lfs_segment.c revision 1.67.2.8 1 1.67.2.8 nathanw /* $NetBSD: lfs_segment.c,v 1.67.2.8 2002/08/01 02:47:04 nathanw Exp $ */
2 1.2 cgd
3 1.15 perseant /*-
4 1.58 perseant * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.15 perseant * All rights reserved.
6 1.15 perseant *
7 1.15 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.15 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.15 perseant *
10 1.15 perseant * Redistribution and use in source and binary forms, with or without
11 1.15 perseant * modification, are permitted provided that the following conditions
12 1.15 perseant * are met:
13 1.15 perseant * 1. Redistributions of source code must retain the above copyright
14 1.15 perseant * notice, this list of conditions and the following disclaimer.
15 1.15 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.15 perseant * notice, this list of conditions and the following disclaimer in the
17 1.15 perseant * documentation and/or other materials provided with the distribution.
18 1.15 perseant * 3. All advertising materials mentioning features or use of this software
19 1.15 perseant * must display the following acknowledgement:
20 1.15 perseant * This product includes software developed by the NetBSD
21 1.15 perseant * Foundation, Inc. and its contributors.
22 1.15 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.15 perseant * contributors may be used to endorse or promote products derived
24 1.15 perseant * from this software without specific prior written permission.
25 1.15 perseant *
26 1.15 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.15 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.15 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.15 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.15 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.15 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.15 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.15 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.15 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.15 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.15 perseant * POSSIBILITY OF SUCH DAMAGE.
37 1.15 perseant */
38 1.1 mycroft /*
39 1.1 mycroft * Copyright (c) 1991, 1993
40 1.1 mycroft * The Regents of the University of California. All rights reserved.
41 1.1 mycroft *
42 1.1 mycroft * Redistribution and use in source and binary forms, with or without
43 1.1 mycroft * modification, are permitted provided that the following conditions
44 1.1 mycroft * are met:
45 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
46 1.1 mycroft * notice, this list of conditions and the following disclaimer.
47 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
49 1.1 mycroft * documentation and/or other materials provided with the distribution.
50 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
51 1.1 mycroft * must display the following acknowledgement:
52 1.1 mycroft * This product includes software developed by the University of
53 1.1 mycroft * California, Berkeley and its contributors.
54 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
55 1.1 mycroft * may be used to endorse or promote products derived from this software
56 1.1 mycroft * without specific prior written permission.
57 1.1 mycroft *
58 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 mycroft * SUCH DAMAGE.
69 1.1 mycroft *
70 1.10 fvdl * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 1.1 mycroft */
72 1.1 mycroft
73 1.67.2.4 nathanw #include <sys/cdefs.h>
74 1.67.2.8 nathanw __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.67.2.8 2002/08/01 02:47:04 nathanw Exp $");
75 1.67.2.4 nathanw
76 1.16 perseant #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77 1.16 perseant
78 1.67.2.2 nathanw #if defined(_KERNEL_OPT)
79 1.30 perseant #include "opt_ddb.h"
80 1.65 jdolecek #endif
81 1.65 jdolecek
82 1.1 mycroft #include <sys/param.h>
83 1.1 mycroft #include <sys/systm.h>
84 1.1 mycroft #include <sys/namei.h>
85 1.1 mycroft #include <sys/kernel.h>
86 1.1 mycroft #include <sys/resourcevar.h>
87 1.1 mycroft #include <sys/file.h>
88 1.1 mycroft #include <sys/stat.h>
89 1.1 mycroft #include <sys/buf.h>
90 1.1 mycroft #include <sys/proc.h>
91 1.1 mycroft #include <sys/conf.h>
92 1.1 mycroft #include <sys/vnode.h>
93 1.1 mycroft #include <sys/malloc.h>
94 1.1 mycroft #include <sys/mount.h>
95 1.1 mycroft
96 1.1 mycroft #include <miscfs/specfs/specdev.h>
97 1.1 mycroft #include <miscfs/fifofs/fifo.h>
98 1.1 mycroft
99 1.1 mycroft #include <ufs/ufs/inode.h>
100 1.1 mycroft #include <ufs/ufs/dir.h>
101 1.1 mycroft #include <ufs/ufs/ufsmount.h>
102 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
103 1.1 mycroft
104 1.1 mycroft #include <ufs/lfs/lfs.h>
105 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
106 1.1 mycroft
107 1.67.2.6 nathanw #include <uvm/uvm.h>
108 1.67.2.6 nathanw #include <uvm/uvm_extern.h>
109 1.67.2.6 nathanw
110 1.67.2.3 nathanw extern int count_lock_queue(void);
111 1.10 fvdl extern struct simplelock vnode_free_list_slock; /* XXX */
112 1.1 mycroft
113 1.67.2.6 nathanw static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 1.67.2.6 nathanw static void lfs_super_aiodone(struct buf *);
115 1.67.2.6 nathanw static void lfs_cluster_aiodone(struct buf *);
116 1.67.2.6 nathanw static void lfs_cluster_callback(struct buf *);
117 1.67.2.6 nathanw static struct buf **lookahead_pagemove(struct buf **, int, size_t *);
118 1.67.2.6 nathanw
119 1.1 mycroft /*
120 1.1 mycroft * Determine if it's OK to start a partial in this segment, or if we need
121 1.1 mycroft * to go on to a new segment.
122 1.1 mycroft */
123 1.1 mycroft #define LFS_PARTIAL_FITS(fs) \
124 1.67.2.3 nathanw ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
125 1.67.2.3 nathanw fragstofsb((fs), (fs)->lfs_frag))
126 1.1 mycroft
127 1.67.2.3 nathanw void lfs_callback(struct buf *);
128 1.67.2.3 nathanw int lfs_gather(struct lfs *, struct segment *,
129 1.67.2.3 nathanw struct vnode *, int (*)(struct lfs *, struct buf *));
130 1.67.2.3 nathanw int lfs_gatherblock(struct segment *, struct buf *, int *);
131 1.67.2.3 nathanw void lfs_iset(struct inode *, ufs_daddr_t, time_t);
132 1.67.2.3 nathanw int lfs_match_fake(struct lfs *, struct buf *);
133 1.67.2.3 nathanw int lfs_match_data(struct lfs *, struct buf *);
134 1.67.2.3 nathanw int lfs_match_dindir(struct lfs *, struct buf *);
135 1.67.2.3 nathanw int lfs_match_indir(struct lfs *, struct buf *);
136 1.67.2.3 nathanw int lfs_match_tindir(struct lfs *, struct buf *);
137 1.67.2.3 nathanw void lfs_newseg(struct lfs *);
138 1.67.2.3 nathanw void lfs_shellsort(struct buf **, ufs_daddr_t *, int);
139 1.67.2.3 nathanw void lfs_supercallback(struct buf *);
140 1.67.2.3 nathanw void lfs_updatemeta(struct segment *);
141 1.67.2.3 nathanw int lfs_vref(struct vnode *);
142 1.67.2.3 nathanw void lfs_vunref(struct vnode *);
143 1.67.2.3 nathanw void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
144 1.67.2.3 nathanw int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
145 1.67.2.3 nathanw int lfs_writeseg(struct lfs *, struct segment *);
146 1.67.2.3 nathanw void lfs_writesuper(struct lfs *, daddr_t);
147 1.67.2.3 nathanw int lfs_writevnodes(struct lfs *fs, struct mount *mp,
148 1.67.2.3 nathanw struct segment *sp, int dirops);
149 1.1 mycroft
150 1.1 mycroft int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 1.15 perseant int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 1.25 perseant int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 1.32 perseant int lfs_dirvcount = 0; /* # active dirops */
154 1.1 mycroft
155 1.1 mycroft /* Statistics Counters */
156 1.15 perseant int lfs_dostats = 1;
157 1.1 mycroft struct lfs_stats lfs_stats;
158 1.1 mycroft
159 1.62 perseant extern int locked_queue_count;
160 1.62 perseant extern long locked_queue_bytes;
161 1.62 perseant
162 1.1 mycroft /* op values to lfs_writevnodes */
163 1.15 perseant #define VN_REG 0
164 1.1 mycroft #define VN_DIROP 1
165 1.1 mycroft #define VN_EMPTY 2
166 1.15 perseant #define VN_CLEAN 3
167 1.15 perseant
168 1.15 perseant #define LFS_MAX_ACTIVE 10
169 1.15 perseant
170 1.15 perseant /*
171 1.15 perseant * XXX KS - Set modification time on the Ifile, so the cleaner can
172 1.15 perseant * read the fs mod time off of it. We don't set IN_UPDATE here,
173 1.15 perseant * since we don't really need this to be flushed to disk (and in any
174 1.15 perseant * case that wouldn't happen to the Ifile until we checkpoint).
175 1.15 perseant */
176 1.15 perseant void
177 1.67.2.3 nathanw lfs_imtime(struct lfs *fs)
178 1.15 perseant {
179 1.15 perseant struct timespec ts;
180 1.15 perseant struct inode *ip;
181 1.15 perseant
182 1.15 perseant TIMEVAL_TO_TIMESPEC(&time, &ts);
183 1.15 perseant ip = VTOI(fs->lfs_ivnode);
184 1.15 perseant ip->i_ffs_mtime = ts.tv_sec;
185 1.15 perseant ip->i_ffs_mtimensec = ts.tv_nsec;
186 1.15 perseant }
187 1.1 mycroft
188 1.1 mycroft /*
189 1.1 mycroft * Ifile and meta data blocks are not marked busy, so segment writes MUST be
190 1.1 mycroft * single threaded. Currently, there are two paths into lfs_segwrite, sync()
191 1.1 mycroft * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
192 1.1 mycroft * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
193 1.1 mycroft */
194 1.1 mycroft
195 1.15 perseant #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
196 1.15 perseant #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197 1.15 perseant #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
198 1.15 perseant
199 1.1 mycroft int
200 1.67.2.3 nathanw lfs_vflush(struct vnode *vp)
201 1.1 mycroft {
202 1.1 mycroft struct inode *ip;
203 1.1 mycroft struct lfs *fs;
204 1.1 mycroft struct segment *sp;
205 1.38 perseant struct buf *bp, *nbp, *tbp, *tnbp;
206 1.30 perseant int error, s;
207 1.19 perseant
208 1.22 perseant ip = VTOI(vp);
209 1.22 perseant fs = VFSTOUFS(vp->v_mount)->um_lfs;
210 1.22 perseant
211 1.67.2.5 nathanw if (ip->i_flag & IN_CLEANING) {
212 1.19 perseant #ifdef DEBUG_LFS
213 1.19 perseant ivndebug(vp,"vflush/in_cleaning");
214 1.19 perseant #endif
215 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
216 1.56 perseant LFS_SET_UINO(ip, IN_MODIFIED);
217 1.56 perseant
218 1.38 perseant /*
219 1.38 perseant * Toss any cleaning buffers that have real counterparts
220 1.38 perseant * to avoid losing new data
221 1.38 perseant */
222 1.38 perseant s = splbio();
223 1.67.2.6 nathanw for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
224 1.67.2.6 nathanw nbp = LIST_NEXT(bp, b_vnbufs);
225 1.67.2.5 nathanw if (bp->b_flags & B_CALL) {
226 1.67.2.6 nathanw for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
227 1.67.2.5 nathanw tbp = tnbp)
228 1.38 perseant {
229 1.67.2.6 nathanw tnbp = LIST_NEXT(tbp, b_vnbufs);
230 1.67.2.5 nathanw if (tbp->b_vp == bp->b_vp
231 1.38 perseant && tbp->b_lblkno == bp->b_lblkno
232 1.38 perseant && tbp != bp)
233 1.38 perseant {
234 1.67.2.3 nathanw fs->lfs_avail += btofsb(fs, bp->b_bcount);
235 1.62 perseant wakeup(&fs->lfs_avail);
236 1.38 perseant lfs_freebuf(bp);
237 1.67.2.3 nathanw bp = NULL;
238 1.67.2.3 nathanw break;
239 1.38 perseant }
240 1.38 perseant }
241 1.38 perseant }
242 1.38 perseant }
243 1.38 perseant splx(s);
244 1.19 perseant }
245 1.19 perseant
246 1.19 perseant /* If the node is being written, wait until that is done */
247 1.67.2.6 nathanw s = splbio();
248 1.67.2.5 nathanw if (WRITEINPROG(vp)) {
249 1.19 perseant #ifdef DEBUG_LFS
250 1.19 perseant ivndebug(vp,"vflush/writeinprog");
251 1.19 perseant #endif
252 1.19 perseant tsleep(vp, PRIBIO+1, "lfs_vw", 0);
253 1.19 perseant }
254 1.67.2.6 nathanw splx(s);
255 1.1 mycroft
256 1.15 perseant /* Protect against VXLOCK deadlock in vinvalbuf() */
257 1.1 mycroft lfs_seglock(fs, SEGM_SYNC);
258 1.30 perseant
259 1.30 perseant /* If we're supposed to flush a freed inode, just toss it */
260 1.30 perseant /* XXX - seglock, so these buffers can't be gathered, right? */
261 1.67.2.5 nathanw if (ip->i_ffs_mode == 0) {
262 1.30 perseant printf("lfs_vflush: ino %d is freed, not flushing\n",
263 1.30 perseant ip->i_number);
264 1.30 perseant s = splbio();
265 1.67.2.6 nathanw for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
266 1.67.2.6 nathanw nbp = LIST_NEXT(bp, b_vnbufs);
267 1.62 perseant if (bp->b_flags & B_DELWRI) { /* XXX always true? */
268 1.67.2.3 nathanw fs->lfs_avail += btofsb(fs, bp->b_bcount);
269 1.62 perseant wakeup(&fs->lfs_avail);
270 1.62 perseant }
271 1.30 perseant /* Copied from lfs_writeseg */
272 1.30 perseant if (bp->b_flags & B_CALL) {
273 1.30 perseant /* if B_CALL, it was created with newbuf */
274 1.30 perseant lfs_freebuf(bp);
275 1.67.2.3 nathanw bp = NULL;
276 1.30 perseant } else {
277 1.30 perseant bremfree(bp);
278 1.62 perseant LFS_UNLOCK_BUF(bp);
279 1.30 perseant bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
280 1.62 perseant B_GATHERED);
281 1.30 perseant bp->b_flags |= B_DONE;
282 1.30 perseant reassignbuf(bp, vp);
283 1.30 perseant brelse(bp);
284 1.30 perseant }
285 1.30 perseant }
286 1.30 perseant splx(s);
287 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
288 1.56 perseant LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
289 1.47 perseant ip->i_flag &= ~IN_ALLMOD;
290 1.30 perseant printf("lfs_vflush: done not flushing ino %d\n",
291 1.30 perseant ip->i_number);
292 1.30 perseant lfs_segunlock(fs);
293 1.30 perseant return 0;
294 1.30 perseant }
295 1.30 perseant
296 1.15 perseant SET_FLUSHING(fs,vp);
297 1.67.2.6 nathanw if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
298 1.67.2.6 nathanw (fs->lfs_sp->seg_flags & SEGM_CKP)) {
299 1.67.2.6 nathanw error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
300 1.15 perseant CLR_FLUSHING(fs,vp);
301 1.15 perseant lfs_segunlock(fs);
302 1.15 perseant return error;
303 1.15 perseant }
304 1.1 mycroft sp = fs->lfs_sp;
305 1.1 mycroft
306 1.67.2.6 nathanw if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
307 1.1 mycroft lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
308 1.67.2.5 nathanw } else if ((ip->i_flag & IN_CLEANING) &&
309 1.58 perseant (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
310 1.19 perseant #ifdef DEBUG_LFS
311 1.19 perseant ivndebug(vp,"vflush/clean");
312 1.19 perseant #endif
313 1.19 perseant lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
314 1.67.2.6 nathanw } else if (lfs_dostats) {
315 1.67.2.6 nathanw if (LIST_FIRST(&vp->v_dirtyblkhd) || (VTOI(vp)->i_flag & IN_ALLMOD))
316 1.15 perseant ++lfs_stats.vflush_invoked;
317 1.15 perseant #ifdef DEBUG_LFS
318 1.19 perseant ivndebug(vp,"vflush");
319 1.15 perseant #endif
320 1.15 perseant }
321 1.15 perseant
322 1.19 perseant #ifdef DIAGNOSTIC
323 1.21 perseant /* XXX KS This actually can happen right now, though it shouldn't(?) */
324 1.67.2.5 nathanw if (vp->v_flag & VDIROP) {
325 1.21 perseant printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
326 1.21 perseant /* panic("VDIROP being flushed...this can\'t happen"); */
327 1.19 perseant }
328 1.67.2.5 nathanw if (vp->v_usecount < 0) {
329 1.67.2.3 nathanw printf("usecount=%ld\n", (long)vp->v_usecount);
330 1.19 perseant panic("lfs_vflush: usecount<0");
331 1.19 perseant }
332 1.15 perseant #endif
333 1.1 mycroft
334 1.1 mycroft do {
335 1.1 mycroft do {
336 1.67.2.6 nathanw if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
337 1.1 mycroft lfs_writefile(fs, sp, vp);
338 1.1 mycroft } while (lfs_writeinode(fs, sp, ip));
339 1.1 mycroft } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
340 1.15 perseant
341 1.67.2.5 nathanw if (lfs_dostats) {
342 1.15 perseant ++lfs_stats.nwrites;
343 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
344 1.15 perseant ++lfs_stats.nsync_writes;
345 1.15 perseant if (sp->seg_flags & SEGM_CKP)
346 1.15 perseant ++lfs_stats.ncheckpoints;
347 1.15 perseant }
348 1.67.2.6 nathanw /*
349 1.67.2.6 nathanw * If we were called from somewhere that has already held the seglock
350 1.67.2.6 nathanw * (e.g., lfs_markv()), the lfs_segunlock will not wait for
351 1.67.2.6 nathanw * the write to complete because we are still locked.
