Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.1.1.2
      1 /*
      2  * Copyright (c) 1991, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/namei.h>
     39 #include <sys/kernel.h>
     40 #include <sys/resourcevar.h>
     41 #include <sys/file.h>
     42 #include <sys/stat.h>
     43 #include <sys/buf.h>
     44 #include <sys/proc.h>
     45 #include <sys/conf.h>
     46 #include <sys/vnode.h>
     47 #include <sys/malloc.h>
     48 #include <sys/mount.h>
     49 
     50 #include <miscfs/specfs/specdev.h>
     51 #include <miscfs/fifofs/fifo.h>
     52 
     53 #include <ufs/ufs/quota.h>
     54 #include <ufs/ufs/inode.h>
     55 #include <ufs/ufs/dir.h>
     56 #include <ufs/ufs/ufsmount.h>
     57 #include <ufs/ufs/ufs_extern.h>
     58 
     59 #include <ufs/lfs/lfs.h>
     60 #include <ufs/lfs/lfs_extern.h>
     61 
     62 extern int count_lock_queue __P((void));
     63 
     64 #define MAX_ACTIVE	10
     65 /*
     66  * Determine if it's OK to start a partial in this segment, or if we need
     67  * to go on to a new segment.
     68  */
     69 #define	LFS_PARTIAL_FITS(fs) \
     70 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
     71 	1 << (fs)->lfs_fsbtodb)
     72 
     73 void	 lfs_callback __P((struct buf *));
     74 void	 lfs_gather __P((struct lfs *, struct segment *,
     75 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
     76 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
     77 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
     78 int	 lfs_match_data __P((struct lfs *, struct buf *));
     79 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
     80 int	 lfs_match_indir __P((struct lfs *, struct buf *));
     81 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
     82 void	 lfs_newseg __P((struct lfs *));
     83 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
     84 void	 lfs_supercallback __P((struct buf *));
     85 void	 lfs_updatemeta __P((struct segment *));
     86 int	 lfs_vref __P((struct vnode *));
     87 void	 lfs_vunref __P((struct vnode *));
     88 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
     89 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
     90 int	 lfs_writeseg __P((struct lfs *, struct segment *));
     91 void	 lfs_writesuper __P((struct lfs *));
     92 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
     93 	    struct segment *sp, int dirops));
     94 
     95 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
     96 
     97 /* Statistics Counters */
     98 #define DOSTATS
     99 struct lfs_stats lfs_stats;
    100 
    101 /* op values to lfs_writevnodes */
    102 #define	VN_REG	0
    103 #define	VN_DIROP	1
    104 #define	VN_EMPTY	2
    105 
    106 /*
    107  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    108  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    109  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    110  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    111  */
    112 
    113 int
    114 lfs_vflush(vp)
    115 	struct vnode *vp;
    116 {
    117 	struct inode *ip;
    118 	struct lfs *fs;
    119 	struct segment *sp;
    120 
    121 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    122 	if (fs->lfs_nactive > MAX_ACTIVE)
    123 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
    124 	lfs_seglock(fs, SEGM_SYNC);
    125 	sp = fs->lfs_sp;
    126 
    127 
    128 	ip = VTOI(vp);
    129 	if (vp->v_dirtyblkhd.lh_first == NULL)
    130 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    131 
    132 	do {
    133 		do {
    134 			if (vp->v_dirtyblkhd.lh_first != NULL)
    135 				lfs_writefile(fs, sp, vp);
    136 		} while (lfs_writeinode(fs, sp, ip));
    137 
    138 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    139 
    140 #ifdef DOSTATS
    141 	++lfs_stats.nwrites;
    142 	if (sp->seg_flags & SEGM_SYNC)
    143 		++lfs_stats.nsync_writes;
    144 	if (sp->seg_flags & SEGM_CKP)
    145 		++lfs_stats.ncheckpoints;
    146 #endif
    147 	lfs_segunlock(fs);
    148 	return (0);
    149 }
    150 
    151 void
    152 lfs_writevnodes(fs, mp, sp, op)
    153 	struct lfs *fs;
    154 	struct mount *mp;
    155 	struct segment *sp;
    156 	int op;
    157 {
    158 	struct inode *ip;
    159 	struct vnode *vp;
    160 
    161 /* BEGIN HACK */
    162 #define	VN_OFFSET	(((void *)&vp->v_mntvnodes.le_next) - (void *)vp)
    163 #define	BACK_VP(VP)	((struct vnode *)(((void *)VP->v_mntvnodes.le_prev) - VN_OFFSET))
    164 #define	BEG_OF_VLIST	((struct vnode *)(((void *)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
    165 
    166 /* Find last vnode. */
    167 loop:   for (vp = mp->mnt_vnodelist.lh_first;
    168 	     vp && vp->v_mntvnodes.le_next != NULL;
    169 	     vp = vp->v_mntvnodes.le_next);
    170 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
    171 /* END HACK */
    172 /*
    173 loop:
    174 	for (vp = mp->mnt_vnodelist.lh_first;
    175 	     vp != NULL;
    176 	     vp = vp->v_mntvnodes.le_next) {
    177 */
    178 		/*
    179 		 * If the vnode that we are about to sync is no longer
    180 		 * associated with this mount point, start over.
