lfs_segment.c revision 1.25 1 1.25 perseant /* $NetBSD: lfs_segment.c,v 1.25 1999/04/12 00:11:01 perseant Exp $ */
2 1.2 cgd
3 1.15 perseant /*-
4 1.15 perseant * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.15 perseant * All rights reserved.
6 1.15 perseant *
7 1.15 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.15 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.15 perseant *
10 1.15 perseant * Redistribution and use in source and binary forms, with or without
11 1.15 perseant * modification, are permitted provided that the following conditions
12 1.15 perseant * are met:
13 1.15 perseant * 1. Redistributions of source code must retain the above copyright
14 1.15 perseant * notice, this list of conditions and the following disclaimer.
15 1.15 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.15 perseant * notice, this list of conditions and the following disclaimer in the
17 1.15 perseant * documentation and/or other materials provided with the distribution.
18 1.15 perseant * 3. All advertising materials mentioning features or use of this software
19 1.15 perseant * must display the following acknowledgement:
20 1.15 perseant * This product includes software developed by the NetBSD
21 1.15 perseant * Foundation, Inc. and its contributors.
22 1.15 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.15 perseant * contributors may be used to endorse or promote products derived
24 1.15 perseant * from this software without specific prior written permission.
25 1.15 perseant *
26 1.15 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.15 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.15 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.15 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.15 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.15 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.15 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.15 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.15 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.15 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.15 perseant * POSSIBILITY OF SUCH DAMAGE.
37 1.15 perseant */
38 1.1 mycroft /*
39 1.1 mycroft * Copyright (c) 1991, 1993
40 1.1 mycroft * The Regents of the University of California. All rights reserved.
41 1.1 mycroft *
42 1.1 mycroft * Redistribution and use in source and binary forms, with or without
43 1.1 mycroft * modification, are permitted provided that the following conditions
44 1.1 mycroft * are met:
45 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
46 1.1 mycroft * notice, this list of conditions and the following disclaimer.
47 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
49 1.1 mycroft * documentation and/or other materials provided with the distribution.
50 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
51 1.1 mycroft * must display the following acknowledgement:
52 1.1 mycroft * This product includes software developed by the University of
53 1.1 mycroft * California, Berkeley and its contributors.
54 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
55 1.1 mycroft * may be used to endorse or promote products derived from this software
56 1.1 mycroft * without specific prior written permission.
57 1.1 mycroft *
58 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 mycroft * SUCH DAMAGE.
69 1.1 mycroft *
70 1.10 fvdl * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 1.1 mycroft */
72 1.1 mycroft
73 1.16 perseant #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74 1.16 perseant
75 1.1 mycroft #include <sys/param.h>
76 1.1 mycroft #include <sys/systm.h>
77 1.1 mycroft #include <sys/namei.h>
78 1.1 mycroft #include <sys/kernel.h>
79 1.1 mycroft #include <sys/resourcevar.h>
80 1.1 mycroft #include <sys/file.h>
81 1.1 mycroft #include <sys/stat.h>
82 1.1 mycroft #include <sys/buf.h>
83 1.1 mycroft #include <sys/proc.h>
84 1.1 mycroft #include <sys/conf.h>
85 1.1 mycroft #include <sys/vnode.h>
86 1.1 mycroft #include <sys/malloc.h>
87 1.1 mycroft #include <sys/mount.h>
88 1.1 mycroft
89 1.1 mycroft #include <miscfs/specfs/specdev.h>
90 1.1 mycroft #include <miscfs/fifofs/fifo.h>
91 1.1 mycroft
92 1.1 mycroft #include <ufs/ufs/quota.h>
93 1.1 mycroft #include <ufs/ufs/inode.h>
94 1.1 mycroft #include <ufs/ufs/dir.h>
95 1.1 mycroft #include <ufs/ufs/ufsmount.h>
96 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
97 1.1 mycroft
98 1.1 mycroft #include <ufs/lfs/lfs.h>
99 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
100 1.1 mycroft
101 1.1 mycroft extern int count_lock_queue __P((void));
102 1.10 fvdl extern struct simplelock vnode_free_list_slock; /* XXX */
103 1.10 fvdl extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
104 1.1 mycroft
105 1.1 mycroft /*
106 1.1 mycroft * Determine if it's OK to start a partial in this segment, or if we need
107 1.1 mycroft * to go on to a new segment.
108 1.1 mycroft */
109 1.1 mycroft #define LFS_PARTIAL_FITS(fs) \
110 1.1 mycroft ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1.1 mycroft 1 << (fs)->lfs_fsbtodb)
112 1.1 mycroft
113 1.1 mycroft void lfs_callback __P((struct buf *));
114 1.15 perseant int lfs_gather __P((struct lfs *, struct segment *,
115 1.1 mycroft struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 1.1 mycroft int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 1.10 fvdl void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 1.15 perseant int lfs_match_fake __P((struct lfs *, struct buf *));
119 1.1 mycroft int lfs_match_data __P((struct lfs *, struct buf *));
120 1.1 mycroft int lfs_match_dindir __P((struct lfs *, struct buf *));
121 1.1 mycroft int lfs_match_indir __P((struct lfs *, struct buf *));
122 1.1 mycroft int lfs_match_tindir __P((struct lfs *, struct buf *));
123 1.1 mycroft void lfs_newseg __P((struct lfs *));
124 1.10 fvdl void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 1.1 mycroft void lfs_supercallback __P((struct buf *));
126 1.1 mycroft void lfs_updatemeta __P((struct segment *));
127 1.1 mycroft int lfs_vref __P((struct vnode *));
128 1.1 mycroft void lfs_vunref __P((struct vnode *));
129 1.1 mycroft void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 1.1 mycroft int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 1.1 mycroft int lfs_writeseg __P((struct lfs *, struct segment *));
132 1.15 perseant void lfs_writesuper __P((struct lfs *, daddr_t));
133 1.15 perseant int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 1.1 mycroft struct segment *sp, int dirops));
135 1.1 mycroft
136 1.1 mycroft int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 1.15 perseant int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 1.25 perseant int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 1.1 mycroft
140 1.1 mycroft /* Statistics Counters */
141 1.15 perseant int lfs_dostats = 1;
142 1.1 mycroft struct lfs_stats lfs_stats;
143 1.1 mycroft
144 1.1 mycroft /* op values to lfs_writevnodes */
145 1.15 perseant #define VN_REG 0
146 1.1 mycroft #define VN_DIROP 1
147 1.1 mycroft #define VN_EMPTY 2
148 1.15 perseant #define VN_CLEAN 3
149 1.15 perseant
150 1.15 perseant #define LFS_MAX_ACTIVE 10
151 1.15 perseant
152 1.15 perseant /*
153 1.15 perseant * XXX KS - Set modification time on the Ifile, so the cleaner can
154 1.15 perseant * read the fs mod time off of it. We don't set IN_UPDATE here,
155 1.15 perseant * since we don't really need this to be flushed to disk (and in any
156 1.15 perseant * case that wouldn't happen to the Ifile until we checkpoint).
