Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.1
      1 /*
      2  * Copyright (c) 1991, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)lfs_segment.c	8.5 (Berkeley) 1/4/94
     34  *	$Id: lfs_segment.c,v 1.1 1994/06/08 11:42:38 mycroft Exp $
     35  */
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/namei.h>
     40 #include <sys/kernel.h>
     41 #include <sys/resourcevar.h>
     42 #include <sys/file.h>
     43 #include <sys/stat.h>
     44 #include <sys/buf.h>
     45 #include <sys/proc.h>
     46 #include <sys/conf.h>
     47 #include <sys/vnode.h>
     48 #include <sys/malloc.h>
     49 #include <sys/mount.h>
     50 
     51 #include <miscfs/specfs/specdev.h>
     52 #include <miscfs/fifofs/fifo.h>
     53 
     54 #include <ufs/ufs/quota.h>
     55 #include <ufs/ufs/inode.h>
     56 #include <ufs/ufs/dir.h>
     57 #include <ufs/ufs/ufsmount.h>
     58 #include <ufs/ufs/ufs_extern.h>
     59 
     60 #include <ufs/lfs/lfs.h>
     61 #include <ufs/lfs/lfs_extern.h>
     62 
     63 extern int count_lock_queue __P((void));
     64 
     65 #define MAX_ACTIVE	10
     66 /*
     67  * Determine if it's OK to start a partial in this segment, or if we need
     68  * to go on to a new segment.
     69  */
     70 #define	LFS_PARTIAL_FITS(fs) \
     71 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
     72 	1 << (fs)->lfs_fsbtodb)
     73 
     74 void	 lfs_callback __P((struct buf *));
     75 void	 lfs_gather __P((struct lfs *, struct segment *,
     76 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
     77 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
     78 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
     79 int	 lfs_match_data __P((struct lfs *, struct buf *));
     80 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
     81 int	 lfs_match_indir __P((struct lfs *, struct buf *));
     82 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
     83 void	 lfs_newseg __P((struct lfs *));
     84 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
     85 void	 lfs_supercallback __P((struct buf *));
     86 void	 lfs_updatemeta __P((struct segment *));
     87 int	 lfs_vref __P((struct vnode *));
     88 void	 lfs_vunref __P((struct vnode *));
     89 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
     90 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
     91 int	 lfs_writeseg __P((struct lfs *, struct segment *));
     92 void	 lfs_writesuper __P((struct lfs *));
     93 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
     94 	    struct segment *sp, int dirops));
     95 
     96 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
     97 
     98 /* Statistics Counters */
     99 #define DOSTATS
    100 struct lfs_stats lfs_stats;
    101 
    102 /* op values to lfs_writevnodes */
    103 #define	VN_REG	0
    104 #define	VN_DIROP	1
    105 #define	VN_EMPTY	2
    106 
    107 /*
    108  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    109  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    110  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    111  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    112  */
    113 
    114 int
    115 lfs_vflush(vp)
    116 	struct vnode *vp;
    117 {
    118 	struct inode *ip;
    119 	struct lfs *fs;
    120 	struct segment *sp;
    121 
    122 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    123 	if (fs->lfs_nactive > MAX_ACTIVE)
    124 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
    125 	lfs_seglock(fs, SEGM_SYNC);
    126 	sp = fs->lfs_sp;
    127 
    128 
    129 	ip = VTOI(vp);
    130 	if (vp->v_dirtyblkhd.lh_first == NULL)
    131 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    132 
    133 	do {
    134 		do {
    135 			if (vp->v_dirtyblkhd.lh_first != NULL)
    136 				lfs_writefile(fs, sp, vp);
    137 		} while (lfs_writeinode(fs, sp, ip));
    138 
    139 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    140 
    141 #ifdef DOSTATS
    142 	++lfs_stats.nwrites;
    143 	if (sp->seg_flags & SEGM_SYNC)
    144 		++lfs_stats.nsync_writes;
    145 	if (sp->seg_flags & SEGM_CKP)
    146 		++lfs_stats.ncheckpoints;
    147 #endif
    148 	lfs_segunlock(fs);
    149 	return (0);
    150 }
    151 
    152 void
    153 lfs_writevnodes(fs, mp, sp, op)
    154 	struct lfs *fs;
    155 	struct mount *mp;
    156 	struct segment *sp;
    157 	int op;
    158 {
    159 	struct inode *ip;
    160 	struct vnode *vp;
    161 
    162 loop:
    163 	for (vp = mp->mnt_vnodelist.lh_first;
    164 	     vp != NULL;
    165 	     vp = vp->v_mntvnodes.le_next) {
    166 		/*
    167 		 * If the vnode that we are about to sync is no longer
    168 		 * associated with this mount point, start over.