    181 		 */
    182 		if (vp->v_mount != mp)
    183 			goto loop;
    184 
    185 		/* XXX ignore dirops for now
    186 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
    187 		    op != VN_DIROP && (vp->v_flag & VDIROP))
    188 			continue;
    189 		*/
    190 
    191 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
    192 			continue;
    193 
    194 		if (vp->v_type == VNON)
    195 			continue;
    196 
    197 		if (lfs_vref(vp))
    198 			continue;
    199 
    200 		/*
    201 		 * Write the inode/file if dirty and it's not the
    202 		 * the IFILE.
    203 		 */
    204 		ip = VTOI(vp);
    205 		if ((ip->i_flag &
    206 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
    207 		    vp->v_dirtyblkhd.lh_first != NULL) &&
    208 		    ip->i_number != LFS_IFILE_INUM) {
    209 			if (vp->v_dirtyblkhd.lh_first != NULL)
    210 				lfs_writefile(fs, sp, vp);
    211 			(void) lfs_writeinode(fs, sp, ip);
    212 		}
    213 		vp->v_flag &= ~VDIROP;
    214 		lfs_vunref(vp);
    215 	}
    216 }
    217 
    218 int
    219 lfs_segwrite(mp, flags)
    220 	struct mount *mp;
    221 	int flags;			/* Do a checkpoint. */
    222 {
    223 	struct proc *p = curproc;	/* XXX */
    224 	struct buf *bp;
    225 	struct inode *ip;
    226 	struct lfs *fs;
    227 	struct segment *sp;
    228 	struct vnode *vp;
    229 	SEGUSE *segusep;
    230 	ufs_daddr_t ibno;
    231 	CLEANERINFO *cip;
    232 	int clean, do_ckp, error, i;
    233 
    234 	fs = VFSTOUFS(mp)->um_lfs;
    235 
    236  	/*
    237  	 * If we have fewer than 2 clean segments, wait until cleaner
    238 	 * writes.
    239  	 */
    240 	do {
    241 		LFS_CLEANERINFO(cip, fs, bp);
    242 		clean = cip->clean;
    243 		brelse(bp);
    244 		if (clean <= 2 || fs->lfs_avail <= 0) {
    245 			/* printf ("segs clean: %d\n", clean); */
    246 			wakeup(&lfs_allclean_wakeup);
    247 			wakeup(&fs->lfs_nextseg);
    248 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    249 			    "lfs writer", 0))
    250 				return (error);
    251 		}
    252 	} while (clean <= 2 || fs->lfs_avail <= 0);
    253 
    254 	/*
    255 	 * Allocate a segment structure and enough space to hold pointers to
    256 	 * the maximum possible number of buffers which can be described in a
    257 	 * single summary block.
    258 	 */
    259 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
    260 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    261 	sp = fs->lfs_sp;
    262 
    263 	lfs_writevnodes(fs, mp, sp, VN_REG);
    264 
    265 	/* XXX ignore ordering of dirops for now */
    266 	/* XXX
    267 	fs->lfs_writer = 1;
    268 	if (fs->lfs_dirops && (error =
    269 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
    270 		free(sp->bpp, M_SEGMENT);
    271 		free(sp, M_SEGMENT);
    272 		fs->lfs_writer = 0;
    273 		return (error);
    274 	}
    275 
    276 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
    277 	*/
    278 
    279 	/*
    280 	 * If we are doing a checkpoint, mark everything since the
    281 	 * last checkpoint as no longer ACTIVE.
    282 	 */
    283 	if (do_ckp)
    284 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    285 		     --ibno >= fs->lfs_cleansz; ) {
    286 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
    287 			    NOCRED, &bp))
    288 
    289 				panic("lfs: ifile read");
    290 			segusep = (SEGUSE *)bp->b_data;
    291 			for (i = fs->lfs_sepb; i--; segusep++)
    292 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    293 
    294 			error = VOP_BWRITE(bp);
    295 		}
    296 
    297 	if (do_ckp || fs->lfs_doifile) {
    298 redo:
    299 		vp = fs->lfs_ivnode;
    300 		while (vget(vp, LK_EXCLUSIVE, p))
    301 			continue;
    302 		ip = VTOI(vp);
    303 		if (vp->v_dirtyblkhd.lh_first != NULL)
    304 			lfs_writefile(fs, sp, vp);
    305 		(void)lfs_writeinode(fs, sp, ip);
    306 		vput(vp);
    307 		if (lfs_writeseg(fs, sp) && do_ckp)
    308 			goto redo;
    309 	} else
    310 		(void) lfs_writeseg(fs, sp);
    311 
    312 	/*
    313 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
    314 	 * moment, the user's process hangs around so we can sleep.
