Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.1.1.1
      1 /*
      2  * Copyright (c) 1991, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)lfs_segment.c	8.5 (Berkeley) 1/4/94
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/namei.h>
     39 #include <sys/kernel.h>
     40 #include <sys/resourcevar.h>
     41 #include <sys/file.h>
     42 #include <sys/stat.h>
     43 #include <sys/buf.h>
     44 #include <sys/proc.h>
     45 #include <sys/conf.h>
     46 #include <sys/vnode.h>
     47 #include <sys/malloc.h>
     48 #include <sys/mount.h>
     49 
     50 #include <miscfs/specfs/specdev.h>
     51 #include <miscfs/fifofs/fifo.h>
     52 
     53 #include <ufs/ufs/quota.h>
     54 #include <ufs/ufs/inode.h>
     55 #include <ufs/ufs/dir.h>
     56 #include <ufs/ufs/ufsmount.h>
     57 #include <ufs/ufs/ufs_extern.h>
     58 
     59 #include <ufs/lfs/lfs.h>
     60 #include <ufs/lfs/lfs_extern.h>
     61 
     62 extern int count_lock_queue __P((void));
     63 
     64 #define MAX_ACTIVE	10
     65 /*
     66  * Determine if it's OK to start a partial in this segment, or if we need
     67  * to go on to a new segment.
     68  */
     69 #define	LFS_PARTIAL_FITS(fs) \
     70 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
     71 	1 << (fs)->lfs_fsbtodb)
     72 
     73 void	 lfs_callback __P((struct buf *));
     74 void	 lfs_gather __P((struct lfs *, struct segment *,
     75 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
     76 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
     77 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
     78 int	 lfs_match_data __P((struct lfs *, struct buf *));
     79 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
     80 int	 lfs_match_indir __P((struct lfs *, struct buf *));
     81 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
     82 void	 lfs_newseg __P((struct lfs *));
     83 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
     84 void	 lfs_supercallback __P((struct buf *));
     85 void	 lfs_updatemeta __P((struct segment *));
     86 int	 lfs_vref __P((struct vnode *));
     87 void	 lfs_vunref __P((struct vnode *));
     88 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
     89 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
     90 int	 lfs_writeseg __P((struct lfs *, struct segment *));
     91 void	 lfs_writesuper __P((struct lfs *));
     92 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
     93 	    struct segment *sp, int dirops));
     94 
     95 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
     96 
     97 /* Statistics Counters */
     98 #define DOSTATS
     99 struct lfs_stats lfs_stats;
    100 
    101 /* op values to lfs_writevnodes */
    102 #define	VN_REG	0
    103 #define	VN_DIROP	1
    104 #define	VN_EMPTY	2
    105 
    106 /*
    107  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    108  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    109  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    110  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    111  */
    112 
    113 int
    114 lfs_vflush(vp)
    115 	struct vnode *vp;
    116 {
    117 	struct inode *ip;
    118 	struct lfs *fs;
    119 	struct segment *sp;
    120 
    121 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    122 	if (fs->lfs_nactive > MAX_ACTIVE)
    123 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
    124 	lfs_seglock(fs, SEGM_SYNC);
    125 	sp = fs->lfs_sp;
    126 
    127 
    128 	ip = VTOI(vp);
    129 	if (vp->v_dirtyblkhd.lh_first == NULL)
    130 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    131 
    132 	do {
    133 		do {
    134 			if (vp->v_dirtyblkhd.lh_first != NULL)
    135 				lfs_writefile(fs, sp, vp);
    136 		} while (lfs_writeinode(fs, sp, ip));
    137 
    138 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    139 
    140 #ifdef DOSTATS
    141 	++lfs_stats.nwrites;
    142 	if (sp->seg_flags & SEGM_SYNC)
    143 		++lfs_stats.nsync_writes;
    144 	if (sp->seg_flags & SEGM_CKP)
    145 		++lfs_stats.ncheckpoints;
    146 #endif
    147 	lfs_segunlock(fs);
    148 	return (0);
    149 }
    150 
    151 void
    152 lfs_writevnodes(fs, mp, sp, op)
    153 	struct lfs *fs;
    154 	struct mount *mp;
    155 	struct segment *sp;
    156 	int op;
    157 {
    158 	struct inode *ip;
    159 	struct vnode *vp;
    160 
    161 loop:
    162 	for (vp = mp->mnt_vnodelist.lh_first;
    163 	     vp != NULL;
    164 	     vp = vp->v_mntvnodes.le_next) {
    165 		/*
    166 		 * If the vnode that we are about to sync is no longer
    167 		 * associated with this mount point, start over.
