lfs_segment.c revision 1.104 1 /* $NetBSD: lfs_segment.c,v 1.104 2003/02/23 00:22:34 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.104 2003/02/23 00:22:34 perseant Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93
94 #include <miscfs/specfs/specdev.h>
95 #include <miscfs/fifofs/fifo.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
109
110 extern int count_lock_queue(void);
111 extern struct simplelock vnode_free_list_slock; /* XXX */
112 extern int lfs_subsys_pages;
113
114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
115 static void lfs_super_aiodone(struct buf *);
116 static void lfs_cluster_aiodone(struct buf *);
117 static void lfs_cluster_callback(struct buf *);
118 static struct buf **lookahead_pagemove(struct buf **, int, size_t *);
119
120 /*
121 * Determine if it's OK to start a partial in this segment, or if we need
122 * to go on to a new segment.
123 */
124 #define LFS_PARTIAL_FITS(fs) \
125 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
126 fragstofsb((fs), (fs)->lfs_frag))
127
128 void lfs_callback(struct buf *);
129 int lfs_gather(struct lfs *, struct segment *,
130 struct vnode *, int (*)(struct lfs *, struct buf *));
131 int lfs_gatherblock(struct segment *, struct buf *, int *);
132 void lfs_iset(struct inode *, daddr_t, time_t);
133 int lfs_match_fake(struct lfs *, struct buf *);
134 int lfs_match_data(struct lfs *, struct buf *);
135 int lfs_match_dindir(struct lfs *, struct buf *);
136 int lfs_match_indir(struct lfs *, struct buf *);
137 int lfs_match_tindir(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 /* XXX ondisk32 */
140 void lfs_shellsort(struct buf **, int32_t *, int, int);
141 void lfs_supercallback(struct buf *);
142 void lfs_updatemeta(struct segment *);
143 int lfs_vref(struct vnode *);
144 void lfs_vunref(struct vnode *);
145 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
146 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
147 int lfs_writeseg(struct lfs *, struct segment *);
148 void lfs_writesuper(struct lfs *, daddr_t);
149 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
150 struct segment *sp, int dirops);
151
152 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
153 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
154 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
155 int lfs_dirvcount = 0; /* # active dirops */
156
157 /* Statistics Counters */
158 int lfs_dostats = 1;
159 struct lfs_stats lfs_stats;
160
161 extern int locked_queue_count;
162 extern long locked_queue_bytes;
163
164 /* op values to lfs_writevnodes */
165 #define VN_REG 0
166 #define VN_DIROP 1
167 #define VN_EMPTY 2
168 #define VN_CLEAN 3
169
170 #define LFS_MAX_ACTIVE 10
171
172 /*
173 * XXX KS - Set modification time on the Ifile, so the cleaner can
174 * read the fs mod time off of it. We don't set IN_UPDATE here,
175 * since we don't really need this to be flushed to disk (and in any
176 * case that wouldn't happen to the Ifile until we checkpoint).
177 */
178 void
179 lfs_imtime(struct lfs *fs)
180 {
181 struct timespec ts;
182 struct inode *ip;
183
184 TIMEVAL_TO_TIMESPEC(&time, &ts);
185 ip = VTOI(fs->lfs_ivnode);
186 ip->i_ffs_mtime = ts.tv_sec;
187 ip->i_ffs_mtimensec = ts.tv_nsec;
188 }
189
190 /*
191 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
193 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
194 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
195 */
196
197 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
198 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
199 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
200
201 int
202 lfs_vflush(struct vnode *vp)
203 {
204 struct inode *ip;
205 struct lfs *fs;
206 struct segment *sp;
207 struct buf *bp, *nbp, *tbp, *tnbp;
208 int error, s;
209 int flushed;
210 #if 0
211 int redo;
212 #endif
213
214 ip = VTOI(vp);
215 fs = VFSTOUFS(vp->v_mount)->um_lfs;
216
217 if (ip->i_flag & IN_CLEANING) {
218 #ifdef DEBUG_LFS
219 ivndebug(vp,"vflush/in_cleaning");
220 #endif
221 LFS_CLR_UINO(ip, IN_CLEANING);
222 LFS_SET_UINO(ip, IN_MODIFIED);
223
224 /*
225 * Toss any cleaning buffers that have real counterparts
226 * to avoid losing new data.