    315 	 */
    316 	/* XXX ignore dirops for now
    317 	fs->lfs_writer = 0;
    318 	fs->lfs_doifile = 0;
    319 	wakeup(&fs->lfs_dirops);
    320 	*/
    321 
    322 #ifdef DOSTATS
    323 	++lfs_stats.nwrites;
    324 	if (sp->seg_flags & SEGM_SYNC)
    325 		++lfs_stats.nsync_writes;
    326 	if (sp->seg_flags & SEGM_CKP)
    327 		++lfs_stats.ncheckpoints;
    328 #endif
    329 	lfs_segunlock(fs);
    330 	return (0);
    331 }
    332 
    333 /*
    334  * Write the dirty blocks associated with a vnode.
    335  */
    336 void
    337 lfs_writefile(fs, sp, vp)
    338 	struct lfs *fs;
    339 	struct segment *sp;
    340 	struct vnode *vp;
    341 {
    342 	struct buf *bp;
    343 	struct finfo *fip;
    344 	IFILE *ifp;
    345 
    346 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    347 	    sp->sum_bytes_left < sizeof(struct finfo))
    348 		(void) lfs_writeseg(fs, sp);
    349 
    350 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    351 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    352 
    353 	fip = sp->fip;
    354 	fip->fi_nblocks = 0;
    355 	fip->fi_ino = VTOI(vp)->i_number;
    356 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    357 	fip->fi_version = ifp->if_version;
    358 	brelse(bp);
    359 
    360 	/*
    361 	 * It may not be necessary to write the meta-data blocks at this point,
    362 	 * as the roll-forward recovery code should be able to reconstruct the
    363 	 * list.
    364 	 */
    365 	lfs_gather(fs, sp, vp, lfs_match_data);
    366 	lfs_gather(fs, sp, vp, lfs_match_indir);
    367 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    368 #ifdef TRIPLE
    369 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    370 #endif
    371 
    372 	fip = sp->fip;
    373 	if (fip->fi_nblocks != 0) {
    374 		sp->fip =
    375 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
    376 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks - 1));
    377 		sp->start_lbp = &sp->fip->fi_blocks[0];
    378 	} else {
    379 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(ufs_daddr_t);
    380 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    381 	}
    382 }
    383 
    384 int
    385 lfs_writeinode(fs, sp, ip)
    386 	struct lfs *fs;
    387 	struct segment *sp;
    388 	struct inode *ip;
    389 {
    390 	struct buf *bp, *ibp;
    391 	IFILE *ifp;
    392 	SEGUSE *sup;
    393 	ufs_daddr_t daddr;
    394 	ino_t ino;
    395 	int error, i, ndx;
    396 	int redo_ifile = 0;
    397 
    398 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
    399 		return(0);
    400 
    401 	/* Allocate a new inode block if necessary. */
    402 	if (sp->ibp == NULL) {
    403 		/* Allocate a new segment if necessary. */
    404 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    405 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    406 			(void) lfs_writeseg(fs, sp);
    407 
    408 		/* Get next inode block. */
    409 		daddr = fs->lfs_offset;
    410 		fs->lfs_offset += fsbtodb(fs, 1);
    411 		sp->ibp = *sp->cbpp++ =
    412 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    413 		    fs->lfs_bsize);
    414 		/* Zero out inode numbers */
    415 		for (i = 0; i < INOPB(fs); ++i)
    416 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    417 		++sp->start_bpp;
    418 		fs->lfs_avail -= fsbtodb(fs, 1);
    419 		/* Set remaining space counters. */
    420 		sp->seg_bytes_left -= fs->lfs_bsize;
    421 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    422 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
    423 		    sp->ninodes / INOPB(fs) - 1;
    424 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    425 	}
    426 
    427 	/* Update the inode times and copy the inode onto the inode page. */
    428 	if (ip->i_flag & IN_MODIFIED)
    429 		--fs->lfs_uinodes;
    430 	ITIMES(ip, &time, &time);
    431 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
    432 	bp = sp->ibp;
    433 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
    434 	/* Increment inode count in segment summary block. */
    435 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    436 
    437 	/* If this page is full, set flag to allocate a new page. */
    438 	if (++sp->ninodes % INOPB(fs) == 0)
    439 		sp->ibp = NULL;
    440 
    441 	/*
    442 	 * If updating the ifile, update the super-block.  Update the disk
    443 	 * address and access times for this inode in the ifile.
    444 	 */
    445 	ino = ip->i_number;
    446 	if (ino == LFS_IFILE_INUM) {
    447 		daddr = fs->lfs_idaddr;
    448 		fs->lfs_idaddr = bp->b_blkno;
    449 	} else {
    450 		LFS_IENTRY(ifp, fs, ino, ibp);
    451 		daddr = ifp->if_daddr;
    452 		ifp->if_daddr = bp->b_blkno;
    453 		error = VOP_BWRITE(ibp);
    454 	}
    455 
    456 	/*
    457 	 * No need to update segment usage if there was no former inode address
    458 	 * or if the last inode address is in the current partial segment.