    168 		 */
    169 		if (vp->v_mount != mp)
    170 			goto loop;
    171 
    172 		/* XXX ignore dirops for now
    173 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
    174 		    op != VN_DIROP && (vp->v_flag & VDIROP))
    175 			continue;
    176 		*/
    177 
    178 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
    179 			continue;
    180 
    181 		if (vp->v_type == VNON)
    182 			continue;
    183 
    184 		if (lfs_vref(vp))
    185 			continue;
    186 
    187 		/*
    188 		 * Write the inode/file if dirty and it's not the
    189 		 * the IFILE.
    190 		 */
    191 		ip = VTOI(vp);
    192 		if ((ip->i_flag &
    193 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
    194 		    vp->v_dirtyblkhd.lh_first != NULL) &&
    195 		    ip->i_number != LFS_IFILE_INUM) {
    196 			if (vp->v_dirtyblkhd.lh_first != NULL)
    197 				lfs_writefile(fs, sp, vp);
    198 			(void) lfs_writeinode(fs, sp, ip);
    199 		}
    200 		vp->v_flag &= ~VDIROP;
    201 		lfs_vunref(vp);
    202 	}
    203 }
    204 
    205 int
    206 lfs_segwrite(mp, flags)
    207 	struct mount *mp;
    208 	int flags;			/* Do a checkpoint. */
    209 {
    210 	struct buf *bp;
    211 	struct inode *ip;
    212 	struct lfs *fs;
    213 	struct segment *sp;
    214 	struct vnode *vp;
    215 	SEGUSE *segusep;
    216 	daddr_t ibno;
    217 	CLEANERINFO *cip;
    218 	int clean, do_ckp, error, i;
    219 
    220 	fs = VFSTOUFS(mp)->um_lfs;
    221 
    222  	/*
    223  	 * If we have fewer than 2 clean segments, wait until cleaner
    224 	 * writes.
    225  	 */
    226 	do {
    227 		LFS_CLEANERINFO(cip, fs, bp);
    228 		clean = cip->clean;
    229 		brelse(bp);
    230 		if (clean <= 2) {
    231 			printf ("segs clean: %d\n", clean);
    232 			wakeup(&lfs_allclean_wakeup);
    233 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    234 			    "lfs writer", 0))
    235 				return (error);
    236 		}
    237 	} while (clean <= 2 );
    238 
    239 	/*
    240 	 * Allocate a segment structure and enough space to hold pointers to
    241 	 * the maximum possible number of buffers which can be described in a
    242 	 * single summary block.
    243 	 */
    244 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
    245 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    246 	sp = fs->lfs_sp;
    247 
    248 	lfs_writevnodes(fs, mp, sp, VN_REG);
    249 
    250 	/* XXX ignore ordering of dirops for now */
    251 	/* XXX
    252 	fs->lfs_writer = 1;
    253 	if (fs->lfs_dirops && (error =
    254 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
    255 		free(sp->bpp, M_SEGMENT);
    256 		free(sp, M_SEGMENT);
    257 		fs->lfs_writer = 0;
    258 		return (error);
    259 	}
    260 
    261 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
    262 	*/
    263 
    264 	/*
    265 	 * If we are doing a checkpoint, mark everything since the
    266 	 * last checkpoint as no longer ACTIVE.
    267 	 */
    268 	if (do_ckp)
    269 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    270 		     --ibno >= fs->lfs_cleansz; ) {
    271 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
    272 			    NOCRED, &bp))
    273 
    274 				panic("lfs: ifile read");
    275 			segusep = (SEGUSE *)bp->b_data;
    276 			for (i = fs->lfs_sepb; i--; segusep++)
    277 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    278 
    279 			error = VOP_BWRITE(bp);
    280 		}
    281 
    282 	if (do_ckp || fs->lfs_doifile) {
    283 redo:
    284 		vp = fs->lfs_ivnode;
    285 		while (vget(vp, 1));
    286 		ip = VTOI(vp);
    287 		if (vp->v_dirtyblkhd.lh_first != NULL)
    288 			lfs_writefile(fs, sp, vp);
    289 		(void)lfs_writeinode(fs, sp, ip);
    290 		vput(vp);
    291 		if (lfs_writeseg(fs, sp) && do_ckp)
    292 			goto redo;
    293 	} else
    294 		(void) lfs_writeseg(fs, sp);
    295 
    296 	/*
    297 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
    298 	 * moment, the user's process hangs around so we can sleep.
