 mycroft struct buf *bp;
1853 1.163 perseant int curseg, isdirty, sn, skip_inval;
1854 1.157 perry
1855 1.159 perseant ASSERT_SEGLOCK(fs);
1856 1.175 perseant
1857 1.175 perseant /* Honor LFCNWRAPSTOP */
1858 1.207 ad mutex_enter(&lfs_lock);
1859 1.189 perseant while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1860 1.189 perseant if (fs->lfs_wrappass) {
1861 1.189 perseant log(LOG_NOTICE, "%s: wrappass=%d\n",
1862 1.189 perseant fs->lfs_fsmnt, fs->lfs_wrappass);
1863 1.189 perseant fs->lfs_wrappass = 0;
1864 1.189 perseant break;
1865 1.189 perseant }
1866 1.189 perseant fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1867 1.175 perseant wakeup(&fs->lfs_nowrap);
1868 1.189 perseant log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1869 1.207 ad mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1870 1.207 ad &lfs_lock);
1871 1.175 perseant }
1872 1.189 perseant fs->lfs_wrapstatus = LFS_WRAP_GOING;
1873 1.207 ad mutex_exit(&lfs_lock);
1874 1.175 perseant
1875 1.69 perseant LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1876 1.158 perseant DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1877 1.158 perseant dtosn(fs, fs->lfs_nextseg)));
1878 1.15 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1879 1.1 mycroft sup->su_nbytes = 0;
1880 1.1 mycroft sup->su_nsums = 0;
1881 1.1 mycroft sup->su_ninos = 0;
1882 1.101 perseant LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1883 1.1 mycroft
1884 1.1 mycroft LFS_CLEANERINFO(cip, fs, bp);
1885 1.1 mycroft --cip->clean;
1886 1.1 mycroft ++cip->dirty;
1887 1.15 perseant fs->lfs_nclean = cip->clean;
1888 1.61 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1889 1.101 perseant
1890 1.1 mycroft fs->lfs_lastseg = fs->lfs_curseg;
1891 1.1 mycroft fs->lfs_curseg = fs->lfs_nextseg;
1892 1.163 perseant skip_inval = 1;
1893 1.69 perseant for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1894 1.1 mycroft sn = (sn + 1) % fs->lfs_nseg;
1895 1.174 perseant
1896 1.163 perseant if (sn == curseg) {
1897 1.163 perseant if (skip_inval)
1898 1.163 perseant skip_inval = 0;
1899 1.163 perseant else
1900 1.163 perseant panic("lfs_nextseg: no clean segments");
1901 1.163 perseant }
1902 1.1 mycroft LFS_SEGENTRY(sup, fs, sn, bp);
1903 1.163 perseant isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1904 1.101 perseant /* Check SEGUSE_EMPTY as we go along */
1905 1.128 yamt if (isdirty && sup->su_nbytes == 0 &&
1906 1.128 yamt !(sup->su_flags & SEGUSE_EMPTY))
1907 1.101 perseant LFS_WRITESEGENTRY(sup, fs, sn, bp);
1908 1.101 perseant else
1909 1.205 ad brelse(bp, 0);
1910 1.101 perseant
1911 1.1 mycroft if (!isdirty)
1912 1.1 mycroft break;
1913 1.1 mycroft }
1914 1.163 perseant if (skip_inval == 0)
1915 1.163 perseant lfs_unset_inval_all(fs);
1916 1.157 perry
1917 1.1 mycroft ++fs->lfs_nactive;
1918 1.69 perseant fs->lfs_nextseg = sntod(fs, sn);
1919 1.73 chs if (lfs_dostats) {
1920 1.15 perseant ++lfs_stats.segsused;
1921 1.15 perseant }
1922 1.1 mycroft }
1923 1.1 mycroft
1924 1.74 perseant static struct buf *
1925 1.193 christos lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1926 1.195 christos int n)
1927 1.74 perseant {
1928 1.74 perseant struct lfs_cluster *cl;
1929 1.74 perseant struct buf **bpp, *bp;
1930 1.74 perseant
1931 1.159 perseant ASSERT_SEGLOCK(fs);
1932 1.101 perseant cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1933 1.101 perseant bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1934 1.79 perseant memset(cl, 0, sizeof(*cl));
1935 1.74 perseant cl->fs = fs;
1936 1.74 perseant cl->bpp = bpp;
1937 1.74 perseant cl->bufcount = 0;
1938 1.74 perseant cl->bufsize = 0;
1939 1.74 perseant
1940 1.79 perseant /* If this segment is being written synchronously, note that */
1941 1.79 perseant if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1942 1.79 perseant cl->flags |= LFS_CL_SYNC;
1943 1.79 perseant cl->seg = fs->lfs_sp;
1944 1.79 perseant ++cl->seg->seg_iocount;
1945 1.79 perseant }
1946 1.79 perseant
1947 1.74 perseant /* Get an empty buffer header, or maybe one with something on it */
1948 1.207 ad bp = getiobuf(vp, true);
1949 1.130 yamt bp->b_dev = NODEV;
1950 1.74 perseant bp->b_blkno = bp->b_lblkno = addr;
1951 1.74 perseant bp->b_iodone = lfs_cluster_callback;
1952 1.144 yamt bp->b_private = cl;
1953 1.74 perseant
1954 1.74 perseant return bp;
1955 1.74 perseant }
1956 1.74 perseant
1957 1.1 mycroft int
1958 1.69 perseant lfs_writeseg(struct lfs *fs, struct segment *sp)
1959 1.1 mycroft {
1960 1.207 ad struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1961 1.1 mycroft SEGUSE *sup;
1962 1.1 mycroft SEGSUM *ssp;
1963 1.207 ad int i;
1964 1.101 perseant int do_again, nblocks, byteoffset;
1965 1.70 jdolecek size_t el_size;
1966 1.103 perseant struct lfs_cluster *cl;
1967 1.1 mycroft u_short ninos;
1968 1.15 perseant struct vnode *devvp;
1969 1.142 christos char *p = NULL;
1970 1.69 perseant struct vnode *vp;
1971 1.91 fvdl int32_t *daddrp; /* XXX ondisk32 */
1972 1.55 perseant int changed;
1973 1.152 yamt u_int32_t sum;
1974 1.180 perseant #ifdef DEBUG
1975 1.180 perseant FINFO *fip;
1976 1.180 perseant int findex;
1977 1.180 perseant #endif
1978 1.74 perseant
1979 1.159 perseant ASSERT_SEGLOCK(fs);
1980 1.188 perseant
1981 1.189 perseant ssp = (SEGSUM *)sp->segsum;
1982 1.189 perseant
1983 1.189 perseant /*
1984 1.189 perseant * If there are no buffers other than the segment summary to write,
1985 1.189 perseant * don't do anything. If we are the end of a dirop sequence, however,
1986 1.189 perseant * write the empty segment summary anyway, to help out the
1987 1.189 perseant * roll-forward agent.