    459 	 */
    460 	if (daddr != LFS_UNUSED_DADDR &&
    461 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    462 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    463 #ifdef DIAGNOSTIC
    464 		if (sup->su_nbytes < sizeof(struct dinode)) {
    465 			/* XXX -- Change to a panic. */
    466 			printf("lfs: negative bytes (segment %d)\n",
    467 			    datosn(fs, daddr));
    468 			panic("negative bytes");
    469 		}
    470 #endif
    471 		sup->su_nbytes -= sizeof(struct dinode);
    472 		redo_ifile =
    473 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    474 		error = VOP_BWRITE(bp);
    475 	}
    476 	return (redo_ifile);
    477 }
    478 
    479 int
    480 lfs_gatherblock(sp, bp, sptr)
    481 	struct segment *sp;
    482 	struct buf *bp;
    483 	int *sptr;
    484 {
    485 	struct lfs *fs;
    486 	int version;
    487 
    488 	/*
    489 	 * If full, finish this segment.  We may be doing I/O, so
    490 	 * release and reacquire the splbio().
    491 	 */
    492 #ifdef DIAGNOSTIC
    493 	if (sp->vp == NULL)
    494 		panic ("lfs_gatherblock: Null vp in segment");
    495 #endif
    496 	fs = sp->fs;
    497 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
    498 	    sp->seg_bytes_left < bp->b_bcount) {
    499 		if (sptr)
    500 			splx(*sptr);
    501 		lfs_updatemeta(sp);
    502 
    503 		version = sp->fip->fi_version;
    504 		(void) lfs_writeseg(fs, sp);
    505 
    506 		sp->fip->fi_version = version;
    507 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    508 		/* Add the current file to the segment summary. */
    509 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    510 		sp->sum_bytes_left -=
    511 		    sizeof(struct finfo) - sizeof(ufs_daddr_t);
    512 
    513 		if (sptr)
    514 			*sptr = splbio();
    515 		return(1);
    516 	}
    517 
    518 	/* Insert into the buffer list, update the FINFO block. */
    519 	bp->b_flags |= B_GATHERED;
    520 	*sp->cbpp++ = bp;
    521 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    522 
    523 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    524 	sp->seg_bytes_left -= bp->b_bcount;
    525 	return(0);
    526 }
    527 
    528 void
    529 lfs_gather(fs, sp, vp, match)
    530 	struct lfs *fs;
    531 	struct segment *sp;
    532 	struct vnode *vp;
    533 	int (*match) __P((struct lfs *, struct buf *));
    534 {
    535 	struct buf *bp;
    536 	int s;
    537 
    538 	sp->vp = vp;
    539 	s = splbio();
    540 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
    541 /* BEGIN HACK */
    542 #define	BUF_OFFSET	(((void *)&bp->b_vnbufs.le_next) - (void *)bp)
    543 #define	BACK_BUF(BP)	((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
    544 #define	BEG_OF_LIST	((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
    545 
    546 
    547 /*loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {*/
    548 /* Find last buffer. */
    549 loop:   for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
    550 	    bp = bp->b_vnbufs.le_next);
    551 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
    552 /* END HACK */
    553 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
    554 		    bp->b_flags & B_GATHERED)
    555 			continue;
    556 #ifdef DIAGNOSTIC
    557 		if (!(bp->b_flags & B_DELWRI))
    558 			panic("lfs_gather: bp not B_DELWRI");
    559 		if (!(bp->b_flags & B_LOCKED))
    560 			panic("lfs_gather: bp not B_LOCKED");
    561 #endif
    562 		if (lfs_gatherblock(sp, bp, &s))
    563 			goto loop;
    564 	}
    565 	splx(s);
    566 	lfs_updatemeta(sp);
    567 	sp->vp = NULL;
    568 }
    569 
    570 
    571 /*
    572  * Update the metadata that points to the blocks listed in the FINFO
    573  * array.
    574  */
    575 void
    576 lfs_updatemeta(sp)
    577 	struct segment *sp;
    578 {
    579 	SEGUSE *sup;
    580 	struct buf *bp;
    581 	struct lfs *fs;
    582 	struct vnode *vp;
    583 	struct indir a[NIADDR + 2], *ap;
    584 	struct inode *ip;
    585 	ufs_daddr_t daddr, lbn, off;
    586 	int error, i, nblocks, num;
    587 
    588 	vp = sp->vp;
    589 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    590 	if (nblocks < 0)
    591 		panic("This is a bad thing\n");
    592 	if (vp == NULL || nblocks == 0)
    593 		return;
    594 
    595 	/* Sort the blocks. */
    596 	if (!(sp->seg_flags & SEGM_CLEAN))
    597 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    598 
    599 	/*
    600 	 * Record the length of the last block in case it's a fragment.