157 1.15 perseant */
158 1.15 perseant void
159 1.15 perseant lfs_imtime(fs)
160 1.15 perseant struct lfs *fs;
161 1.15 perseant {
162 1.15 perseant struct timespec ts;
163 1.15 perseant struct inode *ip;
164 1.15 perseant
165 1.15 perseant TIMEVAL_TO_TIMESPEC(&time, &ts);
166 1.15 perseant ip = VTOI(fs->lfs_ivnode);
167 1.15 perseant ip->i_ffs_mtime = ts.tv_sec;
168 1.15 perseant ip->i_ffs_mtimensec = ts.tv_nsec;
169 1.15 perseant }
170 1.1 mycroft
171 1.1 mycroft /*
172 1.1 mycroft * Ifile and meta data blocks are not marked busy, so segment writes MUST be
173 1.1 mycroft * single threaded. Currently, there are two paths into lfs_segwrite, sync()
174 1.1 mycroft * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
175 1.1 mycroft * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
176 1.1 mycroft */
177 1.1 mycroft
178 1.15 perseant #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
179 1.15 perseant #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
180 1.15 perseant #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
181 1.15 perseant
182 1.1 mycroft int
183 1.1 mycroft lfs_vflush(vp)
184 1.1 mycroft struct vnode *vp;
185 1.1 mycroft {
186 1.1 mycroft struct inode *ip;
187 1.1 mycroft struct lfs *fs;
188 1.1 mycroft struct segment *sp;
189 1.15 perseant int error;
190 1.19 perseant
191 1.22 perseant ip = VTOI(vp);
192 1.22 perseant fs = VFSTOUFS(vp->v_mount)->um_lfs;
193 1.22 perseant
194 1.19 perseant if(ip->i_flag & IN_CLEANING) {
195 1.19 perseant #ifdef DEBUG_LFS
196 1.19 perseant ivndebug(vp,"vflush/in_cleaning");
197 1.19 perseant #endif
198 1.19 perseant ip->i_flag &= ~IN_CLEANING;
199 1.19 perseant if(ip->i_flag & IN_MODIFIED) {
200 1.19 perseant fs->lfs_uinodes--;
201 1.19 perseant } else
202 1.19 perseant ip->i_flag |= IN_MODIFIED;
203 1.19 perseant }
204 1.19 perseant
205 1.19 perseant /* If the node is being written, wait until that is done */
206 1.19 perseant if(WRITEINPROG(vp)) {
207 1.19 perseant #ifdef DEBUG_LFS
208 1.19 perseant ivndebug(vp,"vflush/writeinprog");
209 1.19 perseant #endif
210 1.19 perseant tsleep(vp, PRIBIO+1, "lfs_vw", 0);
211 1.19 perseant }
212 1.1 mycroft
213 1.15 perseant /* Protect against VXLOCK deadlock in vinvalbuf() */
214 1.1 mycroft lfs_seglock(fs, SEGM_SYNC);
215 1.15 perseant SET_FLUSHING(fs,vp);
216 1.15 perseant if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
217 1.15 perseant error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
218 1.15 perseant CLR_FLUSHING(fs,vp);
219 1.15 perseant lfs_segunlock(fs);
220 1.15 perseant return error;
221 1.15 perseant }
222 1.1 mycroft sp = fs->lfs_sp;
223 1.1 mycroft
224 1.15 perseant if (vp->v_dirtyblkhd.lh_first == NULL) {
225 1.1 mycroft lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
226 1.19 perseant } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
227 1.19 perseant #ifdef DEBUG_LFS
228 1.19 perseant ivndebug(vp,"vflush/clean");
229 1.19 perseant #endif
230 1.19 perseant lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
231 1.15 perseant }
232 1.15 perseant else if(lfs_dostats) {
233 1.15 perseant if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
234 1.15 perseant ++lfs_stats.vflush_invoked;
235 1.15 perseant #ifdef DEBUG_LFS
236 1.19 perseant ivndebug(vp,"vflush");
237 1.15 perseant #endif
238 1.15 perseant }
239 1.15 perseant
240 1.19 perseant #ifdef DIAGNOSTIC
241 1.21 perseant /* XXX KS This actually can happen right now, though it shouldn't(?) */
242 1.19 perseant if(vp->v_flag & VDIROP) {
243 1.21 perseant printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
244 1.21 perseant /* panic("VDIROP being flushed...this can\'t happen"); */
245 1.19 perseant }
246 1.19 perseant if(vp->v_usecount<0) {
247 1.19 perseant printf("usecount=%d\n",vp->v_usecount);
248 1.19 perseant panic("lfs_vflush: usecount<0");
249 1.19 perseant }
250 1.15 perseant #endif
251 1.1 mycroft
252 1.1 mycroft do {
253 1.1 mycroft do {
254 1.1 mycroft if (vp->v_dirtyblkhd.lh_first != NULL)
255 1.1 mycroft lfs_writefile(fs, sp, vp);
256 1.1 mycroft } while (lfs_writeinode(fs, sp, ip));
257 1.1 mycroft } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
258 1.15 perseant
259 1.15 perseant if(lfs_dostats) {
260 1.15 perseant ++lfs_stats.nwrites;
261 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
262 1.15 perseant ++lfs_stats.nsync_writes;
263 1.15 perseant if (sp->seg_flags & SEGM_CKP)
264 1.15 perseant ++lfs_stats.ncheckpoints;
265 1.15 perseant }
266 1.15 perseant lfs_segunlock(fs);
267 1.1 mycroft
268 1.15 perseant CLR_FLUSHING(fs,vp);
269 1.1 mycroft return (0);
270 1.1 mycroft }
271 1.1 mycroft
272 1.16 perseant #ifdef DEBUG_LFS_VERBOSE
273 1.16 perseant # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
274 1.16 perseant #else
275 1.16 perseant # define vndebug(vp,str)
276 1.16 perseant #endif
277 1.15 perseant
278 1.15 perseant int
279 1.1 mycroft lfs_writevnodes(fs, mp, sp, op)
280 1.1 mycroft struct lfs *fs;
281 1.1 mycroft struct mount *mp;
282 1.1 mycroft struct segment *sp;
283 1.1 mycroft int op;
284 1.1 mycroft {
285 1.1 mycroft struct inode *ip;
286 1.1 mycroft struct vnode *vp;
287 1.20 perseant int inodes_written=0, only_cleaning;
288 1.1 mycroft
289 1.15 perseant #ifndef LFS_NO_BACKVP_HACK
290 1.15 perseant /* BEGIN HACK */
291 1.11 kleink #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
292 1.11 kleink #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
293 1.11 kleink #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
294 1.15 perseant
295 1.15 perseant /* Find last vnode. */
296 1.15 perseant loop: for (vp = mp->mnt_vnodelist.lh_first;
297 1.10 fvdl vp && vp->v_mntvnodes.le_next != NULL;
298 1.10 fvdl vp = vp->v_mntvnodes.le_next);
299 1.10 fvdl for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
300 1.15 perseant #else
301 1.15 perseant loop:
302 1.1 mycroft for (vp = mp->mnt_vnodelist.lh_first;
303 1.1 mycroft vp != NULL;
304 1.1 mycroft vp = vp->v_mntvnodes.le_next) {
305 1.15 perseant #endif
306 1.1 mycroft /*
307 1.1 mycroft * If the vnode that we are about to sync is no longer
308 1.1 mycroft * associated with this mount point, start over.
309 1.1 mycroft */
310 1.1 mycroft if (vp->v_mount != mp)
311 1.1 mycroft goto loop;
312 1.1 mycroft
313 1.15 perseant ip = VTOI(vp);
314 1.15 perseant if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
315 1.15 perseant (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
316 1.15 perseant vndebug(vp,"dirop");
317 1.15 perseant continue;
318 1.15 perseant }
319 1.15 perseant
320 1.15 perseant if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
321 1.15 perseant vndebug(vp,"empty");
322 1.1 mycroft continue;
323 1.15 perseant }
324 1.15 perseant
325 1.15 perseant if (vp->v_type == VNON) {
326 1.15 perseant continue;
327 1.15 perseant }
328 1.1 mycroft
329 1.15 perseant if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
330 1.15 perseant && !(ip->i_flag & IN_CLEANING)) {
331 1.15 perseant vndebug(vp,"cleaning");
332 1.1 mycroft continue;
333 1.15 perseant }
334 1.1 mycroft
335 1.15 perseant if (lfs_vref(vp)) {
336 1.15 perseant vndebug(vp,"vref");
337 1.1 mycroft continue;
338 1.15 perseant }
339 1.1 mycroft
340 1.16 perseant #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
341 1.16 perseant if(WRITEINPROG(vp)) {
342 1.16 perseant lfs_vunref(vp);
343 1.16 perseant #ifdef DEBUG_LFS
344 1.16 perseant ivndebug(vp,"writevnodes/writeinprog");
345 1.16 perseant #endif
346 1.16 perseant continue;
347 1.15 perseant }
348 1.16 perseant #endif
349 1.23 perseant only_cleaning = 0;
350 1.1 mycroft /*
351 1.1 mycroft * Write the inode/file if dirty and it's not the
352 1.1 mycroft * the IFILE.
353 1.1 mycroft */
354 1.1 mycroft if ((ip->i_flag &
355 1.15 perseant (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
356 1.15 perseant vp->v_dirtyblkhd.lh_first != NULL))
357 1.15 perseant {
358 1.20 perseant only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
359 1.20 perseant
360 1.15 perseant if(ip->i_number != LFS_IFILE_INUM
361 1.15 perseant && vp->v_dirtyblkhd.lh_first != NULL)
362 1.15 perseant {
363 1.1 mycroft lfs_writefile(fs, sp, vp);
364 1.15 perseant }
365 1.15 perseant if(vp->v_dirtyblkhd.lh_first != NULL) {
366 1.15 perseant if(WRITEINPROG(vp)) {
367 1.15 perseant #ifdef DEBUG_LFS
368 1.16 perseant ivndebug(vp,"writevnodes/write2");
369 1.15 perseant #endif
370 1.15 perseant } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
371 1.15 perseant #ifdef DEBUG_LFS
372 1.15 perseant printf("<%d>",ip->i_number);
373 1.15 perseant #endif
374 1.15 perseant ip->i_flag |= IN_MODIFIED;
375 1.15 perseant ++fs->lfs_uinodes;
376 1.15 perseant }
377 1.15 perseant }
378 1.1 mycroft (void) lfs_writeinode(fs, sp, ip);
379 1.15 perseant inodes_written++;
380 1.1 mycroft }
381 1.15 perseant
382 1.15 perseant if(vp->v_flag & VDIROP) {
383 1.15 perseant --fs->lfs_dirvcount;
384 1.15 perseant vp->v_flag &= ~VDIROP;
385 1.15 perseant wakeup(&fs->lfs_dirvcount);
386 1.15 perseant lfs_vunref(vp);
387 1.15 perseant }
388 1.15 perseant
389 1.20 perseant if(lfs_clean_vnhead && only_cleaning)
390 1.20 perseant lfs_vunref_head(vp);
391 1.20 perseant else
392 1.20 perseant lfs_vunref(vp);
393 1.1 mycroft }
394 1.15 perseant return inodes_written;
395 1.1 mycroft }
396 1.1 mycroft
397 1.1 mycroft int
398 1.1 mycroft lfs_segwrite(mp, flags)
399 1.1 mycroft struct mount *mp;
400 1.1 mycroft int flags; /* Do a checkpoint. */
401 1.1 mycroft {
402 1.1 mycroft struct buf *bp;
403 1.1 mycroft struct inode *ip;
404 1.1 mycroft struct lfs *fs;
405 1.1 mycroft struct segment *sp;
406 1.1 mycroft struct vnode *vp;
407 1.1 mycroft SEGUSE *segusep;
408 1.10 fvdl ufs_daddr_t ibno;
409 1.15 perseant int do_ckp, error, i;
410 1.15 perseant int writer_set = 0;
411 1.15 perseant int need_unlock = 0;
412 1.15 perseant
413 1.1 mycroft fs = VFSTOUFS(mp)->um_lfs;
414 1.1 mycroft
415 1.15 perseant lfs_imtime(fs);
416 1.15 perseant
417 1.15 perseant /*
418 1.15 perseant * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
419 1.15 perseant * clean segments, wait until cleaner writes.