    169 		 */
    170 		if (vp->v_mount != mp)
    171 			goto loop;
    172 
    173 		/* XXX ignore dirops for now
    174 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
    175 		    op != VN_DIROP && (vp->v_flag & VDIROP))
    176 			continue;
    177 		*/
    178 
    179 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
    180 			continue;
    181 
    182 		if (vp->v_type == VNON)
    183 			continue;
    184 
    185 		if (lfs_vref(vp))
    186 			continue;
    187 
    188 		/*
    189 		 * Write the inode/file if dirty and it's not the
    190 		 * the IFILE.
    191 		 */
    192 		ip = VTOI(vp);
    193 		if ((ip->i_flag &
    194 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
    195 		    vp->v_dirtyblkhd.lh_first != NULL) &&
    196 		    ip->i_number != LFS_IFILE_INUM) {
    197 			if (vp->v_dirtyblkhd.lh_first != NULL)
    198 				lfs_writefile(fs, sp, vp);
    199 			(void) lfs_writeinode(fs, sp, ip);
    200 		}
    201 		vp->v_flag &= ~VDIROP;
    202 		lfs_vunref(vp);
    203 	}
    204 }
    205 
    206 int
    207 lfs_segwrite(mp, flags)
    208 	struct mount *mp;
    209 	int flags;			/* Do a checkpoint. */
    210 {
    211 	struct buf *bp;
    212 	struct inode *ip;
    213 	struct lfs *fs;
    214 	struct segment *sp;
    215 	struct vnode *vp;
    216 	SEGUSE *segusep;
    217 	daddr_t ibno;
    218 	CLEANERINFO *cip;
    219 	int clean, do_ckp, error, i;
    220 
    221 	fs = VFSTOUFS(mp)->um_lfs;
    222 
    223  	/*
    224  	 * If we have fewer than 2 clean segments, wait until cleaner
    225 	 * writes.
    226  	 */
    227 	do {
    228 		LFS_CLEANERINFO(cip, fs, bp);
    229 		clean = cip->clean;
    230 		brelse(bp);
    231 		if (clean <= 2) {
    232 			printf ("segs clean: %d\n", clean);
    233 			wakeup(&lfs_allclean_wakeup);
    234 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    235 			    "lfs writer", 0))
    236 				return (error);
    237 		}
    238 	} while (clean <= 2 );
    239 
    240 	/*
    241 	 * Allocate a segment structure and enough space to hold pointers to
    242 	 * the maximum possible number of buffers which can be described in a
    243 	 * single summary block.
    244 	 */
    245 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
    246 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    247 	sp = fs->lfs_sp;
    248 
    249 	lfs_writevnodes(fs, mp, sp, VN_REG);
    250 
    251 	/* XXX ignore ordering of dirops for now */
    252 	/* XXX
    253 	fs->lfs_writer = 1;
    254 	if (fs->lfs_dirops && (error =
    255 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
    256 		free(sp->bpp, M_SEGMENT);
    257 		free(sp, M_SEGMENT);
    258 		fs->lfs_writer = 0;
    259 		return (error);
    260 	}
    261 
    262 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
    263 	*/
    264 
    265 	/*
    266 	 * If we are doing a checkpoint, mark everything since the
    267 	 * last checkpoint as no longer ACTIVE.
    268 	 */
    269 	if (do_ckp)
    270 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    271 		     --ibno >= fs->lfs_cleansz; ) {
    272 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
    273 			    NOCRED, &bp))
    274 
    275 				panic("lfs: ifile read");
    276 			segusep = (SEGUSE *)bp->b_data;
    277 			for (i = fs->lfs_sepb; i--; segusep++)
    278 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    279 
    280 			error = VOP_BWRITE(bp);
    281 		}
    282 
    283 	if (do_ckp || fs->lfs_doifile) {
    284 redo:
    285 		vp = fs->lfs_ivnode;
    286 		while (vget(vp, 1));
    287 		ip = VTOI(vp);
    288 		if (vp->v_dirtyblkhd.lh_first != NULL)
    289 			lfs_writefile(fs, sp, vp);
    290 		(void)lfs_writeinode(fs, sp, ip);
    291 		vput(vp);
    292 		if (lfs_writeseg(fs, sp) && do_ckp)
    293 			goto redo;
    294 	} else
    295 		(void) lfs_writeseg(fs, sp);
    296 
    297 	/*
    298 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
    299 	 * moment, the user's process hangs around so we can sleep.