    601 	 * If there are indirect blocks present, they sort last.  An
    602 	 * indirect block will be lfs_bsize and its presence indicates
    603 	 * that you cannot have fragments.
    604 	 */
    605 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
    606 
    607 	/*
    608 	 * Assign disk addresses, and update references to the logical
    609 	 * block and the segment usage information.
    610 	 */
    611 	fs = sp->fs;
    612 	for (i = nblocks; i--; ++sp->start_bpp) {
    613 		lbn = *sp->start_lbp++;
    614 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    615 		fs->lfs_offset +=
    616 		    fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
    617 
    618 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
    619 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    620 		ip = VTOI(vp);
    621 		switch (num) {
    622 		case 0:
    623 			ip->i_db[lbn] = off;
    624 			break;
    625 		case 1:
    626 			ip->i_ib[a[0].in_off] = off;
    627 			break;
    628 		default:
    629 			ap = &a[num - 1];
    630 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    631 				panic("lfs_updatemeta: bread bno %d",
    632 				    ap->in_lbn);
    633 			/*
    634 			 * Bread may create a new indirect block which needs
    635 			 * to get counted for the inode.
    636 			 */
    637 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
    638 				ip->i_blocks += fsbtodb(fs, 1);
    639 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
    640 			}
    641 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
    642 			VOP_BWRITE(bp);
    643 		}
    644 
    645 		/* Update segment usage information. */
    646 		if (daddr != UNASSIGNED &&
    647 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    648 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    649 #ifdef DIAGNOSTIC
    650 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
    651 				/* XXX -- Change to a panic. */
    652 				printf("lfs: negative bytes (segment %d)\n",
    653 				    datosn(fs, daddr));
    654 				printf("lfs: bp = 0x%x, addr = 0x%x\n",
    655 						bp, bp->b_un.b_addr);
    656 				panic ("Negative Bytes");
    657 			}
    658 #endif
    659 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
    660 			error = VOP_BWRITE(bp);
    661 		}
    662 	}
    663 }
    664 
    665 /*
    666  * Start a new segment.
    667  */
    668 int
    669 lfs_initseg(fs)
    670 	struct lfs *fs;
    671 {
    672 	struct segment *sp;
    673 	SEGUSE *sup;
    674 	SEGSUM *ssp;
    675 	struct buf *bp;
    676 	int repeat;
    677 
    678 	sp = fs->lfs_sp;
    679 
    680 	repeat = 0;
    681 	/* Advance to the next segment. */
    682 	if (!LFS_PARTIAL_FITS(fs)) {
    683 		/* Wake up any cleaning procs waiting on this file system. */
    684 		wakeup(&lfs_allclean_wakeup);
    685 		wakeup(&fs->lfs_nextseg);
    686 
    687 		lfs_newseg(fs);
    688 		repeat = 1;
    689 		fs->lfs_offset = fs->lfs_curseg;
    690 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    691 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    692 
    693 		/*
    694 		 * If the segment contains a superblock, update the offset
    695 		 * and summary address to skip over it.
    696 		 */
    697 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    698 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    699 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    700 			sp->seg_bytes_left -= LFS_SBPAD;
    701 		}
    702 		brelse(bp);
    703 	} else {
    704 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    705 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    706 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    707 	}
    708 	fs->lfs_lastpseg = fs->lfs_offset;
    709 
    710 	sp->fs = fs;
    711 	sp->ibp = NULL;
    712 	sp->ninodes = 0;
    713 
    714 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    715 	sp->cbpp = sp->bpp;
    716 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
    717 	     LFS_SUMMARY_SIZE);
    718 	sp->segsum = (*sp->cbpp)->b_data;
    719 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    720 	sp->start_bpp = ++sp->cbpp;
    721 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    722 
    723 	/* Set point to SEGSUM, initialize it. */
    724 	ssp = sp->segsum;
    725 	ssp->ss_next = fs->lfs_nextseg;
    726 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    727 	ssp->ss_magic = SS_MAGIC;
    728 
    729 	/* Set pointer to first FINFO, initialize it. */
    730 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
    731 	sp->fip->fi_nblocks = 0;
    732 	sp->start_lbp = &sp->fip->fi_blocks[0];
    733 	sp->fip->fi_lastlength = 0;
    734 
    735 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
    736 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
    737 
    738 	return(repeat);
    739 }
    740 
    741 /*
    742  * Return the next segment to write.