227 */
228 s = splbio();
229 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
230 nbp = LIST_NEXT(bp, b_vnbufs);
231 if (!LFS_IS_MALLOC_BUF(bp))
232 continue;
233 #ifdef LFS_UBC
234 /*
235 * In the UBC case, look for *pages* matching
236 * the range covered by cleaning blocks.
237 */
238 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
239 vp != fs->lfs_ivnode) {
240 struct vm_page *pg;
241 voff_t off;
242
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg && pmap_is_modified(pg)) {
248 fs->lfs_avail += btofsb(fs,
249 bp->b_bcount);
250 wakeup(&fs->lfs_avail);
251 lfs_freebuf(fs, bp);
252 bp = NULL;
253 goto nextbp;
254 }
255 }
256 }
257 #endif
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 fs->lfs_avail += btofsb(fs,
267 bp->b_bcount);
268 wakeup(&fs->lfs_avail);
269 lfs_freebuf(fs, bp);
270 bp = NULL;
271 break;
272 }
273 }
274 #ifdef LFS_UBC
275 nextbp:
276 #endif
277 }
278 splx(s);
279 }
280
281 /* If the node is being written, wait until that is done */
282 s = splbio();
283 if (WRITEINPROG(vp)) {
284 #ifdef DEBUG_LFS
285 ivndebug(vp,"vflush/writeinprog");
286 #endif
287 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
288 }
289 splx(s);
290
291 /* Protect against VXLOCK deadlock in vinvalbuf() */
292 lfs_seglock(fs, SEGM_SYNC);
293
294 /* If we're supposed to flush a freed inode, just toss it */
295 /* XXX - seglock, so these buffers can't be gathered, right? */
296 if (ip->i_ffs_mode == 0) {
297 printf("lfs_vflush: ino %d is freed, not flushing\n",
298 ip->i_number);
299 s = splbio();
300 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
301 nbp = LIST_NEXT(bp, b_vnbufs);
302 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
303 fs->lfs_avail += btofsb(fs, bp->b_bcount);
304 wakeup(&fs->lfs_avail);
305 }
306 /* Copied from lfs_writeseg */
307 if (bp->b_flags & B_CALL) {
308 biodone(bp);
309 } else {
310 bremfree(bp);
311 LFS_UNLOCK_BUF(bp);
312 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
313 B_GATHERED);
314 bp->b_flags |= B_DONE;
315 reassignbuf(bp, vp);
316 brelse(bp);
317 }
318 }
319 splx(s);
320 LFS_CLR_UINO(ip, IN_CLEANING);
321 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
322 ip->i_flag &= ~IN_ALLMOD;
323 printf("lfs_vflush: done not flushing ino %d\n",
324 ip->i_number);
325 lfs_segunlock(fs);
326 return 0;
327 }
328
329 SET_FLUSHING(fs,vp);
330 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
331 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
332 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
333 CLR_FLUSHING(fs,vp);
334 lfs_segunlock(fs);
335 return error;
336 }
337 sp = fs->lfs_sp;
338
339 flushed = 0;
340 if (VPISEMPTY(vp)) {
341 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
342 ++flushed;
343 } else if ((ip->i_flag & IN_CLEANING) &&
344 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
345 #ifdef DEBUG_LFS
346 ivndebug(vp,"vflush/clean");
347 #endif
348 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
349 ++flushed;
350 } else if (lfs_dostats) {
351 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
352 ++lfs_stats.vflush_invoked;
353 #ifdef DEBUG_LFS
354 ivndebug(vp,"vflush");
355 #endif
356 }
357
358 #ifdef DIAGNOSTIC
359 /* XXX KS This actually can happen right now, though it shouldn't(?) */
360 if (vp->v_flag & VDIROP) {
361 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
362 /* panic("VDIROP being flushed...this can\'t happen"); */
363 }
364 if (vp->v_usecount < 0) {
365 printf("usecount=%ld\n", (long)vp->v_usecount);
366 panic("lfs_vflush: usecount<0");
367 }
368 #endif
369
370 #if 1 /* XXX */
371 do {
372 do {
373 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
374 lfs_writefile(fs, sp, vp);
375 } while (lfs_writeinode(fs, sp, ip));
376 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