    300 	 */
    301 	/* XXX ignore dirops for now
    302 	fs->lfs_writer = 0;
    303 	fs->lfs_doifile = 0;
    304 	wakeup(&fs->lfs_dirops);
    305 	*/
    306 
    307 #ifdef DOSTATS
    308 	++lfs_stats.nwrites;
    309 	if (sp->seg_flags & SEGM_SYNC)
    310 		++lfs_stats.nsync_writes;
    311 	if (sp->seg_flags & SEGM_CKP)
    312 		++lfs_stats.ncheckpoints;
    313 #endif
    314 	lfs_segunlock(fs);
    315 	return (0);
    316 }
    317 
    318 /*
    319  * Write the dirty blocks associated with a vnode.
    320  */
    321 void
    322 lfs_writefile(fs, sp, vp)
    323 	struct lfs *fs;
    324 	struct segment *sp;
    325 	struct vnode *vp;
    326 {
    327 	struct buf *bp;
    328 	struct finfo *fip;
    329 	IFILE *ifp;
    330 
    331 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    332 	    sp->sum_bytes_left < sizeof(struct finfo))
    333 		(void) lfs_writeseg(fs, sp);
    334 
    335 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
    336 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    337 
    338 	fip = sp->fip;
    339 	fip->fi_nblocks = 0;
    340 	fip->fi_ino = VTOI(vp)->i_number;
    341 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    342 	fip->fi_version = ifp->if_version;
    343 	brelse(bp);
    344 
    345 	/*
    346 	 * It may not be necessary to write the meta-data blocks at this point,
    347 	 * as the roll-forward recovery code should be able to reconstruct the
    348 	 * list.
    349 	 */
    350 	lfs_gather(fs, sp, vp, lfs_match_data);
    351 	lfs_gather(fs, sp, vp, lfs_match_indir);
    352 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    353 #ifdef TRIPLE
    354 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    355 #endif
    356 
    357 	fip = sp->fip;
    358 	if (fip->fi_nblocks != 0) {
    359 		sp->fip =
    360 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
    361 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
    362 		sp->start_lbp = &sp->fip->fi_blocks[0];
    363 	} else {
    364 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
    365 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    366 	}
    367 }
    368 
    369 int
    370 lfs_writeinode(fs, sp, ip)
    371 	struct lfs *fs;
    372 	struct segment *sp;
    373 	struct inode *ip;
    374 {
    375 	struct buf *bp, *ibp;
    376 	IFILE *ifp;
    377 	SEGUSE *sup;
    378 	daddr_t daddr;
    379 	ino_t ino;
    380 	int error, i, ndx;
    381 	int redo_ifile = 0;
    382 
    383 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
    384 		return(0);
    385 
    386 	/* Allocate a new inode block if necessary. */
    387 	if (sp->ibp == NULL) {
    388 		/* Allocate a new segment if necessary. */
    389 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    390 		    sp->sum_bytes_left < sizeof(daddr_t))
    391 			(void) lfs_writeseg(fs, sp);
    392 
    393 		/* Get next inode block. */
    394 		daddr = fs->lfs_offset;
    395 		fs->lfs_offset += fsbtodb(fs, 1);
    396 		sp->ibp = *sp->cbpp++ =
    397 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    398 		    fs->lfs_bsize);
    399 		/* Zero out inode numbers */
    400 		for (i = 0; i < INOPB(fs); ++i)
    401 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    402 		++sp->start_bpp;
    403 		fs->lfs_avail -= fsbtodb(fs, 1);
    404 		/* Set remaining space counters. */
    405 		sp->seg_bytes_left -= fs->lfs_bsize;
    406 		sp->sum_bytes_left -= sizeof(daddr_t);
    407 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
    408 		    sp->ninodes / INOPB(fs) - 1;
    409 		((daddr_t *)(sp->segsum))[ndx] = daddr;
    410 	}
    411 
    412 	/* Update the inode times and copy the inode onto the inode page. */
    413 	if (ip->i_flag & IN_MODIFIED)
    414 		--fs->lfs_uinodes;
    415 	ITIMES(ip, &time, &time);
    416 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
    417 	bp = sp->ibp;
    418 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
    419 	/* Increment inode count in segment summary block. */
    420 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    421 
    422 	/* If this page is full, set flag to allocate a new page. */
    423 	if (++sp->ninodes % INOPB(fs) == 0)
    424 		sp->ibp = NULL;
    425 
    426 	/*
    427 	 * If updating the ifile, update the super-block.  Update the disk
    428 	 * address and access times for this inode in the ifile.