1988 1.189 perseant */
1989 1.189 perseant if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1990 1.189 perseant if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1991 1.189 perseant return 0;
1992 1.189 perseant }
1993 1.189 perseant
1994 1.188 perseant /* Note if partial segment is being written by the cleaner */
1995 1.188 perseant if (sp->seg_flags & SEGM_CLEAN)
1996 1.189 perseant ssp->ss_flags |= SS_CLEAN;
1997 1.157 perry
1998 1.27 perseant devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1999 1.27 perseant
2000 1.10 fvdl /* Update the segment usage information. */
2001 1.10 fvdl LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2002 1.157 perry
2003 1.10 fvdl /* Loop through all blocks, except the segment summary. */
2004 1.27 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2005 1.73 chs if ((*bpp)->b_vp != devvp) {
2006 1.27 perseant sup->su_nbytes += (*bpp)->b_bcount;
2007 1.158 perseant DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2008 1.158 perseant " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2009 1.158 perseant sp->seg_number, (*bpp)->b_bcount,
2010 1.158 perseant VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2011 1.158 perseant (*bpp)->b_blkno));
2012 1.69 perseant }
2013 1.27 perseant }
2014 1.157 perry
2015 1.180 perseant #ifdef DEBUG
2016 1.181 perseant /* Check for zero-length and zero-version FINFO entries. */
2017 1.198 christos fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2018 1.180 perseant for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2019 1.180 perseant KDASSERT(fip->fi_nblocks > 0);
2020 1.181 perseant KDASSERT(fip->fi_version > 0);
2021 1.198 christos fip = (FINFO *)((char *)fip + FINFOSIZE +
2022 1.180 perseant sizeof(int32_t) * fip->fi_nblocks);
2023 1.180 perseant }
2024 1.180 perseant #endif /* DEBUG */
2025 1.180 perseant
2026 1.1 mycroft ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2027 1.158 perseant DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2028 1.158 perseant sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2029 1.158 perseant ssp->ss_ninos));
2030 1.119 fvdl sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2031 1.69 perseant /* sup->su_nbytes += fs->lfs_sumsize; */
2032 1.69 perseant if (fs->lfs_version == 1)
2033 1.182 kardel sup->su_olastmod = time_second;
2034 1.69 perseant else
2035 1.182 kardel sup->su_lastmod = time_second;
2036 1.1 mycroft sup->su_ninos += ninos;
2037 1.1 mycroft ++sup->su_nsums;
2038 1.69 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2039 1.15 perseant
2040 1.1 mycroft do_again = !(bp->b_flags & B_GATHERED);
2041 1.101 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2042 1.101 perseant
2043 1.1 mycroft /*
2044 1.53 perseant * Mark blocks B_BUSY, to prevent then from being changed between
2045 1.53 perseant * the checksum computation and the actual write.
2046 1.53 perseant *
2047 1.53 perseant * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2048 1.53 perseant * there are any, replace them with copies that have UNASSIGNED
2049 1.53 perseant * instead.
2050 1.53 perseant */
2051 1.207 ad mutex_enter(&bufcache_lock);
2052 1.53 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2053 1.53 perseant ++bpp;
2054 1.101 perseant bp = *bpp;
2055 1.207 ad if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2056 1.207 ad bp->b_cflags |= BC_BUSY;
2057 1.53 perseant continue;
2058 1.101 perseant }
2059 1.159 perseant
2060 1.207 ad while (bp->b_cflags & BC_BUSY) {
2061 1.158 perseant DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2062 1.158 perseant " data summary corruption for ino %d, lbn %"
2063 1.158 perseant PRId64 "\n",
2064 1.158 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2065 1.207 ad bp->b_cflags |= BC_WANTED;
2066 1.207 ad cv_wait(&bp->b_busy, &bufcache_lock);
2067 1.207 ad }
2068 1.207 ad bp->b_cflags |= BC_BUSY;
2069 1.207 ad mutex_exit(&bufcache_lock);
2070 1.207 ad unbusybp = NULL;
2071 1.159 perseant
2072 1.101 perseant /*
2073 1.101 perseant * Check and replace indirect block UNWRITTEN bogosity.
2074 1.101 perseant * XXX See comment in lfs_writefile.
2075 1.101 perseant */
2076 1.73 chs if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2077 1.119 fvdl VTOI(bp->b_vp)->i_ffs1_blocks !=
2078 1.53 perseant VTOI(bp->b_vp)->i_lfs_effnblks) {
2079 1.158 perseant DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2080 1.158 perseant VTOI(bp->b_vp)->i_number,
2081 1.158 perseant VTOI(bp->b_vp)->i_lfs_effnblks,
2082 1.158 perseant VTOI(bp->b_vp)->i_ffs1_blocks));
2083 1.53 perseant /* Make a copy we'll make changes to */
2084 1.69 perseant newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2085 1.101 perseant bp->b_bcount, LFS_NB_IBLOCK);
2086 1.53 perseant newbp->b_blkno = bp->b_blkno;
2087 1.53 perseant memcpy(newbp->b_data, bp->b_data,
2088 1.53 perseant newbp->b_bcount);
2089 1.53 perseant
2090 1.55 perseant changed = 0;
2091 1.91 fvdl /* XXX ondisk32 */
2092 1.91 fvdl for (daddrp = (int32_t *)(newbp->b_data);
2093 1.198 christos daddrp < (int32_t *)((char *)newbp->b_data +
2094 1.53 perseant newbp->b_bcount); daddrp++) {
2095 1.53 perseant if (*daddrp == UNWRITTEN) {
2096 1.55 perseant ++changed;
2097 1.53 perseant *daddrp = 0;
2098 1.53 perseant }
2099 1.53 perseant }
2100 1.55 perseant /*
2101 1.55 perseant * Get rid of the old buffer. Don't mark it clean,
2102 1.55 perseant * though, if it still has dirty data on it.