377 #else
378 if (flushed && vp != fs->lfs_ivnode)
379 lfs_writeseg(fs, sp);
380 else do {
381 fs->lfs_flags &= ~LFS_IFDIRTY;
382 lfs_writefile(fs, sp, vp);
383 redo = lfs_writeinode(fs, sp, ip);
384 redo += lfs_writeseg(fs, sp);
385 redo += (fs->lfs_flags & LFS_IFDIRTY);
386 } while (redo && vp == fs->lfs_ivnode);
387 #endif
388 if (lfs_dostats) {
389 ++lfs_stats.nwrites;
390 if (sp->seg_flags & SEGM_SYNC)
391 ++lfs_stats.nsync_writes;
392 if (sp->seg_flags & SEGM_CKP)
393 ++lfs_stats.ncheckpoints;
394 }
395 /*
396 * If we were called from somewhere that has already held the seglock
397 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
398 * the write to complete because we are still locked.
399 * Since lfs_vflush() must return the vnode with no dirty buffers,
400 * we must explicitly wait, if that is the case.
401 *
402 * We compare the iocount against 1, not 0, because it is
403 * artificially incremented by lfs_seglock().
404 */
405 if (fs->lfs_seglock > 1) {
406 while (fs->lfs_iocount > 1)
407 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
408 "lfs_vflush", 0);
409 }
410 lfs_segunlock(fs);
411
412 CLR_FLUSHING(fs,vp);
413 return (0);
414 }
415
416 #ifdef DEBUG_LFS_VERBOSE
417 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
418 #else
419 # define vndebug(vp,str)
420 #endif
421
422 int
423 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
424 {
425 struct inode *ip;
426 struct vnode *vp, *nvp;
427 int inodes_written = 0, only_cleaning;
428
429 #ifndef LFS_NO_BACKVP_HACK
430 /* BEGIN HACK */
431 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
432 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
433 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
434
435 /* Find last vnode. */
436 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
437 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
438 vp = LIST_NEXT(vp, v_mntvnodes));
439 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
440 nvp = BACK_VP(vp);
441 #else
442 loop:
443 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
444 nvp = LIST_NEXT(vp, v_mntvnodes);
445 #endif
446 /*
447 * If the vnode that we are about to sync is no longer
448 * associated with this mount point, start over.
449 */
450 if (vp->v_mount != mp) {
451 printf("lfs_writevnodes: starting over\n");
452 goto loop;
453 }
454
455 if (vp->v_type == VNON) {
456 continue;
457 }
458
459 ip = VTOI(vp);
460 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
461 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
462 vndebug(vp,"dirop");
463 continue;
464 }
465
466 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
467 vndebug(vp,"empty");
468 continue;
469 }
470
471 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
472 && vp != fs->lfs_flushvp
473 && !(ip->i_flag & IN_CLEANING)) {
474 vndebug(vp,"cleaning");
475 continue;
476 }
477
478 if (lfs_vref(vp)) {
479 vndebug(vp,"vref");
480 continue;
481 }
482
483 only_cleaning = 0;
484 /*
485 * Write the inode/file if dirty and it's not the IFILE.
486 */
487 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
488 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
489
490 if (ip->i_number != LFS_IFILE_INUM)
491 lfs_writefile(fs, sp, vp);
492 if (!VPISEMPTY(vp)) {
493 if (WRITEINPROG(vp)) {
494 #ifdef DEBUG_LFS
495 ivndebug(vp,"writevnodes/write2");
496 #endif
497 } else if (!(ip->i_flag & IN_ALLMOD)) {
498 #ifdef DEBUG_LFS
499 printf("<%d>",ip->i_number);
500 #endif
501 LFS_SET_UINO(ip, IN_MODIFIED);
502 }
503 }
504 (void) lfs_writeinode(fs, sp, ip);
505 inodes_written++;
506 }
507
508 if (lfs_clean_vnhead && only_cleaning)
509 lfs_vunref_head(vp);
510 else
511 lfs_vunref(vp);
512 }
513 return inodes_written;
514 }
515
516 /*
517 * Do a checkpoint.