    429 	 */
    430 	ino = ip->i_number;
    431 	if (ino == LFS_IFILE_INUM) {
    432 		daddr = fs->lfs_idaddr;
    433 		fs->lfs_idaddr = bp->b_blkno;
    434 	} else {
    435 		LFS_IENTRY(ifp, fs, ino, ibp);
    436 		daddr = ifp->if_daddr;
    437 		ifp->if_daddr = bp->b_blkno;
    438 		error = VOP_BWRITE(ibp);
    439 	}
    440 
    441 	/*
    442 	 * No need to update segment usage if there was no former inode address
    443 	 * or if the last inode address is in the current partial segment.
    444 	 */
    445 	if (daddr != LFS_UNUSED_DADDR &&
    446 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    447 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    448 #ifdef DIAGNOSTIC
    449 		if (sup->su_nbytes < sizeof(struct dinode)) {
    450 			/* XXX -- Change to a panic. */
    451 			printf("lfs: negative bytes (segment %d)\n",
    452 			    datosn(fs, daddr));
    453 			panic("negative bytes");
    454 		}
    455 #endif
    456 		sup->su_nbytes -= sizeof(struct dinode);
    457 		redo_ifile =
    458 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    459 		error = VOP_BWRITE(bp);
    460 	}
    461 	return (redo_ifile);
    462 }
    463 
    464 int
    465 lfs_gatherblock(sp, bp, sptr)
    466 	struct segment *sp;
    467 	struct buf *bp;
    468 	int *sptr;
    469 {
    470 	struct lfs *fs;
    471 	int version;
    472 
    473 	/*
    474 	 * If full, finish this segment.  We may be doing I/O, so
    475 	 * release and reacquire the splbio().
    476 	 */
    477 #ifdef DIAGNOSTIC
    478 	if (sp->vp == NULL)
    479 		panic ("lfs_gatherblock: Null vp in segment");
    480 #endif
    481 	fs = sp->fs;
    482 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
    483 	    sp->seg_bytes_left < fs->lfs_bsize) {
    484 		if (sptr)
    485 			splx(*sptr);
    486 		lfs_updatemeta(sp);
    487 
    488 		version = sp->fip->fi_version;
    489 		(void) lfs_writeseg(fs, sp);
    490 
    491 		sp->fip->fi_version = version;
    492 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    493 		/* Add the current file to the segment summary. */
    494 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    495 		sp->sum_bytes_left -=
    496 		    sizeof(struct finfo) - sizeof(daddr_t);
    497 
    498 		if (sptr)
    499 			*sptr = splbio();
    500 		return(1);
    501 	}
    502 
    503 	/* Insert into the buffer list, update the FINFO block. */
    504 	bp->b_flags |= B_GATHERED;
    505 	*sp->cbpp++ = bp;
    506 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    507 
    508 	sp->sum_bytes_left -= sizeof(daddr_t);
    509 	sp->seg_bytes_left -= fs->lfs_bsize;
    510 	return(0);
    511 }
    512 
    513 void
    514 lfs_gather(fs, sp, vp, match)
    515 	struct lfs *fs;
    516 	struct segment *sp;
    517 	struct vnode *vp;
    518 	int (*match) __P((struct lfs *, struct buf *));
    519 {
    520 	struct buf *bp;
    521 	int s;
    522 
    523 	sp->vp = vp;
    524 	s = splbio();
    525 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    526 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
    527 		    bp->b_flags & B_GATHERED)
    528 			continue;
    529 #ifdef DIAGNOSTIC
    530 		if (!(bp->b_flags & B_DELWRI))
    531 			panic("lfs_gather: bp not B_DELWRI");
    532 		if (!(bp->b_flags & B_LOCKED))
    533 			panic("lfs_gather: bp not B_LOCKED");
    534 #endif
    535 		if (lfs_gatherblock(sp, bp, &s))
    536 			goto loop;
    537 	}
    538 	splx(s);
    539 	lfs_updatemeta(sp);
    540 	sp->vp = NULL;
    541 }
    542 
    543 
    544 /*
    545  * Update the metadata that points to the blocks listed in the FINFO
    546  * array.
    547  */
    548 void
    549 lfs_updatemeta(sp)
    550 	struct segment *sp;
    551 {
    552 	SEGUSE *sup;
    553 	struct buf *bp;
    554 	struct lfs *fs;
    555 	struct vnode *vp;
    556 	struct indir a[NIADDR + 2], *ap;
    557 	struct inode *ip;
    558 	daddr_t daddr, lbn, off;
    559 	int db_per_fsb, error, i, nblocks, num;
    560 
    561 	vp = sp->vp;
    562 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    563 	if (vp == NULL || nblocks == 0)
    564 		return;
    565 
    566 	/* Sort the blocks. */
    567 	if (!(sp->seg_flags & SEGM_CLEAN))
    568 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    569 
    570 	/*
    571 	 * Assign disk addresses, and update references to the logical
    572 	 * block and the segment usage information.