2103 1.55 perseant */
2104 1.55 perseant if (changed) {
2105 1.158 perseant DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2106 1.158 perseant " bp = %p newbp = %p\n", changed, bp,
2107 1.158 perseant newbp));
2108 1.101 perseant *bpp = newbp;
2109 1.203 ad bp->b_flags &= ~B_GATHERED;
2110 1.203 ad bp->b_error = 0;
2111 1.207 ad if (bp->b_iodone != NULL) {
2112 1.158 perseant DLOG((DLOG_SEG, "lfs_writeseg: "
2113 1.158 perseant "indir bp should not be B_CALL\n"));
2114 1.101 perseant biodone(bp);
2115 1.69 perseant bp = NULL;
2116 1.69 perseant } else {
2117 1.57 perseant /* Still on free list, leave it there */
2118 1.207 ad unbusybp = bp;
2119 1.62 perseant /*
2120 1.62 perseant * We have to re-decrement lfs_avail
2121 1.62 perseant * since this block is going to come
2122 1.62 perseant * back around to us in the next
2123 1.62 perseant * segment.
2124 1.62 perseant */
2125 1.128 yamt fs->lfs_avail -=
2126 1.128 yamt btofsb(fs, bp->b_bcount);
2127 1.57 perseant }
2128 1.55 perseant } else {
2129 1.101 perseant lfs_freebuf(fs, newbp);
2130 1.55 perseant }
2131 1.53 perseant }
2132 1.207 ad mutex_enter(&bufcache_lock);
2133 1.207 ad if (unbusybp != NULL) {
2134 1.207 ad unbusybp->b_cflags &= ~BC_BUSY;
2135 1.207 ad if (unbusybp->b_cflags & BC_WANTED)
2136 1.207 ad cv_broadcast(&bp->b_busy);
2137 1.207 ad }
2138 1.53 perseant }
2139 1.207 ad mutex_exit(&bufcache_lock);
2140 1.207 ad
2141 1.53 perseant /*
2142 1.1 mycroft * Compute checksum across data and then across summary; the first
2143 1.1 mycroft * block (the summary block) is skipped. Set the create time here
2144 1.1 mycroft * so that it's guaranteed to be later than the inode mod times.
2145 1.1 mycroft */
2146 1.152 yamt sum = 0;
2147 1.69 perseant if (fs->lfs_version == 1)
2148 1.69 perseant el_size = sizeof(u_long);
2149 1.69 perseant else
2150 1.69 perseant el_size = sizeof(u_int32_t);
2151 1.101 perseant for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2152 1.101 perseant ++bpp;
2153 1.101 perseant /* Loop through gop_write cluster blocks */
2154 1.101 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2155 1.101 perseant byteoffset += fs->lfs_bsize) {
2156 1.109 perseant #ifdef LFS_USE_B_INVAL
2157 1.207 ad if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
2158 1.207 ad (*bpp)->b_iodone != NULL) {
2159 1.198 christos if (copyin((void *)(*bpp)->b_saveaddr +
2160 1.101 perseant byteoffset, dp, el_size)) {
2161 1.128 yamt panic("lfs_writeseg: copyin failed [1]:"
2162 1.128 yamt " ino %d blk %" PRId64,
2163 1.101 perseant VTOI((*bpp)->b_vp)->i_number,
2164 1.101 perseant (*bpp)->b_lblkno);
2165 1.101 perseant }
2166 1.109 perseant } else
2167 1.109 perseant #endif /* LFS_USE_B_INVAL */
2168 1.109 perseant {
2169 1.198 christos sum = lfs_cksum_part((char *)
2170 1.152 yamt (*bpp)->b_data + byteoffset, el_size, sum);
2171 1.101 perseant }
2172 1.101 perseant }
2173 1.69 perseant }
2174 1.69 perseant if (fs->lfs_version == 1)
2175 1.182 kardel ssp->ss_ocreate = time_second;
2176 1.69 perseant else {
2177 1.182 kardel ssp->ss_create = time_second;
2178 1.69 perseant ssp->ss_serial = ++fs->lfs_serial;
2179 1.69 perseant ssp->ss_ident = fs->lfs_ident;
2180 1.1 mycroft }
2181 1.152 yamt ssp->ss_datasum = lfs_cksum_fold(sum);
2182 1.152 yamt ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2183 1.152 yamt fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2184 1.156 perseant
2185 1.207 ad mutex_enter(&lfs_lock);
2186 1.69 perseant fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2187 1.69 perseant btofsb(fs, fs->lfs_sumsize));
2188 1.170 tls fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2189 1.170 tls btofsb(fs, fs->lfs_sumsize));
2190 1.207 ad mutex_exit(&lfs_lock);
2191 1.1 mycroft
2192 1.1 mycroft /*
2193 1.103 perseant * When we simply write the blocks we lose a rotation for every block
2194 1.109 perseant * written. To avoid this problem, we cluster the buffers into a
2195 1.109 perseant * chunk and write the chunk. MAXPHYS is the largest size I/O
2196 1.109 perseant * devices can handle, use that for the size of the chunks.
2197 1.103 perseant *
2198 1.109 perseant * Blocks that are already clusters (from GOP_WRITE), however, we
2199 1.109 perseant * don't bother to copy into other clusters.
2200 1.1 mycroft */
2201 1.15 perseant
2202 1.15 perseant #define CHUNKSIZE MAXPHYS
2203 1.15 perseant
2204 1.73 chs if (devvp == NULL)
2205 1.15 perseant panic("devvp is NULL");
2206 1.74 perseant for (bpp = sp->bpp, i = nblocks; i;) {
2207 1.74 perseant cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2208 1.144 yamt cl = cbp->b_private;
2209 1.74 perseant
2210 1.207 ad cbp->b_flags |= B_ASYNC;
2211 1.207 ad cbp->b_cflags |= BC_BUSY;
2212 1.10 fvdl cbp->b_bcount = 0;
2213 1.1 mycroft
2214 1.74 perseant #if defined(DEBUG) && defined(DIAGNOSTIC)
2215 1.104 perseant if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2216 1.104 perseant / sizeof(int32_t)) {
2217 1.104 perseant panic("lfs_writeseg: real bpp overwrite");
2218 1.104 perseant }
2219 1.151 yamt if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2220 1.104 perseant panic("lfs_writeseg: theoretical bpp overwrite");
2221 1.104 perseant }
2222 1.17 perseant #endif
2223 1.17 perseant
2224 1.74 perseant /*
2225 1.74 perseant * Construct the cluster.