352 1.67.2.6 nathanw * Since lfs_vflush() must return the vnode with no dirty buffers,
353 1.67.2.6 nathanw * we must explicitly wait, if that is the case.
354 1.67.2.6 nathanw *
355 1.67.2.6 nathanw * We compare the iocount against 1, not 0, because it is
356 1.67.2.6 nathanw * artificially incremented by lfs_seglock().
357 1.67.2.6 nathanw */
358 1.67.2.6 nathanw if (fs->lfs_seglock > 1) {
359 1.67.2.6 nathanw while (fs->lfs_iocount > 1)
360 1.67.2.6 nathanw (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
361 1.67.2.6 nathanw "lfs_vflush", 0);
362 1.67.2.6 nathanw }
363 1.15 perseant lfs_segunlock(fs);
364 1.1 mycroft
365 1.15 perseant CLR_FLUSHING(fs,vp);
366 1.1 mycroft return (0);
367 1.1 mycroft }
368 1.1 mycroft
369 1.16 perseant #ifdef DEBUG_LFS_VERBOSE
370 1.67.2.5 nathanw # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
371 1.16 perseant #else
372 1.16 perseant # define vndebug(vp,str)
373 1.16 perseant #endif
374 1.15 perseant
375 1.15 perseant int
376 1.67.2.3 nathanw lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
377 1.1 mycroft {
378 1.1 mycroft struct inode *ip;
379 1.67.2.6 nathanw struct vnode *vp, *nvp;
380 1.67.2.5 nathanw int inodes_written = 0, only_cleaning;
381 1.43 perseant int needs_unlock;
382 1.1 mycroft
383 1.15 perseant #ifndef LFS_NO_BACKVP_HACK
384 1.15 perseant /* BEGIN HACK */
385 1.67.2.6 nathanw #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
386 1.67.2.6 nathanw #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
387 1.67.2.6 nathanw #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
388 1.15 perseant
389 1.15 perseant /* Find last vnode. */
390 1.67.2.6 nathanw loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
391 1.67.2.6 nathanw vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
392 1.67.2.6 nathanw vp = LIST_NEXT(vp, v_mntvnodes));
393 1.67.2.6 nathanw for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
394 1.67.2.6 nathanw nvp = BACK_VP(vp);
395 1.15 perseant #else
396 1.15 perseant loop:
397 1.67.2.6 nathanw for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
398 1.67.2.6 nathanw nvp = LIST_NEXT(vp, v_mntvnodes);
399 1.15 perseant #endif
400 1.1 mycroft /*
401 1.1 mycroft * If the vnode that we are about to sync is no longer
402 1.1 mycroft * associated with this mount point, start over.
403 1.1 mycroft */
404 1.58 perseant if (vp->v_mount != mp) {
405 1.58 perseant printf("lfs_writevnodes: starting over\n");
406 1.1 mycroft goto loop;
407 1.58 perseant }
408 1.1 mycroft
409 1.15 perseant ip = VTOI(vp);
410 1.15 perseant if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
411 1.15 perseant (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
412 1.15 perseant vndebug(vp,"dirop");
413 1.15 perseant continue;
414 1.15 perseant }
415 1.15 perseant
416 1.67.2.6 nathanw if (op == VN_EMPTY && LIST_FIRST(&vp->v_dirtyblkhd)) {
417 1.15 perseant vndebug(vp,"empty");
418 1.1 mycroft continue;
419 1.15 perseant }
420 1.15 perseant
421 1.15 perseant if (vp->v_type == VNON) {
422 1.15 perseant continue;
423 1.15 perseant }
424 1.1 mycroft
425 1.67.2.5 nathanw if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
426 1.38 perseant && vp != fs->lfs_flushvp
427 1.15 perseant && !(ip->i_flag & IN_CLEANING)) {
428 1.15 perseant vndebug(vp,"cleaning");
429 1.1 mycroft continue;
430 1.15 perseant }
431 1.1 mycroft
432 1.15 perseant if (lfs_vref(vp)) {
433 1.15 perseant vndebug(vp,"vref");
434 1.1 mycroft continue;
435 1.15 perseant }
436 1.1 mycroft
437 1.43 perseant needs_unlock = 0;
438 1.52 perseant if (VOP_ISLOCKED(vp)) {
439 1.43 perseant if (vp != fs->lfs_ivnode &&
440 1.67.2.7 nathanw vp->v_lock.lk_lockholder != curproc->p_pid) {
441 1.43 perseant #ifdef DEBUG_LFS
442 1.58 perseant printf("lfs_writevnodes: not writing ino %d,"
443 1.58 perseant " locked by pid %d\n",
444 1.58 perseant VTOI(vp)->i_number,
445 1.58 perseant vp->v_lock.lk_lockholder);
446 1.43 perseant #endif
447 1.44 perseant lfs_vunref(vp);
448 1.43 perseant continue;
449 1.43 perseant }
450 1.46 perseant } else if (vp != fs->lfs_ivnode) {
451 1.43 perseant vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
452 1.43 perseant needs_unlock = 1;
453 1.43 perseant }
454 1.43 perseant
455 1.23 perseant only_cleaning = 0;
456 1.1 mycroft /*
457 1.55 perseant * Write the inode/file if dirty and it's not the IFILE.
458 1.1 mycroft */
459 1.47 perseant if ((ip->i_flag & IN_ALLMOD) ||
460 1.67.2.6 nathanw (LIST_FIRST(&vp->v_dirtyblkhd) != NULL))
461 1.15 perseant {
462 1.67.2.5 nathanw only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
463 1.20 perseant
464 1.67.2.5 nathanw if (ip->i_number != LFS_IFILE_INUM
465 1.67.2.6 nathanw && LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
466 1.15 perseant {
467 1.1 mycroft lfs_writefile(fs, sp, vp);
468 1.15 perseant }
469 1.67.2.6 nathanw if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
470 1.67.2.5 nathanw if (WRITEINPROG(vp)) {
471 1.15 perseant #ifdef DEBUG_LFS
472 1.16 perseant ivndebug(vp,"writevnodes/write2");
473 1.15 perseant #endif
474 1.67.2.5 nathanw } else if (!(ip->i_flag & IN_ALLMOD)) {
475 1.15 perseant #ifdef DEBUG_LFS
476 1.15 perseant printf("<%d>",ip->i_number);
477 1.15 perseant #endif
478 1.56 perseant LFS_SET_UINO(ip, IN_MODIFIED);
479 1.15 perseant }
480 1.15 perseant }
481 1.1 mycroft (void) lfs_writeinode(fs, sp, ip);
482 1.15 perseant inodes_written++;
483 1.15 perseant }
484 1.15 perseant
485 1.52 perseant if (needs_unlock)
486 1.52 perseant VOP_UNLOCK(vp, 0);
487 1.43 perseant
488 1.52 perseant if (lfs_clean_vnhead && only_cleaning)
489 1.20 perseant lfs_vunref_head(vp);
490 1.20 perseant else
491 1.20 perseant lfs_vunref(vp);
492 1.1 mycroft }
493 1.15 perseant return inodes_written;
494 1.1 mycroft }
495 1.1 mycroft
496 1.67.2.3 nathanw /*
497 1.67.2.3 nathanw * Do a checkpoint.
498 1.67.2.3 nathanw */
499 1.1 mycroft int
500 1.67.2.3 nathanw lfs_segwrite(struct mount *mp, int flags)
501 1.1 mycroft {
502 1.1 mycroft struct buf *bp;
503 1.1 mycroft struct inode *ip;
504 1.1 mycroft struct lfs *fs;
505 1.1 mycroft struct segment *sp;
506 1.1 mycroft struct vnode *vp;
507 1.1 mycroft SEGUSE *segusep;
508 1.10 fvdl ufs_daddr_t ibno;
509 1.61 perseant int do_ckp, did_ckp, error, i;
510 1.15 perseant int writer_set = 0;
511 1.61 perseant int dirty;
512 1.67.2.6 nathanw int redo;
513 1.15 perseant
514 1.1 mycroft fs = VFSTOUFS(mp)->um_lfs;
515 1.1 mycroft
516 1.53 perseant if (fs->lfs_ronly)
517 1.53 perseant return EROFS;
518 1.53 perseant
519 1.15 perseant lfs_imtime(fs);
520 1.58 perseant
521 1.61 perseant /* printf("lfs_segwrite: ifile flags are 0x%lx\n",
522 1.61 perseant (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
523 1.61 perseant
524 1.58 perseant #if 0
525 1.15 perseant /*
526 1.58 perseant * If we are not the cleaner, and there is no space available,
527 1.58 perseant * wait until cleaner writes.
528 1.15 perseant */
529 1.67.2.5 nathanw if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
530 1.61 perseant (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
531 1.15 perseant {
532 1.58 perseant while (fs->lfs_avail <= 0) {
533 1.61 perseant LFS_CLEANERINFO(cip, fs, bp);
534 1.61 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
535 1.61 perseant
536 1.58 perseant wakeup(&lfs_allclean_wakeup);
537 1.58 perseant wakeup(&fs->lfs_nextseg);
538 1.58 perseant error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
539 1.58 perseant 0);
540 1.58 perseant if (error) {
541 1.58 perseant return (error);
542 1.15 perseant }
543 1.58 perseant }
544 1.15 perseant }
545 1.58 perseant #endif
546 1.1 mycroft /*
547 1.1 mycroft * Allocate a segment structure and enough space to hold pointers to
548 1.1 mycroft * the maximum possible number of buffers which can be described in a
549 1.1 mycroft * single summary block.
550 1.1 mycroft */
551 1.15 perseant do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
552 1.1 mycroft lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
553 1.1 mycroft sp = fs->lfs_sp;
554 1.1 mycroft
555 1.15 perseant /*
556 1.16 perseant * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
557 1.16 perseant * in which case we have to flush *all* buffers off of this vnode.
558 1.37 perseant * We don't care about other nodes, but write any non-dirop nodes
559 1.37 perseant * anyway in anticipation of another getnewvnode().
560 1.37 perseant *
561 1.37 perseant * If we're cleaning we only write cleaning and ifile blocks, and
562 1.37 perseant * no dirops, since otherwise we'd risk corruption in a crash.
563 1.15 perseant */
564 1.67.2.5 nathanw if (sp->seg_flags & SEGM_CLEAN)
565 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_CLEAN);
566 1.15 perseant else {
567 1.15 perseant lfs_writevnodes(fs, mp, sp, VN_REG);
568 1.67.2.5 nathanw if (!fs->lfs_dirops || !fs->lfs_flushvp) {
569 1.67.2.5 nathanw while (fs->lfs_dirops)
570 1.67.2.5 nathanw if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
571 1.38 perseant "lfs writer", 0)))
572 1.38 perseant {
573 1.67.2.3 nathanw /* XXX why not segunlock? */
574 1.38 perseant free(sp->bpp, M_SEGMENT);
575 1.67.2.3 nathanw sp->bpp = NULL;
576 1.38 perseant free(sp, M_SEGMENT);
577 1.67.2.3 nathanw fs->lfs_sp = NULL;
578 1.38 perseant return (error);
579 1.38 perseant }
580 1.38 perseant fs->lfs_writer++;
581 1.67.2.5 nathanw writer_set = 1;
582 1.38 perseant lfs_writevnodes(fs, mp, sp, VN_DIROP);
583 1.38 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
584 1.38 perseant }
585 1.15 perseant }
586 1.1 mycroft
587 1.1 mycroft /*
588 1.1 mycroft * If we are doing a checkpoint, mark everything since the
589 1.1 mycroft * last checkpoint as no longer ACTIVE.
590 1.1 mycroft */
591 1.15 perseant if (do_ckp) {
592 1.1 mycroft for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
593 1.1 mycroft --ibno >= fs->lfs_cleansz; ) {
594 1.61 perseant dirty = 0;
595 1.15 perseant if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
596 1.1 mycroft
597 1.15 perseant panic("lfs_segwrite: ifile read");
598 1.1 mycroft segusep = (SEGUSE *)bp->b_data;
599 1.67.2.3 nathanw for (i = fs->lfs_sepb; i--;) {
600 1.61 perseant if (segusep->su_flags & SEGUSE_ACTIVE) {
601 1.61 perseant segusep->su_flags &= ~SEGUSE_ACTIVE;
602 1.61 perseant ++dirty;
603 1.61 perseant }
604 1.67.2.3 nathanw if (fs->lfs_version > 1)
605 1.67.2.3 nathanw ++segusep;
606 1.67.2.3 nathanw else
607 1.67.2.3 nathanw segusep = (SEGUSE *)
608 1.67.2.3 nathanw ((SEGUSE_V1 *)segusep + 1);
609 1.61 perseant }
610 1.1 mycroft
611 1.15 perseant /* But the current segment is still ACTIVE */
612 1.51 perseant segusep = (SEGUSE *)bp->b_data;
613 1.67.2.3 nathanw if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
614 1.61 perseant (ibno-fs->lfs_cleansz)) {
615 1.67.2.3 nathanw if (fs->lfs_version > 1)
616 1.67.2.3 nathanw segusep[dtosn(fs, fs->lfs_curseg) %
617 1.67.2.3 nathanw fs->lfs_sepb].su_flags |=
618 1.67.2.3 nathanw SEGUSE_ACTIVE;
619 1.67.2.3 nathanw else
620 1.67.2.3 nathanw ((SEGUSE *)
621 1.67.2.3 nathanw ((SEGUSE_V1 *)(bp->b_data) +
622 1.67.2.3 nathanw (dtosn(fs, fs->lfs_curseg) %
623 1.67.2.3 nathanw fs->lfs_sepb)))->su_flags
624 1.67.2.3 nathanw |= SEGUSE_ACTIVE;
625 1.61 perseant --dirty;
626 1.61 perseant }
627 1.61 perseant if (dirty)
628 1.67.2.6 nathanw error = LFS_BWRITE_LOG(bp); /* Ifile */
629 1.61 perseant else
630 1.61 perseant brelse(bp);
631 1.1 mycroft }
632 1.15 perseant }
633 1.61 perseant
634 1.61 perseant did_ckp = 0;
635 1.1 mycroft if (do_ckp || fs->lfs_doifile) {
636 1.63 perseant do {
637 1.63 perseant vp = fs->lfs_ivnode;
638 1.55 perseant
639 1.63 perseant vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
640 1.67.2.6 nathanw #ifdef DEBUG
641 1.67.2.6 nathanw LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
642 1.67.2.6 nathanw #endif
643 1.67.2.6 nathanw fs->lfs_flags &= ~LFS_IFDIRTY;
644 1.55 perseant
645 1.63 perseant ip = VTOI(vp);
646 1.67.2.6 nathanw /* if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) */
647 1.63 perseant lfs_writefile(fs, sp, vp);
648 1.63 perseant if (ip->i_flag & IN_ALLMOD)
649 1.63 perseant ++did_ckp;
650 1.67.2.6 nathanw redo = lfs_writeinode(fs, sp, ip);
651 1.63 perseant
652 1.63 perseant vput(vp);
653 1.67.2.6 nathanw redo += lfs_writeseg(fs, sp);
654 1.67.2.6 nathanw redo += (fs->lfs_flags & LFS_IFDIRTY);
655 1.67.2.6 nathanw } while (redo && do_ckp);
656 1.15 perseant
657 1.61 perseant /* The ifile should now be all clear */
658 1.67.2.6 nathanw if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
659 1.67.2.6 nathanw struct buf *bp;
660 1.67.2.6 nathanw int s, warned = 0, dopanic = 0;
661 1.67.2.6 nathanw s = splbio();
662 1.67.2.6 nathanw for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
663 1.67.2.6 nathanw if (!(bp->b_flags & B_GATHERED)) {
664 1.67.2.6 nathanw if (!warned)
665 1.67.2.6 nathanw printf("lfs_segwrite: ifile still has dirty blocks?!\n");
666 1.67.2.6 nathanw ++dopanic;
667 1.67.2.6 nathanw ++warned;
668 1.67.2.6 nathanw printf("bp=%p, lbn %d, flags 0x%lx\n",
669 1.67.2.6 nathanw bp, bp->b_lblkno, bp->b_flags);
670 1.67.2.6 nathanw }
671 1.67.2.6 nathanw }
672 1.67.2.6 nathanw if (dopanic)
673 1.67.2.6 nathanw panic("dirty blocks");
674 1.67.2.6 nathanw splx(s);
675 1.67.2.6 nathanw }
676 1.61 perseant LFS_CLR_UINO(ip, IN_ALLMOD);
677 1.15 perseant } else {
678 1.1 mycroft (void) lfs_writeseg(fs, sp);
679 1.15 perseant }
680 1.15 perseant
681 1.1 mycroft /*
682 1.15 perseant * If the I/O count is non-zero, sleep until it reaches zero.