420 1.15 perseant */
421 1.15 perseant if(!(flags & SEGM_CLEAN)
422 1.15 perseant && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
423 1.15 perseant {
424 1.15 perseant do {
425 1.15 perseant if (fs->lfs_nclean <= MIN_FREE_SEGS
426 1.15 perseant || fs->lfs_avail <= 0)
427 1.15 perseant {
428 1.15 perseant wakeup(&lfs_allclean_wakeup);
429 1.15 perseant wakeup(&fs->lfs_nextseg);
430 1.15 perseant error = tsleep(&fs->lfs_avail, PRIBIO + 1,
431 1.15 perseant "lfs_avail", 0);
432 1.15 perseant if (error) {
433 1.15 perseant return (error);
434 1.15 perseant }
435 1.15 perseant }
436 1.15 perseant } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
437 1.15 perseant }
438 1.1 mycroft
439 1.1 mycroft /*
440 1.1 mycroft * Allocate a segment structure and enough space to hold pointers to
441 1.1 mycroft * the maximum possible number of buffers which can be described in a
442 1.1 mycroft * single summary block.
443 1.1 mycroft */
444 1.15 perseant do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
445 1.1 mycroft lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
446 1.1 mycroft sp = fs->lfs_sp;
447 1.1 mycroft
448 1.15 perseant /*
449 1.16 perseant * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
450 1.16 perseant * in which case we have to flush *all* buffers off of this vnode.
451 1.15 perseant */
452 1.15 perseant if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
453 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_CLEAN);
454 1.15 perseant else {
455 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_REG);
456 1.15 perseant /*
457 1.15 perseant * XXX KS - If we're cleaning, we can't wait for dirops,
458 1.15 perseant * because they might be waiting on us. The downside of this
459 1.15 perseant * is that, if we write anything besides cleaning blocks
460 1.15 perseant * while cleaning, the checkpoint is not completely
461 1.15 perseant * consistent.
462 1.15 perseant */
463 1.15 perseant if(!(sp->seg_flags & SEGM_CLEAN)) {
464 1.15 perseant while(fs->lfs_dirops)
465 1.15 perseant if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
466 1.15 perseant "lfs writer", 0)))
467 1.15 perseant {
468 1.15 perseant free(sp->bpp, M_SEGMENT);
469 1.15 perseant free(sp, M_SEGMENT);
470 1.15 perseant return (error);
471 1.15 perseant }
472 1.15 perseant fs->lfs_writer++;
473 1.15 perseant writer_set=1;
474 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_DIROP);
475 1.15 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
476 1.15 perseant }
477 1.15 perseant }
478 1.1 mycroft
479 1.1 mycroft /*
480 1.1 mycroft * If we are doing a checkpoint, mark everything since the
481 1.1 mycroft * last checkpoint as no longer ACTIVE.
482 1.1 mycroft */
483 1.15 perseant if (do_ckp) {
484 1.1 mycroft for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
485 1.1 mycroft --ibno >= fs->lfs_cleansz; ) {
486 1.15 perseant if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
487 1.1 mycroft
488 1.15 perseant panic("lfs_segwrite: ifile read");
489 1.1 mycroft segusep = (SEGUSE *)bp->b_data;
490 1.1 mycroft for (i = fs->lfs_sepb; i--; segusep++)
491 1.1 mycroft segusep->su_flags &= ~SEGUSE_ACTIVE;
492 1.1 mycroft
493 1.15 perseant /* But the current segment is still ACTIVE */
494 1.15 perseant if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
495 1.15 perseant ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
496 1.1 mycroft error = VOP_BWRITE(bp);
497 1.1 mycroft }
498 1.15 perseant }
499 1.15 perseant
500 1.1 mycroft if (do_ckp || fs->lfs_doifile) {
501 1.15 perseant redo:
502 1.1 mycroft vp = fs->lfs_ivnode;
503 1.15 perseant /*
504 1.15 perseant * Depending on the circumstances of our calling, the ifile
505 1.15 perseant * inode might be locked. If it is, and if it is locked by
506 1.15 perseant * us, we should VREF instead of vget here.
507 1.15 perseant */
508 1.15 perseant need_unlock = 0;
509 1.15 perseant if(VOP_ISLOCKED(vp)
510 1.15 perseant && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
511 1.15 perseant VREF(vp);
512 1.15 perseant } else {
513 1.15 perseant while (vget(vp, LK_EXCLUSIVE))
514 1.15 perseant continue;
515 1.15 perseant need_unlock = 1;
516 1.15 perseant }
517 1.1 mycroft ip = VTOI(vp);
518 1.1 mycroft if (vp->v_dirtyblkhd.lh_first != NULL)
519 1.1 mycroft lfs_writefile(fs, sp, vp);
520 1.1 mycroft (void)lfs_writeinode(fs, sp, ip);
521 1.15 perseant
522 1.15 perseant /* Only vput if we used vget() above. */
523 1.15 perseant if(need_unlock)
524 1.15 perseant vput(vp);
525 1.15 perseant else
526 1.15 perseant vrele(vp);
527 1.15 perseant
528 1.1 mycroft if (lfs_writeseg(fs, sp) && do_ckp)
529 1.1 mycroft goto redo;
530 1.15 perseant } else {
531 1.1 mycroft (void) lfs_writeseg(fs, sp);
532 1.15 perseant }
533 1.15 perseant
534 1.1 mycroft /*
535 1.15 perseant * If the I/O count is non-zero, sleep until it reaches zero.
536 1.15 perseant * At the moment, the user's process hangs around so we can
537 1.15 perseant * sleep.
538 1.1 mycroft */
539 1.1 mycroft fs->lfs_doifile = 0;
540 1.15 perseant if(writer_set && --fs->lfs_writer==0)
541 1.15 perseant wakeup(&fs->lfs_dirops);
542 1.15 perseant
543 1.15 perseant if(lfs_dostats) {
544 1.15 perseant ++lfs_stats.nwrites;
545 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
546 1.15 perseant ++lfs_stats.nsync_writes;
547 1.15 perseant if (sp->seg_flags & SEGM_CKP)
548 1.15 perseant ++lfs_stats.ncheckpoints;
549 1.15 perseant }
550 1.1 mycroft lfs_segunlock(fs);
551 1.1 mycroft return (0);
552 1.1 mycroft }
553 1.1 mycroft
554 1.1 mycroft /*
555 1.1 mycroft * Write the dirty blocks associated with a vnode.
556 1.1 mycroft */
557 1.1 mycroft void
558 1.1 mycroft lfs_writefile(fs, sp, vp)
559 1.1 mycroft struct lfs *fs;
560 1.1 mycroft struct segment *sp;
561 1.1 mycroft struct vnode *vp;
562 1.1 mycroft {
563 1.1 mycroft struct buf *bp;
564 1.1 mycroft struct finfo *fip;
565 1.1 mycroft IFILE *ifp;
566 1.15 perseant
567 1.15 perseant
568 1.1 mycroft if (sp->seg_bytes_left < fs->lfs_bsize ||
569 1.1 mycroft sp->sum_bytes_left < sizeof(struct finfo))
570 1.1 mycroft (void) lfs_writeseg(fs, sp);
571 1.15 perseant
572 1.10 fvdl sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
573 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
574 1.1 mycroft
575 1.15 perseant if(vp->v_flag & VDIROP)
576 1.15 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
577 1.15 perseant
578 1.1 mycroft fip = sp->fip;
579 1.1 mycroft fip->fi_nblocks = 0;
580 1.1 mycroft fip->fi_ino = VTOI(vp)->i_number;
581 1.1 mycroft LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
582 1.1 mycroft fip->fi_version = ifp->if_version;
583 1.1 mycroft brelse(bp);
584 1.15 perseant
585 1.1 mycroft /*
586 1.1 mycroft * It may not be necessary to write the meta-data blocks at this point,
587 1.1 mycroft * as the roll-forward recovery code should be able to reconstruct the
588 1.1 mycroft * list.
589 1.15 perseant *
590 1.15 perseant * We have to write them anyway, though, under two conditions: (1) the
591 1.15 perseant * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
592 1.15 perseant * checkpointing.