2226 1.74 perseant */
2227 1.207 ad mutex_enter(&lfs_lock);
2228 1.1 mycroft ++fs->lfs_iocount;
2229 1.207 ad mutex_exit(&lfs_lock);
2230 1.115 perseant while (i && cbp->b_bcount < CHUNKSIZE) {
2231 1.10 fvdl bp = *bpp;
2232 1.15 perseant
2233 1.15 perseant if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2234 1.10 fvdl break;
2235 1.109 perseant if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2236 1.109 perseant break;
2237 1.10 fvdl
2238 1.109 perseant /* Clusters from GOP_WRITE are expedited */
2239 1.109 perseant if (bp->b_bcount > fs->lfs_bsize) {
2240 1.109 perseant if (cbp->b_bcount > 0)
2241 1.109 perseant /* Put in its own buffer */
2242 1.109 perseant break;
2243 1.109 perseant else {
2244 1.109 perseant cbp->b_data = bp->b_data;
2245 1.109 perseant }
2246 1.109 perseant } else if (cbp->b_bcount == 0) {
2247 1.109 perseant p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2248 1.109 perseant LFS_NB_CLUSTER);
2249 1.109 perseant cl->flags |= LFS_CL_MALLOC;
2250 1.109 perseant }
2251 1.101 perseant #ifdef DIAGNOSTIC
2252 1.101 perseant if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2253 1.101 perseant btodb(bp->b_bcount - 1))) !=
2254 1.101 perseant sp->seg_number) {
2255 1.155 yamt printf("blk size %d daddr %" PRIx64
2256 1.128 yamt " not in seg %d\n",
2257 1.128 yamt bp->b_bcount, bp->b_blkno,
2258 1.128 yamt sp->seg_number);
2259 1.101 perseant panic("segment overwrite");
2260 1.101 perseant }
2261 1.101 perseant #endif
2262 1.101 perseant
2263 1.109 perseant #ifdef LFS_USE_B_INVAL
2264 1.1 mycroft /*
2265 1.1 mycroft * Fake buffers from the cleaner are marked as B_INVAL.
2266 1.1 mycroft * We need to copy the data from user space rather than
2267 1.1 mycroft * from the buffer indicated.
2268 1.1 mycroft * XXX == what do I do on an error?
2269 1.1 mycroft */
2270 1.207 ad if ((bp->b_cflags & BC_INVAL) != 0 &&
2271 1.207 ad bp->b_iodone != NULL) {
2272 1.1 mycroft if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2273 1.128 yamt panic("lfs_writeseg: "
2274 1.128 yamt "copyin failed [2]");
2275 1.109 perseant } else
2276 1.109 perseant #endif /* LFS_USE_B_INVAL */
2277 1.109 perseant if (cl->flags & LFS_CL_MALLOC) {
2278 1.137 yamt /* copy data into our cluster. */
2279 1.137 yamt memcpy(p, bp->b_data, bp->b_bcount);
2280 1.137 yamt p += bp->b_bcount;
2281 1.103 perseant }
2282 1.157 perry
2283 1.109 perseant cbp->b_bcount += bp->b_bcount;
2284 1.109 perseant cl->bufsize += bp->b_bcount;
2285 1.109 perseant
2286 1.207 ad bp->b_flags &= ~B_READ;
2287 1.203 ad bp->b_error = 0;
2288 1.74 perseant cl->bpp[cl->bufcount++] = bp;
2289 1.207 ad
2290 1.74 perseant vp = bp->b_vp;
2291 1.207 ad mutex_enter(&bufcache_lock);
2292 1.207 ad mutex_enter(&vp->v_interlock);
2293 1.207 ad bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2294 1.135 yamt reassignbuf(bp, vp);
2295 1.207 ad vp->v_numoutput++;
2296 1.207 ad mutex_exit(&vp->v_interlock);
2297 1.207 ad mutex_exit(&bufcache_lock);
2298 1.26 perseant
2299 1.26 perseant bpp++;
2300 1.109 perseant i--;
2301 1.1 mycroft }
2302 1.147 yamt if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2303 1.147 yamt BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2304 1.147 yamt else
2305 1.147 yamt BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2306 1.207 ad mutex_enter(&devvp->v_interlock);
2307 1.207 ad devvp->v_numoutput++;
2308 1.207 ad mutex_exit(&devvp->v_interlock);
2309 1.149 yamt VOP_STRATEGY(devvp, cbp);
2310 1.210 ad curlwp->l_ru.ru_oublock++;
2311 1.1 mycroft }
2312 1.74 perseant
2313 1.73 chs if (lfs_dostats) {
2314 1.15 perseant ++lfs_stats.psegwrites;
2315 1.15 perseant lfs_stats.blocktot += nblocks - 1;
2316 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2317 1.15 perseant ++lfs_stats.psyncwrites;
2318 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2319 1.15 perseant ++lfs_stats.pcleanwrites;
2320 1.15 perseant lfs_stats.cleanblocks += nblocks - 1;
2321 1.15 perseant }
2322 1.1 mycroft }
2323 1.199 perseant
2324 1.1 mycroft return (lfs_initseg(fs) || do_again);
2325 1.1 mycroft }
2326 1.1 mycroft
2327 1.1 mycroft void
2328 1.69 perseant lfs_writesuper(struct lfs *fs, daddr_t daddr)
2329 1.1 mycroft {
2330 1.1 mycroft struct buf *bp;
2331 1.207 ad struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2332 1.1 mycroft int s;
2333 1.1 mycroft
2334 1.159 perseant ASSERT_MAYBE_SEGLOCK(fs);
2335 1.156 perseant #ifdef DIAGNOSTIC
2336 1.156 perseant KASSERT(fs->lfs_magic == LFS_MAGIC);
2337 1.156 perseant #endif
2338 1.15 perseant /*
2339 1.15 perseant * If we can write one superblock while another is in
2340 1.15 perseant * progress, we risk not having a complete checkpoint if we crash.