683 1.15 perseant * At the moment, the user's process hangs around so we can
684 1.15 perseant * sleep.
685 1.1 mycroft */
686 1.1 mycroft fs->lfs_doifile = 0;
687 1.67.2.5 nathanw if (writer_set && --fs->lfs_writer == 0)
688 1.15 perseant wakeup(&fs->lfs_dirops);
689 1.61 perseant
690 1.61 perseant /*
691 1.61 perseant * If we didn't write the Ifile, we didn't really do anything.
692 1.61 perseant * That means that (1) there is a checkpoint on disk and (2)
693 1.61 perseant * nothing has changed since it was written.
694 1.61 perseant *
695 1.61 perseant * Take the flags off of the segment so that lfs_segunlock
696 1.61 perseant * doesn't have to write the superblock either.
697 1.61 perseant */
698 1.67.2.6 nathanw if (do_ckp && !did_ckp) {
699 1.67.2.6 nathanw sp->seg_flags &= ~SEGM_CKP;
700 1.67.2.5 nathanw /* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
701 1.61 perseant }
702 1.61 perseant
703 1.67.2.5 nathanw if (lfs_dostats) {
704 1.15 perseant ++lfs_stats.nwrites;
705 1.15 perseant if (sp->seg_flags & SEGM_SYNC)
706 1.15 perseant ++lfs_stats.nsync_writes;
707 1.15 perseant if (sp->seg_flags & SEGM_CKP)
708 1.15 perseant ++lfs_stats.ncheckpoints;
709 1.15 perseant }
710 1.1 mycroft lfs_segunlock(fs);
711 1.1 mycroft return (0);
712 1.1 mycroft }
713 1.1 mycroft
714 1.1 mycroft /*
715 1.1 mycroft * Write the dirty blocks associated with a vnode.
716 1.1 mycroft */
717 1.1 mycroft void
718 1.67.2.3 nathanw lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
719 1.1 mycroft {
720 1.1 mycroft struct buf *bp;
721 1.1 mycroft struct finfo *fip;
722 1.67.2.8 nathanw struct inode *ip;
723 1.1 mycroft IFILE *ifp;
724 1.67.2.8 nathanw int i, frag;
725 1.15 perseant
726 1.67.2.8 nathanw ip = VTOI(vp);
727 1.67.2.8 nathanw
728 1.1 mycroft if (sp->seg_bytes_left < fs->lfs_bsize ||
729 1.1 mycroft sp->sum_bytes_left < sizeof(struct finfo))
730 1.1 mycroft (void) lfs_writeseg(fs, sp);
731 1.15 perseant
732 1.10 fvdl sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
733 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
734 1.1 mycroft
735 1.67.2.5 nathanw if (vp->v_flag & VDIROP)
736 1.15 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
737 1.15 perseant
738 1.1 mycroft fip = sp->fip;
739 1.1 mycroft fip->fi_nblocks = 0;
740 1.67.2.8 nathanw fip->fi_ino = ip->i_number;
741 1.1 mycroft LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
742 1.1 mycroft fip->fi_version = ifp->if_version;
743 1.1 mycroft brelse(bp);
744 1.15 perseant
745 1.67.2.6 nathanw if (sp->seg_flags & SEGM_CLEAN) {
746 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_fake);
747 1.38 perseant /*
748 1.38 perseant * For a file being flushed, we need to write *all* blocks.
749 1.38 perseant * This means writing the cleaning blocks first, and then
750 1.38 perseant * immediately following with any non-cleaning blocks.
751 1.38 perseant * The same is true of the Ifile since checkpoints assume
752 1.38 perseant * that all valid Ifile blocks are written.
753 1.38 perseant */
754 1.67.2.8 nathanw if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode)
755 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_data);
756 1.38 perseant } else
757 1.38 perseant lfs_gather(fs, sp, vp, lfs_match_data);
758 1.38 perseant
759 1.1 mycroft /*
760 1.1 mycroft * It may not be necessary to write the meta-data blocks at this point,
761 1.1 mycroft * as the roll-forward recovery code should be able to reconstruct the
762 1.1 mycroft * list.
763 1.15 perseant *
764 1.15 perseant * We have to write them anyway, though, under two conditions: (1) the
765 1.15 perseant * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
766 1.15 perseant * checkpointing.
767 1.67.2.8 nathanw *
768 1.67.2.8 nathanw * BUT if we are cleaning, we might have indirect blocks that refer to
769 1.67.2.8 nathanw * new blocks not being written yet, in addition to fragments being
770 1.67.2.8 nathanw * moved out of a cleaned segment. If that is the case, don't
771 1.67.2.8 nathanw * write the indirect blocks, or the finfo will have a small block
772 1.67.2.8 nathanw * in the middle of it!
773 1.67.2.8 nathanw * XXX in this case isn't the inode size wrong too?
774 1.1 mycroft */
775 1.67.2.8 nathanw frag = 0;
776 1.67.2.8 nathanw if (sp->seg_flags & SEGM_CLEAN) {
777 1.67.2.8 nathanw for (i = 0; i < NDADDR; i++)
778 1.67.2.8 nathanw if (ip->i_lfs_fragsize[i] > 0 &&
779 1.67.2.8 nathanw ip->i_lfs_fragsize[i] < fs->lfs_bsize)
780 1.67.2.8 nathanw ++frag;
781 1.67.2.8 nathanw }
782 1.67.2.8 nathanw #ifdef DIAGNOSTIC
783 1.67.2.8 nathanw if (frag > 1)
784 1.67.2.8 nathanw panic("lfs_writefile: more than one fragment!");
785 1.67.2.8 nathanw #endif
786 1.67.2.8 nathanw if (IS_FLUSHING(fs, vp) ||
787 1.67.2.8 nathanw (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
788 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
789 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
790 1.15 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
791 1.15 perseant }
792 1.1 mycroft fip = sp->fip;
793 1.1 mycroft if (fip->fi_nblocks != 0) {
794 1.15 perseant sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
795 1.15 perseant sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
796 1.1 mycroft sp->start_lbp = &sp->fip->fi_blocks[0];
797 1.1 mycroft } else {
798 1.15 perseant sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
799 1.1 mycroft --((SEGSUM *)(sp->segsum))->ss_nfinfo;
800 1.1 mycroft }
801 1.1 mycroft }
802 1.1 mycroft
803 1.1 mycroft int
804 1.67.2.3 nathanw lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
805 1.1 mycroft {
806 1.1 mycroft struct buf *bp, *ibp;
807 1.53 perseant struct dinode *cdp;
808 1.1 mycroft IFILE *ifp;
809 1.1 mycroft SEGUSE *sup;
810 1.10 fvdl ufs_daddr_t daddr;
811 1.53 perseant daddr_t *daddrp;
812 1.1 mycroft ino_t ino;
813 1.67.2.3 nathanw int error, i, ndx, fsb = 0;
814 1.1 mycroft int redo_ifile = 0;
815 1.5 mycroft struct timespec ts;
816 1.67.2.3 nathanw int gotblk = 0;
817 1.15 perseant
818 1.47 perseant if (!(ip->i_flag & IN_ALLMOD))
819 1.67.2.5 nathanw return (0);
820 1.15 perseant
821 1.1 mycroft /* Allocate a new inode block if necessary. */
822 1.67.2.5 nathanw if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
823 1.1 mycroft /* Allocate a new segment if necessary. */
824 1.67.2.3 nathanw if (sp->seg_bytes_left < fs->lfs_ibsize ||
825 1.10 fvdl sp->sum_bytes_left < sizeof(ufs_daddr_t))
826 1.1 mycroft (void) lfs_writeseg(fs, sp);
827 1.1 mycroft
828 1.1 mycroft /* Get next inode block. */
829 1.1 mycroft daddr = fs->lfs_offset;
830 1.67.2.3 nathanw fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
831 1.1 mycroft sp->ibp = *sp->cbpp++ =
832 1.67.2.3 nathanw getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
833 1.67.2.3 nathanw fs->lfs_ibsize, 0, 0);
834 1.24 perseant gotblk++;
835 1.24 perseant
836 1.1 mycroft /* Zero out inode numbers */
837 1.1 mycroft for (i = 0; i < INOPB(fs); ++i)
838 1.1 mycroft ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
839 1.15 perseant
840 1.1 mycroft ++sp->start_bpp;
841 1.67.2.3 nathanw fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
842 1.1 mycroft /* Set remaining space counters. */
843 1.67.2.3 nathanw sp->seg_bytes_left -= fs->lfs_ibsize;
844 1.10 fvdl sp->sum_bytes_left -= sizeof(ufs_daddr_t);
845 1.67.2.3 nathanw ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
846 1.15 perseant sp->ninodes / INOPB(fs) - 1;
847 1.10 fvdl ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
848 1.1 mycroft }
849 1.27 perseant
850 1.1 mycroft /* Update the inode times and copy the inode onto the inode page. */
851 1.9 pk TIMEVAL_TO_TIMESPEC(&time, &ts);
852 1.67.2.6 nathanw /* XXX kludge --- don't redirty the ifile just to put times on it */
853 1.67.2.6 nathanw if (ip->i_number != LFS_IFILE_INUM)
854 1.67.2.6 nathanw LFS_ITIMES(ip, &ts, &ts, &ts);
855 1.16 perseant
856 1.27 perseant /*
857 1.27 perseant * If this is the Ifile, and we've already written the Ifile in this
858 1.27 perseant * partial segment, just overwrite it (it's not on disk yet) and
859 1.27 perseant * continue.
860 1.27 perseant *
861 1.27 perseant * XXX we know that the bp that we get the second time around has
862 1.27 perseant * already been gathered.
863 1.27 perseant */
864 1.67.2.5 nathanw if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
865 1.27 perseant *(sp->idp) = ip->i_din.ffs_din;
866 1.67.2.8 nathanw ip->i_lfs_osize = ip->i_ffs_size;
867 1.27 perseant return 0;
868 1.27 perseant }
869 1.27 perseant
870 1.1 mycroft bp = sp->ibp;
871 1.53 perseant cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
872 1.53 perseant *cdp = ip->i_din.ffs_din;
873 1.67.2.3 nathanw #ifdef LFS_IFILE_FRAG_ADDRESSING
874 1.67.2.3 nathanw if (fs->lfs_version > 1)
875 1.67.2.3 nathanw fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
876 1.67.2.3 nathanw #endif
877 1.53 perseant
878 1.53 perseant /*
879 1.53 perseant * If we are cleaning, ensure that we don't write UNWRITTEN disk
880 1.67.2.8 nathanw * addresses to disk; possibly revert the inode size.
881 1.53 perseant */
882 1.53 perseant if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
883 1.67.2.8 nathanw cdp->di_size = ip->i_lfs_osize;
884 1.55 perseant #ifdef DEBUG_LFS
885 1.53 perseant printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
886 1.53 perseant ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
887 1.55 perseant #endif
888 1.53 perseant for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
889 1.53 perseant daddrp++) {
890 1.53 perseant if (*daddrp == UNWRITTEN) {
891 1.54 perseant #ifdef DEBUG_LFS
892 1.53 perseant printf("lfs_writeinode: wiping UNWRITTEN\n");
893 1.53 perseant #endif
894 1.53 perseant *daddrp = 0;
895 1.53 perseant }
896 1.53 perseant }
897 1.67.2.8 nathanw } else {
898 1.67.2.8 nathanw /* If all blocks are goig to disk, update the "size on disk" */
899 1.67.2.8 nathanw ip->i_lfs_osize = ip->i_ffs_size;
900 1.53 perseant }
901 1.27 perseant
902 1.67.2.5 nathanw if (ip->i_flag & IN_CLEANING)
903 1.56 perseant LFS_CLR_UINO(ip, IN_CLEANING);
904 1.55 perseant else {
905 1.56 perseant /* XXX IN_ALLMOD */
906 1.56 perseant LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
907 1.56 perseant IN_UPDATE);
908 1.56 perseant if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
909 1.56 perseant LFS_CLR_UINO(ip, IN_MODIFIED);
910 1.63 perseant #ifdef DEBUG_LFS
911 1.63 perseant else
912 1.63 perseant printf("lfs_writeinode: ino %d: real blks=%d, "
913 1.63 perseant "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
914 1.63 perseant ip->i_lfs_effnblks);
915 1.63 perseant #endif
916 1.55 perseant }
917 1.55 perseant
918 1.67.2.5 nathanw if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
919 1.53 perseant sp->idp = ((struct dinode *)bp->b_data) +
920 1.53 perseant (sp->ninodes % INOPB(fs));
921 1.67.2.5 nathanw if (gotblk) {
922 1.62 perseant LFS_LOCK_BUF(bp);
923 1.24 perseant brelse(bp);
924 1.24 perseant }
925 1.15 perseant
926 1.1 mycroft /* Increment inode count in segment summary block. */
927 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_ninos;
928 1.15 perseant
929 1.1 mycroft /* If this page is full, set flag to allocate a new page. */
930 1.1 mycroft if (++sp->ninodes % INOPB(fs) == 0)
931 1.1 mycroft sp->ibp = NULL;
932 1.15 perseant
933 1.1 mycroft /*
934 1.1 mycroft * If updating the ifile, update the super-block. Update the disk
935 1.1 mycroft * address and access times for this inode in the ifile.
936 1.1 mycroft */
937 1.1 mycroft ino = ip->i_number;
938 1.1 mycroft if (ino == LFS_IFILE_INUM) {
939 1.1 mycroft daddr = fs->lfs_idaddr;
940 1.67.2.3 nathanw fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
941 1.1 mycroft } else {
942 1.1 mycroft LFS_IENTRY(ifp, fs, ino, ibp);
943 1.1 mycroft daddr = ifp->if_daddr;
944 1.67.2.3 nathanw ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
945 1.30 perseant #ifdef LFS_DEBUG_NEXTFREE
946 1.67.2.5 nathanw if (ino > 3 && ifp->if_nextfree) {
947 1.30 perseant vprint("lfs_writeinode",ITOV(ip));
948 1.30 perseant printf("lfs_writeinode: updating free ino %d\n",
949 1.30 perseant ip->i_number);
950 1.30 perseant }
951 1.30 perseant #endif
952 1.67.2.6 nathanw error = LFS_BWRITE_LOG(ibp); /* Ifile */
953 1.1 mycroft }
954 1.15 perseant
955 1.1 mycroft /*
956 1.60 toshii * The inode's last address should not be in the current partial
957 1.60 toshii * segment, except under exceptional circumstances (lfs_writevnodes
958 1.60 toshii * had to start over, and in the meantime more blocks were written
959 1.67.2.8 nathanw * to a vnode). Both inodes will be accounted to this segment
960 1.67.2.8 nathanw * in lfs_writeseg so we need to subtract the earlier version
961 1.67.2.8 nathanw * here anyway. The segment count can temporarily dip below
962 1.67.2.8 nathanw * zero here; keep track of how many duplicates we have in
963 1.67.2.8 nathanw * "dupino" so we don't panic below.
964 1.60 toshii */
965 1.67.2.8 nathanw if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
966 1.67.2.8 nathanw ++sp->ndupino;
967 1.49 perseant printf("lfs_writeinode: last inode addr in current pseg "
968 1.67.2.8 nathanw "(ino %d daddr 0x%x) ndupino=%d\n", ino, daddr,
969 1.67.2.8 nathanw sp->ndupino);
970 1.67.2.8 nathanw }
971 1.67.2.8 nathanw /*
972 1.67.2.8 nathanw * Account the inode: it no longer belongs to its former segment,
973 1.67.2.8 nathanw * though it will not belong to the new segment until that segment
974 1.67.2.8 nathanw * is actually written.