    743  */
    744 void
    745 lfs_newseg(fs)
    746 	struct lfs *fs;
    747 {
    748 	CLEANERINFO *cip;
    749 	SEGUSE *sup;
    750 	struct buf *bp;
    751 	int curseg, isdirty, sn;
    752 
    753         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
    754         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    755 	sup->su_nbytes = 0;
    756 	sup->su_nsums = 0;
    757 	sup->su_ninos = 0;
    758         (void) VOP_BWRITE(bp);
    759 
    760 	LFS_CLEANERINFO(cip, fs, bp);
    761 	--cip->clean;
    762 	++cip->dirty;
    763 	(void) VOP_BWRITE(bp);
    764 
    765 	fs->lfs_lastseg = fs->lfs_curseg;
    766 	fs->lfs_curseg = fs->lfs_nextseg;
    767 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
    768 		sn = (sn + 1) % fs->lfs_nseg;
    769 		if (sn == curseg)
    770 			panic("lfs_nextseg: no clean segments");
    771 		LFS_SEGENTRY(sup, fs, sn, bp);
    772 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    773 		brelse(bp);
    774 		if (!isdirty)
    775 			break;
    776 	}
    777 
    778 	++fs->lfs_nactive;
    779 	fs->lfs_nextseg = sntoda(fs, sn);
    780 #ifdef DOSTATS
    781 	++lfs_stats.segsused;
    782 #endif
    783 }
    784 
    785 int
    786 lfs_writeseg(fs, sp)
    787 	struct lfs *fs;
    788 	struct segment *sp;
    789 {
    790 	extern int locked_queue_count;
    791 	struct buf **bpp, *bp, *cbp;
    792 	SEGUSE *sup;
    793 	SEGSUM *ssp;
    794 	dev_t i_dev;
    795 	u_long *datap, *dp;
    796 	int do_again, i, nblocks, s;
    797 	int (*strategy)__P((struct vop_strategy_args *));
    798 	struct vop_strategy_args vop_strategy_a;
    799 	u_short ninos;
    800 	char *p;
    801 
    802 	/*
    803 	 * If there are no buffers other than the segment summary to write
    804 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    805 	 * even if there aren't any buffers, you need to write the superblock.
    806 	 */
    807 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    808 		return (0);
    809 
    810 	/* Update the segment usage information. */
    811 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    812 
    813 	/* Loop through all blocks, except the segment summary. */
    814 	for (bpp = sp->bpp; ++bpp < sp->cbpp; )
    815 		sup->su_nbytes += (*bpp)->b_bcount;
    816 
    817 	ssp = (SEGSUM *)sp->segsum;
    818 
    819 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    820 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
    821 	sup->su_nbytes += LFS_SUMMARY_SIZE;
    822 	sup->su_lastmod = time.tv_sec;
    823 	sup->su_ninos += ninos;
    824 	++sup->su_nsums;
    825 	do_again = !(bp->b_flags & B_GATHERED);
    826 	(void)VOP_BWRITE(bp);
    827 	/*
    828 	 * Compute checksum across data and then across summary; the first
    829 	 * block (the summary block) is skipped.  Set the create time here
    830 	 * so that it's guaranteed to be later than the inode mod times.
    831 	 *
    832 	 * XXX
    833 	 * Fix this to do it inline, instead of malloc/copy.
    834 	 */
    835 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
    836 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    837 		if ((*++bpp)->b_flags & B_INVAL) {
    838 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
    839 				panic("lfs_writeseg: copyin failed");
    840 		} else
    841 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
    842 	}
    843 	ssp->ss_create = time.tv_sec;
    844 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
    845 	ssp->ss_sumsum =
    846 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
    847 	free(datap, M_SEGMENT);
    848 #ifdef DIAGNOSTIC
    849 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
    850 		panic("lfs_writeseg: No diskspace for summary");
    851 #endif
    852 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
    853 
    854 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    855 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    856 
    857 	/*
    858 	 * When we simply write the blocks we lose a rotation for every block
    859 	 * written.  To avoid this problem, we allocate memory in chunks, copy
    860 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
    861 	 * largest size I/O devices can handle.
    862 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
    863 	 * and brelse the buffer (which will move them to the LRU list).  Add
    864 	 * the B_CALL flag to the buffer header so we can count I/O's for the
    865 	 * checkpoints and so we can release the allocated memory.
    866 	 *
    867 	 * XXX
    868 	 * This should be removed if the new virtual memory system allows us to
    869 	 * easily make the buffers contiguous in kernel memory and if that's
    870 	 * fast enough.
    871 	 */
    872 	for (bpp = sp->bpp, i = nblocks; i;) {
    873 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    874 		    (*bpp)->b_blkno, MAXPHYS);
    875 		cbp->b_dev = i_dev;
    876 		cbp->b_flags |= B_ASYNC | B_BUSY;
    877 		cbp->b_bcount = 0;
    878 
    879 		s = splbio();
    880 		++fs->lfs_iocount;
    881 		for (p = cbp->b_data; i && cbp->b_bcount < MAXPHYS; i--) {
    882 			bp = *bpp;
    883 			if (bp->b_bcount > (MAXPHYS - cbp->b_bcount))
    884 				break;
    885 			bpp++;
    886 
    887 			/*
    888 			 * Fake buffers from the cleaner are marked as B_INVAL.
    889 			 * We need to copy the data from user space rather than
    890 			 * from the buffer indicated.
    891 			 * XXX == what do I do on an error?