518 */
519 int
520 lfs_segwrite(struct mount *mp, int flags)
521 {
522 struct buf *bp;
523 struct inode *ip;
524 struct lfs *fs;
525 struct segment *sp;
526 struct vnode *vp;
527 SEGUSE *segusep;
528 daddr_t ibno;
529 int do_ckp, did_ckp, error, i;
530 int writer_set = 0;
531 int dirty;
532 int redo;
533 int loopcount;
534
535 fs = VFSTOUFS(mp)->um_lfs;
536
537 if (fs->lfs_ronly)
538 return EROFS;
539
540 lfs_imtime(fs);
541
542 /* printf("lfs_segwrite: ifile flags are 0x%lx\n",
543 (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
544
545 #if 0
546 /*
547 * If we are not the cleaner, and there is no space available,
548 * wait until cleaner writes.
549 */
550 if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
551 (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
552 {
553 while (fs->lfs_avail <= 0) {
554 LFS_CLEANERINFO(cip, fs, bp);
555 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
556
557 wakeup(&lfs_allclean_wakeup);
558 wakeup(&fs->lfs_nextseg);
559 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
560 0);
561 if (error) {
562 return (error);
563 }
564 }
565 }
566 #endif
567 /*
568 * Allocate a segment structure and enough space to hold pointers to
569 * the maximum possible number of buffers which can be described in a
570 * single summary block.
571 */
572 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
573 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
574 sp = fs->lfs_sp;
575
576 /*
577 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
578 * in which case we have to flush *all* buffers off of this vnode.
579 * We don't care about other nodes, but write any non-dirop nodes
580 * anyway in anticipation of another getnewvnode().
581 *
582 * If we're cleaning we only write cleaning and ifile blocks, and
583 * no dirops, since otherwise we'd risk corruption in a crash.
584 */
585 if (sp->seg_flags & SEGM_CLEAN)
586 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
587 else {
588 lfs_writevnodes(fs, mp, sp, VN_REG);
589 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
590 while (fs->lfs_dirops)
591 if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
592 "lfs writer", 0)))
593 {
594 printf("segwrite mysterious error\n");
595 /* XXX why not segunlock? */
596 pool_put(&fs->lfs_bpppool, sp->bpp);
597 sp->bpp = NULL;
598 pool_put(&fs->lfs_segpool, sp);
599 sp = fs->lfs_sp = NULL;
600 return (error);
601 }
602 fs->lfs_writer++;
603 writer_set = 1;
604 lfs_writevnodes(fs, mp, sp, VN_DIROP);
605 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
606 }
607 }
608
609 /*
610 * If we are doing a checkpoint, mark everything since the
611 * last checkpoint as no longer ACTIVE.