975 1.67.2.8 nathanw */
976 1.49 perseant if (daddr != LFS_UNUSED_DADDR) {
977 1.67.2.3 nathanw LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
978 1.1 mycroft #ifdef DIAGNOSTIC
979 1.67.2.8 nathanw if (sup->su_nbytes < DINODE_SIZE * (1 + sp->ndupino)) {
980 1.53 perseant printf("lfs_writeinode: negative bytes "
981 1.53 perseant "(segment %d short by %d)\n",
982 1.67.2.3 nathanw dtosn(fs, daddr),
983 1.53 perseant (int)DINODE_SIZE - sup->su_nbytes);
984 1.27 perseant panic("lfs_writeinode: negative bytes");
985 1.27 perseant sup->su_nbytes = DINODE_SIZE;
986 1.1 mycroft }
987 1.1 mycroft #endif
988 1.67.2.3 nathanw #ifdef DEBUG_SU_NBYTES
989 1.67.2.3 nathanw printf("seg %d -= %d for ino %d inode\n",
990 1.67.2.3 nathanw dtosn(fs, daddr), DINODE_SIZE, ino);
991 1.67.2.3 nathanw #endif
992 1.13 thorpej sup->su_nbytes -= DINODE_SIZE;
993 1.1 mycroft redo_ifile =
994 1.15 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
995 1.67.2.6 nathanw if (redo_ifile)
996 1.67.2.6 nathanw fs->lfs_flags |= LFS_IFDIRTY;
997 1.67.2.6 nathanw error = LFS_BWRITE_LOG(bp); /* Ifile */
998 1.1 mycroft }
999 1.1 mycroft return (redo_ifile);
1000 1.1 mycroft }
1001 1.1 mycroft
1002 1.1 mycroft int
1003 1.67.2.3 nathanw lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1004 1.1 mycroft {
1005 1.1 mycroft struct lfs *fs;
1006 1.1 mycroft int version;
1007 1.15 perseant
1008 1.1 mycroft /*
1009 1.1 mycroft * If full, finish this segment. We may be doing I/O, so
1010 1.1 mycroft * release and reacquire the splbio().
1011 1.1 mycroft */
1012 1.1 mycroft #ifdef DIAGNOSTIC
1013 1.1 mycroft if (sp->vp == NULL)
1014 1.1 mycroft panic ("lfs_gatherblock: Null vp in segment");
1015 1.1 mycroft #endif
1016 1.1 mycroft fs = sp->fs;
1017 1.10 fvdl if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
1018 1.10 fvdl sp->seg_bytes_left < bp->b_bcount) {
1019 1.1 mycroft if (sptr)
1020 1.1 mycroft splx(*sptr);
1021 1.1 mycroft lfs_updatemeta(sp);
1022 1.15 perseant
1023 1.1 mycroft version = sp->fip->fi_version;
1024 1.1 mycroft (void) lfs_writeseg(fs, sp);
1025 1.15 perseant
1026 1.1 mycroft sp->fip->fi_version = version;
1027 1.1 mycroft sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1028 1.1 mycroft /* Add the current file to the segment summary. */
1029 1.1 mycroft ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1030 1.1 mycroft sp->sum_bytes_left -=
1031 1.15 perseant sizeof(struct finfo) - sizeof(ufs_daddr_t);
1032 1.15 perseant
1033 1.1 mycroft if (sptr)
1034 1.1 mycroft *sptr = splbio();
1035 1.67.2.5 nathanw return (1);
1036 1.1 mycroft }
1037 1.15 perseant
1038 1.15 perseant #ifdef DEBUG
1039 1.67.2.5 nathanw if (bp->b_flags & B_GATHERED) {
1040 1.15 perseant printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
1041 1.15 perseant sp->fip->fi_ino, bp->b_lblkno);
1042 1.67.2.5 nathanw return (0);
1043 1.15 perseant }
1044 1.15 perseant #endif
1045 1.1 mycroft /* Insert into the buffer list, update the FINFO block. */
1046 1.1 mycroft bp->b_flags |= B_GATHERED;
1047 1.67.2.6 nathanw bp->b_flags &= ~B_DONE;
1048 1.67.2.6 nathanw
1049 1.1 mycroft *sp->cbpp++ = bp;
1050 1.1 mycroft sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
1051 1.15 perseant
1052 1.10 fvdl sp->sum_bytes_left -= sizeof(ufs_daddr_t);
1053 1.10 fvdl sp->seg_bytes_left -= bp->b_bcount;
1054 1.67.2.5 nathanw return (0);
1055 1.1 mycroft }
1056 1.1 mycroft
1057 1.15 perseant int
1058 1.67.2.3 nathanw lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1059 1.1 mycroft {
1060 1.67.2.6 nathanw struct buf *bp, *nbp;
1061 1.67.2.5 nathanw int s, count = 0;
1062 1.15 perseant
1063 1.1 mycroft sp->vp = vp;
1064 1.1 mycroft s = splbio();
1065 1.15 perseant
1066 1.15 perseant #ifndef LFS_NO_BACKBUF_HACK
1067 1.10 fvdl /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1068 1.67.2.6 nathanw # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1069 1.67.2.6 nathanw # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1070 1.67.2.6 nathanw # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1071 1.10 fvdl /* Find last buffer. */
1072 1.67.2.6 nathanw loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1073 1.67.2.6 nathanw bp = LIST_NEXT(bp, b_vnbufs));
1074 1.67.2.6 nathanw for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1075 1.67.2.6 nathanw nbp = BACK_BUF(bp);
1076 1.67.2.6 nathanw #else /* LFS_NO_BACKBUF_HACK */
1077 1.67.2.6 nathanw loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1078 1.67.2.6 nathanw nbp = LIST_NEXT(bp, b_vnbufs);
1079 1.15 perseant #endif /* LFS_NO_BACKBUF_HACK */
1080 1.67.2.6 nathanw if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1081 1.67.2.6 nathanw #ifdef DEBUG_LFS
1082 1.67.2.6 nathanw if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1083 1.67.2.6 nathanw printf("(%d:%lx)", bp->b_lblkno, bp->b_flags);
1084 1.67.2.6 nathanw #endif
1085 1.1 mycroft continue;
1086 1.67.2.6 nathanw }
1087 1.67.2.5 nathanw if (vp->v_type == VBLK) {
1088 1.30 perseant /* For block devices, just write the blocks. */
1089 1.30 perseant /* XXX Do we really need to even do this? */
1090 1.30 perseant #ifdef DEBUG_LFS
1091 1.67.2.5 nathanw if (count == 0)
1092 1.30 perseant printf("BLK(");
1093 1.30 perseant printf(".");
1094 1.30 perseant #endif
1095 1.30 perseant /* Get the block before bwrite, so we don't corrupt the free list */
1096 1.30 perseant bp->b_flags |= B_BUSY;
1097 1.30 perseant bremfree(bp);
1098 1.30 perseant bwrite(bp);
1099 1.30 perseant } else {
1100 1.1 mycroft #ifdef DIAGNOSTIC
1101 1.67.2.5 nathanw if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1102 1.43 perseant printf("lfs_gather: lbn %d is B_INVAL\n",
1103 1.43 perseant bp->b_lblkno);
1104 1.43 perseant VOP_PRINT(bp->b_vp);
1105 1.43 perseant }
1106 1.30 perseant if (!(bp->b_flags & B_DELWRI))
1107 1.30 perseant panic("lfs_gather: bp not B_DELWRI");
1108 1.30 perseant if (!(bp->b_flags & B_LOCKED)) {
1109 1.58 perseant printf("lfs_gather: lbn %d blk %d"
1110 1.58 perseant " not B_LOCKED\n", bp->b_lblkno,
1111 1.67.2.3 nathanw dbtofsb(fs, bp->b_blkno));
1112 1.30 perseant VOP_PRINT(bp->b_vp);
1113 1.30 perseant panic("lfs_gather: bp not B_LOCKED");
1114 1.30 perseant }
1115 1.1 mycroft #endif
1116 1.30 perseant if (lfs_gatherblock(sp, bp, &s)) {
1117 1.30 perseant goto loop;
1118 1.30 perseant }
1119 1.30 perseant }
1120 1.15 perseant count++;
1121 1.1 mycroft }
1122 1.1 mycroft splx(s);
1123 1.30 perseant #ifdef DEBUG_LFS
1124 1.67.2.5 nathanw if (vp->v_type == VBLK && count)
1125 1.30 perseant printf(")\n");
1126 1.30 perseant #endif
1127 1.1 mycroft lfs_updatemeta(sp);
1128 1.1 mycroft sp->vp = NULL;
1129 1.15 perseant return count;
1130 1.1 mycroft }
1131 1.1 mycroft
1132 1.1 mycroft /*
1133 1.1 mycroft * Update the metadata that points to the blocks listed in the FINFO
1134 1.1 mycroft * array.
1135 1.1 mycroft */
1136 1.1 mycroft void
1137 1.67.2.3 nathanw lfs_updatemeta(struct segment *sp)
1138 1.1 mycroft {
1139 1.1 mycroft SEGUSE *sup;
1140 1.67.2.8 nathanw struct buf *bp, *sbp;
1141 1.1 mycroft struct lfs *fs;
1142 1.1 mycroft struct vnode *vp;
1143 1.1 mycroft struct indir a[NIADDR + 2], *ap;
1144 1.1 mycroft struct inode *ip;
1145 1.10 fvdl ufs_daddr_t daddr, lbn, off;
1146 1.43 perseant daddr_t ooff;
1147 1.10 fvdl int error, i, nblocks, num;
1148 1.67.2.8 nathanw int bb, osize, obb;
1149 1.15 perseant
1150 1.1 mycroft vp = sp->vp;
1151 1.1 mycroft nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1152 1.10 fvdl if (nblocks < 0)
1153 1.10 fvdl panic("This is a bad thing\n");
1154 1.1 mycroft if (vp == NULL || nblocks == 0)
1155 1.1 mycroft return;
1156 1.15 perseant
1157 1.1 mycroft /* Sort the blocks. */
1158 1.15 perseant /*
1159 1.15 perseant * XXX KS - We have to sort even if the blocks come from the
1160 1.15 perseant * cleaner, because there might be other pending blocks on the
1161 1.15 perseant * same inode...and if we don't sort, and there are fragments
1162 1.15 perseant * present, blocks may be written in the wrong place.
1163 1.15 perseant */
1164 1.15 perseant /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1165 1.15 perseant lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1166 1.15 perseant
1167 1.1 mycroft /*
1168 1.10 fvdl * Record the length of the last block in case it's a fragment.
1169 1.10 fvdl * If there are indirect blocks present, they sort last. An
1170 1.10 fvdl * indirect block will be lfs_bsize and its presence indicates
1171 1.10 fvdl * that you cannot have fragments.
1172 1.67.2.8 nathanw *
1173 1.67.2.8 nathanw * XXX This last is a lie. A cleaned fragment can coexist with
1174 1.67.2.8 nathanw * XXX a later indirect block. This will continue to be
1175 1.67.2.8 nathanw * XXX true until lfs_markv is fixed to do everything with
1176 1.67.2.8 nathanw * XXX fake blocks (including fake inodes and fake indirect blocks).
1177 1.10 fvdl */
1178 1.10 fvdl sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1179 1.15 perseant
1180 1.10 fvdl /*
1181 1.1 mycroft * Assign disk addresses, and update references to the logical
1182 1.1 mycroft * block and the segment usage information.
1183 1.1 mycroft */
1184 1.1 mycroft fs = sp->fs;
1185 1.1 mycroft for (i = nblocks; i--; ++sp->start_bpp) {
1186 1.1 mycroft lbn = *sp->start_lbp++;
1187 1.67.2.8 nathanw sbp = *sp->start_bpp;
1188 1.15 perseant
1189 1.67.2.8 nathanw sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1190 1.67.2.3 nathanw off = fs->lfs_offset;
1191 1.67.2.8 nathanw if (sbp->b_blkno == sbp->b_lblkno) {
1192 1.58 perseant printf("lfs_updatemeta: ino %d blk %d"
1193 1.58 perseant " has same lbn and daddr\n",
1194 1.58 perseant VTOI(vp)->i_number, off);
1195 1.17 perseant }
1196 1.67.2.8 nathanw
1197 1.67.2.8 nathanw /*
1198 1.67.2.8 nathanw * If we write a frag in the wrong place, the cleaner won't
1199 1.67.2.8 nathanw * be able to correctly identify its size later, and the
1200 1.67.2.8 nathanw * segment will be uncleanable. (Even worse, it will assume
1201 1.67.2.8 nathanw * that the indirect block that actually ends the list
1202 1.67.2.8 nathanw * is of a smaller size!)
1203 1.67.2.8 nathanw */
1204 1.67.2.8 nathanw if (sbp->b_bcount < fs->lfs_bsize && i != 0)
1205 1.67 joff panic("lfs_updatemeta: fragment is not last block\n");
1206 1.67.2.8 nathanw
1207 1.67.2.8 nathanw bb = fragstofsb(fs, numfrags(fs, sbp->b_bcount));
1208 1.53 perseant fs->lfs_offset += bb;
1209 1.4 christos error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1210 1.67.2.3 nathanw if (daddr > 0)
1211 1.67.2.3 nathanw daddr = dbtofsb(fs, daddr);
1212 1.4 christos if (error)
1213 1.1 mycroft panic("lfs_updatemeta: ufs_bmaparray %d", error);
1214 1.1 mycroft ip = VTOI(vp);
1215 1.1 mycroft switch (num) {
1216 1.1 mycroft case 0:
1217 1.43 perseant ooff = ip->i_ffs_db[lbn];
1218 1.55 perseant #ifdef DEBUG
1219 1.55 perseant if (ooff == 0) {
1220 1.53 perseant printf("lfs_updatemeta[1]: warning: writing "
1221 1.55 perseant "ino %d lbn %d at 0x%x, was 0x0\n",
1222 1.55 perseant ip->i_number, lbn, off);
1223 1.55 perseant }
1224 1.43 perseant #endif
1225 1.55 perseant if (ooff == UNWRITTEN)
1226 1.55 perseant ip->i_ffs_blocks += bb;
1227 1.67.2.8 nathanw else {
1228 1.67.2.8 nathanw /* possible fragment truncation or extension */
1229 1.67.2.8 nathanw obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1230 1.67.2.8 nathanw ip->i_ffs_blocks += (bb - obb);
1231 1.67.2.8 nathanw }
1232 1.55 perseant ip->i_ffs_db[lbn] = off;
1233 1.1 mycroft break;
1234 1.1 mycroft case 1:
1235 1.43 perseant ooff = ip->i_ffs_ib[a[0].in_off];
1236 1.55 perseant #ifdef DEBUG
1237 1.55 perseant if (ooff == 0) {
1238 1.53 perseant printf("lfs_updatemeta[2]: warning: writing "
1239 1.55 perseant "ino %d lbn %d at 0x%x, was 0x0\n",
1240 1.55 perseant ip->i_number, lbn, off);
1241 1.55 perseant }
1242 1.43 perseant #endif
1243 1.55 perseant if (ooff == UNWRITTEN)
1244 1.55 perseant ip->i_ffs_blocks += bb;
1245 1.55 perseant ip->i_ffs_ib[a[0].in_off] = off;
1246 1.1 mycroft break;
1247 1.1 mycroft default:
1248 1.1 mycroft ap = &a[num - 1];
1249 1.1 mycroft if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1250 1.1 mycroft panic("lfs_updatemeta: bread bno %d",
1251 1.15 perseant ap->in_lbn);
1252 1.43 perseant
1253 1.43 perseant ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1254 1.55 perseant #if DEBUG
1255 1.55 perseant if (ooff == 0) {
1256 1.53 perseant printf("lfs_updatemeta[3]: warning: writing "
1257 1.55 perseant "ino %d lbn %d at 0x%x, was 0x0\n",
1258 1.55 perseant ip->i_number, lbn, off);
1259 1.55 perseant }
1260 1.43 perseant #endif
1261 1.55 perseant if (ooff == UNWRITTEN)
1262 1.55 perseant ip->i_ffs_blocks += bb;
1263 1.55 perseant ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1264 1.58 perseant (void) VOP_BWRITE(bp);
1265 1.1 mycroft }
1266 1.55 perseant #ifdef DEBUG
1267 1.49 perseant if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1268 1.49 perseant printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1269 1.49 perseant "in same pseg\n", VTOI(sp->vp)->i_number,
1270 1.67.2.8 nathanw sbp->b_lblkno, daddr);
1271 1.49 perseant }
1272 1.55 perseant #endif
1273 1.67.2.8 nathanw /*
1274 1.67.2.8 nathanw * Update segment usage information, based on old size
1275 1.67.2.8 nathanw * and location.