    299 	 */
    300 	/* XXX ignore dirops for now
    301 	fs->lfs_writer = 0;
    302 	fs->lfs_doifile = 0;
    303 	wakeup(&fs->lfs_dirops);
    304 	*/
    305 
    306 #ifdef DOSTATS
    307 	++lfs_stats.nwrites;
    308 	if (sp->seg_flags & SEGM_SYNC)
    309 		++lfs_stats.nsync_writes;
    310 	if (sp->seg_flags & SEGM_CKP)
    311 		++lfs_stats.ncheckpoints;
    312 #endif
    313 	lfs_segunlock(fs);
    314 	return (0);
    315 }
    316 
    317 /*
    318  * Write the dirty blocks associated with a vnode.
    319  */
    320 void
    321 lfs_writefile(fs, sp, vp)
    322 	struct lfs *fs;
    323 	struct segment *sp;
    324 	struct vnode *vp;
    325 {
    326 	struct buf *bp;
    327 	struct finfo *fip;
    328 	IFILE *ifp;
    329 
    330 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    331 	    sp->sum_bytes_left < sizeof(struct finfo))
    332 		(void) lfs_writeseg(fs, sp);
    333 
    334 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
    335 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    336 
    337 	fip = sp->fip;
    338 	fip->fi_nblocks = 0;
    339 	fip->fi_ino = VTOI(vp)->i_number;
    340 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    341 	fip->fi_version = ifp->if_version;
    342 	brelse(bp);
    343 
    344 	/*
    345 	 * It may not be necessary to write the meta-data blocks at this point,
    346 	 * as the roll-forward recovery code should be able to reconstruct the
    347 	 * list.
    348 	 */
    349 	lfs_gather(fs, sp, vp, lfs_match_data);
    350 	lfs_gather(fs, sp, vp, lfs_match_indir);
    351 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    352 #ifdef TRIPLE
    353 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    354 #endif
    355 
    356 	fip = sp->fip;
    357 	if (fip->fi_nblocks != 0) {
    358 		sp->fip =
    359 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
    360 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
    361 		sp->start_lbp = &sp->fip->fi_blocks[0];
    362 	} else {
    363 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
    364 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    365 	}
    366 }
    367 
    368 int
    369 lfs_writeinode(fs, sp, ip)
    370 	struct lfs *fs;
    371 	struct segment *sp;
    372 	struct inode *ip;
    373 {
    374 	struct buf *bp, *ibp;
    375 	IFILE *ifp;
    376 	SEGUSE *sup;
    377 	daddr_t daddr;
    378 	ino_t ino;
    379 	int error, i, ndx;
    380 	int redo_ifile = 0;
    381 
    382 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
    383 		return(0);
    384 
    385 	/* Allocate a new inode block if necessary. */
    386 	if (sp->ibp == NULL) {
    387 		/* Allocate a new segment if necessary. */
    388 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    389 		    sp->sum_bytes_left < sizeof(daddr_t))
    390 			(void) lfs_writeseg(fs, sp);
    391 
    392 		/* Get next inode block. */
    393 		daddr = fs->lfs_offset;
    394 		fs->lfs_offset += fsbtodb(fs, 1);
    395 		sp->ibp = *sp->cbpp++ =
    396 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    397 		    fs->lfs_bsize);
    398 		/* Zero out inode numbers */
    399 		for (i = 0; i < INOPB(fs); ++i)
    400 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    401 		++sp->start_bpp;
    402 		fs->lfs_avail -= fsbtodb(fs, 1);
    403 		/* Set remaining space counters. */
    404 		sp->seg_bytes_left -= fs->lfs_bsize;
    405 		sp->sum_bytes_left -= sizeof(daddr_t);
    406 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
    407 		    sp->ninodes / INOPB(fs) - 1;
    408 		((daddr_t *)(sp->segsum))[ndx] = daddr;
    409 	}
    410 
    411 	/* Update the inode times and copy the inode onto the inode page. */
    412 	if (ip->i_flag & IN_MODIFIED)
    413 		--fs->lfs_uinodes;
    414 	ITIMES(ip, &time, &time);
    415 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
    416 	bp = sp->ibp;
    417 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
    418 	/* Increment inode count in segment summary block. */
    419 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    420 
    421 	/* If this page is full, set flag to allocate a new page. */
    422 	if (++sp->ninodes % INOPB(fs) == 0)
    423 		sp->ibp = NULL;
    424 
    425 	/*
    426 	 * If updating the ifile, update the super-block.  Update the disk
    427 	 * address and access times for this inode in the ifile.
    428 	 */
    429 	ino = ip->i_number;
    430 	if (ino == LFS_IFILE_INUM) {
    431 		daddr = fs->lfs_idaddr;
    432 		fs->lfs_idaddr = bp->b_blkno;
    433 	} else {
    434 		LFS_IENTRY(ifp, fs, ino, ibp);
    435 		daddr = ifp->if_daddr;
    436 		ifp->if_daddr = bp->b_blkno;
    437 		error = VOP_BWRITE(ibp);
    438 	}
    439 
    440 	/*
    441 	 * No need to update segment usage if there was no former inode address
    442 	 * or if the last inode address is in the current partial segment.