2341 1.15 perseant * So, block here if a superblock write is in progress.
2342 1.15 perseant */
2343 1.207 ad mutex_enter(&lfs_lock);
2344 1.36 perseant s = splbio();
2345 1.73 chs while (fs->lfs_sbactive) {
2346 1.207 ad mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2347 1.207 ad &lfs_lock);
2348 1.15 perseant }
2349 1.15 perseant fs->lfs_sbactive = daddr;
2350 1.36 perseant splx(s);
2351 1.207 ad mutex_exit(&lfs_lock);
2352 1.1 mycroft
2353 1.15 perseant /* Set timestamp of this version of the superblock */
2354 1.69 perseant if (fs->lfs_version == 1)
2355 1.182 kardel fs->lfs_otstamp = time_second;
2356 1.182 kardel fs->lfs_tstamp = time_second;
2357 1.15 perseant
2358 1.1 mycroft /* Checksum the superblock and copy it into a buffer. */
2359 1.12 pk fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2360 1.149 yamt bp = lfs_newbuf(fs, devvp,
2361 1.128 yamt fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2362 1.198 christos memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2363 1.128 yamt LFS_SBPAD - sizeof(struct dlfs));
2364 1.12 pk *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2365 1.157 perry
2366 1.207 ad bp->b_cflags |= BC_BUSY;
2367 1.207 ad bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2368 1.207 ad bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2369 1.203 ad bp->b_error = 0;
2370 1.1 mycroft bp->b_iodone = lfs_supercallback;
2371 1.15 perseant
2372 1.147 yamt if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2373 1.147 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2374 1.147 yamt else
2375 1.147 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2376 1.210 ad curlwp->l_ru.ru_oublock++;
2377 1.207 ad
2378 1.207 ad mutex_enter(&devvp->v_interlock);
2379 1.207 ad devvp->v_numoutput++;
2380 1.207 ad mutex_exit(&devvp->v_interlock);
2381 1.207 ad
2382 1.207 ad mutex_enter(&lfs_lock);
2383 1.52 perseant ++fs->lfs_iocount;
2384 1.207 ad mutex_exit(&lfs_lock);
2385 1.149 yamt VOP_STRATEGY(devvp, bp);
2386 1.1 mycroft }
2387 1.1 mycroft
2388 1.1 mycroft /*
2389 1.1 mycroft * Logical block number match routines used when traversing the dirty block
2390 1.1 mycroft * chain.
2391 1.1 mycroft */
2392 1.1 mycroft int
2393 1.69 perseant lfs_match_fake(struct lfs *fs, struct buf *bp)
2394 1.15 perseant {
2395 1.129 yamt
2396 1.159 perseant ASSERT_SEGLOCK(fs);
2397 1.101 perseant return LFS_IS_MALLOC_BUF(bp);
2398 1.15 perseant }
2399 1.15 perseant
2400 1.101 perseant #if 0
2401 1.101 perseant int
2402 1.101 perseant lfs_match_real(struct lfs *fs, struct buf *bp)
2403 1.101 perseant {
2404 1.129 yamt
2405 1.159 perseant ASSERT_SEGLOCK(fs);
2406 1.101 perseant return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2407 1.101 perseant }
2408 1.101 perseant #endif
2409 1.101 perseant
2410 1.15 perseant int
2411 1.69 perseant lfs_match_data(struct lfs *fs, struct buf *bp)
2412 1.1 mycroft {
2413 1.129 yamt
2414 1.159 perseant ASSERT_SEGLOCK(fs);
2415 1.1 mycroft return (bp->b_lblkno >= 0);
2416 1.1 mycroft }
2417 1.1 mycroft
2418 1.1 mycroft int
2419 1.69 perseant lfs_match_indir(struct lfs *fs, struct buf *bp)
2420 1.1 mycroft {
2421 1.91 fvdl daddr_t lbn;
2422 1.1 mycroft
2423 1.159 perseant ASSERT_SEGLOCK(fs);
2424 1.1 mycroft lbn = bp->b_lblkno;
2425 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2426 1.1 mycroft }
2427 1.1 mycroft
2428 1.1 mycroft int
2429 1.69 perseant lfs_match_dindir(struct lfs *fs, struct buf *bp)
2430 1.1 mycroft {
2431 1.91 fvdl daddr_t lbn;
2432 1.1 mycroft
2433 1.159 perseant ASSERT_SEGLOCK(fs);
2434 1.1 mycroft lbn = bp->b_lblkno;
2435 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2436 1.1 mycroft }
2437 1.1 mycroft
2438 1.1 mycroft int
2439 1.69 perseant lfs_match_tindir(struct lfs *fs, struct buf *bp)
2440 1.1 mycroft {
2441 1.91 fvdl daddr_t lbn;
2442 1.1 mycroft
2443 1.159 perseant ASSERT_SEGLOCK(fs);
2444 1.1 mycroft lbn = bp->b_lblkno;
2445 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2446 1.1 mycroft }
2447 1.1 mycroft
2448 1.189 perseant static void
2449 1.189 perseant lfs_free_aiodone(struct buf *bp)
2450 1.1 mycroft {
2451 1.101 perseant struct lfs *fs;
2452 1.101 perseant
2453 1.207 ad KERNEL_LOCK(1, curlwp);
2454 1.144 yamt fs = bp->b_private;
2455 1.159 perseant ASSERT_NO_SEGLOCK(fs);
2456 1.101 perseant lfs_freebuf(fs, bp);
2457 1.207 ad KERNEL_UNLOCK_LAST(curlwp);
2458 1.1 mycroft }