    573 	 */
    574 	fs = sp->fs;
    575 	db_per_fsb = fsbtodb(fs, 1);
    576 	for (i = nblocks; i--; ++sp->start_bpp) {
    577 		lbn = *sp->start_lbp++;
    578 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    579 		fs->lfs_offset += db_per_fsb;
    580 
    581 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
    582 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    583 		ip = VTOI(vp);
    584 		switch (num) {
    585 		case 0:
    586 			ip->i_db[lbn] = off;
    587 			break;
    588 		case 1:
    589 			ip->i_ib[a[0].in_off] = off;
    590 			break;
    591 		default:
    592 			ap = &a[num - 1];
    593 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    594 				panic("lfs_updatemeta: bread bno %d",
    595 				    ap->in_lbn);
    596 			/*
    597 			 * Bread may create a new indirect block which needs
    598 			 * to get counted for the inode.
    599 			 */
    600 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
    601 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
    602 				ip->i_blocks += btodb(fs->lfs_bsize);
    603 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
    604 			}
    605 			((daddr_t *)bp->b_data)[ap->in_off] = off;
    606 			VOP_BWRITE(bp);
    607 		}
    608 
    609 		/* Update segment usage information. */
    610 		if (daddr != UNASSIGNED &&
    611 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    612 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    613 #ifdef DIAGNOSTIC
    614 			if (sup->su_nbytes < fs->lfs_bsize) {
    615 				/* XXX -- Change to a panic. */
    616 				printf("lfs: negative bytes (segment %d)\n",
    617 				    datosn(fs, daddr));
    618 				panic ("Negative Bytes");
    619 			}
    620 #endif
    621 			sup->su_nbytes -= fs->lfs_bsize;
    622 			error = VOP_BWRITE(bp);
    623 		}
    624 	}
    625 }
    626 
    627 /*
    628  * Start a new segment.
    629  */
    630 int
    631 lfs_initseg(fs)
    632 	struct lfs *fs;
    633 {
    634 	struct segment *sp;
    635 	SEGUSE *sup;
    636 	SEGSUM *ssp;
    637 	struct buf *bp;
    638 	int repeat;
    639 
    640 	sp = fs->lfs_sp;
    641 
    642 	repeat = 0;
    643 	/* Advance to the next segment. */
    644 	if (!LFS_PARTIAL_FITS(fs)) {
    645 		/* Wake up any cleaning procs waiting on this file system. */
    646 		wakeup(&lfs_allclean_wakeup);
    647 
    648 		lfs_newseg(fs);
    649 		repeat = 1;
    650 		fs->lfs_offset = fs->lfs_curseg;
    651 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    652 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    653 
    654 		/*
    655 		 * If the segment contains a superblock, update the offset
    656 		 * and summary address to skip over it.
    657 		 */
    658 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    659 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    660 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    661 			sp->seg_bytes_left -= LFS_SBPAD;
    662 		}
    663 		brelse(bp);
    664 	} else {
    665 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    666 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    667 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    668 	}
    669 	fs->lfs_lastpseg = fs->lfs_offset;
    670 
    671 	sp->fs = fs;
    672 	sp->ibp = NULL;
    673 	sp->ninodes = 0;
    674 
    675 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    676 	sp->cbpp = sp->bpp;
    677 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
    678 	     LFS_SUMMARY_SIZE);
    679 	sp->segsum = (*sp->cbpp)->b_data;
    680 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    681 	sp->start_bpp = ++sp->cbpp;
    682 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    683 
    684 	/* Set point to SEGSUM, initialize it. */
    685 	ssp = sp->segsum;
    686 	ssp->ss_next = fs->lfs_nextseg;
    687 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    688 
    689 	/* Set pointer to first FINFO, initialize it. */
    690 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
    691 	sp->fip->fi_nblocks = 0;
    692 	sp->start_lbp = &sp->fip->fi_blocks[0];
    693 
    694 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
    695 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
    696 
    697 	return(repeat);
    698 }
    699 
    700 /*
    701  * Return the next segment to write.