1276 1.67.2.8 nathanw */
1277 1.49 perseant if (daddr > 0) {
1278 1.67.2.8 nathanw if (lbn >= 0 && lbn < NDADDR)
1279 1.67.2.8 nathanw osize = ip->i_lfs_fragsize[lbn];
1280 1.67.2.8 nathanw else
1281 1.67.2.8 nathanw osize = fs->lfs_bsize;
1282 1.67.2.3 nathanw LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
1283 1.1 mycroft #ifdef DIAGNOSTIC
1284 1.67.2.8 nathanw if (sup->su_nbytes < osize + DINODE_SIZE * sp->ndupino) {
1285 1.55 perseant printf("lfs_updatemeta: negative bytes "
1286 1.67.2.8 nathanw "(segment %d short by %d)\n",
1287 1.67.2.3 nathanw dtosn(fs, daddr),
1288 1.67.2.8 nathanw osize - sup->su_nbytes);
1289 1.55 perseant printf("lfs_updatemeta: ino %d, lbn %d, "
1290 1.67.2.3 nathanw "addr = 0x%x\n", VTOI(sp->vp)->i_number,
1291 1.67.2.8 nathanw lbn, daddr);
1292 1.27 perseant panic("lfs_updatemeta: negative bytes");
1293 1.67.2.8 nathanw sup->su_nbytes = osize + DINODE_SIZE * sp->ndupino;
1294 1.1 mycroft }
1295 1.1 mycroft #endif
1296 1.67.2.3 nathanw #ifdef DEBUG_SU_NBYTES
1297 1.67.2.3 nathanw printf("seg %d -= %ld for ino %d lbn %d db 0x%x\n",
1298 1.67.2.8 nathanw dtosn(fs, daddr), osize, VTOI(sp->vp)->i_number,
1299 1.67.2.8 nathanw lbn, daddr);
1300 1.67.2.3 nathanw #endif
1301 1.67.2.8 nathanw sup->su_nbytes -= osize;
1302 1.67.2.6 nathanw if (!(bp->b_flags & B_GATHERED))
1303 1.67.2.6 nathanw fs->lfs_flags |= LFS_IFDIRTY;
1304 1.67.2.6 nathanw error = LFS_BWRITE_LOG(bp); /* Ifile */
1305 1.1 mycroft }
1306 1.67.2.8 nathanw /*
1307 1.67.2.8 nathanw * Now that this block has a new address, and its old
1308 1.67.2.8 nathanw * segment no longer owns it, we can forget about its
1309 1.67.2.8 nathanw * old size.
1310 1.67.2.8 nathanw */
1311 1.67.2.8 nathanw if (lbn >= 0 && lbn < NDADDR)
1312 1.67.2.8 nathanw ip->i_lfs_fragsize[lbn] = sbp->b_bcount;
1313 1.1 mycroft }
1314 1.1 mycroft }
1315 1.1 mycroft
1316 1.1 mycroft /*
1317 1.1 mycroft * Start a new segment.
1318 1.1 mycroft */
1319 1.1 mycroft int
1320 1.67.2.3 nathanw lfs_initseg(struct lfs *fs)
1321 1.1 mycroft {
1322 1.1 mycroft struct segment *sp;
1323 1.1 mycroft SEGUSE *sup;
1324 1.1 mycroft SEGSUM *ssp;
1325 1.67.2.6 nathanw struct buf *bp, *sbp;
1326 1.1 mycroft int repeat;
1327 1.15 perseant
1328 1.1 mycroft sp = fs->lfs_sp;
1329 1.67.2.3 nathanw
1330 1.1 mycroft repeat = 0;
1331 1.1 mycroft /* Advance to the next segment. */
1332 1.1 mycroft if (!LFS_PARTIAL_FITS(fs)) {
1333 1.55 perseant /* lfs_avail eats the remaining space */
1334 1.67.2.3 nathanw fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1335 1.55 perseant fs->lfs_curseg);
1336 1.1 mycroft /* Wake up any cleaning procs waiting on this file system. */
1337 1.1 mycroft wakeup(&lfs_allclean_wakeup);
1338 1.10 fvdl wakeup(&fs->lfs_nextseg);
1339 1.1 mycroft lfs_newseg(fs);
1340 1.1 mycroft repeat = 1;
1341 1.1 mycroft fs->lfs_offset = fs->lfs_curseg;
1342 1.67.2.3 nathanw sp->seg_number = dtosn(fs, fs->lfs_curseg);
1343 1.67.2.3 nathanw sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1344 1.1 mycroft /*
1345 1.1 mycroft * If the segment contains a superblock, update the offset
1346 1.1 mycroft * and summary address to skip over it.
1347 1.1 mycroft */
1348 1.1 mycroft LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1349 1.1 mycroft if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1350 1.67.2.3 nathanw fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1351 1.1 mycroft sp->seg_bytes_left -= LFS_SBPAD;
1352 1.1 mycroft }
1353 1.1 mycroft brelse(bp);
1354 1.67.2.3 nathanw /* Segment zero could also contain the labelpad */
1355 1.67.2.3 nathanw if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1356 1.67.2.3 nathanw fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1357 1.67.2.3 nathanw fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1358 1.67.2.3 nathanw sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1359 1.67.2.3 nathanw }
1360 1.1 mycroft } else {
1361 1.67.2.3 nathanw sp->seg_number = dtosn(fs, fs->lfs_curseg);
1362 1.67.2.3 nathanw sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1363 1.58 perseant (fs->lfs_offset - fs->lfs_curseg));
1364 1.1 mycroft }
1365 1.1 mycroft fs->lfs_lastpseg = fs->lfs_offset;
1366 1.15 perseant
1367 1.1 mycroft sp->fs = fs;
1368 1.1 mycroft sp->ibp = NULL;
1369 1.27 perseant sp->idp = NULL;
1370 1.1 mycroft sp->ninodes = 0;
1371 1.67.2.8 nathanw sp->ndupino = 0;
1372 1.67.2.3 nathanw
1373 1.1 mycroft /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1374 1.1 mycroft sp->cbpp = sp->bpp;
1375 1.67.2.6 nathanw #ifdef LFS_MALLOC_SUMMARY
1376 1.67.2.6 nathanw sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1377 1.67.2.6 nathanw fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
1378 1.67.2.6 nathanw sp->segsum = (*sp->cbpp)->b_data;
1379 1.67.2.6 nathanw #else
1380 1.67.2.6 nathanw sbp = *sp->cbpp = getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1381 1.67.2.6 nathanw fsbtodb(fs, fs->lfs_offset), NBPG, 0, 0);
1382 1.67.2.6 nathanw memset(sbp->b_data, 0x5a, NBPG);
1383 1.67.2.6 nathanw sp->segsum = (*sp->cbpp)->b_data + NBPG - fs->lfs_sumsize;
1384 1.67.2.6 nathanw #endif
1385 1.67.2.3 nathanw bzero(sp->segsum, fs->lfs_sumsize);
1386 1.1 mycroft sp->start_bpp = ++sp->cbpp;
1387 1.67.2.3 nathanw fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1388 1.15 perseant
1389 1.1 mycroft /* Set point to SEGSUM, initialize it. */
1390 1.1 mycroft ssp = sp->segsum;
1391 1.1 mycroft ssp->ss_next = fs->lfs_nextseg;
1392 1.1 mycroft ssp->ss_nfinfo = ssp->ss_ninos = 0;
1393 1.10 fvdl ssp->ss_magic = SS_MAGIC;
1394 1.1 mycroft
1395 1.1 mycroft /* Set pointer to first FINFO, initialize it. */
1396 1.67.2.3 nathanw sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1397 1.1 mycroft sp->fip->fi_nblocks = 0;
1398 1.1 mycroft sp->start_lbp = &sp->fip->fi_blocks[0];
1399 1.10 fvdl sp->fip->fi_lastlength = 0;
1400 1.15 perseant
1401 1.67.2.3 nathanw sp->seg_bytes_left -= fs->lfs_sumsize;
1402 1.67.2.3 nathanw sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1403 1.15 perseant
1404 1.67.2.6 nathanw #ifndef LFS_MALLOC_SUMMARY
1405 1.67.2.6 nathanw LFS_LOCK_BUF(sbp);
1406 1.67.2.6 nathanw brelse(sbp);
1407 1.67.2.6 nathanw #endif
1408 1.67.2.5 nathanw return (repeat);
1409 1.1 mycroft }
1410 1.1 mycroft
1411 1.1 mycroft /*
1412 1.1 mycroft * Return the next segment to write.
1413 1.1 mycroft */
1414 1.1 mycroft void
1415 1.67.2.3 nathanw lfs_newseg(struct lfs *fs)
1416 1.1 mycroft {
1417 1.1 mycroft CLEANERINFO *cip;
1418 1.1 mycroft SEGUSE *sup;
1419 1.1 mycroft struct buf *bp;
1420 1.1 mycroft int curseg, isdirty, sn;
1421 1.15 perseant
1422 1.67.2.3 nathanw LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1423 1.67.2.3 nathanw #ifdef DEBUG_SU_NBYTES
1424 1.67.2.3 nathanw printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1425 1.67.2.3 nathanw dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1426 1.67.2.3 nathanw #endif
1427 1.15 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1428 1.1 mycroft sup->su_nbytes = 0;
1429 1.1 mycroft sup->su_nsums = 0;
1430 1.1 mycroft sup->su_ninos = 0;
1431 1.67.2.6 nathanw (void) LFS_BWRITE_LOG(bp); /* Ifile */
1432 1.1 mycroft
1433 1.1 mycroft LFS_CLEANERINFO(cip, fs, bp);
1434 1.1 mycroft --cip->clean;
1435 1.1 mycroft ++cip->dirty;
1436 1.15 perseant fs->lfs_nclean = cip->clean;
1437 1.61 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1438 1.15 perseant
1439 1.1 mycroft fs->lfs_lastseg = fs->lfs_curseg;
1440 1.1 mycroft fs->lfs_curseg = fs->lfs_nextseg;
1441 1.67.2.3 nathanw for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1442 1.1 mycroft sn = (sn + 1) % fs->lfs_nseg;
1443 1.1 mycroft if (sn == curseg)
1444 1.1 mycroft panic("lfs_nextseg: no clean segments");
1445 1.1 mycroft LFS_SEGENTRY(sup, fs, sn, bp);
1446 1.1 mycroft isdirty = sup->su_flags & SEGUSE_DIRTY;
1447 1.1 mycroft brelse(bp);
1448 1.1 mycroft if (!isdirty)
1449 1.1 mycroft break;
1450 1.1 mycroft }
1451 1.15 perseant
1452 1.1 mycroft ++fs->lfs_nactive;
1453 1.67.2.3 nathanw fs->lfs_nextseg = sntod(fs, sn);
1454 1.67.2.5 nathanw if (lfs_dostats) {
1455 1.15 perseant ++lfs_stats.segsused;
1456 1.15 perseant }
1457 1.1 mycroft }
1458 1.1 mycroft
1459 1.67.2.6 nathanw static struct buf **
1460 1.67.2.6 nathanw lookahead_pagemove(struct buf **bpp, int nblocks, size_t *size)
1461 1.67.2.6 nathanw {
1462 1.67.2.6 nathanw size_t maxsize;
1463 1.67.2.6 nathanw #ifndef LFS_NO_PAGEMOVE
1464 1.67.2.6 nathanw struct buf *bp;
1465 1.67.2.6 nathanw #endif
1466 1.67.2.6 nathanw
1467 1.67.2.6 nathanw maxsize = *size;
1468 1.67.2.6 nathanw *size = 0;
1469 1.67.2.6 nathanw #ifdef LFS_NO_PAGEMOVE
1470 1.67.2.6 nathanw return bpp;
1471 1.67.2.6 nathanw #else
1472 1.67.2.6 nathanw while((bp = *bpp) != NULL && *size < maxsize && nblocks--) {
1473 1.67.2.6 nathanw if(bp->b_flags & B_CALL)
1474 1.67.2.6 nathanw return bpp;
1475 1.67.2.6 nathanw if(bp->b_bcount % NBPG)
1476 1.67.2.6 nathanw return bpp;
1477 1.67.2.6 nathanw *size += bp->b_bcount;
1478 1.67.2.6 nathanw ++bpp;
1479 1.67.2.6 nathanw }
1480 1.67.2.6 nathanw return NULL;
1481 1.67.2.6 nathanw #endif
1482 1.67.2.6 nathanw }
1483 1.67.2.6 nathanw
1484 1.67.2.6 nathanw #define BQUEUES 4 /* XXX */
1485 1.67.2.6 nathanw #define BQ_EMPTY 3 /* XXX */
1486 1.67.2.6 nathanw extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1487 1.67.2.6 nathanw
1488 1.67.2.6 nathanw #define BUFHASH(dvp, lbn) \
1489 1.67.2.6 nathanw (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1490 1.67.2.6 nathanw extern LIST_HEAD(bufhashhdr, buf) invalhash;
1491 1.67.2.6 nathanw /*
1492 1.67.2.6 nathanw * Insq/Remq for the buffer hash lists.
1493 1.67.2.6 nathanw */
1494 1.67.2.6 nathanw #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1495 1.67.2.6 nathanw #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1496 1.67.2.6 nathanw
1497 1.67.2.6 nathanw static struct buf *
1498 1.67.2.6 nathanw lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1499 1.67.2.6 nathanw {
1500 1.67.2.6 nathanw struct lfs_cluster *cl;
1501 1.67.2.6 nathanw struct buf **bpp, *bp;
1502 1.67.2.6 nathanw int s;
1503 1.67.2.6 nathanw
1504 1.67.2.6 nathanw cl = (struct lfs_cluster *)malloc(sizeof(*cl), M_SEGMENT, M_WAITOK);
1505 1.67.2.6 nathanw bpp = (struct buf **)malloc(n*sizeof(*bpp), M_SEGMENT, M_WAITOK);
1506 1.67.2.6 nathanw memset(cl, 0, sizeof(*cl));
1507 1.67.2.6 nathanw cl->fs = fs;
1508 1.67.2.6 nathanw cl->bpp = bpp;
1509 1.67.2.6 nathanw cl->bufcount = 0;
1510 1.67.2.6 nathanw cl->bufsize = 0;
1511 1.67.2.6 nathanw
1512 1.67.2.6 nathanw /* If this segment is being written synchronously, note that */
1513 1.67.2.6 nathanw if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1514 1.67.2.6 nathanw cl->flags |= LFS_CL_SYNC;
1515 1.67.2.6 nathanw cl->seg = fs->lfs_sp;
1516 1.67.2.6 nathanw ++cl->seg->seg_iocount;
1517 1.67.2.6 nathanw /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1518 1.67.2.6 nathanw }
1519 1.67.2.6 nathanw
1520 1.67.2.6 nathanw /* Get an empty buffer header, or maybe one with something on it */
1521 1.67.2.6 nathanw s = splbio();
1522 1.67.2.6 nathanw if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1523 1.67.2.6 nathanw bremfree(bp);
1524 1.67.2.6 nathanw /* clear out various other fields */
1525 1.67.2.6 nathanw bp->b_flags = B_BUSY;
1526 1.67.2.6 nathanw bp->b_dev = NODEV;
1527 1.67.2.6 nathanw bp->b_blkno = bp->b_lblkno = 0;
1528 1.67.2.6 nathanw bp->b_error = 0;
1529 1.67.2.6 nathanw bp->b_resid = 0;
1530 1.67.2.6 nathanw bp->b_bcount = 0;
1531 1.67.2.6 nathanw
1532 1.67.2.6 nathanw /* nuke any credentials we were holding */
1533 1.67.2.6 nathanw /* XXXXXX */
1534 1.67.2.6 nathanw
1535 1.67.2.6 nathanw bremhash(bp);
1536 1.67.2.6 nathanw
1537 1.67.2.6 nathanw /* disassociate us from our vnode, if we had one... */
1538 1.67.2.6 nathanw if (bp->b_vp)
1539 1.67.2.6 nathanw brelvp(bp);
1540 1.67.2.6 nathanw }
1541 1.67.2.6 nathanw splx(s);
1542 1.67.2.6 nathanw while (!bp)
1543 1.67.2.6 nathanw bp = getnewbuf(0, 0);
1544 1.67.2.6 nathanw s = splbio();
1545 1.67.2.6 nathanw bgetvp(vp, bp);
1546 1.67.2.6 nathanw binshash(bp,&invalhash);
1547 1.67.2.6 nathanw splx(s);
1548 1.67.2.6 nathanw bp->b_bcount = 0;
1549 1.67.2.6 nathanw bp->b_blkno = bp->b_lblkno = addr;
1550 1.67.2.6 nathanw
1551 1.67.2.6 nathanw bp->b_flags |= B_CALL;
1552 1.67.2.6 nathanw bp->b_iodone = lfs_cluster_callback;
1553 1.67.2.6 nathanw cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1554 1.67.2.6 nathanw bp->b_saveaddr = (caddr_t)cl;
1555 1.67.2.6 nathanw
1556 1.67.2.6 nathanw return bp;
1557 1.67.2.6 nathanw }
1558 1.67.2.6 nathanw
1559 1.1 mycroft int
1560 1.67.2.3 nathanw lfs_writeseg(struct lfs *fs, struct segment *sp)
1561 1.1 mycroft {
1562 1.67.2.6 nathanw struct buf **bpp, *bp, *cbp, *newbp, **pmlastbpp;
1563 1.1 mycroft SEGUSE *sup;
1564 1.1 mycroft SEGSUM *ssp;
1565 1.1 mycroft dev_t i_dev;
1566 1.67.2.3 nathanw char *datap, *dp;
1567 1.10 fvdl int do_again, i, nblocks, s;
1568 1.67.2.3 nathanw size_t el_size;
1569 1.67.2.6 nathanw struct lfs_cluster *cl;
1570 1.67.2.3 nathanw int (*strategy)(void *);
1571 1.1 mycroft struct vop_strategy_args vop_strategy_a;
1572 1.1 mycroft u_short ninos;
1573 1.15 perseant struct vnode *devvp;
1574 1.1 mycroft char *p;
1575 1.67.2.3 nathanw struct vnode *vp;
1576 1.26 perseant struct inode *ip;
1577 1.67.2.6 nathanw size_t pmsize;
1578 1.67.2.6 nathanw int use_pagemove;
1579 1.67.2.6 nathanw daddr_t pseg_daddr;
1580 1.53 perseant daddr_t *daddrp;
1581 1.55 perseant int changed;
1582 1.15 perseant #if defined(DEBUG) && defined(LFS_PROPELLER)
1583 1.15 perseant static int propeller;
1584 1.15 perseant char propstring[4] = "-\\|/";
1585 1.15 perseant
1586 1.15 perseant printf("%c\b",propstring[propeller++]);
1587 1.67.2.5 nathanw if (propeller == 4)
1588 1.15 perseant propeller = 0;
1589 1.15 perseant #endif
1590 1.67.2.6 nathanw pseg_daddr = (*(sp->bpp))->b_blkno;
1591 1.67.2.6 nathanw
1592 1.1 mycroft /*
1593 1.1 mycroft * If there are no buffers other than the segment summary to write
1594 1.1 mycroft * and it is not a checkpoint, don't do anything. On a checkpoint,
1595 1.1 mycroft * even if there aren't any buffers, you need to write the superblock.