2459 1.1 mycroft
2460 1.79 perseant static void
2461 1.79 perseant lfs_super_aiodone(struct buf *bp)
2462 1.1 mycroft {
2463 1.15 perseant struct lfs *fs;
2464 1.15 perseant
2465 1.207 ad KERNEL_LOCK(1, curlwp);
2466 1.144 yamt fs = bp->b_private;
2467 1.159 perseant ASSERT_NO_SEGLOCK(fs);
2468 1.207 ad mutex_enter(&lfs_lock);
2469 1.45 thorpej fs->lfs_sbactive = 0;
2470 1.107 perseant if (--fs->lfs_iocount <= 1)
2471 1.52 perseant wakeup(&fs->lfs_iocount);
2472 1.159 perseant wakeup(&fs->lfs_sbactive);
2473 1.207 ad mutex_exit(&lfs_lock);
2474 1.101 perseant lfs_freebuf(fs, bp);
2475 1.207 ad KERNEL_UNLOCK_LAST(curlwp);
2476 1.74 perseant }
2477 1.74 perseant
2478 1.74 perseant static void
2479 1.79 perseant lfs_cluster_aiodone(struct buf *bp)
2480 1.74 perseant {
2481 1.74 perseant struct lfs_cluster *cl;
2482 1.74 perseant struct lfs *fs;
2483 1.109 perseant struct buf *tbp, *fbp;
2484 1.207 ad struct vnode *vp, *devvp, *ovp;
2485 1.109 perseant struct inode *ip;
2486 1.207 ad int error;
2487 1.207 ad
2488 1.207 ad KERNEL_LOCK(1, curlwp);
2489 1.74 perseant
2490 1.203 ad error = bp->b_error;
2491 1.144 yamt cl = bp->b_private;
2492 1.74 perseant fs = cl->fs;
2493 1.101 perseant devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2494 1.159 perseant ASSERT_NO_SEGLOCK(fs);
2495 1.74 perseant
2496 1.74 perseant /* Put the pages back, and release the buffer */
2497 1.115 perseant while (cl->bufcount--) {
2498 1.74 perseant tbp = cl->bpp[cl->bufcount];
2499 1.207 ad KASSERT(tbp->b_cflags & BC_BUSY);
2500 1.115 perseant if (error) {
2501 1.74 perseant tbp->b_error = error;
2502 1.74 perseant }
2503 1.74 perseant
2504 1.74 perseant /*
2505 1.103 perseant * We're done with tbp. If it has not been re-dirtied since
2506 1.74 perseant * the cluster was written, free it. Otherwise, keep it on
2507 1.74 perseant * the locked list to be written again.
2508 1.74 perseant */
2509 1.101 perseant vp = tbp->b_vp;
2510 1.114 perseant
2511 1.74 perseant tbp->b_flags &= ~B_GATHERED;
2512 1.74 perseant
2513 1.74 perseant LFS_BCLEAN_LOG(fs, tbp);
2514 1.74 perseant
2515 1.207 ad mutex_enter(&bufcache_lock);
2516 1.207 ad if (tbp->b_iodone == NULL) {
2517 1.209 ad KASSERT(tbp->b_flags & B_LOCKED);
2518 1.74 perseant bremfree(tbp);
2519 1.207 ad if (vp) {
2520 1.207 ad mutex_enter(&vp->v_interlock);
2521 1.74 perseant reassignbuf(tbp, vp);
2522 1.207 ad mutex_exit(&vp->v_interlock);
2523 1.207 ad }
2524 1.74 perseant tbp->b_flags |= B_ASYNC; /* for biodone */
2525 1.74 perseant }
2526 1.132 yamt
2527 1.209 ad if (((tbp->b_flags | tbp->b_oflags) &
2528 1.209 ad (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2529 1.132 yamt LFS_UNLOCK_BUF(tbp);
2530 1.132 yamt
2531 1.207 ad if (tbp->b_oflags & BO_DONE) {
2532 1.158 perseant DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2533 1.158 perseant cl->bufcount, (long)tbp->b_flags));
2534 1.74 perseant }
2535 1.109 perseant
2536 1.207 ad if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2537 1.109 perseant /*
2538 1.153 yamt * A buffer from the page daemon.
2539 1.153 yamt * We use the same iodone as it does,
2540 1.153 yamt * so we must manually disassociate its
2541 1.153 yamt * buffers from the vp.
2542 1.109 perseant */
2543 1.207 ad if ((ovp = tbp->b_vp) != NULL) {
2544 1.153 yamt /* This is just silly */
2545 1.207 ad mutex_enter(&ovp->v_interlock);
2546 1.153 yamt brelvp(tbp);
2547 1.207 ad mutex_exit(&ovp->v_interlock);
2548 1.153 yamt tbp->b_vp = vp;
2549 1.207 ad tbp->b_objlock = &vp->v_interlock;
2550 1.153 yamt }
2551 1.153 yamt /* Put it back the way it was */
2552 1.153 yamt tbp->b_flags |= B_ASYNC;
2553 1.207 ad /* Master buffers have BC_AGE */
2554 1.153 yamt if (tbp->b_private == tbp)
2555 1.207 ad tbp->b_flags |= BC_AGE;
2556 1.153 yamt }
2557 1.207 ad mutex_exit(&bufcache_lock);
2558 1.207 ad
2559 1.153 yamt biodone(tbp);
2560 1.153 yamt
2561 1.153 yamt /*
2562 1.153 yamt * If this is the last block for this vnode, but
2563 1.153 yamt * there are other blocks on its dirty list,
2564 1.153 yamt * set IN_MODIFIED/IN_CLEANING depending on what
2565 1.153 yamt * sort of block. Only do this for our mount point,
2566 1.153 yamt * not for, e.g., inode blocks that are attached to
2567 1.153 yamt * the devvp.
2568 1.153 yamt * XXX KS - Shouldn't we set *both* if both types
2569 1.153 yamt * of blocks are present (traverse the dirty list?)