    702  */
    703 void
    704 lfs_newseg(fs)
    705 	struct lfs *fs;
    706 {
    707 	CLEANERINFO *cip;
    708 	SEGUSE *sup;
    709 	struct buf *bp;
    710 	int curseg, isdirty, sn;
    711 
    712         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
    713         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    714 	sup->su_nbytes = 0;
    715 	sup->su_nsums = 0;
    716 	sup->su_ninos = 0;
    717         (void) VOP_BWRITE(bp);
    718 
    719 	LFS_CLEANERINFO(cip, fs, bp);
    720 	--cip->clean;
    721 	++cip->dirty;
    722 	(void) VOP_BWRITE(bp);
    723 
    724 	fs->lfs_lastseg = fs->lfs_curseg;
    725 	fs->lfs_curseg = fs->lfs_nextseg;
    726 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
    727 		sn = (sn + 1) % fs->lfs_nseg;
    728 		if (sn == curseg)
    729 			panic("lfs_nextseg: no clean segments");
    730 		LFS_SEGENTRY(sup, fs, sn, bp);
    731 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    732 		brelse(bp);
    733 		if (!isdirty)
    734 			break;
    735 	}
    736 
    737 	++fs->lfs_nactive;
    738 	fs->lfs_nextseg = sntoda(fs, sn);
    739 #ifdef DOSTATS
    740 	++lfs_stats.segsused;
    741 #endif
    742 }
    743 
    744 int
    745 lfs_writeseg(fs, sp)
    746 	struct lfs *fs;
    747 	struct segment *sp;
    748 {
    749 	extern int locked_queue_count;
    750 	struct buf **bpp, *bp, *cbp;
    751 	SEGUSE *sup;
    752 	SEGSUM *ssp;
    753 	dev_t i_dev;
    754 	size_t size;
    755 	u_long *datap, *dp;
    756 	int ch_per_blk, do_again, i, nblocks, num, s;
    757 	int (*strategy)__P((struct vop_strategy_args *));
    758 	struct vop_strategy_args vop_strategy_a;
    759 	u_short ninos;
    760 	char *p;
    761 
    762 	/*
    763 	 * If there are no buffers other than the segment summary to write
    764 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    765 	 * even if there aren't any buffers, you need to write the superblock.
    766 	 */
    767 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    768 		return (0);
    769 
    770 	ssp = (SEGSUM *)sp->segsum;
    771 
    772 	/* Update the segment usage information. */
    773 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    774 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    775 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
    776 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
    777 	sup->su_nbytes += LFS_SUMMARY_SIZE;
    778 	sup->su_lastmod = time.tv_sec;
    779 	sup->su_ninos += ninos;
    780 	++sup->su_nsums;
    781 	do_again = !(bp->b_flags & B_GATHERED);
    782 	(void)VOP_BWRITE(bp);
    783 	/*
    784 	 * Compute checksum across data and then across summary; the first
    785 	 * block (the summary block) is skipped.  Set the create time here
    786 	 * so that it's guaranteed to be later than the inode mod times.
    787 	 *
    788 	 * XXX
    789 	 * Fix this to do it inline, instead of malloc/copy.
    790 	 */
    791 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
    792 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    793 		if ((*++bpp)->b_flags & B_INVAL) {
    794 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
    795 				panic("lfs_writeseg: copyin failed");
    796 		} else
    797 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
    798 	}
    799 	ssp->ss_create = time.tv_sec;
    800 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
    801 	ssp->ss_sumsum =
    802 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
    803 	free(datap, M_SEGMENT);
    804 #ifdef DIAGNOSTIC
    805 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
    806 		panic("lfs_writeseg: No diskspace for summary");
    807 #endif
    808 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
    809 
    810 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    811 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    812 
    813 	/*
    814 	 * When we simply write the blocks we lose a rotation for every block
    815 	 * written.  To avoid this problem, we allocate memory in chunks, copy
    816 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
    817 	 * largest size I/O devices can handle.
    818 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
    819 	 * and brelse the buffer (which will move them to the LRU list).  Add
    820 	 * the B_CALL flag to the buffer header so we can count I/O's for the
    821 	 * checkpoints and so we can release the allocated memory.
    822 	 *
    823 	 * XXX
    824 	 * This should be removed if the new virtual memory system allows us to
    825 	 * easily make the buffers contiguous in kernel memory and if that's
    826 	 * fast enough.
    827 	 */
    828 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
    829 	for (bpp = sp->bpp, i = nblocks; i;) {
    830 		num = ch_per_blk;
    831 		if (num > i)
    832 			num = i;
    833 		i -= num;
    834 		size = num * fs->lfs_bsize;
    835 
    836 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    837 		    (*bpp)->b_blkno, size);
    838 		cbp->b_dev = i_dev;
    839 		cbp->b_flags |= B_ASYNC | B_BUSY;
    840 
    841 		s = splbio();
    842 		++fs->lfs_iocount;
    843 		for (p = cbp->b_data; num--;) {
    844 			bp = *bpp++;
    845 			/*
    846 			 * Fake buffers from the cleaner are marked as B_INVAL.
    847 			 * We need to copy the data from user space rather than
    848 			 * from the buffer indicated.
    849 			 * XXX == what do I do on an error?