    443 	 */
    444 	if (daddr != LFS_UNUSED_DADDR &&
    445 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    446 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    447 #ifdef DIAGNOSTIC
    448 		if (sup->su_nbytes < sizeof(struct dinode)) {
    449 			/* XXX -- Change to a panic. */
    450 			printf("lfs: negative bytes (segment %d)\n",
    451 			    datosn(fs, daddr));
    452 			panic("negative bytes");
    453 		}
    454 #endif
    455 		sup->su_nbytes -= sizeof(struct dinode);
    456 		redo_ifile =
    457 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    458 		error = VOP_BWRITE(bp);
    459 	}
    460 	return (redo_ifile);
    461 }
    462 
    463 int
    464 lfs_gatherblock(sp, bp, sptr)
    465 	struct segment *sp;
    466 	struct buf *bp;
    467 	int *sptr;
    468 {
    469 	struct lfs *fs;
    470 	int version;
    471 
    472 	/*
    473 	 * If full, finish this segment.  We may be doing I/O, so
    474 	 * release and reacquire the splbio().
    475 	 */
    476 #ifdef DIAGNOSTIC
    477 	if (sp->vp == NULL)
    478 		panic ("lfs_gatherblock: Null vp in segment");
    479 #endif
    480 	fs = sp->fs;
    481 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
    482 	    sp->seg_bytes_left < fs->lfs_bsize) {
    483 		if (sptr)
    484 			splx(*sptr);
    485 		lfs_updatemeta(sp);
    486 
    487 		version = sp->fip->fi_version;
    488 		(void) lfs_writeseg(fs, sp);
    489 
    490 		sp->fip->fi_version = version;
    491 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    492 		/* Add the current file to the segment summary. */
    493 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    494 		sp->sum_bytes_left -=
    495 		    sizeof(struct finfo) - sizeof(daddr_t);
    496 
    497 		if (sptr)
    498 			*sptr = splbio();
    499 		return(1);
    500 	}
    501 
    502 	/* Insert into the buffer list, update the FINFO block. */
    503 	bp->b_flags |= B_GATHERED;
    504 	*sp->cbpp++ = bp;
    505 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    506 
    507 	sp->sum_bytes_left -= sizeof(daddr_t);
    508 	sp->seg_bytes_left -= fs->lfs_bsize;
    509 	return(0);
    510 }
    511 
    512 void
    513 lfs_gather(fs, sp, vp, match)
    514 	struct lfs *fs;
    515 	struct segment *sp;
    516 	struct vnode *vp;
    517 	int (*match) __P((struct lfs *, struct buf *));
    518 {
    519 	struct buf *bp;
    520 	int s;
    521 
    522 	sp->vp = vp;
    523 	s = splbio();
    524 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    525 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
    526 		    bp->b_flags & B_GATHERED)
    527 			continue;
    528 #ifdef DIAGNOSTIC
    529 		if (!(bp->b_flags & B_DELWRI))
    530 			panic("lfs_gather: bp not B_DELWRI");
    531 		if (!(bp->b_flags & B_LOCKED))
    532 			panic("lfs_gather: bp not B_LOCKED");
    533 #endif
    534 		if (lfs_gatherblock(sp, bp, &s))
    535 			goto loop;
    536 	}
    537 	splx(s);
    538 	lfs_updatemeta(sp);
    539 	sp->vp = NULL;
    540 }
    541 
    542 
    543 /*
    544  * Update the metadata that points to the blocks listed in the FINFO
    545  * array.
    546  */
    547 void
    548 lfs_updatemeta(sp)
    549 	struct segment *sp;
    550 {
    551 	SEGUSE *sup;
    552 	struct buf *bp;
    553 	struct lfs *fs;
    554 	struct vnode *vp;
    555 	struct indir a[NIADDR + 2], *ap;
    556 	struct inode *ip;
    557 	daddr_t daddr, lbn, off;
    558 	int db_per_fsb, error, i, nblocks, num;
    559 
    560 	vp = sp->vp;
    561 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    562 	if (vp == NULL || nblocks == 0)
    563 		return;
    564 
    565 	/* Sort the blocks. */
    566 	if (!(sp->seg_flags & SEGM_CLEAN))
    567 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    568 
    569 	/*
    570 	 * Assign disk addresses, and update references to the logical
    571 	 * block and the segment usage information.