2570 1.153 yamt */
2571 1.207 ad mutex_enter(&lfs_lock);
2572 1.207 ad mutex_enter(&vp->v_interlock);
2573 1.153 yamt if (vp != devvp && vp->v_numoutput == 0 &&
2574 1.153 yamt (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2575 1.153 yamt ip = VTOI(vp);
2576 1.158 perseant DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2577 1.158 perseant ip->i_number));
2578 1.153 yamt if (LFS_IS_MALLOC_BUF(fbp))
2579 1.153 yamt LFS_SET_UINO(ip, IN_CLEANING);
2580 1.153 yamt else
2581 1.153 yamt LFS_SET_UINO(ip, IN_MODIFIED);
2582 1.74 perseant }
2583 1.207 ad cv_broadcast(&vp->v_cv);
2584 1.207 ad mutex_exit(&vp->v_interlock);
2585 1.207 ad mutex_exit(&lfs_lock);
2586 1.74 perseant }
2587 1.74 perseant
2588 1.74 perseant /* Fix up the cluster buffer, and release it */
2589 1.109 perseant if (cl->flags & LFS_CL_MALLOC)
2590 1.101 perseant lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2591 1.169 yamt putiobuf(bp);
2592 1.74 perseant
2593 1.79 perseant /* Note i/o done */
2594 1.79 perseant if (cl->flags & LFS_CL_SYNC) {
2595 1.157 perry if (--cl->seg->seg_iocount == 0)
2596 1.79 perseant wakeup(&cl->seg->seg_iocount);
2597 1.79 perseant }
2598 1.207 ad mutex_enter(&lfs_lock);
2599 1.74 perseant #ifdef DIAGNOSTIC
2600 1.74 perseant if (fs->lfs_iocount == 0)
2601 1.82 provos panic("lfs_cluster_aiodone: zero iocount");
2602 1.74 perseant #endif
2603 1.107 perseant if (--fs->lfs_iocount <= 1)
2604 1.74 perseant wakeup(&fs->lfs_iocount);
2605 1.207 ad mutex_exit(&lfs_lock);
2606 1.207 ad
2607 1.207 ad KERNEL_UNLOCK_LAST(curlwp);
2608 1.79 perseant
2609 1.101 perseant pool_put(&fs->lfs_bpppool, cl->bpp);
2610 1.101 perseant cl->bpp = NULL;
2611 1.101 perseant pool_put(&fs->lfs_clpool, cl);
2612 1.79 perseant }
2613 1.79 perseant
2614 1.79 perseant static void
2615 1.79 perseant lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2616 1.79 perseant {
2617 1.79 perseant /* reset b_iodone for when this is a single-buf i/o. */
2618 1.79 perseant bp->b_iodone = aiodone;
2619 1.79 perseant
2620 1.202 rmind workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2621 1.79 perseant }
2622 1.79 perseant
2623 1.79 perseant static void
2624 1.79 perseant lfs_cluster_callback(struct buf *bp)
2625 1.79 perseant {
2626 1.129 yamt
2627 1.79 perseant lfs_generic_callback(bp, lfs_cluster_aiodone);
2628 1.79 perseant }
2629 1.79 perseant
2630 1.79 perseant void
2631 1.79 perseant lfs_supercallback(struct buf *bp)
2632 1.79 perseant {
2633 1.129 yamt
2634 1.79 perseant lfs_generic_callback(bp, lfs_super_aiodone);
2635 1.1 mycroft }
2636 1.1 mycroft
2637 1.1 mycroft /*
2638 1.189 perseant * The only buffers that are going to hit these functions are the
2639 1.189 perseant * segment write blocks, or the segment summaries, or the superblocks.
2640 1.189 perseant *
2641 1.189 perseant * All of the above are created by lfs_newbuf, and so do not need to be
2642 1.189 perseant * released via brelse.
2643 1.189 perseant */
2644 1.189 perseant void
2645 1.189 perseant lfs_callback(struct buf *bp)
2646 1.189 perseant {
2647 1.189 perseant
2648 1.189 perseant lfs_generic_callback(bp, lfs_free_aiodone);
2649 1.189 perseant }
2650 1.189 perseant
2651 1.189 perseant /*
2652 1.1 mycroft * Shellsort (diminishing increment sort) from Data Structures and
2653 1.1 mycroft * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2654 1.1 mycroft * see also Knuth Vol. 3, page 84. The increments are selected from
2655 1.1 mycroft * formula (8), page 95. Roughly O(N^3/2).
2656 1.1 mycroft */
2657 1.1 mycroft /*
2658 1.1 mycroft * This is our own private copy of shellsort because we want to sort
2659 1.1 mycroft * two parallel arrays (the array of buffer pointers and the array of
2660 1.1 mycroft * logical block numbers) simultaneously. Note that we cast the array
2661 1.1 mycroft * of logical block numbers to a unsigned in this routine so that the
2662 1.1 mycroft * negative block numbers (meta data blocks) sort AFTER the data blocks.
2663 1.1 mycroft */
2664 1.15 perseant
2665 1.1 mycroft void
2666 1.104 perseant lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2667 1.1 mycroft {
2668 1.1 mycroft static int __rsshell_increments[] = { 4, 1, 0 };
2669 1.42 augustss int incr, *incrp, t1, t2;
2670 1.1 mycroft struct buf *bp_temp;
2671 1.118 yamt
2672 1.118 yamt #ifdef DEBUG
2673 1.118 yamt incr = 0;
2674 1.118 yamt for (t1 = 0; t1 < nmemb; t1++) {
2675 1.118 yamt for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2676 1.118 yamt if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2677 1.118 yamt /* dump before panic */
2678 1.118 yamt printf("lfs_shellsort: nmemb=%d, size=%d\n",
2679 1.118 yamt nmemb, size);
2680 1.118 yamt incr = 0;
2681 1.118 yamt for (t1 = 0; t1 < nmemb; t1++) {
2682 1.118 yamt const struct buf *bp = bp_array[t1];
2683 1.118 yamt
2684 1.118 yamt printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2685 1.118 yamt PRIu64 "\n", t1,
2686 1.118 yamt (uint64_t)bp->b_bcount,
2687 1.118 yamt (uint64_t)bp->b_lblkno);
2688 1.118 yamt printf("lbns:");
2689 1.118 yamt for (t2 = 0; t2 * size < bp->b_bcount;
2690 1.118 yamt t2++) {
2691 1.118 yamt printf(" %" PRId32,
2692 1.118 yamt lb_array[incr++]);
2693 1.118 yamt }
2694 1.118 yamt printf("\n");
2695 1.118 yamt }
2696 1.118 yamt panic("lfs_shellsort: inconsistent input");
2697 1.118 yamt }
2698 1.118 yamt }
2699 1.118 yamt }
2700 1.118 yamt #endif
2701 1.1 mycroft
2702 1.4 christos for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2703 1.1 mycroft for (t1 = incr; t1 < nmemb; ++t1)
2704 1.1 mycroft for (t2 = t1 - incr; t2 >= 0;)
2705 1.104 perseant if ((u_int32_t)bp_array[t2]->b_lblkno >
2706 1.104 perseant (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2707 1.1 mycroft bp_temp = bp_array[t2];
2708 1.1 mycroft bp_array[t2] = bp_array[t2 + incr];
2709 1.1 mycroft bp_array[t2 + incr] = bp_temp;
2710 1.1 mycroft t2 -= incr;
2711 1.1 mycroft } else
2712 1.1 mycroft break;
2713 1.104 perseant
2714 1.104 perseant /* Reform the list of logical blocks */
2715 1.104 perseant incr = 0;
2716 1.104 perseant for (t1 = 0; t1 < nmemb; t1++) {
2717 1.104 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2718 1.104 perseant lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2719 1.104 perseant }
2720 1.104 perseant }
2721 1.1 mycroft }
2722 1.1 mycroft
2723 1.1 mycroft /*
2724 1.207 ad * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2725 1.173 perseant * however, we must press on. Just fake success in that case.