    892 			 */
    893 			if (bp->b_flags & B_INVAL) {
    894 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
    895 					panic("lfs_writeseg: copyin failed");
    896 			} else
    897 				bcopy(bp->b_data, p, bp->b_bcount);
    898 			p += bp->b_bcount;
    899 			cbp->b_bcount += bp->b_bcount;
    900 			if (bp->b_flags & B_LOCKED)
    901 				--locked_queue_count;
    902 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    903 			     B_LOCKED | B_GATHERED);
    904 			if (bp->b_flags & B_CALL) {
    905 				/* if B_CALL, it was created with newbuf */
    906 				brelvp(bp);
    907 				if (!(bp->b_flags & B_INVAL))
    908 					free(bp->b_data, M_SEGMENT);
    909 				free(bp, M_SEGMENT);
    910 			} else {
    911 				bremfree(bp);
    912 				bp->b_flags |= B_DONE;
    913 				reassignbuf(bp, bp->b_vp);
    914 				brelse(bp);
    915 			}
    916 		}
    917 		++cbp->b_vp->v_numoutput;
    918 		splx(s);
    919 		/*
    920 		 * XXXX This is a gross and disgusting hack.  Since these
    921 		 * buffers are physically addressed, they hang off the
    922 		 * device vnode (devvp).  As a result, they have no way
    923 		 * of getting to the LFS superblock or lfs structure to
    924 		 * keep track of the number of I/O's pending.  So, I am
    925 		 * going to stuff the fs into the saveaddr field of
    926 		 * the buffer (yuk).
    927 		 */
    928 		cbp->b_saveaddr = (caddr_t)fs;
    929 		vop_strategy_a.a_desc = VDESC(vop_strategy);
    930 		vop_strategy_a.a_bp = cbp;
    931 		(strategy)(&vop_strategy_a);
    932 	}
    933 	/*
    934 	 * XXX
    935 	 * Vinvalbuf can move locked buffers off the locked queue
    936 	 * and we have no way of knowing about this.  So, after
    937 	 * doing a big write, we recalculate how many bufers are
    938 	 * really still left on the locked queue.
    939 	 */
    940 	locked_queue_count = count_lock_queue();
    941 	wakeup(&locked_queue_count);
    942 #ifdef DOSTATS
    943 	++lfs_stats.psegwrites;
    944 	lfs_stats.blocktot += nblocks - 1;
    945 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
    946 		++lfs_stats.psyncwrites;
    947 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
    948 		++lfs_stats.pcleanwrites;
    949 		lfs_stats.cleanblocks += nblocks - 1;
    950 	}
    951 #endif
    952 	return (lfs_initseg(fs) || do_again);
    953 }
    954 
    955 void
    956 lfs_writesuper(fs)
    957 	struct lfs *fs;
    958 {
    959 	struct buf *bp;
    960 	dev_t i_dev;
    961 	int (*strategy) __P((struct vop_strategy_args *));
    962 	int s;
    963 	struct vop_strategy_args vop_strategy_a;
    964 
    965 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    966 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    967 
    968 	/* Checksum the superblock and copy it into a buffer. */
    969 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
    970 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
    971 	    LFS_SBPAD);
    972 	*(struct lfs *)bp->b_data = *fs;
    973 
    974 	/* XXX Toggle between first two superblocks; for now just write first */
    975 	bp->b_dev = i_dev;
    976 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
    977 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
    978 	bp->b_iodone = lfs_supercallback;
    979 	vop_strategy_a.a_desc = VDESC(vop_strategy);
    980 	vop_strategy_a.a_bp = bp;
    981 	s = splbio();
    982 	++bp->b_vp->v_numoutput;
    983 	splx(s);
    984 	(strategy)(&vop_strategy_a);
    985 }
    986 
    987 /*
    988  * Logical block number match routines used when traversing the dirty block
    989  * chain.
    990  */
    991 int
    992 lfs_match_data(fs, bp)
    993 	struct lfs *fs;
    994 	struct buf *bp;
    995 {
    996 	return (bp->b_lblkno >= 0);
    997 }
    998 
    999 int
   1000 lfs_match_indir(fs, bp)
   1001 	struct lfs *fs;
   1002 	struct buf *bp;
   1003 {
   1004 	int lbn;
   1005 
   1006 	lbn = bp->b_lblkno;
   1007 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   1008 }
   1009 
   1010 int
   1011 lfs_match_dindir(fs, bp)
   1012 	struct lfs *fs;
   1013 	struct buf *bp;
   1014 {
   1015 	int lbn;
   1016 
   1017 	lbn = bp->b_lblkno;
   1018 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   1019 }
   1020 
   1021 int
   1022 lfs_match_tindir(fs, bp)
   1023 	struct lfs *fs;
   1024 	struct buf *bp;
   1025 {
   1026 	int lbn;
   1027 
   1028 	lbn = bp->b_lblkno;
   1029 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   1030 }
   1031 
   1032 /*
   1033  * Allocate a new buffer header.