    572 	 */
    573 	fs = sp->fs;
    574 	db_per_fsb = fsbtodb(fs, 1);
    575 	for (i = nblocks; i--; ++sp->start_bpp) {
    576 		lbn = *sp->start_lbp++;
    577 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    578 		fs->lfs_offset += db_per_fsb;
    579 
    580 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
    581 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    582 		ip = VTOI(vp);
    583 		switch (num) {
    584 		case 0:
    585 			ip->i_db[lbn] = off;
    586 			break;
    587 		case 1:
    588 			ip->i_ib[a[0].in_off] = off;
    589 			break;
    590 		default:
    591 			ap = &a[num - 1];
    592 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    593 				panic("lfs_updatemeta: bread bno %d",
    594 				    ap->in_lbn);
    595 			/*
    596 			 * Bread may create a new indirect block which needs
    597 			 * to get counted for the inode.
    598 			 */
    599 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
    600 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
    601 				ip->i_blocks += btodb(fs->lfs_bsize);
    602 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
    603 			}
    604 			((daddr_t *)bp->b_data)[ap->in_off] = off;
    605 			VOP_BWRITE(bp);
    606 		}
    607 
    608 		/* Update segment usage information. */
    609 		if (daddr != UNASSIGNED &&
    610 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    611 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    612 #ifdef DIAGNOSTIC
    613 			if (sup->su_nbytes < fs->lfs_bsize) {
    614 				/* XXX -- Change to a panic. */
    615 				printf("lfs: negative bytes (segment %d)\n",
    616 				    datosn(fs, daddr));
    617 				panic ("Negative Bytes");
    618 			}
    619 #endif
    620 			sup->su_nbytes -= fs->lfs_bsize;
    621 			error = VOP_BWRITE(bp);
    622 		}
    623 	}
    624 }
    625 
    626 /*
    627  * Start a new segment.
    628  */
    629 int
    630 lfs_initseg(fs)
    631 	struct lfs *fs;
    632 {
    633 	struct segment *sp;
    634 	SEGUSE *sup;
    635 	SEGSUM *ssp;
    636 	struct buf *bp;
    637 	int repeat;
    638 
    639 	sp = fs->lfs_sp;
    640 
    641 	repeat = 0;
    642 	/* Advance to the next segment. */
    643 	if (!LFS_PARTIAL_FITS(fs)) {
    644 		/* Wake up any cleaning procs waiting on this file system. */
    645 		wakeup(&lfs_allclean_wakeup);
    646 
    647 		lfs_newseg(fs);
    648 		repeat = 1;
    649 		fs->lfs_offset = fs->lfs_curseg;
    650 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    651 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    652 
    653 		/*
    654 		 * If the segment contains a superblock, update the offset
    655 		 * and summary address to skip over it.
    656 		 */
    657 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    658 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    659 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    660 			sp->seg_bytes_left -= LFS_SBPAD;
    661 		}
    662 		brelse(bp);
    663 	} else {
    664 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    665 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    666 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    667 	}
    668 	fs->lfs_lastpseg = fs->lfs_offset;
    669 
    670 	sp->fs = fs;
    671 	sp->ibp = NULL;
    672 	sp->ninodes = 0;
    673 
    674 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    675 	sp->cbpp = sp->bpp;
    676 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
    677 	     LFS_SUMMARY_SIZE);
    678 	sp->segsum = (*sp->cbpp)->b_data;
    679 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    680 	sp->start_bpp = ++sp->cbpp;
    681 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    682 
    683 	/* Set point to SEGSUM, initialize it. */
    684 	ssp = sp->segsum;
    685 	ssp->ss_next = fs->lfs_nextseg;
    686 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    687 
    688 	/* Set pointer to first FINFO, initialize it. */
    689 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
    690 	sp->fip->fi_nblocks = 0;
    691 	sp->start_lbp = &sp->fip->fi_blocks[0];
    692 
    693 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
    694 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
    695 
    696 	return(repeat);
    697 }
    698 
    699 /*
    700  * Return the next segment to write.