2726 1.1 mycroft */
2727 1.4 christos int
2728 1.69 perseant lfs_vref(struct vnode *vp)
2729 1.1 mycroft {
2730 1.173 perseant int error;
2731 1.173 perseant struct lfs *fs;
2732 1.173 perseant
2733 1.207 ad KASSERT(mutex_owned(&vp->v_interlock));
2734 1.207 ad
2735 1.173 perseant fs = VTOI(vp)->i_lfs;
2736 1.173 perseant
2737 1.173 perseant ASSERT_MAYBE_SEGLOCK(fs);
2738 1.173 perseant
2739 1.15 perseant /*
2740 1.15 perseant * If we return 1 here during a flush, we risk vinvalbuf() not
2741 1.15 perseant * being able to flush all of the pages from this vnode, which
2742 1.15 perseant * will cause it to panic. So, return 0 if a flush is in progress.
2743 1.15 perseant */
2744 1.207 ad error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
2745 1.173 perseant if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2746 1.173 perseant ++fs->lfs_flushvp_fakevref;
2747 1.173 perseant return 0;
2748 1.15 perseant }
2749 1.173 perseant return error;
2750 1.1 mycroft }
2751 1.1 mycroft
2752 1.10 fvdl /*
2753 1.10 fvdl * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2754 1.10 fvdl * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2755 1.10 fvdl */
2756 1.1 mycroft void
2757 1.69 perseant lfs_vunref(struct vnode *vp)
2758 1.1 mycroft {
2759 1.173 perseant struct lfs *fs;
2760 1.173 perseant
2761 1.173 perseant fs = VTOI(vp)->i_lfs;
2762 1.173 perseant ASSERT_MAYBE_SEGLOCK(fs);
2763 1.173 perseant
2764 1.17 perseant /*
2765 1.17 perseant * Analogous to lfs_vref, if the node is flushing, fake it.
2766 1.17 perseant */
2767 1.173 perseant if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2768 1.173 perseant --fs->lfs_flushvp_fakevref;
2769 1.17 perseant return;
2770 1.17 perseant }
2771 1.17 perseant
2772 1.204 pooka /* does not call inactive */
2773 1.208 pooka mutex_enter(&vp->v_interlock);
2774 1.208 pooka vrelel(vp, VRELEL_NOINACTIVE);
2775 1.1 mycroft }
2776 1.15 perseant
2777 1.15 perseant /*
2778 1.15 perseant * We use this when we have vnodes that were loaded in solely for cleaning.
2779 1.15 perseant * There is no reason to believe that these vnodes will be referenced again
2780 1.15 perseant * soon, since the cleaning process is unrelated to normal filesystem
2781 1.15 perseant * activity. Putting cleaned vnodes at the tail of the list has the effect
2782 1.15 perseant * of flushing the vnode LRU. So, put vnodes that were loaded only for
2783 1.15 perseant * cleaning at the head of the list, instead.
2784 1.15 perseant */
2785 1.15 perseant void
2786 1.69 perseant lfs_vunref_head(struct vnode *vp)
2787 1.15 perseant {
2788 1.129 yamt
2789 1.159 perseant ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2790 1.204 pooka
2791 1.204 pooka /* does not call inactive, inserts non-held vnode at head of freelist */
2792 1.208 pooka mutex_enter(&vp->v_interlock);
2793 1.208 pooka vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD);
2794 1.15 perseant }
2795 1.15 perseant
2796 1.180 perseant
2797 1.180 perseant /*
2798 1.180 perseant * Set up an FINFO entry for a new file. The fip pointer is assumed to
2799 1.180 perseant * point at uninitialized space.
2800 1.180 perseant */
2801 1.180 perseant void
2802 1.180 perseant lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2803 1.180 perseant {
2804 1.180 perseant struct segment *sp = fs->lfs_sp;
2805 1.180 perseant
2806 1.181 perseant KASSERT(vers > 0);
2807 1.181 perseant
2808 1.180 perseant if (sp->seg_bytes_left < fs->lfs_bsize ||
2809 1.180 perseant sp->sum_bytes_left < sizeof(struct finfo))
2810 1.180 perseant (void) lfs_writeseg(fs, fs->lfs_sp);
2811 1.180 perseant
2812 1.180 perseant sp->sum_bytes_left -= FINFOSIZE;
2813 1.180 perseant ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2814 1.180 perseant sp->fip->fi_nblocks = 0;
2815 1.180 perseant sp->fip->fi_ino = ino;
2816 1.180 perseant sp->fip->fi_version = vers;
2817 1.180 perseant }
2818 1.180 perseant
2819 1.180 perseant /*
2820 1.180 perseant * Release the FINFO entry, either clearing out an unused entry or
2821 1.180 perseant * advancing us to the next available entry.
2822 1.180 perseant */
2823 1.180 perseant void
2824 1.180 perseant lfs_release_finfo(struct lfs *fs)
2825 1.180 perseant {
2826 1.180 perseant struct segment *sp = fs->lfs_sp;
2827 1.180 perseant
2828 1.180 perseant if (sp->fip->fi_nblocks != 0) {
2829 1.198 christos sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2830 1.180 perseant sizeof(int32_t) * sp->fip->fi_nblocks);
2831 1.180 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
2832 1.180 perseant } else {
2833 1.180 perseant sp->sum_bytes_left += FINFOSIZE;
2834 1.180 perseant --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2835 1.180 perseant }
2836 1.180 perseant }
2837