593 1.1 mycroft */
594 1.15 perseant if((sp->seg_flags & SEGM_CLEAN)
595 1.15 perseant && VTOI(vp)->i_number != LFS_IFILE_INUM
596 1.15 perseant && !IS_FLUSHING(fs,vp))
597 1.15 perseant {
598 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_fake);
599 1.15 perseant } else
600 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_data);
601 1.16 perseant
602 1.15 perseant if(lfs_writeindir
603 1.15 perseant || IS_FLUSHING(fs,vp)
604 1.15 perseant || (sp->seg_flags & SEGM_CKP))
605 1.15 perseant {
606 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
607 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
608 1.15 perseant /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
609 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
610 1.15 perseant /* #endif */
611 1.15 perseant }
612 1.1 mycroft fip = sp->fip;
613 1.1 mycroft if (fip->fi_nblocks != 0) {
614 1.15 perseant sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
615 1.15 perseant sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
616 1.1 mycroft sp->start_lbp = &sp->fip->fi_blocks[0];
617 1.1 mycroft } else {
618 1.15 perseant sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
619 1.1 mycroft --((SEGSUM *)(sp->segsum))->ss_nfinfo;
620 1.1 mycroft }
621 1.1 mycroft }
622 1.1 mycroft
623 1.1 mycroft int
624 1.1 mycroft lfs_writeinode(fs, sp, ip)
625 1.1 mycroft struct lfs *fs;
626 1.1 mycroft struct segment *sp;
627 1.1 mycroft struct inode *ip;
628 1.1 mycroft {
629 1.1 mycroft struct buf *bp, *ibp;
630 1.1 mycroft IFILE *ifp;
631 1.1 mycroft SEGUSE *sup;
632 1.10 fvdl ufs_daddr_t daddr;
633 1.1 mycroft ino_t ino;
634 1.1 mycroft int error, i, ndx;
635 1.1 mycroft int redo_ifile = 0;
636 1.5 mycroft struct timespec ts;
637 1.24 perseant int gotblk=0;
638 1.15 perseant
639 1.15 perseant if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
640 1.1 mycroft return(0);
641 1.15 perseant
642 1.1 mycroft /* Allocate a new inode block if necessary. */
643 1.1 mycroft if (sp->ibp == NULL) {
644 1.1 mycroft /* Allocate a new segment if necessary. */
645 1.1 mycroft if (sp->seg_bytes_left < fs->lfs_bsize ||
646 1.10 fvdl sp->sum_bytes_left < sizeof(ufs_daddr_t))
647 1.1 mycroft (void) lfs_writeseg(fs, sp);
648 1.1 mycroft
649 1.1 mycroft /* Get next inode block. */
650 1.1 mycroft daddr = fs->lfs_offset;
651 1.1 mycroft fs->lfs_offset += fsbtodb(fs, 1);
652 1.1 mycroft sp->ibp = *sp->cbpp++ =
653 1.24 perseant getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
654 1.24 perseant gotblk++;
655 1.24 perseant
656 1.1 mycroft /* Zero out inode numbers */
657 1.1 mycroft for (i = 0; i < INOPB(fs); ++i)
658 1.1 mycroft ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
659 1.15 perseant
660 1.1 mycroft ++sp->start_bpp;
661 1.1 mycroft fs->lfs_avail -= fsbtodb(fs, 1);
662 1.1 mycroft /* Set remaining space counters. */
663 1.1 mycroft sp->seg_bytes_left -= fs->lfs_bsize;
664 1.10 fvdl sp->sum_bytes_left -= sizeof(ufs_daddr_t);
665 1.10 fvdl ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
666 1.15 perseant sp->ninodes / INOPB(fs) - 1;
667 1.10 fvdl ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
668 1.1 mycroft }
669 1.15 perseant
670 1.1 mycroft /* Update the inode times and copy the inode onto the inode page. */
671 1.15 perseant if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
672 1.1 mycroft --fs->lfs_uinodes;
673 1.9 pk TIMEVAL_TO_TIMESPEC(&time, &ts);
674 1.15 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
675 1.16 perseant
676 1.15 perseant if(ip->i_flag & IN_CLEANING)
677 1.15 perseant ip->i_flag &= ~IN_CLEANING;
678 1.15 perseant else
679 1.15 perseant ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
680 1.15 perseant
681 1.1 mycroft bp = sp->ibp;
682 1.15 perseant ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
683 1.15 perseant ip->i_din.ffs_din;
684 1.24 perseant if(gotblk) {
685 1.24 perseant bp->b_flags |= B_LOCKED;
686 1.24 perseant brelse(bp);
687 1.24 perseant }
688 1.15 perseant
689 1.1 mycroft /* Increment inode count in segment summary block. */
690 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_ninos;
691 1.15 perseant
692 1.1 mycroft /* If this page is full, set flag to allocate a new page. */
693 1.1 mycroft if (++sp->ninodes % INOPB(fs) == 0)
694 1.1 mycroft sp->ibp = NULL;
695 1.15 perseant
696 1.1 mycroft /*
697 1.1 mycroft * If updating the ifile, update the super-block. Update the disk
698 1.1 mycroft * address and access times for this inode in the ifile.
699 1.1 mycroft */
700 1.1 mycroft ino = ip->i_number;
701 1.1 mycroft if (ino == LFS_IFILE_INUM) {
702 1.1 mycroft daddr = fs->lfs_idaddr;
703 1.1 mycroft fs->lfs_idaddr = bp->b_blkno;
704 1.1 mycroft } else {
705 1.1 mycroft LFS_IENTRY(ifp, fs, ino, ibp);
706 1.1 mycroft daddr = ifp->if_daddr;
707 1.1 mycroft ifp->if_daddr = bp->b_blkno;
708 1.1 mycroft error = VOP_BWRITE(ibp);
709 1.1 mycroft }
710 1.15 perseant
711 1.1 mycroft /*
712 1.1 mycroft * No need to update segment usage if there was no former inode address
713 1.1 mycroft * or if the last inode address is in the current partial segment.
714 1.1 mycroft */
715 1.1 mycroft if (daddr != LFS_UNUSED_DADDR &&
716 1.1 mycroft !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
717 1.1 mycroft LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
718 1.1 mycroft #ifdef DIAGNOSTIC
719 1.13 thorpej if (sup->su_nbytes < DINODE_SIZE) {
720 1.1 mycroft /* XXX -- Change to a panic. */
721 1.15 perseant printf("lfs_writeinode: negative bytes (segment %d)\n",
722 1.15 perseant datosn(fs, daddr));
723 1.1 mycroft panic("negative bytes");
724 1.1 mycroft }
725 1.1 mycroft #endif
726 1.13 thorpej sup->su_nbytes -= DINODE_SIZE;
727 1.1 mycroft redo_ifile =
728 1.15 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
729 1.1 mycroft error = VOP_BWRITE(bp);
730 1.1 mycroft }
731 1.1 mycroft return (redo_ifile);
732 1.1 mycroft }
733 1.1 mycroft
734 1.1 mycroft int
735 1.1 mycroft lfs_gatherblock(sp, bp, sptr)
736 1.1 mycroft struct segment *sp;
737 1.1 mycroft struct buf *bp;
738 1.1 mycroft int *sptr;
739 1.1 mycroft {
740 1.1 mycroft struct lfs *fs;
741 1.1 mycroft int version;
742 1.15 perseant
743 1.1 mycroft /*
744 1.1 mycroft * If full, finish this segment. We may be doing I/O, so
745 1.1 mycroft * release and reacquire the splbio().
746 1.1 mycroft */
747 1.1 mycroft #ifdef DIAGNOSTIC
748 1.1 mycroft if (sp->vp == NULL)
749 1.1 mycroft panic ("lfs_gatherblock: Null vp in segment");
750 1.1 mycroft #endif
751 1.1 mycroft fs = sp->fs;
752 1.10 fvdl if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
753 1.10 fvdl sp->seg_bytes_left < bp->b_bcount) {
754 1.1 mycroft if (sptr)
755 1.1 mycroft splx(*sptr);
756 1.1 mycroft lfs_updatemeta(sp);
757 1.15 perseant
758 1.1 mycroft version = sp->fip->fi_version;
759 1.1 mycroft (void) lfs_writeseg(fs, sp);
760 1.15 perseant
761 1.1 mycroft sp->fip->fi_version = version;
762 1.1 mycroft sp->fip->fi_ino = VTOI(sp->vp)->i_number;
763 1.1 mycroft /* Add the current file to the segment summary. */
764 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
765 1.1 mycroft sp->sum_bytes_left -=
766 1.15 perseant sizeof(struct finfo) - sizeof(ufs_daddr_t);
767 1.15 perseant
768 1.1 mycroft if (sptr)
769 1.1 mycroft *sptr = splbio();
770 1.1 mycroft return(1);
771 1.1 mycroft }
772 1.15 perseant
773 1.15 perseant #ifdef DEBUG
774 1.15 perseant if(bp->b_flags & B_GATHERED) {
775 1.15 perseant printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
776 1.15 perseant sp->fip->fi_ino, bp->b_lblkno);
777 1.15 perseant return(0);
778 1.15 perseant }
779 1.15 perseant #endif
780 1.1 mycroft /* Insert into the buffer list, update the FINFO block. */
781 1.1 mycroft bp->b_flags |= B_GATHERED;
782 1.1 mycroft *sp->cbpp++ = bp;
783 1.1 mycroft sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
784 1.15 perseant
785 1.10 fvdl sp->sum_bytes_left -= sizeof(ufs_daddr_t);
786 1.10 fvdl sp->seg_bytes_left -= bp->b_bcount;
787 1.1 mycroft return(0);
788 1.1 mycroft }
789 1.1 mycroft
790 1.15 perseant int
791 1.1 mycroft lfs_gather(fs, sp, vp, match)
792 1.1 mycroft struct lfs *fs;
793 1.1 mycroft struct segment *sp;
794 1.1 mycroft struct vnode *vp;
795 1.1 mycroft int (*match) __P((struct lfs *, struct buf *));
796 1.1 mycroft {
797 1.1 mycroft struct buf *bp;
798 1.15 perseant int s, count=0;
799 1.15 perseant
800 1.1 mycroft sp->vp = vp;
801 1.1 mycroft s = splbio();
802 1.15 perseant
803 1.15 perseant #ifndef LFS_NO_BACKBUF_HACK
804 1.15 perseant loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
805 1.15 perseant #else /* LFS_NO_BACKBUF_HACK */
806 1.10 fvdl /* This is a hack to see if ordering the blocks in LFS makes a difference. */
807 1.15 perseant # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
808 1.15 perseant # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
809 1.15 perseant # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
810 1.10 fvdl /* Find last buffer. */
811 1.15 perseant loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
812 1.10 fvdl bp = bp->b_vnbufs.le_next);
813 1.10 fvdl for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
814 1.15 perseant #endif /* LFS_NO_BACKBUF_HACK */
815 1.15 perseant if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
816 1.1 mycroft continue;
817 1.1 mycroft #ifdef DIAGNOSTIC
818 1.1 mycroft if (!(bp->b_flags & B_DELWRI))
819 1.1 mycroft panic("lfs_gather: bp not B_DELWRI");
820 1.1 mycroft if (!(bp->b_flags & B_LOCKED))
821 1.1 mycroft panic("lfs_gather: bp not B_LOCKED");
822 1.1 mycroft #endif
823 1.15 perseant count++;
824 1.15 perseant if (lfs_gatherblock(sp, bp, &s)) {
825 1.1 mycroft goto loop;
826 1.15 perseant }
827 1.1 mycroft }
828 1.1 mycroft splx(s);
829 1.1 mycroft lfs_updatemeta(sp);
830 1.1 mycroft sp->vp = NULL;
831 1.15 perseant return count;
832 1.1 mycroft }
833 1.1 mycroft
834 1.1 mycroft /*
835 1.1 mycroft * Update the metadata that points to the blocks listed in the FINFO
836 1.1 mycroft * array.