1596 1.1 mycroft */
1597 1.1 mycroft if ((nblocks = sp->cbpp - sp->bpp) == 1)
1598 1.1 mycroft return (0);
1599 1.15 perseant
1600 1.27 perseant i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1601 1.27 perseant devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1602 1.27 perseant
1603 1.10 fvdl /* Update the segment usage information. */
1604 1.10 fvdl LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1605 1.15 perseant
1606 1.10 fvdl /* Loop through all blocks, except the segment summary. */
1607 1.27 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1608 1.67.2.5 nathanw if ((*bpp)->b_vp != devvp) {
1609 1.27 perseant sup->su_nbytes += (*bpp)->b_bcount;
1610 1.67.2.3 nathanw #ifdef DEBUG_SU_NBYTES
1611 1.67.2.3 nathanw printf("seg %d += %ld for ino %d lbn %d db 0x%x\n",
1612 1.67.2.3 nathanw sp->seg_number, (*bpp)->b_bcount,
1613 1.67.2.3 nathanw VTOI((*bpp)->b_vp)->i_number,
1614 1.67.2.3 nathanw (*bpp)->b_lblkno, (*bpp)->b_blkno);
1615 1.67.2.3 nathanw #endif
1616 1.67.2.3 nathanw }
1617 1.27 perseant }
1618 1.15 perseant
1619 1.1 mycroft ssp = (SEGSUM *)sp->segsum;
1620 1.15 perseant
1621 1.1 mycroft ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1622 1.67.2.3 nathanw #ifdef DEBUG_SU_NBYTES
1623 1.67.2.3 nathanw printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1624 1.67.2.3 nathanw sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1625 1.67.2.3 nathanw ssp->ss_ninos);
1626 1.67.2.3 nathanw #endif
1627 1.27 perseant sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1628 1.67.2.3 nathanw /* sup->su_nbytes += fs->lfs_sumsize; */
1629 1.67.2.3 nathanw if (fs->lfs_version == 1)
1630 1.67.2.3 nathanw sup->su_olastmod = time.tv_sec;
1631 1.67.2.3 nathanw else
1632 1.67.2.3 nathanw sup->su_lastmod = time.tv_sec;
1633 1.1 mycroft sup->su_ninos += ninos;
1634 1.1 mycroft ++sup->su_nsums;
1635 1.67.2.3 nathanw fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1636 1.67.2.3 nathanw fs->lfs_ibsize));
1637 1.67.2.3 nathanw fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1638 1.15 perseant
1639 1.1 mycroft do_again = !(bp->b_flags & B_GATHERED);
1640 1.67.2.6 nathanw (void)LFS_BWRITE_LOG(bp); /* Ifile */
1641 1.1 mycroft /*
1642 1.53 perseant * Mark blocks B_BUSY, to prevent then from being changed between
1643 1.53 perseant * the checksum computation and the actual write.
1644 1.53 perseant *
1645 1.53 perseant * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1646 1.53 perseant * there are any, replace them with copies that have UNASSIGNED
1647 1.53 perseant * instead.
1648 1.53 perseant */
1649 1.53 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1650 1.53 perseant ++bpp;
1651 1.67.2.5 nathanw if ((*bpp)->b_flags & B_CALL)
1652 1.53 perseant continue;
1653 1.53 perseant bp = *bpp;
1654 1.53 perseant again:
1655 1.53 perseant s = splbio();
1656 1.67.2.5 nathanw if (bp->b_flags & B_BUSY) {
1657 1.53 perseant #ifdef DEBUG
1658 1.53 perseant printf("lfs_writeseg: avoiding potential data "
1659 1.53 perseant "summary corruption for ino %d, lbn %d\n",
1660 1.53 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1661 1.53 perseant #endif
1662 1.53 perseant bp->b_flags |= B_WANTED;
1663 1.53 perseant tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1664 1.53 perseant splx(s);
1665 1.53 perseant goto again;
1666 1.53 perseant }
1667 1.53 perseant bp->b_flags |= B_BUSY;
1668 1.53 perseant splx(s);
1669 1.53 perseant /* Check and replace indirect block UNWRITTEN bogosity */
1670 1.67.2.5 nathanw if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1671 1.53 perseant VTOI(bp->b_vp)->i_ffs_blocks !=
1672 1.53 perseant VTOI(bp->b_vp)->i_lfs_effnblks) {
1673 1.54 perseant #ifdef DEBUG_LFS
1674 1.53 perseant printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1675 1.53 perseant VTOI(bp->b_vp)->i_number,
1676 1.53 perseant VTOI(bp->b_vp)->i_lfs_effnblks,
1677 1.53 perseant VTOI(bp->b_vp)->i_ffs_blocks);
1678 1.54 perseant #endif
1679 1.53 perseant /* Make a copy we'll make changes to */
1680 1.67.2.3 nathanw newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1681 1.53 perseant bp->b_bcount);
1682 1.53 perseant newbp->b_blkno = bp->b_blkno;
1683 1.53 perseant memcpy(newbp->b_data, bp->b_data,
1684 1.53 perseant newbp->b_bcount);
1685 1.53 perseant *bpp = newbp;
1686 1.53 perseant
1687 1.55 perseant changed = 0;
1688 1.53 perseant for (daddrp = (daddr_t *)(newbp->b_data);
1689 1.53 perseant daddrp < (daddr_t *)(newbp->b_data +
1690 1.53 perseant newbp->b_bcount); daddrp++) {
1691 1.53 perseant if (*daddrp == UNWRITTEN) {
1692 1.55 perseant ++changed;
1693 1.54 perseant #ifdef DEBUG_LFS
1694 1.54 perseant printf("lfs_writeseg: replacing UNWRITTEN\n");
1695 1.53 perseant #endif
1696 1.53 perseant *daddrp = 0;
1697 1.53 perseant }
1698 1.53 perseant }
1699 1.55 perseant /*
1700 1.55 perseant * Get rid of the old buffer. Don't mark it clean,
1701 1.55 perseant * though, if it still has dirty data on it.
1702 1.55 perseant */
1703 1.55 perseant if (changed) {
1704 1.55 perseant bp->b_flags &= ~(B_ERROR | B_GATHERED);
1705 1.67.2.3 nathanw if (bp->b_flags & B_CALL) {
1706 1.55 perseant lfs_freebuf(bp);
1707 1.67.2.3 nathanw bp = NULL;
1708 1.67.2.3 nathanw } else {
1709 1.57 perseant /* Still on free list, leave it there */
1710 1.57 perseant s = splbio();
1711 1.57 perseant bp->b_flags &= ~B_BUSY;
1712 1.57 perseant if (bp->b_flags & B_WANTED)
1713 1.57 perseant wakeup(bp);
1714 1.57 perseant splx(s);
1715 1.62 perseant /*
1716 1.62 perseant * We have to re-decrement lfs_avail
1717 1.62 perseant * since this block is going to come
1718 1.62 perseant * back around to us in the next
1719 1.62 perseant * segment.
1720 1.62 perseant */
1721 1.67.2.3 nathanw fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1722 1.57 perseant }
1723 1.55 perseant } else {
1724 1.55 perseant bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1725 1.62 perseant B_GATHERED);
1726 1.67.2.3 nathanw if (bp->b_flags & B_CALL) {
1727 1.55 perseant lfs_freebuf(bp);
1728 1.67.2.3 nathanw bp = NULL;
1729 1.67.2.3 nathanw } else {
1730 1.55 perseant bremfree(bp);
1731 1.55 perseant bp->b_flags |= B_DONE;
1732 1.67.2.6 nathanw s = splbio();
1733 1.55 perseant reassignbuf(bp, bp->b_vp);
1734 1.67.2.6 nathanw splx(s);
1735 1.67.2.6 nathanw LFS_UNLOCK_BUF(bp);
1736 1.55 perseant brelse(bp);
1737 1.55 perseant }
1738 1.55 perseant }
1739 1.67.2.3 nathanw
1740 1.53 perseant }
1741 1.53 perseant }
1742 1.53 perseant /*
1743 1.1 mycroft * Compute checksum across data and then across summary; the first
1744 1.1 mycroft * block (the summary block) is skipped. Set the create time here
1745 1.1 mycroft * so that it's guaranteed to be later than the inode mod times.
1746 1.1 mycroft *
1747 1.1 mycroft * XXX
1748 1.1 mycroft * Fix this to do it inline, instead of malloc/copy.
1749 1.1 mycroft */
1750 1.67.2.3 nathanw if (fs->lfs_version == 1)
1751 1.67.2.3 nathanw el_size = sizeof(u_long);
1752 1.67.2.3 nathanw else
1753 1.67.2.3 nathanw el_size = sizeof(u_int32_t);
1754 1.67.2.3 nathanw datap = dp = malloc(nblocks * el_size, M_SEGMENT, M_WAITOK);
1755 1.1 mycroft for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1756 1.15 perseant if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1757 1.67.2.3 nathanw if (copyin((*bpp)->b_saveaddr, dp, el_size))
1758 1.53 perseant panic("lfs_writeseg: copyin failed [1]: "
1759 1.53 perseant "ino %d blk %d",
1760 1.53 perseant VTOI((*bpp)->b_vp)->i_number,
1761 1.53 perseant (*bpp)->b_lblkno);
1762 1.53 perseant } else
1763 1.67.2.3 nathanw memcpy(dp, (*bpp)->b_data, el_size);
1764 1.67.2.3 nathanw dp += el_size;
1765 1.67.2.3 nathanw }
1766 1.67.2.3 nathanw if (fs->lfs_version == 1)
1767 1.67.2.3 nathanw ssp->ss_ocreate = time.tv_sec;
1768 1.67.2.3 nathanw else {
1769 1.67.2.3 nathanw ssp->ss_create = time.tv_sec;
1770 1.67.2.3 nathanw ssp->ss_serial = ++fs->lfs_serial;
1771 1.67.2.3 nathanw ssp->ss_ident = fs->lfs_ident;
1772 1.1 mycroft }
1773 1.67.2.6 nathanw #ifndef LFS_MALLOC_SUMMARY
1774 1.67.2.6 nathanw /* Set the summary block busy too */
1775 1.67.2.6 nathanw (*(sp->bpp))->b_flags |= B_BUSY;
1776 1.67.2.6 nathanw #endif
1777 1.67.2.3 nathanw ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
1778 1.1 mycroft ssp->ss_sumsum =
1779 1.67.2.3 nathanw cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1780 1.1 mycroft free(datap, M_SEGMENT);
1781 1.67.2.3 nathanw datap = dp = NULL;
1782 1.67.2.3 nathanw #ifdef DIAGNOSTIC
1783 1.67.2.3 nathanw if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1784 1.67.2.3 nathanw panic("lfs_writeseg: No diskspace for summary");
1785 1.67.2.3 nathanw #endif
1786 1.67.2.3 nathanw fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1787 1.67.2.3 nathanw btofsb(fs, fs->lfs_sumsize));
1788 1.1 mycroft
1789 1.15 perseant strategy = devvp->v_op[VOFFSET(vop_strategy)];
1790 1.1 mycroft
1791 1.1 mycroft /*
1792 1.67.2.6 nathanw * When we simply write the blocks we lose a rotation for every block
1793 1.67.2.6 nathanw * written. To avoid this problem, we use pagemove to cluster
1794 1.67.2.6 nathanw * the buffers into a chunk and write the chunk. CHUNKSIZE is the
1795 1.67.2.6 nathanw * largest size I/O devices can handle.
1796 1.67.2.6 nathanw *
1797 1.67.2.6 nathanw * XXX - right now MAXPHYS is only 64k; could it be larger?
1798 1.1 mycroft */
1799 1.15 perseant
1800 1.15 perseant #define CHUNKSIZE MAXPHYS
1801 1.15 perseant
1802 1.67.2.5 nathanw if (devvp == NULL)
1803 1.15 perseant panic("devvp is NULL");
1804 1.67.2.6 nathanw for (bpp = sp->bpp, i = nblocks; i;) {
1805 1.67.2.6 nathanw cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1806 1.67.2.6 nathanw cl = (struct lfs_cluster *)cbp->b_saveaddr;
1807 1.67.2.6 nathanw
1808 1.1 mycroft cbp->b_dev = i_dev;
1809 1.1 mycroft cbp->b_flags |= B_ASYNC | B_BUSY;
1810 1.10 fvdl cbp->b_bcount = 0;
1811 1.1 mycroft
1812 1.67.2.6 nathanw /*
1813 1.67.2.6 nathanw * Find out if we can use pagemove to build the cluster,
1814 1.67.2.6 nathanw * or if we are stuck using malloc/copy. If this is the
1815 1.67.2.6 nathanw * first cluster, set the shift flag (see below).
1816 1.67.2.6 nathanw */
1817 1.67.2.6 nathanw pmsize = CHUNKSIZE;
1818 1.67.2.6 nathanw use_pagemove = 0;
1819 1.67.2.6 nathanw if(bpp == sp->bpp) {
1820 1.67.2.6 nathanw /* Summary blocks have to get special treatment */
1821 1.67.2.6 nathanw pmlastbpp = lookahead_pagemove(bpp + 1, i - 1, &pmsize);
1822 1.67.2.6 nathanw if(pmsize >= CHUNKSIZE - fs->lfs_sumsize ||
1823 1.67.2.6 nathanw pmlastbpp == NULL) {
1824 1.67.2.6 nathanw use_pagemove = 1;
1825 1.67.2.6 nathanw cl->flags |= LFS_CL_SHIFT;
1826 1.67.2.6 nathanw } else {
1827 1.67.2.6 nathanw /*
1828 1.67.2.6 nathanw * If we're not using pagemove, we have
1829 1.67.2.6 nathanw * to copy the summary down to the bottom
1830 1.67.2.6 nathanw * end of the block.