   1034  */
   1035 struct buf *
   1036 lfs_newbuf(vp, daddr, size)
   1037 	struct vnode *vp;
   1038 	ufs_daddr_t daddr;
   1039 	size_t size;
   1040 {
   1041 	struct buf *bp;
   1042 	size_t nbytes;
   1043 
   1044 	nbytes = roundup(size, DEV_BSIZE);
   1045 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
   1046 	bzero(bp, sizeof(struct buf));
   1047 	if (nbytes)
   1048 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
   1049 	bgetvp(vp, bp);
   1050 	bp->b_bufsize = size;
   1051 	bp->b_bcount = size;
   1052 	bp->b_lblkno = daddr;
   1053 	bp->b_blkno = daddr;
   1054 	bp->b_error = 0;
   1055 	bp->b_resid = 0;
   1056 	bp->b_iodone = lfs_callback;
   1057 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
   1058 	return (bp);
   1059 }
   1060 
   1061 void
   1062 lfs_callback(bp)
   1063 	struct buf *bp;
   1064 {
   1065 	struct lfs *fs;
   1066 
   1067 	fs = (struct lfs *)bp->b_saveaddr;
   1068 #ifdef DIAGNOSTIC
   1069 	if (fs->lfs_iocount == 0)
   1070 		panic("lfs_callback: zero iocount\n");
   1071 #endif
   1072 	if (--fs->lfs_iocount == 0)
   1073 		wakeup(&fs->lfs_iocount);
   1074 
   1075 	brelvp(bp);
   1076 	free(bp->b_data, M_SEGMENT);
   1077 	free(bp, M_SEGMENT);
   1078 }
   1079 
   1080 void
   1081 lfs_supercallback(bp)
   1082 	struct buf *bp;
   1083 {
   1084 	brelvp(bp);
   1085 	free(bp->b_data, M_SEGMENT);
   1086 	free(bp, M_SEGMENT);
   1087 }
   1088 
   1089 /*
   1090  * Shellsort (diminishing increment sort) from Data Structures and
   1091  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1092  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1093  * formula (8), page 95.  Roughly O(N^3/2).
   1094  */
   1095 /*
   1096  * This is our own private copy of shellsort because we want to sort
   1097  * two parallel arrays (the array of buffer pointers and the array of
   1098  * logical block numbers) simultaneously.  Note that we cast the array
   1099  * of logical block numbers to a unsigned in this routine so that the
   1100  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1101  */
   1102 void
   1103 lfs_shellsort(bp_array, lb_array, nmemb)
   1104 	struct buf **bp_array;
   1105 	ufs_daddr_t *lb_array;
   1106 	register int nmemb;
   1107 {
   1108 	static int __rsshell_increments[] = { 4, 1, 0 };
   1109 	register int incr, *incrp, t1, t2;
   1110 	struct buf *bp_temp;
   1111 	u_long lb_temp;
   1112 
   1113 	for (incrp = __rsshell_increments; incr = *incrp++;)
   1114 		for (t1 = incr; t1 < nmemb; ++t1)
   1115 			for (t2 = t1 - incr; t2 >= 0;)
   1116 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1117 					lb_temp = lb_array[t2];
   1118 					lb_array[t2] = lb_array[t2 + incr];
   1119 					lb_array[t2 + incr] = lb_temp;
   1120 					bp_temp = bp_array[t2];
   1121 					bp_array[t2] = bp_array[t2 + incr];
   1122 					bp_array[t2 + incr] = bp_temp;
   1123 					t2 -= incr;
   1124 				} else
   1125 					break;
   1126 }
   1127 
   1128 /*
   1129  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1130  */
   1131 lfs_vref(vp)
   1132 	register struct vnode *vp;
   1133 {
   1134 	struct proc *p = curproc;	/* XXX */
   1135 
   1136 	if (vp->v_flag & VXLOCK)	/* XXX */
   1137 		return(1);
   1138 	return (vget(vp, 0, p));
   1139 }
   1140 
   1141 /*
   1142  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   1143  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   1144  */
   1145 void
   1146 lfs_vunref(vp)
   1147 	register struct vnode *vp;
   1148 {
   1149 	struct proc *p = curproc;				/* XXX */
   1150 	extern struct simplelock vnode_free_list_slock;		/* XXX */
   1151 	extern TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* XXX */
   1152 
   1153 	simple_lock(&vp->v_interlock);
   1154 	vp->v_usecount--;
   1155 	if (vp->v_usecount > 0) {
   1156 		simple_unlock(&vp->v_interlock);
   1157 		return;
   1158 	}
   1159 	/*
   1160 	 * insert at tail of LRU list
   1161 	 */
   1162 	simple_lock(&vnode_free_list_slock);
   1163 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   1164 	simple_unlock(&vnode_free_list_slock);
   1165 	simple_unlock(&vp->v_interlock);
   1166 }
   1167