837 1.1 mycroft */
838 1.1 mycroft void
839 1.1 mycroft lfs_updatemeta(sp)
840 1.1 mycroft struct segment *sp;
841 1.1 mycroft {
842 1.1 mycroft SEGUSE *sup;
843 1.1 mycroft struct buf *bp;
844 1.1 mycroft struct lfs *fs;
845 1.1 mycroft struct vnode *vp;
846 1.1 mycroft struct indir a[NIADDR + 2], *ap;
847 1.1 mycroft struct inode *ip;
848 1.10 fvdl ufs_daddr_t daddr, lbn, off;
849 1.10 fvdl int error, i, nblocks, num;
850 1.15 perseant
851 1.1 mycroft vp = sp->vp;
852 1.1 mycroft nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
853 1.10 fvdl if (nblocks < 0)
854 1.10 fvdl panic("This is a bad thing\n");
855 1.1 mycroft if (vp == NULL || nblocks == 0)
856 1.1 mycroft return;
857 1.15 perseant
858 1.1 mycroft /* Sort the blocks. */
859 1.15 perseant /*
860 1.15 perseant * XXX KS - We have to sort even if the blocks come from the
861 1.15 perseant * cleaner, because there might be other pending blocks on the
862 1.15 perseant * same inode...and if we don't sort, and there are fragments
863 1.15 perseant * present, blocks may be written in the wrong place.
864 1.15 perseant */
865 1.15 perseant /* if (!(sp->seg_flags & SEGM_CLEAN)) */
866 1.15 perseant lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
867 1.15 perseant
868 1.1 mycroft /*
869 1.10 fvdl * Record the length of the last block in case it's a fragment.
870 1.10 fvdl * If there are indirect blocks present, they sort last. An
871 1.10 fvdl * indirect block will be lfs_bsize and its presence indicates
872 1.10 fvdl * that you cannot have fragments.
873 1.10 fvdl */
874 1.10 fvdl sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
875 1.15 perseant
876 1.10 fvdl /*
877 1.1 mycroft * Assign disk addresses, and update references to the logical
878 1.1 mycroft * block and the segment usage information.
879 1.1 mycroft */
880 1.1 mycroft fs = sp->fs;
881 1.1 mycroft for (i = nblocks; i--; ++sp->start_bpp) {
882 1.1 mycroft lbn = *sp->start_lbp++;
883 1.15 perseant
884 1.1 mycroft (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
885 1.17 perseant if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
886 1.17 perseant printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
887 1.17 perseant }
888 1.10 fvdl fs->lfs_offset +=
889 1.15 perseant fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
890 1.1 mycroft
891 1.4 christos error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
892 1.4 christos if (error)
893 1.1 mycroft panic("lfs_updatemeta: ufs_bmaparray %d", error);
894 1.1 mycroft ip = VTOI(vp);
895 1.1 mycroft switch (num) {
896 1.1 mycroft case 0:
897 1.8 bouyer ip->i_ffs_db[lbn] = off;
898 1.1 mycroft break;
899 1.1 mycroft case 1:
900 1.8 bouyer ip->i_ffs_ib[a[0].in_off] = off;
901 1.1 mycroft break;
902 1.1 mycroft default:
903 1.1 mycroft ap = &a[num - 1];
904 1.1 mycroft if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
905 1.1 mycroft panic("lfs_updatemeta: bread bno %d",
906 1.15 perseant ap->in_lbn);
907 1.1 mycroft /*
908 1.15 perseant * Bread may create a new (indirect) block which needs
909 1.1 mycroft * to get counted for the inode.
910 1.1 mycroft */
911 1.15 perseant if (/* bp->b_blkno == -1 && */
912 1.15 perseant !(bp->b_flags & (B_DELWRI|B_DONE))) {
913 1.10 fvdl ip->i_ffs_blocks += fsbtodb(fs, 1);
914 1.10 fvdl fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
915 1.1 mycroft }
916 1.10 fvdl ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
917 1.1 mycroft VOP_BWRITE(bp);
918 1.1 mycroft }
919 1.1 mycroft /* Update segment usage information. */
920 1.1 mycroft if (daddr != UNASSIGNED &&
921 1.1 mycroft !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
922 1.1 mycroft LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
923 1.1 mycroft #ifdef DIAGNOSTIC
924 1.10 fvdl if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
925 1.1 mycroft /* XXX -- Change to a panic. */
926 1.15 perseant printf("lfs_updatemeta: negative bytes (segment %d)\n",
927 1.15 perseant datosn(fs, daddr));
928 1.15 perseant printf("lfs_updatemeta: bp = 0x%p, addr = 0x%p\n",
929 1.15 perseant bp, bp->b_un.b_addr);
930 1.15 perseant /* panic ("Negative Bytes"); */
931 1.1 mycroft }
932 1.1 mycroft #endif
933 1.10 fvdl sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
934 1.1 mycroft error = VOP_BWRITE(bp);
935 1.1 mycroft }
936 1.1 mycroft }
937 1.1 mycroft }
938 1.1 mycroft
939 1.1 mycroft /*
940 1.1 mycroft * Start a new segment.
941 1.1 mycroft */
942 1.1 mycroft int
943 1.1 mycroft lfs_initseg(fs)
944 1.1 mycroft struct lfs *fs;
945 1.1 mycroft {
946 1.1 mycroft struct segment *sp;
947 1.1 mycroft SEGUSE *sup;
948 1.1 mycroft SEGSUM *ssp;
949 1.1 mycroft struct buf *bp;
950 1.1 mycroft int repeat;
951 1.15 perseant
952 1.1 mycroft sp = fs->lfs_sp;
953 1.15 perseant
954 1.1 mycroft repeat = 0;
955 1.1 mycroft /* Advance to the next segment. */
956 1.1 mycroft if (!LFS_PARTIAL_FITS(fs)) {
957 1.1 mycroft /* Wake up any cleaning procs waiting on this file system. */
958 1.1 mycroft wakeup(&lfs_allclean_wakeup);
959 1.10 fvdl wakeup(&fs->lfs_nextseg);
960 1.1 mycroft lfs_newseg(fs);
961 1.1 mycroft repeat = 1;
962 1.1 mycroft fs->lfs_offset = fs->lfs_curseg;
963 1.1 mycroft sp->seg_number = datosn(fs, fs->lfs_curseg);
964 1.1 mycroft sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
965 1.1 mycroft /*
966 1.1 mycroft * If the segment contains a superblock, update the offset
967 1.1 mycroft * and summary address to skip over it.
968 1.1 mycroft */
969 1.1 mycroft LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
970 1.1 mycroft if (sup->su_flags & SEGUSE_SUPERBLOCK) {
971 1.1 mycroft fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
972 1.1 mycroft sp->seg_bytes_left -= LFS_SBPAD;
973 1.1 mycroft }
974 1.1 mycroft brelse(bp);
975 1.1 mycroft } else {
976 1.1 mycroft sp->seg_number = datosn(fs, fs->lfs_curseg);
977 1.1 mycroft sp->seg_bytes_left = (fs->lfs_dbpseg -
978 1.15 perseant (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
979 1.1 mycroft }
980 1.1 mycroft fs->lfs_lastpseg = fs->lfs_offset;
981 1.15 perseant
982 1.1 mycroft sp->fs = fs;
983 1.1 mycroft sp->ibp = NULL;
984 1.1 mycroft sp->ninodes = 0;
985 1.15 perseant
986 1.1 mycroft /* Get a new buffer for SEGSUM and enter it into the buffer list. */
987 1.1 mycroft sp->cbpp = sp->bpp;
988 1.15 perseant *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
989 1.15 perseant fs->lfs_offset, LFS_SUMMARY_SIZE);
990 1.1 mycroft sp->segsum = (*sp->cbpp)->b_data;
991 1.1 mycroft bzero(sp->segsum, LFS_SUMMARY_SIZE);
992 1.1 mycroft sp->start_bpp = ++sp->cbpp;
993 1.1 mycroft fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
994 1.15 perseant
995 1.1 mycroft /* Set point to SEGSUM, initialize it. */
996 1.1 mycroft ssp = sp->segsum;
997 1.1 mycroft ssp->ss_next = fs->lfs_nextseg;
998 1.1 mycroft ssp->ss_nfinfo = ssp->ss_ninos = 0;
999 1.10 fvdl ssp->ss_magic = SS_MAGIC;
1000 1.1 mycroft
1001 1.1 mycroft /* Set pointer to first FINFO, initialize it. */
1002 1.3 cgd sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1003 1.1 mycroft sp->fip->fi_nblocks = 0;
1004 1.1 mycroft sp->start_lbp = &sp->fip->fi_blocks[0];
1005 1.10 fvdl sp->fip->fi_lastlength = 0;
1006 1.15 perseant
1007 1.1 mycroft sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1008 1.1 mycroft sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1009 1.15 perseant
1010 1.1 mycroft return(repeat);
1011 1.1 mycroft }
1012 1.1 mycroft
1013 1.1 mycroft /*
1014 1.1 mycroft * Return the next segment to write.