    701  */
    702 void
    703 lfs_newseg(fs)
    704 	struct lfs *fs;
    705 {
    706 	CLEANERINFO *cip;
    707 	SEGUSE *sup;
    708 	struct buf *bp;
    709 	int curseg, isdirty, sn;
    710 
    711         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
    712         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    713 	sup->su_nbytes = 0;
    714 	sup->su_nsums = 0;
    715 	sup->su_ninos = 0;
    716         (void) VOP_BWRITE(bp);
    717 
    718 	LFS_CLEANERINFO(cip, fs, bp);
    719 	--cip->clean;
    720 	++cip->dirty;
    721 	(void) VOP_BWRITE(bp);
    722 
    723 	fs->lfs_lastseg = fs->lfs_curseg;
    724 	fs->lfs_curseg = fs->lfs_nextseg;
    725 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
    726 		sn = (sn + 1) % fs->lfs_nseg;
    727 		if (sn == curseg)
    728 			panic("lfs_nextseg: no clean segments");
    729 		LFS_SEGENTRY(sup, fs, sn, bp);
    730 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    731 		brelse(bp);
    732 		if (!isdirty)
    733 			break;
    734 	}
    735 
    736 	++fs->lfs_nactive;
    737 	fs->lfs_nextseg = sntoda(fs, sn);
    738 #ifdef DOSTATS
    739 	++lfs_stats.segsused;
    740 #endif
    741 }
    742 
    743 int
    744 lfs_writeseg(fs, sp)
    745 	struct lfs *fs;
    746 	struct segment *sp;
    747 {
    748 	extern int locked_queue_count;
    749 	struct buf **bpp, *bp, *cbp;
    750 	SEGUSE *sup;
    751 	SEGSUM *ssp;
    752 	dev_t i_dev;
    753 	size_t size;
    754 	u_long *datap, *dp;
    755 	int ch_per_blk, do_again, i, nblocks, num, s;
    756 	int (*strategy)__P((struct vop_strategy_args *));
    757 	struct vop_strategy_args vop_strategy_a;
    758 	u_short ninos;
    759 	char *p;
    760 
    761 	/*
    762 	 * If there are no buffers other than the segment summary to write
    763 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    764 	 * even if there aren't any buffers, you need to write the superblock.
    765 	 */
    766 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    767 		return (0);
    768 
    769 	ssp = (SEGSUM *)sp->segsum;
    770 
    771 	/* Update the segment usage information. */
    772 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    773 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    774 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
    775 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
    776 	sup->su_nbytes += LFS_SUMMARY_SIZE;
    777 	sup->su_lastmod = time.tv_sec;
    778 	sup->su_ninos += ninos;
    779 	++sup->su_nsums;
    780 	do_again = !(bp->b_flags & B_GATHERED);
    781 	(void)VOP_BWRITE(bp);
    782 	/*
    783 	 * Compute checksum across data and then across summary; the first
    784 	 * block (the summary block) is skipped.  Set the create time here
    785 	 * so that it's guaranteed to be later than the inode mod times.
    786 	 *
    787 	 * XXX
    788 	 * Fix this to do it inline, instead of malloc/copy.
    789 	 */
    790 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
    791 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    792 		if ((*++bpp)->b_flags & B_INVAL) {
    793 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
    794 				panic("lfs_writeseg: copyin failed");
    795 		} else
    796 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
    797 	}
    798 	ssp->ss_create = time.tv_sec;
    799 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
    800 	ssp->ss_sumsum =
    801 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
    802 	free(datap, M_SEGMENT);
    803 #ifdef DIAGNOSTIC
    804 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
    805 		panic("lfs_writeseg: No diskspace for summary");
    806 #endif
    807 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
    808 
    809 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    810 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    811 
    812 	/*
    813 	 * When we simply write the blocks we lose a rotation for every block
    814 	 * written.  To avoid this problem, we allocate memory in chunks, copy
    815 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
    816 	 * largest size I/O devices can handle.
    817 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
    818 	 * and brelse the buffer (which will move them to the LRU list).  Add
    819 	 * the B_CALL flag to the buffer header so we can count I/O's for the
    820 	 * checkpoints and so we can release the allocated memory.
    821 	 *
    822 	 * XXX
    823 	 * This should be removed if the new virtual memory system allows us to
    824 	 * easily make the buffers contiguous in kernel memory and if that's
    825 	 * fast enough.
    826 	 */
    827 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
    828 	for (bpp = sp->bpp, i = nblocks; i;) {
    829 		num = ch_per_blk;
    830 		if (num > i)
    831 			num = i;
    832 		i -= num;
    833 		size = num * fs->lfs_bsize;
    834 
    835 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    836 		    (*bpp)->b_blkno, size);
    837 		cbp->b_dev = i_dev;
    838 		cbp->b_flags |= B_ASYNC | B_BUSY;
    839 
    840 		s = splbio();
    841 		++fs->lfs_iocount;
    842 		for (p = cbp->b_data; num--;) {
    843 			bp = *bpp++;
    844 			/*
    845 			 * Fake buffers from the cleaner are marked as B_INVAL.
    846 			 * We need to copy the data from user space rather than
    847 			 * from the buffer indicated.
    848 			 * XXX == what do I do on an error?