1831 1.67.2.6 nathanw */
1832 1.67.2.6 nathanw #ifndef LFS_MALLOC_SUMMARY
1833 1.67.2.6 nathanw memcpy((*bpp)->b_data, (*bpp)->b_data +
1834 1.67.2.6 nathanw NBPG - fs->lfs_sumsize,
1835 1.67.2.6 nathanw fs->lfs_sumsize);
1836 1.67.2.6 nathanw #endif /* LFS_MALLOC_SUMMARY */
1837 1.67.2.6 nathanw }
1838 1.67.2.6 nathanw } else {
1839 1.67.2.6 nathanw pmlastbpp = lookahead_pagemove(bpp, i, &pmsize);
1840 1.67.2.6 nathanw if(pmsize >= CHUNKSIZE || pmlastbpp == NULL) {
1841 1.67.2.6 nathanw use_pagemove = 1;
1842 1.67.2.6 nathanw }
1843 1.67.2.6 nathanw }
1844 1.67.2.6 nathanw if(use_pagemove == 0) {
1845 1.67.2.6 nathanw cl->flags |= LFS_CL_MALLOC;
1846 1.67.2.6 nathanw cl->olddata = cbp->b_data;
1847 1.67.2.6 nathanw cbp->b_data = malloc(CHUNKSIZE, M_SEGMENT, M_WAITOK);
1848 1.67.2.6 nathanw }
1849 1.67.2.6 nathanw #if defined(DEBUG) && defined(DIAGNOSTIC)
1850 1.67.2.6 nathanw if(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount - 1))) !=
1851 1.67.2.3 nathanw dtosn(fs, dbtofsb(fs, cbp->b_blkno))) {
1852 1.67.2.6 nathanw printf("block at %x (%d), cbp at %x (%d)\n",
1853 1.67.2.6 nathanw (*bpp)->b_blkno, dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)),
1854 1.67.2.6 nathanw cbp->b_blkno, dtosn(fs, dbtofsb(fs, cbp->b_blkno)));
1855 1.17 perseant panic("lfs_writeseg: Segment overwrite");
1856 1.17 perseant }
1857 1.17 perseant #endif
1858 1.17 perseant
1859 1.67.2.6 nathanw /*
1860 1.67.2.6 nathanw * Construct the cluster.
1861 1.67.2.6 nathanw */
1862 1.67.2.6 nathanw while (fs->lfs_iocount >= LFS_THROTTLE) {
1863 1.67.2.6 nathanw #ifdef DEBUG_LFS
1864 1.67.2.6 nathanw printf("[%d]", fs->lfs_iocount);
1865 1.67.2.6 nathanw #endif
1866 1.67.2.6 nathanw tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs_throttle", 0);
1867 1.15 perseant }
1868 1.1 mycroft ++fs->lfs_iocount;
1869 1.67.2.6 nathanw
1870 1.15 perseant for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1871 1.10 fvdl bp = *bpp;
1872 1.15 perseant
1873 1.15 perseant if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1874 1.10 fvdl break;
1875 1.10 fvdl
1876 1.1 mycroft /*
1877 1.1 mycroft * Fake buffers from the cleaner are marked as B_INVAL.
1878 1.1 mycroft * We need to copy the data from user space rather than
1879 1.1 mycroft * from the buffer indicated.
1880 1.1 mycroft * XXX == what do I do on an error?
1881 1.1 mycroft */
1882 1.15 perseant if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1883 1.1 mycroft if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1884 1.15 perseant panic("lfs_writeseg: copyin failed [2]");
1885 1.67.2.6 nathanw } else if (use_pagemove) {
1886 1.67.2.6 nathanw pagemove(bp->b_data, p, bp->b_bcount);
1887 1.67.2.6 nathanw cbp->b_bufsize += bp->b_bcount;
1888 1.67.2.6 nathanw bp->b_bufsize -= bp->b_bcount;
1889 1.67.2.6 nathanw } else {
1890 1.1 mycroft bcopy(bp->b_data, p, bp->b_bcount);
1891 1.67.2.6 nathanw /* printf("copy in %p\n", bp->b_data); */
1892 1.67.2.6 nathanw }
1893 1.67.2.6 nathanw
1894 1.67.2.6 nathanw /*
1895 1.67.2.6 nathanw * XXX If we are *not* shifting, the summary
1896 1.67.2.6 nathanw * block is only fs->lfs_sumsize. Otherwise,
1897 1.67.2.6 nathanw * it is NBPG but shifted.
1898 1.67.2.6 nathanw */
1899 1.67.2.6 nathanw if(bpp == sp->bpp && !(cl->flags & LFS_CL_SHIFT)) {
1900 1.67.2.6 nathanw p += fs->lfs_sumsize;
1901 1.67.2.6 nathanw cbp->b_bcount += fs->lfs_sumsize;
1902 1.67.2.6 nathanw cl->bufsize += fs->lfs_sumsize;
1903 1.1 mycroft } else {
1904 1.67.2.6 nathanw p += bp->b_bcount;
1905 1.67.2.6 nathanw cbp->b_bcount += bp->b_bcount;
1906 1.67.2.6 nathanw cl->bufsize += bp->b_bcount;
1907 1.15 perseant }
1908 1.67.2.6 nathanw bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1909 1.67.2.6 nathanw cl->bpp[cl->bufcount++] = bp;
1910 1.67.2.6 nathanw vp = bp->b_vp;
1911 1.67.2.6 nathanw s = splbio();
1912 1.67.2.6 nathanw ++vp->v_numoutput;
1913 1.67.2.6 nathanw splx(s);
1914 1.26 perseant
1915 1.67.2.6 nathanw /*
1916 1.67.2.6 nathanw * Although it cannot be freed for reuse before the
1917 1.67.2.6 nathanw * cluster is written to disk, this buffer does not
1918 1.67.2.6 nathanw * need to be held busy. Therefore we unbusy it,
1919 1.67.2.6 nathanw * while leaving it on the locked list. It will
1920 1.67.2.6 nathanw * be freed or requeued by the callback depending
1921 1.67.2.6 nathanw * on whether it has had B_DELWRI set again in the
1922 1.67.2.6 nathanw * meantime.
1923 1.67.2.6 nathanw *
1924 1.67.2.6 nathanw * If we are using pagemove, we have to hold the block
1925 1.67.2.6 nathanw * busy to prevent its contents from changing before
1926 1.67.2.6 nathanw * it hits the disk, and invalidating the checksum.
1927 1.67.2.6 nathanw */
1928 1.67.2.6 nathanw bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
1929 1.67.2.6 nathanw #ifdef LFS_MNOBUSY
1930 1.67.2.6 nathanw if (cl->flags & LFS_CL_MALLOC) {
1931 1.67.2.6 nathanw if (!(bp->b_flags & B_CALL))
1932 1.67.2.6 nathanw brelse(bp); /* Still B_LOCKED */
1933 1.67.2.6 nathanw }
1934 1.67.2.6 nathanw #endif
1935 1.26 perseant bpp++;
1936 1.26 perseant
1937 1.26 perseant /*
1938 1.26 perseant * If this is the last block for this vnode, but
1939 1.26 perseant * there are other blocks on its dirty list,
1940 1.26 perseant * set IN_MODIFIED/IN_CLEANING depending on what
1941 1.26 perseant * sort of block. Only do this for our mount point,
1942 1.26 perseant * not for, e.g., inode blocks that are attached to
1943 1.26 perseant * the devvp.
1944 1.67.2.3 nathanw * XXX KS - Shouldn't we set *both* if both types
1945 1.67.2.3 nathanw * of blocks are present (traverse the dirty list?)
1946 1.26 perseant */
1947 1.67.2.6 nathanw s = splbio();
1948 1.67.2.5 nathanw if ((i == 1 ||
1949 1.67.2.6 nathanw (i > 1 && vp && *bpp && (*bpp)->b_vp != vp)) &&
1950 1.67.2.6 nathanw (bp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL &&
1951 1.67.2.6 nathanw vp->v_mount == fs->lfs_ivnode->v_mount)
1952 1.67.2.6 nathanw {
1953 1.67.2.3 nathanw ip = VTOI(vp);
1954 1.26 perseant #ifdef DEBUG_LFS
1955 1.67.2.3 nathanw printf("lfs_writeseg: marking ino %d\n",
1956 1.67.2.3 nathanw ip->i_number);
1957 1.26 perseant #endif
1958 1.67.2.5 nathanw if (bp->b_flags & B_CALL)
1959 1.56 perseant LFS_SET_UINO(ip, IN_CLEANING);
1960 1.56 perseant else
1961 1.56 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1962 1.26 perseant }
1963 1.67.2.6 nathanw splx(s);
1964 1.67.2.3 nathanw wakeup(vp);
1965 1.1 mycroft }
1966 1.67.2.6 nathanw s = splbio();
1967 1.1 mycroft ++cbp->b_vp->v_numoutput;
1968 1.1 mycroft splx(s);
1969 1.1 mycroft /*
1970 1.67.2.6 nathanw * In order to include the summary in a clustered block,
1971 1.67.2.6 nathanw * it may be necessary to shift the block forward (since
1972 1.67.2.6 nathanw * summary blocks are in generay smaller than can be
1973 1.67.2.6 nathanw * addressed by pagemove(). After the write, the block
1974 1.67.2.6 nathanw * will be corrected before disassembly.
1975 1.1 mycroft */
1976 1.67.2.6 nathanw if(cl->flags & LFS_CL_SHIFT) {
1977 1.67.2.6 nathanw cbp->b_data += (NBPG - fs->lfs_sumsize);
1978 1.67.2.6 nathanw cbp->b_bcount -= (NBPG - fs->lfs_sumsize);
1979 1.67.2.6 nathanw }
1980 1.1 mycroft vop_strategy_a.a_desc = VDESC(vop_strategy);
1981 1.1 mycroft vop_strategy_a.a_bp = cbp;
1982 1.1 mycroft (strategy)(&vop_strategy_a);
1983 1.1 mycroft }
1984 1.67.2.6 nathanw
1985 1.67.2.5 nathanw if (lfs_dostats) {
1986 1.15 perseant ++lfs_stats.psegwrites;
1987 1.15 perseant lfs_stats.blocktot += nblocks - 1;
1988 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1989 1.15 perseant ++lfs_stats.psyncwrites;
1990 1.15 perseant if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1991 1.15 perseant ++lfs_stats.pcleanwrites;
1992 1.15 perseant lfs_stats.cleanblocks += nblocks - 1;
1993 1.15 perseant }
1994 1.1 mycroft }
1995 1.1 mycroft return (lfs_initseg(fs) || do_again);
1996 1.1 mycroft }
1997 1.1 mycroft
1998 1.1 mycroft void
1999 1.67.2.3 nathanw lfs_writesuper(struct lfs *fs, daddr_t daddr)
2000 1.1 mycroft {
2001 1.1 mycroft struct buf *bp;
2002 1.1 mycroft dev_t i_dev;
2003 1.67.2.3 nathanw int (*strategy)(void *);
2004 1.1 mycroft int s;
2005 1.1 mycroft struct vop_strategy_args vop_strategy_a;
2006 1.1 mycroft
2007 1.15 perseant /*
2008 1.15 perseant * If we can write one superblock while another is in
2009 1.15 perseant * progress, we risk not having a complete checkpoint if we crash.
2010 1.15 perseant * So, block here if a superblock write is in progress.
2011 1.15 perseant */
2012 1.36 perseant s = splbio();
2013 1.67.2.5 nathanw while (fs->lfs_sbactive) {
2014 1.15 perseant tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2015 1.15 perseant }
2016 1.15 perseant fs->lfs_sbactive = daddr;
2017 1.36 perseant splx(s);
2018 1.1 mycroft i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2019 1.1 mycroft strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2020 1.1 mycroft
2021 1.15 perseant /* Set timestamp of this version of the superblock */
2022 1.67.2.3 nathanw if (fs->lfs_version == 1)
2023 1.67.2.3 nathanw fs->lfs_otstamp = time.tv_sec;
2024 1.15 perseant fs->lfs_tstamp = time.tv_sec;
2025 1.15 perseant
2026 1.1 mycroft /* Checksum the superblock and copy it into a buffer. */
2027 1.12 pk fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2028 1.67.2.3 nathanw bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
2029 1.12 pk *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2030 1.15 perseant
2031 1.1 mycroft bp->b_dev = i_dev;
2032 1.1 mycroft bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2033 1.1 mycroft bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2034 1.1 mycroft bp->b_iodone = lfs_supercallback;
2035 1.15 perseant /* XXX KS - same nasty hack as above */
2036 1.15 perseant bp->b_saveaddr = (caddr_t)fs;
2037 1.15 perseant
2038 1.1 mycroft vop_strategy_a.a_desc = VDESC(vop_strategy);
2039 1.1 mycroft vop_strategy_a.a_bp = bp;
2040 1.1 mycroft s = splbio();
2041 1.1 mycroft ++bp->b_vp->v_numoutput;
2042 1.1 mycroft splx(s);
2043 1.67.2.6 nathanw ++fs->lfs_iocount;
2044 1.1 mycroft (strategy)(&vop_strategy_a);
2045 1.1 mycroft }
2046 1.1 mycroft
2047 1.1 mycroft /*
2048 1.1 mycroft * Logical block number match routines used when traversing the dirty block
2049 1.1 mycroft * chain.
2050 1.1 mycroft */
2051 1.1 mycroft int
2052 1.67.2.3 nathanw lfs_match_fake(struct lfs *fs, struct buf *bp)
2053 1.15 perseant {
2054 1.19 perseant return (bp->b_flags & B_CALL);
2055 1.15 perseant }
2056 1.15 perseant
2057 1.15 perseant int
2058 1.67.2.3 nathanw lfs_match_data(struct lfs *fs, struct buf *bp)
2059 1.1 mycroft {
2060 1.1 mycroft return (bp->b_lblkno >= 0);
2061 1.1 mycroft }
2062 1.1 mycroft
2063 1.1 mycroft int
2064 1.67.2.3 nathanw lfs_match_indir(struct lfs *fs, struct buf *bp)
2065 1.1 mycroft {
2066 1.1 mycroft int lbn;
2067 1.1 mycroft
2068 1.1 mycroft lbn = bp->b_lblkno;
2069 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2070 1.1 mycroft }
2071 1.1 mycroft
2072 1.1 mycroft int
2073 1.67.2.3 nathanw lfs_match_dindir(struct lfs *fs, struct buf *bp)
2074 1.1 mycroft {
2075 1.1 mycroft int lbn;
2076 1.1 mycroft
2077 1.1 mycroft lbn = bp->b_lblkno;
2078 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2079 1.1 mycroft }
2080 1.1 mycroft
2081 1.1 mycroft int
2082 1.67.2.3 nathanw lfs_match_tindir(struct lfs *fs, struct buf *bp)
2083 1.1 mycroft {
2084 1.1 mycroft int lbn;
2085 1.1 mycroft
2086 1.1 mycroft lbn = bp->b_lblkno;
2087 1.1 mycroft return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2088 1.1 mycroft }
2089 1.1 mycroft
2090 1.1 mycroft /*
2091 1.15 perseant * XXX - The only buffers that are going to hit these functions are the
2092 1.15 perseant * segment write blocks, or the segment summaries, or the superblocks.
2093 1.15 perseant *
2094 1.15 perseant * All of the above are created by lfs_newbuf, and so do not need to be
2095 1.15 perseant * released via brelse.