1015 1.1 mycroft */
1016 1.1 mycroft void
1017 1.1 mycroft lfs_newseg(fs)
1018 1.1 mycroft struct lfs *fs;
1019 1.1 mycroft {
1020 1.1 mycroft CLEANERINFO *cip;
1021 1.1 mycroft SEGUSE *sup;
1022 1.1 mycroft struct buf *bp;
1023 1.1 mycroft int curseg, isdirty, sn;
1024 1.15 perseant
1025 1.15 perseant LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1026 1.15 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1027 1.1 mycroft sup->su_nbytes = 0;
1028 1.1 mycroft sup->su_nsums = 0;
1029 1.1 mycroft sup->su_ninos = 0;
1030 1.15 perseant (void) VOP_BWRITE(bp);
1031 1.1 mycroft
1032 1.1 mycroft LFS_CLEANERINFO(cip, fs, bp);
1033 1.1 mycroft --cip->clean;
1034 1.1 mycroft ++cip->dirty;
1035 1.15 perseant fs->lfs_nclean = cip->clean;
1036 1.1 mycroft (void) VOP_BWRITE(bp);
1037 1.15 perseant
1038 1.1 mycroft fs->lfs_lastseg = fs->lfs_curseg;
1039 1.1 mycroft fs->lfs_curseg = fs->lfs_nextseg;
1040 1.1 mycroft for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1041 1.1 mycroft sn = (sn + 1) % fs->lfs_nseg;
1042 1.1 mycroft if (sn == curseg)
1043 1.1 mycroft panic("lfs_nextseg: no clean segments");
1044 1.1 mycroft LFS_SEGENTRY(sup, fs, sn, bp);
1045 1.1 mycroft isdirty = sup->su_flags & SEGUSE_DIRTY;
1046 1.1 mycroft brelse(bp);
1047 1.1 mycroft if (!isdirty)
1048 1.1 mycroft break;
1049 1.1 mycroft }
1050 1.15 perseant
1051 1.1 mycroft ++fs->lfs_nactive;
1052 1.1 mycroft fs->lfs_nextseg = sntoda(fs, sn);
1053 1.15 perseant if(lfs_dostats) {
1054 1.15 perseant ++lfs_stats.segsused;
1055 1.15 perseant }
1056 1.1 mycroft }
1057 1.1 mycroft
1058 1.1 mycroft int
1059 1.1 mycroft lfs_writeseg(fs, sp)
1060 1.1 mycroft struct lfs *fs;
1061 1.1 mycroft struct segment *sp;
1062 1.1 mycroft {
1063 1.1 mycroft extern int locked_queue_count;
1064 1.15 perseant extern long locked_queue_bytes;
1065 1.1 mycroft struct buf **bpp, *bp, *cbp;
1066 1.1 mycroft SEGUSE *sup;
1067 1.1 mycroft SEGSUM *ssp;
1068 1.1 mycroft dev_t i_dev;
1069 1.1 mycroft u_long *datap, *dp;
1070 1.10 fvdl int do_again, i, nblocks, s;
1071 1.15 perseant #ifdef LFS_TRACK_IOS
1072 1.15 perseant int j;
1073 1.15 perseant #endif
1074 1.4 christos int (*strategy)__P((void *));
1075 1.1 mycroft struct vop_strategy_args vop_strategy_a;
1076 1.1 mycroft u_short ninos;
1077 1.15 perseant struct vnode *devvp;
1078 1.1 mycroft char *p;
1079 1.15 perseant struct vnode *vn;
1080 1.15 perseant #if defined(DEBUG) && defined(LFS_PROPELLER)
1081 1.15 perseant static int propeller;
1082 1.15 perseant char propstring[4] = "-\\|/";
1083 1.15 perseant
1084 1.15 perseant printf("%c\b",propstring[propeller++]);
1085 1.15 perseant if(propeller==4)
1086 1.15 perseant propeller = 0;
1087 1.15 perseant #endif
1088 1.15 perseant
1089 1.1 mycroft /*
1090 1.1 mycroft * If there are no buffers other than the segment summary to write
1091 1.1 mycroft * and it is not a checkpoint, don't do anything. On a checkpoint,
1092 1.1 mycroft * even if there aren't any buffers, you need to write the superblock.
1093 1.1 mycroft */
1094 1.1 mycroft if ((nblocks = sp->cbpp - sp->bpp) == 1)
1095 1.1 mycroft return (0);
1096 1.15 perseant
1097 1.15 perseant #ifdef DEBUG_LFS
1098 1.15 perseant lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1099 1.15 perseant #endif
1100 1.15 perseant
1101 1.10 fvdl /* Update the segment usage information. */
1102 1.10 fvdl LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1103 1.15 perseant
1104 1.10 fvdl /* Loop through all blocks, except the segment summary. */
1105 1.10 fvdl for (bpp = sp->bpp; ++bpp < sp->cbpp; )
1106 1.10 fvdl sup->su_nbytes += (*bpp)->b_bcount;
1107 1.15 perseant
1108 1.1 mycroft ssp = (SEGSUM *)sp->segsum;
1109 1.15 perseant
1110 1.1 mycroft ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1111 1.15 perseant /* sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE; */
1112 1.1 mycroft sup->su_nbytes += LFS_SUMMARY_SIZE;
1113 1.1 mycroft sup->su_lastmod = time.tv_sec;
1114 1.1 mycroft sup->su_ninos += ninos;
1115 1.1 mycroft ++sup->su_nsums;
1116 1.15 perseant
1117 1.1 mycroft do_again = !(bp->b_flags & B_GATHERED);
1118 1.1 mycroft (void)VOP_BWRITE(bp);
1119 1.1 mycroft /*
1120 1.1 mycroft * Compute checksum across data and then across summary; the first
1121 1.1 mycroft * block (the summary block) is skipped. Set the create time here
1122 1.1 mycroft * so that it's guaranteed to be later than the inode mod times.
1123 1.1 mycroft *
1124 1.1 mycroft * XXX
1125 1.1 mycroft * Fix this to do it inline, instead of malloc/copy.
1126 1.1 mycroft */
1127 1.1 mycroft datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1128 1.1 mycroft for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1129 1.15 perseant if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1130 1.1 mycroft if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1131 1.15 perseant panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1132 1.18 perseant } else {
1133 1.18 perseant if( !((*bpp)->b_flags & B_CALL) ) {
1134 1.18 perseant /*
1135 1.18 perseant * Before we record data for a checksm,
1136 1.18 perseant * make sure the data won't change in between
1137 1.18 perseant * the checksum calculation and the write,
1138 1.18 perseant * by marking the buffer B_BUSY. It will
1139 1.18 perseant * be freed later by brelse().
1140 1.18 perseant */
1141 1.18 perseant again:
1142 1.18 perseant s = splbio();
1143 1.18 perseant if((*bpp)->b_flags & B_BUSY) {
1144 1.18 perseant #ifdef DEBUG
1145 1.18 perseant printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1146 1.18 perseant VTOI((*bpp)->b_vp)->i_number,
1147 1.18 perseant bp->b_lblkno);
1148 1.18 perseant #endif
1149 1.18 perseant (*bpp)->b_flags |= B_WANTED;
1150 1.18 perseant tsleep((*bpp), (PRIBIO + 1),
1151 1.18 perseant "lfs_writeseg", 0);
1152 1.18 perseant splx(s);
1153 1.18 perseant goto again;
1154 1.18 perseant }
1155 1.18 perseant (*bpp)->b_flags |= B_BUSY;
1156 1.18 perseant splx(s);
1157 1.18 perseant }
1158 1.1 mycroft *dp++ = ((u_long *)(*bpp)->b_data)[0];
1159 1.18 perseant }
1160 1.1 mycroft }
1161 1.1 mycroft ssp->ss_create = time.tv_sec;
1162 1.1 mycroft ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1163 1.1 mycroft ssp->ss_sumsum =
1164 1.1 mycroft cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1165 1.1 mycroft free(datap, M_SEGMENT);
1166 1.1 mycroft #ifdef DIAGNOSTIC
1167 1.1 mycroft if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1168 1.1 mycroft panic("lfs_writeseg: No diskspace for summary");
1169 1.1 mycroft #endif
1170 1.1 mycroft fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1171 1.1 mycroft
1172 1.1 mycroft i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1173 1.15 perseant devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1174 1.15 perseant strategy = devvp->v_op[VOFFSET(vop_strategy)];
1175 1.1 mycroft
1176 1.1 mycroft /*
1177 1.1 mycroft * When we simply write the blocks we lose a rotation for every block
1178 1.1 mycroft * written. To avoid this problem, we allocate memory in chunks, copy
1179 1.15 perseant * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1180 1.1 mycroft * largest size I/O devices can handle.
1181 1.1 mycroft * When the data is copied to the chunk, turn off the the B_LOCKED bit
1182 1.1 mycroft * and brelse the buffer (which will move them to the LRU list). Add
1183 1.1 mycroft * the B_CALL flag to the buffer header so we can count I/O's for the
1184 1.1 mycroft * checkpoints and so we can release the allocated memory.
1185 1.1 mycroft *
1186 1.1 mycroft * XXX
1187 1.1 mycroft * This should be removed if the new virtual memory system allows us to
1188 1.1 mycroft * easily make the buffers contiguous in kernel memory and if that's
1189 1.1 mycroft * fast enough.
1190 1.1 mycroft */
1191 1.15 perseant
1192 1.15 perseant #define CHUNKSIZE MAXPHYS
1193 1.15 perseant
1194 1.15 perseant if(devvp==NULL)
1195 1.15 perseant panic("devvp is NULL");
1196 1.15 perseant for (bpp = sp->bpp,i = nblocks; i;) {
1197 1.15 perseant cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1198 1.1 mycroft cbp->b_dev = i_dev;
1199 1.1 mycroft cbp->b_flags |= B_ASYNC | B_BUSY;
1200 1.10 fvdl cbp->b_bcount = 0;
1201 1.1 mycroft
1202 1.17 perseant #ifdef DIAGNOSTIC
1203 1.17 perseant if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1204 1.17 perseant panic("lfs_writeseg: Segment overwrite");
1205 1.17 perseant }
1206 1.17 perseant #endif
1207 1.17 perseant
1208 1.15 perseant if(fs->lfs_iocount >= LFS_THROTTLE) {
1209 1.15 perseant tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1210 1.15 perseant }
1211 1.1 mycroft s = splbio();
1212 1.1 mycroft ++fs->lfs_iocount;
1213 1.15 perseant #ifdef LFS_TRACK_IOS
1214 1.15 perseant for(j=0;j<LFS_THROTTLE;j++) {
1215 1.15 perseant if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1216 1.15 perseant fs->lfs_pending[j] = cbp->b_blkno;
1217 1.15 perseant break;
1218 1.15 perseant }
1219 1.15 perseant }
1220 1.15 perseant #endif /* LFS_TRACK_IOS */
1221 1.15 perseant for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1222 1.10 fvdl bp = *bpp;
1223 1.15 perseant
1224 1.15 perseant if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1225 1.10 fvdl break;
1226 1.10 fvdl
1227 1.1 mycroft /*
1228 1.1 mycroft * Fake buffers from the cleaner are marked as B_INVAL.