    849 			 */
    850 			if (bp->b_flags & B_INVAL) {
    851 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
    852 					panic("lfs_writeseg: copyin failed");
    853 			} else
    854 				bcopy(bp->b_data, p, bp->b_bcount);
    855 			p += bp->b_bcount;
    856 			if (bp->b_flags & B_LOCKED)
    857 				--locked_queue_count;
    858 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    859 			     B_LOCKED | B_GATHERED);
    860 			if (bp->b_flags & B_CALL) {
    861 				/* if B_CALL, it was created with newbuf */
    862 				brelvp(bp);
    863 				if (!(bp->b_flags & B_INVAL))
    864 					free(bp->b_data, M_SEGMENT);
    865 				free(bp, M_SEGMENT);
    866 			} else {
    867 				bremfree(bp);
    868 				bp->b_flags |= B_DONE;
    869 				reassignbuf(bp, bp->b_vp);
    870 				brelse(bp);
    871 			}
    872 		}
    873 		++cbp->b_vp->v_numoutput;
    874 		splx(s);
    875 		cbp->b_bcount = p - (char *)cbp->b_data;
    876 		/*
    877 		 * XXXX This is a gross and disgusting hack.  Since these
    878 		 * buffers are physically addressed, they hang off the
    879 		 * device vnode (devvp).  As a result, they have no way
    880 		 * of getting to the LFS superblock or lfs structure to
    881 		 * keep track of the number of I/O's pending.  So, I am
    882 		 * going to stuff the fs into the saveaddr field of
    883 		 * the buffer (yuk).
    884 		 */
    885 		cbp->b_saveaddr = (caddr_t)fs;
    886 		vop_strategy_a.a_desc = VDESC(vop_strategy);
    887 		vop_strategy_a.a_bp = cbp;
    888 		(strategy)(&vop_strategy_a);
    889 	}
    890 	/*
    891 	 * XXX
    892 	 * Vinvalbuf can move locked buffers off the locked queue
    893 	 * and we have no way of knowing about this.  So, after
    894 	 * doing a big write, we recalculate how many bufers are
    895 	 * really still left on the locked queue.
    896 	 */
    897 	locked_queue_count = count_lock_queue();
    898 	wakeup(&locked_queue_count);
    899 #ifdef DOSTATS
    900 	++lfs_stats.psegwrites;
    901 	lfs_stats.blocktot += nblocks - 1;
    902 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
    903 		++lfs_stats.psyncwrites;
    904 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
    905 		++lfs_stats.pcleanwrites;
    906 		lfs_stats.cleanblocks += nblocks - 1;
    907 	}
    908 #endif
    909 	return (lfs_initseg(fs) || do_again);
    910 }
    911 
    912 void
    913 lfs_writesuper(fs)
    914 	struct lfs *fs;
    915 {
    916 	struct buf *bp;
    917 	dev_t i_dev;
    918 	int (*strategy) __P((struct vop_strategy_args *));
    919 	int s;
    920 	struct vop_strategy_args vop_strategy_a;
    921 
    922 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    923 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    924 
    925 	/* Checksum the superblock and copy it into a buffer. */
    926 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
    927 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
    928 	    LFS_SBPAD);
    929 	*(struct lfs *)bp->b_data = *fs;
    930 
    931 	/* XXX Toggle between first two superblocks; for now just write first */
    932 	bp->b_dev = i_dev;
    933 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
    934 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
    935 	bp->b_iodone = lfs_supercallback;
    936 	vop_strategy_a.a_desc = VDESC(vop_strategy);
    937 	vop_strategy_a.a_bp = bp;
    938 	s = splbio();
    939 	++bp->b_vp->v_numoutput;
    940 	splx(s);
    941 	(strategy)(&vop_strategy_a);
    942 }
    943 
    944 /*
    945  * Logical block number match routines used when traversing the dirty block
    946  * chain.
    947  */
    948 int
    949 lfs_match_data(fs, bp)
    950 	struct lfs *fs;
    951 	struct buf *bp;
    952 {
    953 	return (bp->b_lblkno >= 0);
    954 }
    955 
    956 int
    957 lfs_match_indir(fs, bp)
    958 	struct lfs *fs;
    959 	struct buf *bp;
    960 {
    961 	int lbn;
    962 
    963 	lbn = bp->b_lblkno;
    964 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    965 }
    966 
    967 int
    968 lfs_match_dindir(fs, bp)
    969 	struct lfs *fs;
    970 	struct buf *bp;
    971 {
    972 	int lbn;
    973 
    974 	lbn = bp->b_lblkno;
    975 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    976 }
    977 
    978 int
    979 lfs_match_tindir(fs, bp)
    980 	struct lfs *fs;
    981 	struct buf *bp;
    982 {
    983 	int lbn;
    984 
    985 	lbn = bp->b_lblkno;
    986 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    987 }
    988 
    989 /*
    990  * Allocate a new buffer header.