    850 			 */
    851 			if (bp->b_flags & B_INVAL) {
    852 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
    853 					panic("lfs_writeseg: copyin failed");
    854 			} else
    855 				bcopy(bp->b_data, p, bp->b_bcount);
    856 			p += bp->b_bcount;
    857 			if (bp->b_flags & B_LOCKED)
    858 				--locked_queue_count;
    859 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    860 			     B_LOCKED | B_GATHERED);
    861 			if (bp->b_flags & B_CALL) {
    862 				/* if B_CALL, it was created with newbuf */
    863 				brelvp(bp);
    864 				if (!(bp->b_flags & B_INVAL))
    865 					free(bp->b_data, M_SEGMENT);
    866 				free(bp, M_SEGMENT);
    867 			} else {
    868 				bremfree(bp);
    869 				bp->b_flags |= B_DONE;
    870 				reassignbuf(bp, bp->b_vp);
    871 				brelse(bp);
    872 			}
    873 		}
    874 		++cbp->b_vp->v_numoutput;
    875 		splx(s);
    876 		cbp->b_bcount = p - (char *)cbp->b_data;
    877 		/*
    878 		 * XXXX This is a gross and disgusting hack.  Since these
    879 		 * buffers are physically addressed, they hang off the
    880 		 * device vnode (devvp).  As a result, they have no way
    881 		 * of getting to the LFS superblock or lfs structure to
    882 		 * keep track of the number of I/O's pending.  So, I am
    883 		 * going to stuff the fs into the saveaddr field of
    884 		 * the buffer (yuk).
    885 		 */
    886 		cbp->b_saveaddr = (caddr_t)fs;
    887 		vop_strategy_a.a_desc = VDESC(vop_strategy);
    888 		vop_strategy_a.a_bp = cbp;
    889 		(strategy)(&vop_strategy_a);
    890 	}
    891 	/*
    892 	 * XXX
    893 	 * Vinvalbuf can move locked buffers off the locked queue
    894 	 * and we have no way of knowing about this.  So, after
    895 	 * doing a big write, we recalculate how many bufers are
    896 	 * really still left on the locked queue.
    897 	 */
    898 	locked_queue_count = count_lock_queue();
    899 	wakeup(&locked_queue_count);
    900 #ifdef DOSTATS
    901 	++lfs_stats.psegwrites;
    902 	lfs_stats.blocktot += nblocks - 1;
    903 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
    904 		++lfs_stats.psyncwrites;
    905 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
    906 		++lfs_stats.pcleanwrites;
    907 		lfs_stats.cleanblocks += nblocks - 1;
    908 	}
    909 #endif
    910 	return (lfs_initseg(fs) || do_again);
    911 }
    912 
    913 void
    914 lfs_writesuper(fs)
    915 	struct lfs *fs;
    916 {
    917 	struct buf *bp;
    918 	dev_t i_dev;
    919 	int (*strategy) __P((struct vop_strategy_args *));
    920 	int s;
    921 	struct vop_strategy_args vop_strategy_a;
    922 
    923 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    924 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    925 
    926 	/* Checksum the superblock and copy it into a buffer. */
    927 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
    928 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
    929 	    LFS_SBPAD);
    930 	*(struct lfs *)bp->b_data = *fs;
    931 
    932 	/* XXX Toggle between first two superblocks; for now just write first */
    933 	bp->b_dev = i_dev;
    934 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
    935 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
    936 	bp->b_iodone = lfs_supercallback;
    937 	vop_strategy_a.a_desc = VDESC(vop_strategy);
    938 	vop_strategy_a.a_bp = bp;
    939 	s = splbio();
    940 	++bp->b_vp->v_numoutput;
    941 	splx(s);
    942 	(strategy)(&vop_strategy_a);
    943 }
    944 
    945 /*
    946  * Logical block number match routines used when traversing the dirty block
    947  * chain.
    948  */
    949 int
    950 lfs_match_data(fs, bp)
    951 	struct lfs *fs;
    952 	struct buf *bp;
    953 {
    954 	return (bp->b_lblkno >= 0);
    955 }
    956 
    957 int
    958 lfs_match_indir(fs, bp)
    959 	struct lfs *fs;
    960 	struct buf *bp;
    961 {
    962 	int lbn;
    963 
    964 	lbn = bp->b_lblkno;
    965 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    966 }
    967 
    968 int
    969 lfs_match_dindir(fs, bp)
    970 	struct lfs *fs;
    971 	struct buf *bp;
    972 {
    973 	int lbn;
    974 
    975 	lbn = bp->b_lblkno;
    976 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    977 }
    978 
    979 int
    980 lfs_match_tindir(fs, bp)
    981 	struct lfs *fs;
    982 	struct buf *bp;
    983 {
    984 	int lbn;
    985 
    986 	lbn = bp->b_lblkno;
    987 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    988 }
    989 
    990 /*
    991  * Allocate a new buffer header.