1229 1.1 mycroft * We need to copy the data from user space rather than
1230 1.1 mycroft * from the buffer indicated.
1231 1.1 mycroft * XXX == what do I do on an error?
1232 1.1 mycroft */
1233 1.15 perseant if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1234 1.1 mycroft if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1235 1.15 perseant panic("lfs_writeseg: copyin failed [2]");
1236 1.1 mycroft } else
1237 1.1 mycroft bcopy(bp->b_data, p, bp->b_bcount);
1238 1.1 mycroft p += bp->b_bcount;
1239 1.10 fvdl cbp->b_bcount += bp->b_bcount;
1240 1.15 perseant if (bp->b_flags & B_LOCKED) {
1241 1.1 mycroft --locked_queue_count;
1242 1.15 perseant locked_queue_bytes -= bp->b_bufsize;
1243 1.15 perseant }
1244 1.1 mycroft bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1245 1.15 perseant B_LOCKED | B_GATHERED);
1246 1.15 perseant vn = bp->b_vp;
1247 1.1 mycroft if (bp->b_flags & B_CALL) {
1248 1.1 mycroft /* if B_CALL, it was created with newbuf */
1249 1.15 perseant lfs_freebuf(bp);
1250 1.1 mycroft } else {
1251 1.1 mycroft bremfree(bp);
1252 1.1 mycroft bp->b_flags |= B_DONE;
1253 1.15 perseant if(vn)
1254 1.15 perseant reassignbuf(bp, vn);
1255 1.1 mycroft brelse(bp);
1256 1.1 mycroft }
1257 1.15 perseant if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1258 1.15 perseant bp->b_flags &= ~B_NEEDCOMMIT;
1259 1.15 perseant wakeup(bp);
1260 1.15 perseant }
1261 1.19 perseant /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1262 1.19 perseant wakeup(vn);
1263 1.15 perseant bpp++;
1264 1.1 mycroft }
1265 1.1 mycroft ++cbp->b_vp->v_numoutput;
1266 1.1 mycroft splx(s);
1267 1.1 mycroft /*
1268 1.1 mycroft * XXXX This is a gross and disgusting hack. Since these
1269 1.1 mycroft * buffers are physically addressed, they hang off the
1270 1.1 mycroft * device vnode (devvp). As a result, they have no way
1271 1.1 mycroft * of getting to the LFS superblock or lfs structure to
1272 1.1 mycroft * keep track of the number of I/O's pending. So, I am
1273 1.1 mycroft * going to stuff the fs into the saveaddr field of
1274 1.1 mycroft * the buffer (yuk).
1275 1.1 mycroft */
1276 1.1 mycroft cbp->b_saveaddr = (caddr_t)fs;
1277 1.1 mycroft vop_strategy_a.a_desc = VDESC(vop_strategy);
1278 1.1 mycroft vop_strategy_a.a_bp = cbp;
1279 1.1 mycroft (strategy)(&vop_strategy_a);
1280 1.1 mycroft }
1281 1.1 mycroft /*
1282 1.1 mycroft * XXX
1283 1.1 mycroft * Vinvalbuf can move locked buffers off the locked queue
1284 1.1 mycroft * and we have no way of knowing about this. So, after
1285 1.15 perseant * doing a big write, we recalculate how many buffers are
1286 1.1 mycroft * really still left on the locked queue.
1287 1.1 mycroft */
1288 1.15 perseant lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1289 1.1 mycroft wakeup(&locked_queue_count);
1290 1.15 perseant if(lfs_dostats) {
1291 1.15 perseant ++lfs_stats.psegwrites;
1292 1.15 perseant lfs_stats.blocktot += nblocks - 1;
1293 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1294 1.15 perseant ++lfs_stats.psyncwrites;
1295 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1296 1.15 perseant ++lfs_stats.pcleanwrites;
1297 1.15 perseant lfs_stats.cleanblocks += nblocks - 1;
1298 1.15 perseant }
1299 1.1 mycroft }
1300 1.1 mycroft return (lfs_initseg(fs) || do_again);
1301 1.1 mycroft }
1302 1.1 mycroft
1303 1.1 mycroft void
1304 1.15 perseant lfs_writesuper(fs, daddr)
1305 1.1 mycroft struct lfs *fs;
1306 1.15 perseant daddr_t daddr;
1307 1.1 mycroft {
1308 1.1 mycroft struct buf *bp;
1309 1.1 mycroft dev_t i_dev;
1310 1.4 christos int (*strategy) __P((void *));
1311 1.1 mycroft int s;
1312 1.1 mycroft struct vop_strategy_args vop_strategy_a;
1313 1.1 mycroft
1314 1.15 perseant #ifdef LFS_CANNOT_ROLLFW
1315 1.15 perseant /*
1316 1.15 perseant * If we can write one superblock while another is in
1317 1.15 perseant * progress, we risk not having a complete checkpoint if we crash.
1318 1.15 perseant * So, block here if a superblock write is in progress.
1319 1.15 perseant *
1320 1.15 perseant * XXX - should be a proper lock, not this hack
1321 1.15 perseant */
1322 1.15 perseant while(fs->lfs_sbactive) {
1323 1.15 perseant tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1324 1.15 perseant }
1325 1.15 perseant fs->lfs_sbactive = daddr;
1326 1.15 perseant #endif
1327 1.1 mycroft i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1328 1.1 mycroft strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1329 1.1 mycroft
1330 1.15 perseant /* Set timestamp of this version of the superblock */
1331 1.15 perseant fs->lfs_tstamp = time.tv_sec;
1332 1.15 perseant
1333 1.1 mycroft /* Checksum the superblock and copy it into a buffer. */
1334 1.12 pk fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1335 1.15 perseant bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1336 1.12 pk *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1337 1.15 perseant
1338 1.1 mycroft bp->b_dev = i_dev;
1339 1.1 mycroft bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1340 1.1 mycroft bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1341 1.1 mycroft bp->b_iodone = lfs_supercallback;
1342 1.15 perseant /* XXX KS - same nasty hack as above */
1343 1.15 perseant bp->b_saveaddr = (caddr_t)fs;
1344 1.15 perseant
1345 1.1 mycroft vop_strategy_a.a_desc = VDESC(vop_strategy);
1346 1.1 mycroft vop_strategy_a.a_bp = bp;
1347 1.1 mycroft s = splbio();
1348 1.1 mycroft ++bp->b_vp->v_numoutput;
1349 1.1 mycroft splx(s);
1350 1.1 mycroft (strategy)(&vop_strategy_a);
1351 1.1 mycroft }
1352 1.1 mycroft
1353 1.1 mycroft /*
1354 1.1 mycroft * Logical block number match routines used when traversing the dirty block
1355 1.1 mycroft * chain.
1356 1.1 mycroft */
1357 1.1 mycroft int
1358 1.15 perseant lfs_match_fake(fs, bp)
1359 1.15 perseant struct lfs *fs;
1360 1.15 perseant struct buf *bp;
1361 1.15 perseant {
1362 1.19 perseant return (bp->b_flags & B_CALL);
1363 1.15 perseant }
1364 1.15 perseant
1365 1.15 perseant int
1366 1.1 mycroft lfs_match_data(fs, bp)
1367 1.1 mycroft struct lfs *fs;
1368 1.1 mycroft struct buf *bp;
1369 1.1 mycroft {
1370 1.1 mycroft return (bp->b_lblkno >= 0);
1371 1.1 mycroft }
1372 1.1 mycroft
1373 1.1 mycroft int
1374 1.1 mycroft lfs_match_indir(fs, bp)
1375 1.1 mycroft struct lfs *fs;
1376 1.1 mycroft struct buf *bp;
1377 1.1 mycroft {
1378 1.1 mycroft int lbn;
1379 1.1 mycroft
1380 1.1 mycroft lbn = bp->b_lblkno;
1381 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1382 1.1 mycroft }
1383 1.1 mycroft
1384 1.1 mycroft int
1385 1.1 mycroft lfs_match_dindir(fs, bp)
1386 1.1 mycroft struct lfs *fs;
1387 1.1 mycroft struct buf *bp;
1388 1.1 mycroft {
1389 1.1 mycroft int lbn;
1390 1.1 mycroft
1391 1.1 mycroft lbn = bp->b_lblkno;
1392 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1393 1.1 mycroft }
1394 1.1 mycroft
1395 1.1 mycroft int
1396 1.1 mycroft lfs_match_tindir(fs, bp)
1397 1.1 mycroft struct lfs *fs;
1398 1.1 mycroft struct buf *bp;
1399 1.1 mycroft {
1400 1.1 mycroft int lbn;
1401 1.1 mycroft
1402 1.1 mycroft lbn = bp->b_lblkno;
1403 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1404 1.1 mycroft }
1405 1.1 mycroft
1406 1.1 mycroft /*
1407 1.15 perseant * XXX - The only buffers that are going to hit these functions are the
1408 1.15 perseant * segment write blocks, or the segment summaries, or the superblocks.