    991  */
    992 struct buf *
    993 lfs_newbuf(vp, daddr, size)
    994 	struct vnode *vp;
    995 	daddr_t daddr;
    996 	size_t size;
    997 {
    998 	struct buf *bp;
    999 	size_t nbytes;
   1000 
   1001 	nbytes = roundup(size, DEV_BSIZE);
   1002 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
   1003 	bzero(bp, sizeof(struct buf));
   1004 	if (nbytes)
   1005 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
   1006 	bgetvp(vp, bp);
   1007 	bp->b_bufsize = size;
   1008 	bp->b_bcount = size;
   1009 	bp->b_lblkno = daddr;
   1010 	bp->b_blkno = daddr;
   1011 	bp->b_error = 0;
   1012 	bp->b_resid = 0;
   1013 	bp->b_iodone = lfs_callback;
   1014 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
   1015 	return (bp);
   1016 }
   1017 
   1018 void
   1019 lfs_callback(bp)
   1020 	struct buf *bp;
   1021 {
   1022 	struct lfs *fs;
   1023 
   1024 	fs = (struct lfs *)bp->b_saveaddr;
   1025 #ifdef DIAGNOSTIC
   1026 	if (fs->lfs_iocount == 0)
   1027 		panic("lfs_callback: zero iocount\n");
   1028 #endif
   1029 	if (--fs->lfs_iocount == 0)
   1030 		wakeup(&fs->lfs_iocount);
   1031 
   1032 	brelvp(bp);
   1033 	free(bp->b_data, M_SEGMENT);
   1034 	free(bp, M_SEGMENT);
   1035 }
   1036 
   1037 void
   1038 lfs_supercallback(bp)
   1039 	struct buf *bp;
   1040 {
   1041 	brelvp(bp);
   1042 	free(bp->b_data, M_SEGMENT);
   1043 	free(bp, M_SEGMENT);
   1044 }
   1045 
   1046 /*
   1047  * Shellsort (diminishing increment sort) from Data Structures and
   1048  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1049  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1050  * formula (8), page 95.  Roughly O(N^3/2).
   1051  */
   1052 /*
   1053  * This is our own private copy of shellsort because we want to sort
   1054  * two parallel arrays (the array of buffer pointers and the array of
   1055  * logical block numbers) simultaneously.  Note that we cast the array
   1056  * of logical block numbers to a unsigned in this routine so that the
   1057  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1058  */
   1059 void
   1060 lfs_shellsort(bp_array, lb_array, nmemb)
   1061 	struct buf **bp_array;
   1062 	daddr_t *lb_array;
   1063 	register int nmemb;
   1064 {
   1065 	static int __rsshell_increments[] = { 4, 1, 0 };
   1066 	register int incr, *incrp, t1, t2;
   1067 	struct buf *bp_temp;
   1068 	u_long lb_temp;
   1069 
   1070 	for (incrp = __rsshell_increments; incr = *incrp++;)
   1071 		for (t1 = incr; t1 < nmemb; ++t1)
   1072 			for (t2 = t1 - incr; t2 >= 0;)
   1073 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1074 					lb_temp = lb_array[t2];
   1075 					lb_array[t2] = lb_array[t2 + incr];
   1076 					lb_array[t2 + incr] = lb_temp;
   1077 					bp_temp = bp_array[t2];
   1078 					bp_array[t2] = bp_array[t2 + incr];
   1079 					bp_array[t2 + incr] = bp_temp;
   1080 					t2 -= incr;
   1081 				} else
   1082 					break;
   1083 }
   1084 
   1085 /*
   1086  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1087  */
   1088 lfs_vref(vp)
   1089 	register struct vnode *vp;
   1090 {
   1091 
   1092 	if (vp->v_flag & VXLOCK)
   1093 		return(1);
   1094 	return (vget(vp, 0));
   1095 }
   1096 
   1097 void
   1098 lfs_vunref(vp)
   1099 	register struct vnode *vp;
   1100 {
   1101 	extern int lfs_no_inactive;
   1102 
   1103 	/*
   1104 	 * This is vrele except that we do not want to VOP_INACTIVE
   1105 	 * this vnode. Rather than inline vrele here, we use a global
   1106 	 * flag to tell lfs_inactive not to run. Yes, its gross.
   1107 	 */
   1108 	lfs_no_inactive = 1;
   1109 	vrele(vp);
   1110 	lfs_no_inactive = 0;
   1111 }
   1112