2096 1.1 mycroft */
2097 1.1 mycroft void
2098 1.67.2.3 nathanw lfs_callback(struct buf *bp)
2099 1.1 mycroft {
2100 1.67.2.6 nathanw /* struct lfs *fs; */
2101 1.67.2.6 nathanw /* fs = (struct lfs *)bp->b_saveaddr; */
2102 1.67.2.6 nathanw lfs_freebuf(bp);
2103 1.67.2.6 nathanw }
2104 1.67.2.6 nathanw
2105 1.67.2.6 nathanw static void
2106 1.67.2.6 nathanw lfs_super_aiodone(struct buf *bp)
2107 1.67.2.6 nathanw {
2108 1.1 mycroft struct lfs *fs;
2109 1.1 mycroft
2110 1.1 mycroft fs = (struct lfs *)bp->b_saveaddr;
2111 1.67.2.6 nathanw fs->lfs_sbactive = 0;
2112 1.67.2.6 nathanw wakeup(&fs->lfs_sbactive);
2113 1.67.2.6 nathanw if (--fs->lfs_iocount < LFS_THROTTLE)
2114 1.67.2.6 nathanw wakeup(&fs->lfs_iocount);
2115 1.67.2.6 nathanw lfs_freebuf(bp);
2116 1.67.2.6 nathanw }
2117 1.67.2.6 nathanw
2118 1.67.2.6 nathanw static void
2119 1.67.2.6 nathanw lfs_cluster_aiodone(struct buf *bp)
2120 1.67.2.6 nathanw {
2121 1.67.2.6 nathanw struct lfs_cluster *cl;
2122 1.67.2.6 nathanw struct lfs *fs;
2123 1.67.2.6 nathanw struct buf *tbp;
2124 1.67.2.6 nathanw struct vnode *vp;
2125 1.67.2.6 nathanw int s, error=0;
2126 1.67.2.6 nathanw char *cp;
2127 1.67.2.6 nathanw extern int locked_queue_count;
2128 1.67.2.6 nathanw extern long locked_queue_bytes;
2129 1.67.2.6 nathanw
2130 1.67.2.6 nathanw if(bp->b_flags & B_ERROR)
2131 1.67.2.6 nathanw error = bp->b_error;
2132 1.67.2.6 nathanw
2133 1.67.2.6 nathanw cl = (struct lfs_cluster *)bp->b_saveaddr;
2134 1.67.2.6 nathanw fs = cl->fs;
2135 1.67.2.6 nathanw bp->b_saveaddr = cl->saveaddr;
2136 1.67.2.6 nathanw
2137 1.67.2.6 nathanw /* If shifted, shift back now */
2138 1.67.2.6 nathanw if(cl->flags & LFS_CL_SHIFT) {
2139 1.67.2.6 nathanw bp->b_data -= (NBPG - fs->lfs_sumsize);
2140 1.67.2.6 nathanw bp->b_bcount += (NBPG - fs->lfs_sumsize);
2141 1.67.2.6 nathanw }
2142 1.67.2.6 nathanw
2143 1.67.2.6 nathanw cp = (char *)bp->b_data + cl->bufsize;
2144 1.67.2.6 nathanw /* Put the pages back, and release the buffer */
2145 1.67.2.6 nathanw while(cl->bufcount--) {
2146 1.67.2.6 nathanw tbp = cl->bpp[cl->bufcount];
2147 1.67.2.6 nathanw if(!(cl->flags & LFS_CL_MALLOC)) {
2148 1.67.2.6 nathanw cp -= tbp->b_bcount;
2149 1.67.2.6 nathanw printf("pm(%p,%p,%lx)",cp,tbp->b_data,tbp->b_bcount);
2150 1.67.2.6 nathanw pagemove(cp, tbp->b_data, tbp->b_bcount);
2151 1.67.2.6 nathanw bp->b_bufsize -= tbp->b_bcount;
2152 1.67.2.6 nathanw tbp->b_bufsize += tbp->b_bcount;
2153 1.67.2.6 nathanw }
2154 1.67.2.6 nathanw if(error) {
2155 1.67.2.6 nathanw tbp->b_flags |= B_ERROR;
2156 1.67.2.6 nathanw tbp->b_error = error;
2157 1.67.2.6 nathanw }
2158 1.67.2.6 nathanw
2159 1.67.2.6 nathanw /*
2160 1.67.2.6 nathanw * We're done with tbp. If it has not been re-dirtied since
2161 1.67.2.6 nathanw * the cluster was written, free it. Otherwise, keep it on
2162 1.67.2.6 nathanw * the locked list to be written again.
2163 1.67.2.6 nathanw */
2164 1.67.2.6 nathanw if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2165 1.67.2.6 nathanw LFS_UNLOCK_BUF(tbp);
2166 1.67.2.6 nathanw tbp->b_flags &= ~B_GATHERED;
2167 1.67.2.6 nathanw
2168 1.67.2.6 nathanw LFS_BCLEAN_LOG(fs, tbp);
2169 1.67.2.6 nathanw
2170 1.67.2.6 nathanw vp = tbp->b_vp;
2171 1.67.2.6 nathanw /* Segment summary for a shifted cluster */
2172 1.67.2.6 nathanw if(!cl->bufcount && (cl->flags & LFS_CL_SHIFT))
2173 1.67.2.6 nathanw tbp->b_flags |= B_INVAL;
2174 1.67.2.6 nathanw if(!(tbp->b_flags & B_CALL)) {
2175 1.67.2.6 nathanw bremfree(tbp);
2176 1.67.2.6 nathanw s = splbio();
2177 1.67.2.6 nathanw if(vp)
2178 1.67.2.6 nathanw reassignbuf(tbp, vp);
2179 1.67.2.6 nathanw splx(s);
2180 1.67.2.6 nathanw tbp->b_flags |= B_ASYNC; /* for biodone */
2181 1.67.2.6 nathanw }
2182 1.67.2.6 nathanw #ifdef DIAGNOSTIC
2183 1.67.2.6 nathanw if (tbp->b_flags & B_DONE) {
2184 1.67.2.6 nathanw printf("blk %d biodone already (flags %lx)\n",
2185 1.67.2.6 nathanw cl->bufcount, (long)tbp->b_flags);
2186 1.67.2.6 nathanw }
2187 1.67.2.6 nathanw #endif
2188 1.67.2.6 nathanw if (tbp->b_flags & (B_BUSY | B_CALL)) {
2189 1.67.2.6 nathanw biodone(tbp);
2190 1.67.2.6 nathanw }
2191 1.67.2.6 nathanw }
2192 1.67.2.6 nathanw
2193 1.67.2.6 nathanw /* Fix up the cluster buffer, and release it */
2194 1.67.2.6 nathanw if(!(cl->flags & LFS_CL_MALLOC) && bp->b_bufsize) {
2195 1.67.2.6 nathanw printf("PM(%p,%p,%lx)", (char *)bp->b_data + bp->b_bcount,
2196 1.67.2.6 nathanw (char *)bp->b_data, bp->b_bufsize);
2197 1.67.2.6 nathanw pagemove((char *)bp->b_data + bp->b_bcount,
2198 1.67.2.6 nathanw (char *)bp->b_data, bp->b_bufsize);
2199 1.67.2.6 nathanw }
2200 1.67.2.6 nathanw if(cl->flags & LFS_CL_MALLOC) {
2201 1.67.2.6 nathanw free(bp->b_data, M_SEGMENT);
2202 1.67.2.6 nathanw bp->b_data = cl->olddata;
2203 1.67.2.6 nathanw }
2204 1.67.2.6 nathanw bp->b_bcount = 0;
2205 1.67.2.6 nathanw bp->b_iodone = NULL;
2206 1.67.2.6 nathanw bp->b_flags &= ~B_DELWRI;
2207 1.67.2.6 nathanw bp->b_flags |= B_DONE;
2208 1.67.2.6 nathanw s = splbio();
2209 1.67.2.6 nathanw reassignbuf(bp, bp->b_vp);
2210 1.67.2.6 nathanw splx(s);
2211 1.67.2.6 nathanw brelse(bp);
2212 1.67.2.6 nathanw
2213 1.67.2.6 nathanw /* Note i/o done */
2214 1.67.2.6 nathanw if (cl->flags & LFS_CL_SYNC) {
2215 1.67.2.6 nathanw if (--cl->seg->seg_iocount == 0)
2216 1.67.2.6 nathanw wakeup(&cl->seg->seg_iocount);
2217 1.67.2.6 nathanw /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2218 1.67.2.6 nathanw }
2219 1.1 mycroft #ifdef DIAGNOSTIC
2220 1.1 mycroft if (fs->lfs_iocount == 0)
2221 1.67.2.6 nathanw panic("lfs_cluster_aiodone: zero iocount\n");
2222 1.1 mycroft #endif
2223 1.15 perseant if (--fs->lfs_iocount < LFS_THROTTLE)
2224 1.1 mycroft wakeup(&fs->lfs_iocount);
2225 1.67.2.6 nathanw #if 0
2226 1.67.2.6 nathanw if (fs->lfs_iocount == 0) {
2227 1.67.2.6 nathanw /*
2228 1.67.2.6 nathanw * Vinvalbuf can move locked buffers off the locked queue
2229 1.67.2.6 nathanw * and we have no way of knowing about this. So, after
2230 1.67.2.6 nathanw * doing a big write, we recalculate how many buffers are
2231 1.67.2.6 nathanw * really still left on the locked queue.
2232 1.67.2.6 nathanw */
2233 1.67.2.6 nathanw lfs_countlocked(&locked_queue_count, &locked_queue_bytes, "lfs_cluster_callback");
2234 1.67.2.6 nathanw wakeup(&locked_queue_count);
2235 1.15 perseant }
2236 1.67.2.6 nathanw #endif
2237 1.1 mycroft
2238 1.67.2.6 nathanw free(cl->bpp, M_SEGMENT);
2239 1.67.2.6 nathanw free(cl, M_SEGMENT);
2240 1.67.2.6 nathanw }
2241 1.67.2.6 nathanw
2242 1.67.2.6 nathanw static void
2243 1.67.2.6 nathanw lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2244 1.67.2.6 nathanw {
2245 1.67.2.6 nathanw /* reset b_iodone for when this is a single-buf i/o. */
2246 1.67.2.6 nathanw bp->b_iodone = aiodone;
2247 1.67.2.6 nathanw
2248 1.67.2.6 nathanw simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2249 1.67.2.6 nathanw TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2250 1.67.2.6 nathanw wakeup(&uvm.aiodoned);
2251 1.67.2.6 nathanw simple_unlock(&uvm.aiodoned_lock);
2252 1.67.2.6 nathanw }
2253 1.67.2.6 nathanw
2254 1.67.2.6 nathanw static void
2255 1.67.2.6 nathanw lfs_cluster_callback(struct buf *bp)
2256 1.67.2.6 nathanw {
2257 1.67.2.6 nathanw lfs_generic_callback(bp, lfs_cluster_aiodone);
2258 1.1 mycroft }
2259 1.1 mycroft
2260 1.1 mycroft void
2261 1.67.2.3 nathanw lfs_supercallback(struct buf *bp)
2262 1.1 mycroft {
2263 1.67.2.6 nathanw lfs_generic_callback(bp, lfs_super_aiodone);
2264 1.1 mycroft }
2265 1.1 mycroft
2266 1.1 mycroft /*
2267 1.1 mycroft * Shellsort (diminishing increment sort) from Data Structures and
2268 1.1 mycroft * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2269 1.1 mycroft * see also Knuth Vol. 3, page 84. The increments are selected from
2270 1.1 mycroft * formula (8), page 95. Roughly O(N^3/2).
2271 1.1 mycroft */
2272 1.1 mycroft /*
2273 1.1 mycroft * This is our own private copy of shellsort because we want to sort
2274 1.1 mycroft * two parallel arrays (the array of buffer pointers and the array of
2275 1.1 mycroft * logical block numbers) simultaneously. Note that we cast the array
2276 1.1 mycroft * of logical block numbers to a unsigned in this routine so that the
2277 1.1 mycroft * negative block numbers (meta data blocks) sort AFTER the data blocks.
2278 1.1 mycroft */
2279 1.15 perseant
2280 1.1 mycroft void
2281 1.67.2.3 nathanw lfs_shellsort(struct buf **bp_array, ufs_daddr_t *lb_array, int nmemb)
2282 1.1 mycroft {
2283 1.1 mycroft static int __rsshell_increments[] = { 4, 1, 0 };
2284 1.42 augustss int incr, *incrp, t1, t2;
2285 1.1 mycroft struct buf *bp_temp;
2286 1.1 mycroft u_long lb_temp;
2287 1.1 mycroft
2288 1.4 christos for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2289 1.1 mycroft for (t1 = incr; t1 < nmemb; ++t1)
2290 1.1 mycroft for (t2 = t1 - incr; t2 >= 0;)
2291 1.1 mycroft if (lb_array[t2] > lb_array[t2 + incr]) {
2292 1.1 mycroft lb_temp = lb_array[t2];
2293 1.1 mycroft lb_array[t2] = lb_array[t2 + incr];
2294 1.1 mycroft lb_array[t2 + incr] = lb_temp;
2295 1.1 mycroft bp_temp = bp_array[t2];
2296 1.1 mycroft bp_array[t2] = bp_array[t2 + incr];
2297 1.1 mycroft bp_array[t2 + incr] = bp_temp;
2298 1.1 mycroft t2 -= incr;
2299 1.1 mycroft } else
2300 1.1 mycroft break;
2301 1.1 mycroft }
2302 1.1 mycroft
2303 1.1 mycroft /*
2304 1.1 mycroft * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2305 1.1 mycroft */
2306 1.4 christos int
2307 1.67.2.3 nathanw lfs_vref(struct vnode *vp)
2308 1.1 mycroft {
2309 1.15 perseant /*
2310 1.15 perseant * If we return 1 here during a flush, we risk vinvalbuf() not
2311 1.15 perseant * being able to flush all of the pages from this vnode, which
2312 1.15 perseant * will cause it to panic. So, return 0 if a flush is in progress.
2313 1.15 perseant */
2314 1.15 perseant if (vp->v_flag & VXLOCK) {
2315 1.67.2.5 nathanw if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2316 1.15 perseant return 0;
2317 1.15 perseant }
2318 1.67.2.5 nathanw return (1);
2319 1.15 perseant }
2320 1.1 mycroft return (vget(vp, 0));
2321 1.1 mycroft }
2322 1.1 mycroft
2323 1.10 fvdl /*
2324 1.10 fvdl * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2325 1.10 fvdl * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2326 1.10 fvdl */
2327 1.1 mycroft void
2328 1.67.2.3 nathanw lfs_vunref(struct vnode *vp)
2329 1.1 mycroft {
2330 1.17 perseant /*
2331 1.17 perseant * Analogous to lfs_vref, if the node is flushing, fake it.
2332 1.17 perseant */
2333 1.67.2.5 nathanw if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2334 1.17 perseant return;
2335 1.17 perseant }
2336 1.17 perseant
2337 1.10 fvdl simple_lock(&vp->v_interlock);
2338 1.15 perseant #ifdef DIAGNOSTIC
2339 1.67.2.5 nathanw if (vp->v_usecount <= 0) {
2340 1.52 perseant printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2341 1.67.2.3 nathanw printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2342 1.67.2.3 nathanw printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2343 1.15 perseant panic("lfs_vunref: v_usecount<0");
2344 1.15 perseant }
2345 1.15 perseant #endif
2346 1.10 fvdl vp->v_usecount--;
2347 1.10 fvdl if (vp->v_usecount > 0) {
2348 1.15 perseant simple_unlock(&vp->v_interlock);
2349 1.15 perseant return;
2350 1.15 perseant }
2351 1.15 perseant /*
2352 1.10 fvdl * insert at tail of LRU list
2353 1.1 mycroft */
2354 1.10 fvdl simple_lock(&vnode_free_list_slock);
2355 1.40 perseant if (vp->v_holdcnt > 0)
2356 1.40 perseant TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2357 1.40 perseant else
2358 1.40 perseant TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2359 1.10 fvdl simple_unlock(&vnode_free_list_slock);
2360 1.10 fvdl simple_unlock(&vp->v_interlock);
2361 1.1 mycroft }
2362 1.15 perseant
2363 1.15 perseant /*
2364 1.15 perseant * We use this when we have vnodes that were loaded in solely for cleaning.
2365 1.15 perseant * There is no reason to believe that these vnodes will be referenced again
2366 1.15 perseant * soon, since the cleaning process is unrelated to normal filesystem
2367 1.15 perseant * activity. Putting cleaned vnodes at the tail of the list has the effect
2368 1.15 perseant * of flushing the vnode LRU. So, put vnodes that were loaded only for
2369 1.15 perseant * cleaning at the head of the list, instead.
2370 1.15 perseant */
2371 1.15 perseant void
2372 1.67.2.3 nathanw lfs_vunref_head(struct vnode *vp)
2373 1.15 perseant {
2374 1.15 perseant simple_lock(&vp->v_interlock);
2375 1.15 perseant #ifdef DIAGNOSTIC
2376 1.67.2.5 nathanw if (vp->v_usecount == 0) {
2377 1.15 perseant panic("lfs_vunref: v_usecount<0");
2378 1.15 perseant }
2379 1.15 perseant #endif
2380 1.15 perseant vp->v_usecount--;
2381 1.15 perseant if (vp->v_usecount > 0) {
2382 1.15 perseant simple_unlock(&vp->v_interlock);
2383 1.15 perseant return;
2384 1.15 perseant }
2385 1.15 perseant /*
2386 1.15 perseant * insert at head of LRU list
2387 1.15 perseant */
2388 1.15 perseant simple_lock(&vnode_free_list_slock);
2389 1.67.2.6 nathanw if (vp->v_holdcnt > 0)
2390 1.67.2.6 nathanw TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2391 1.67.2.6 nathanw else
2392 1.67.2.6 nathanw TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2393 1.15 perseant simple_unlock(&vnode_free_list_slock);
2394 1.15 perseant simple_unlock(&vp->v_interlock);
2395 1.15 perseant }
2396 1.15 perseant
2397