1409 1.15 perseant *
1410 1.15 perseant * All of the above are created by lfs_newbuf, and so do not need to be
1411 1.15 perseant * released via brelse.
1412 1.1 mycroft */
1413 1.1 mycroft void
1414 1.1 mycroft lfs_callback(bp)
1415 1.1 mycroft struct buf *bp;
1416 1.1 mycroft {
1417 1.1 mycroft struct lfs *fs;
1418 1.15 perseant #ifdef LFS_TRACK_IOS
1419 1.15 perseant int j;
1420 1.15 perseant #endif
1421 1.1 mycroft
1422 1.1 mycroft fs = (struct lfs *)bp->b_saveaddr;
1423 1.1 mycroft #ifdef DIAGNOSTIC
1424 1.1 mycroft if (fs->lfs_iocount == 0)
1425 1.1 mycroft panic("lfs_callback: zero iocount\n");
1426 1.1 mycroft #endif
1427 1.15 perseant if (--fs->lfs_iocount < LFS_THROTTLE)
1428 1.1 mycroft wakeup(&fs->lfs_iocount);
1429 1.15 perseant #ifdef LFS_TRACK_IOS
1430 1.15 perseant for(j=0;j<LFS_THROTTLE;j++) {
1431 1.15 perseant if(fs->lfs_pending[j]==bp->b_blkno) {
1432 1.15 perseant fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1433 1.15 perseant wakeup(&(fs->lfs_pending[j]));
1434 1.15 perseant break;
1435 1.15 perseant }
1436 1.15 perseant }
1437 1.15 perseant #endif /* LFS_TRACK_IOS */
1438 1.1 mycroft
1439 1.15 perseant lfs_freebuf(bp);
1440 1.1 mycroft }
1441 1.1 mycroft
1442 1.1 mycroft void
1443 1.1 mycroft lfs_supercallback(bp)
1444 1.1 mycroft struct buf *bp;
1445 1.1 mycroft {
1446 1.15 perseant #ifdef LFS_CANNOT_ROLLFW
1447 1.15 perseant struct lfs *fs;
1448 1.15 perseant
1449 1.15 perseant fs = (struct lfs *)bp->b_saveaddr;
1450 1.15 perseant fs->lfs_sbactive=NULL;
1451 1.15 perseant wakeup(&fs->lfs_sbactive);
1452 1.15 perseant #endif
1453 1.15 perseant lfs_freebuf(bp);
1454 1.1 mycroft }
1455 1.1 mycroft
1456 1.1 mycroft /*
1457 1.1 mycroft * Shellsort (diminishing increment sort) from Data Structures and
1458 1.1 mycroft * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1459 1.1 mycroft * see also Knuth Vol. 3, page 84. The increments are selected from
1460 1.1 mycroft * formula (8), page 95. Roughly O(N^3/2).
1461 1.1 mycroft */
1462 1.1 mycroft /*
1463 1.1 mycroft * This is our own private copy of shellsort because we want to sort
1464 1.1 mycroft * two parallel arrays (the array of buffer pointers and the array of
1465 1.1 mycroft * logical block numbers) simultaneously. Note that we cast the array
1466 1.1 mycroft * of logical block numbers to a unsigned in this routine so that the
1467 1.1 mycroft * negative block numbers (meta data blocks) sort AFTER the data blocks.
1468 1.1 mycroft */
1469 1.15 perseant
1470 1.1 mycroft void
1471 1.1 mycroft lfs_shellsort(bp_array, lb_array, nmemb)
1472 1.1 mycroft struct buf **bp_array;
1473 1.10 fvdl ufs_daddr_t *lb_array;
1474 1.1 mycroft register int nmemb;
1475 1.1 mycroft {
1476 1.1 mycroft static int __rsshell_increments[] = { 4, 1, 0 };
1477 1.1 mycroft register int incr, *incrp, t1, t2;
1478 1.1 mycroft struct buf *bp_temp;
1479 1.1 mycroft u_long lb_temp;
1480 1.1 mycroft
1481 1.4 christos for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1482 1.1 mycroft for (t1 = incr; t1 < nmemb; ++t1)
1483 1.1 mycroft for (t2 = t1 - incr; t2 >= 0;)
1484 1.1 mycroft if (lb_array[t2] > lb_array[t2 + incr]) {
1485 1.1 mycroft lb_temp = lb_array[t2];
1486 1.1 mycroft lb_array[t2] = lb_array[t2 + incr];
1487 1.1 mycroft lb_array[t2 + incr] = lb_temp;
1488 1.1 mycroft bp_temp = bp_array[t2];
1489 1.1 mycroft bp_array[t2] = bp_array[t2 + incr];
1490 1.1 mycroft bp_array[t2 + incr] = bp_temp;
1491 1.1 mycroft t2 -= incr;
1492 1.1 mycroft } else
1493 1.1 mycroft break;
1494 1.1 mycroft }
1495 1.1 mycroft
1496 1.1 mycroft /*
1497 1.1 mycroft * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1498 1.1 mycroft */
1499 1.4 christos int
1500 1.1 mycroft lfs_vref(vp)
1501 1.1 mycroft register struct vnode *vp;
1502 1.1 mycroft {
1503 1.15 perseant /*
1504 1.15 perseant * If we return 1 here during a flush, we risk vinvalbuf() not
1505 1.15 perseant * being able to flush all of the pages from this vnode, which
1506 1.15 perseant * will cause it to panic. So, return 0 if a flush is in progress.
1507 1.15 perseant */
1508 1.15 perseant if (vp->v_flag & VXLOCK) {
1509 1.15 perseant if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1510 1.15 perseant return 0;
1511 1.15 perseant }
1512 1.1 mycroft return(1);
1513 1.15 perseant }
1514 1.1 mycroft return (vget(vp, 0));
1515 1.1 mycroft }
1516 1.1 mycroft
1517 1.10 fvdl /*
1518 1.10 fvdl * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1519 1.10 fvdl * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1520 1.10 fvdl */
1521 1.1 mycroft void
1522 1.1 mycroft lfs_vunref(vp)
1523 1.1 mycroft register struct vnode *vp;
1524 1.1 mycroft {
1525 1.17 perseant /*
1526 1.17 perseant * Analogous to lfs_vref, if the node is flushing, fake it.
1527 1.17 perseant */
1528 1.17 perseant if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1529 1.17 perseant return;
1530 1.17 perseant }
1531 1.17 perseant
1532 1.10 fvdl simple_lock(&vp->v_interlock);
1533 1.15 perseant #ifdef DIAGNOSTIC
1534 1.17 perseant if(vp->v_usecount<=0) {
1535 1.17 perseant printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1536 1.17 perseant printf("lfs_vunref: usecount = %d\n", vp->v_usecount);
1537 1.15 perseant panic("lfs_vunref: v_usecount<0");
1538 1.15 perseant }
1539 1.15 perseant #endif
1540 1.10 fvdl vp->v_usecount--;
1541 1.10 fvdl if (vp->v_usecount > 0) {
1542 1.15 perseant simple_unlock(&vp->v_interlock);
1543 1.15 perseant return;
1544 1.15 perseant }
1545 1.25 perseant #ifdef DIAGNOSTIC
1546 1.25 perseant if(VOP_ISLOCKED(vp))
1547 1.25 perseant panic("lfs_vunref: vnode locked");
1548 1.25 perseant #endif
1549 1.15 perseant /*
1550 1.10 fvdl * insert at tail of LRU list
1551 1.1 mycroft */
1552 1.10 fvdl simple_lock(&vnode_free_list_slock);
1553 1.10 fvdl TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1554 1.10 fvdl simple_unlock(&vnode_free_list_slock);
1555 1.10 fvdl simple_unlock(&vp->v_interlock);
1556 1.1 mycroft }
1557 1.15 perseant
1558 1.15 perseant /*
1559 1.15 perseant * We use this when we have vnodes that were loaded in solely for cleaning.
1560 1.15 perseant * There is no reason to believe that these vnodes will be referenced again
1561 1.15 perseant * soon, since the cleaning process is unrelated to normal filesystem
1562 1.15 perseant * activity. Putting cleaned vnodes at the tail of the list has the effect
1563 1.15 perseant * of flushing the vnode LRU. So, put vnodes that were loaded only for
1564 1.15 perseant * cleaning at the head of the list, instead.
1565 1.15 perseant */
1566 1.15 perseant void
1567 1.15 perseant lfs_vunref_head(vp)
1568 1.15 perseant register struct vnode *vp;
1569 1.15 perseant {
1570 1.15 perseant simple_lock(&vp->v_interlock);
1571 1.15 perseant #ifdef DIAGNOSTIC
1572 1.15 perseant if(vp->v_usecount==0) {
1573 1.15 perseant panic("lfs_vunref: v_usecount<0");
1574 1.15 perseant }
1575 1.15 perseant #endif
1576 1.15 perseant vp->v_usecount--;
1577 1.15 perseant if (vp->v_usecount > 0) {
1578 1.15 perseant simple_unlock(&vp->v_interlock);
1579 1.15 perseant return;
1580 1.15 perseant }
1581 1.25 perseant #ifdef DIAGNOSTIC
1582 1.25 perseant if(VOP_ISLOCKED(vp))
1583 1.25 perseant panic("lfs_vunref_head: vnode locked");
1584 1.25 perseant #endif
1585 1.15 perseant /*
1586 1.15 perseant * insert at head of LRU list
1587 1.15 perseant */
1588 1.15 perseant simple_lock(&vnode_free_list_slock);
1589 1.15 perseant TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1590 1.15 perseant simple_unlock(&vnode_free_list_slock);
1591 1.15 perseant simple_unlock(&vp->v_interlock);
1592 1.15 perseant }
1593 1.15 perseant
1594