    992  */
    993 struct buf *
    994 lfs_newbuf(vp, daddr, size)
    995 	struct vnode *vp;
    996 	daddr_t daddr;
    997 	size_t size;
    998 {
    999 	struct buf *bp;
   1000 	size_t nbytes;
   1001 
   1002 	nbytes = roundup(size, DEV_BSIZE);
   1003 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
   1004 	bzero(bp, sizeof(struct buf));
   1005 	if (nbytes)
   1006 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
   1007 	bgetvp(vp, bp);
   1008 	bp->b_bufsize = size;
   1009 	bp->b_bcount = size;
   1010 	bp->b_lblkno = daddr;
   1011 	bp->b_blkno = daddr;
   1012 	bp->b_error = 0;
   1013 	bp->b_resid = 0;
   1014 	bp->b_iodone = lfs_callback;
   1015 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
   1016 	return (bp);
   1017 }
   1018 
   1019 void
   1020 lfs_callback(bp)
   1021 	struct buf *bp;
   1022 {
   1023 	struct lfs *fs;
   1024 
   1025 	fs = (struct lfs *)bp->b_saveaddr;
   1026 #ifdef DIAGNOSTIC
   1027 	if (fs->lfs_iocount == 0)
   1028 		panic("lfs_callback: zero iocount\n");
   1029 #endif
   1030 	if (--fs->lfs_iocount == 0)
   1031 		wakeup(&fs->lfs_iocount);
   1032 
   1033 	brelvp(bp);
   1034 	free(bp->b_data, M_SEGMENT);
   1035 	free(bp, M_SEGMENT);
   1036 }
   1037 
   1038 void
   1039 lfs_supercallback(bp)
   1040 	struct buf *bp;
   1041 {
   1042 	brelvp(bp);
   1043 	free(bp->b_data, M_SEGMENT);
   1044 	free(bp, M_SEGMENT);
   1045 }
   1046 
   1047 /*
   1048  * Shellsort (diminishing increment sort) from Data Structures and
   1049  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1050  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1051  * formula (8), page 95.  Roughly O(N^3/2).
   1052  */
   1053 /*
   1054  * This is our own private copy of shellsort because we want to sort
   1055  * two parallel arrays (the array of buffer pointers and the array of
   1056  * logical block numbers) simultaneously.  Note that we cast the array
   1057  * of logical block numbers to a unsigned in this routine so that the
   1058  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1059  */
   1060 void
   1061 lfs_shellsort(bp_array, lb_array, nmemb)
   1062 	struct buf **bp_array;
   1063 	daddr_t *lb_array;
   1064 	register int nmemb;
   1065 {
   1066 	static int __rsshell_increments[] = { 4, 1, 0 };
   1067 	register int incr, *incrp, t1, t2;
   1068 	struct buf *bp_temp;
   1069 	u_long lb_temp;
   1070 
   1071 	for (incrp = __rsshell_increments; incr = *incrp++;)
   1072 		for (t1 = incr; t1 < nmemb; ++t1)
   1073 			for (t2 = t1 - incr; t2 >= 0;)
   1074 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1075 					lb_temp = lb_array[t2];
   1076 					lb_array[t2] = lb_array[t2 + incr];
   1077 					lb_array[t2 + incr] = lb_temp;
   1078 					bp_temp = bp_array[t2];
   1079 					bp_array[t2] = bp_array[t2 + incr];
   1080 					bp_array[t2 + incr] = bp_temp;
   1081 					t2 -= incr;
   1082 				} else
   1083 					break;
   1084 }
   1085 
   1086 /*
   1087  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1088  */
   1089 lfs_vref(vp)
   1090 	register struct vnode *vp;
   1091 {
   1092 
   1093 	if (vp->v_flag & VXLOCK)
   1094 		return(1);
   1095 	return (vget(vp, 0));
   1096 }
   1097 
   1098 void
   1099 lfs_vunref(vp)
   1100 	register struct vnode *vp;
   1101 {
   1102 	extern int lfs_no_inactive;
   1103 
   1104 	/*
   1105 	 * This is vrele except that we do not want to VOP_INACTIVE
   1106 	 * this vnode. Rather than inline vrele here, we use a global
   1107 	 * flag to tell lfs_inactive not to run. Yes, its gross.
   1108 	 */
   1109 	lfs_no_inactive = 1;
   1110 	vrele(vp);
   1111 	lfs_no_inactive = 0;
   1112 }
   1113