612 */
613 if (do_ckp) {
614 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
615 --ibno >= fs->lfs_cleansz; ) {
616 dirty = 0;
617 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
618
619 panic("lfs_segwrite: ifile read");
620 segusep = (SEGUSE *)bp->b_data;
621 for (i = fs->lfs_sepb; i--;) {
622 if (segusep->su_flags & SEGUSE_ACTIVE) {
623 segusep->su_flags &= ~SEGUSE_ACTIVE;
624 ++dirty;
625 }
626 if (fs->lfs_version > 1)
627 ++segusep;
628 else
629 segusep = (SEGUSE *)
630 ((SEGUSE_V1 *)segusep + 1);
631 }
632
633 /* But the current segment is still ACTIVE */
634 segusep = (SEGUSE *)bp->b_data;
635 if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
636 (ibno-fs->lfs_cleansz)) {
637 if (fs->lfs_version > 1)
638 segusep[dtosn(fs, fs->lfs_curseg) %
639 fs->lfs_sepb].su_flags |=
640 SEGUSE_ACTIVE;
641 else
642 ((SEGUSE *)
643 ((SEGUSE_V1 *)(bp->b_data) +
644 (dtosn(fs, fs->lfs_curseg) %
645 fs->lfs_sepb)))->su_flags
646 |= SEGUSE_ACTIVE;
647 --dirty;
648 }
649 if (dirty)
650 error = LFS_BWRITE_LOG(bp); /* Ifile */
651 else
652 brelse(bp);
653 }
654 }
655
656 did_ckp = 0;
657 if (do_ckp || fs->lfs_doifile) {
658 loopcount = 10;
659 do {
660 vp = fs->lfs_ivnode;
661
662 #ifdef DEBUG
663 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
664 #endif
665 fs->lfs_flags &= ~LFS_IFDIRTY;
666
667 ip = VTOI(vp);
668
669 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
670 lfs_writefile(fs, sp, vp);
671
672 if (ip->i_flag & IN_ALLMOD)
673 ++did_ckp;
674 redo = lfs_writeinode(fs, sp, ip);
675 redo += lfs_writeseg(fs, sp);
676 redo += (fs->lfs_flags & LFS_IFDIRTY);
677 } while (redo && do_ckp && --loopcount > 0);
678 if (loopcount <= 0)
679 printf("lfs_segwrite: possibly invalid checkpoint!\n");
680
681 /* The ifile should now be all clear */
682 if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
683 struct buf *bp;
684 int s, warned = 0, dopanic = 0;
685 s = splbio();
686 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
687 if (!(bp->b_flags & B_GATHERED)) {
688 if (!warned)
689 printf("lfs_segwrite: ifile still has dirty blocks?!\n");
690 ++dopanic;
691 ++warned;
692 printf("bp=%p, lbn %" PRId64 ", "
693 "flags 0x%lx\n",
694 bp, bp->b_lblkno,
695 bp->b_flags);
696 }
697 }
698 if (dopanic)
699 panic("dirty blocks");
700 splx(s);
701 }
702 LFS_CLR_UINO(ip, IN_ALLMOD);
703 } else {
704 (void) lfs_writeseg(fs, sp);
705 }
706
707 /*
708 * If the I/O count is non-zero, sleep until it reaches zero.
709 * At the moment, the user's process hangs around so we can
710 * sleep.
711 */
712 if (loopcount <= 0)
713 fs->lfs_doifile = 1;
714 else
715 fs->lfs_doifile = 0;
716 if (writer_set && --fs->lfs_writer == 0)
717 wakeup(&fs->lfs_dirops);
718
719 /*
720 * If we didn't write the Ifile, we didn't really do anything.
721 * That means that (1) there is a checkpoint on disk and (2)
722 * nothing has changed since it was written.
723 *
724 * Take the flags off of the segment so that lfs_segunlock
725 * doesn't have to write the superblock either.
726 */
727 if (do_ckp && !did_ckp) {
728 sp->seg_flags &= ~SEGM_CKP;
729 /* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
730 }
731
732 if (lfs_dostats) {
733 ++lfs_stats.nwrites;
734 if (sp->seg_flags & SEGM_SYNC)
735 ++lfs_stats.nsync_writes;
736 if (sp->seg_flags & SEGM_CKP)
737 ++lfs_stats.ncheckpoints;
738 }
739 lfs_segunlock(fs);
740 return (0);
741 }
742
743 /*
744 * Write the dirty blocks associated with a vnode.
745 */
746 void
747 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
748 {
749 struct buf *bp;
750 struct finfo *fip;
751 struct inode *ip;
752 IFILE *ifp;
753 int i, frag;
754
755 ip = VTOI(vp);
756
757 if (sp->seg_bytes_left < fs->lfs_bsize ||
758 sp->sum_bytes_left < sizeof(struct finfo))
759 (void) lfs_writeseg(fs, sp);
760
761 sp->sum_bytes_left -= FINFOSIZE;
762 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
763
764 if (vp->v_flag & VDIROP)
765 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
766
767 fip = sp->fip;
768 fip->fi_nblocks = 0;
769 fip->fi_ino = ip->i_number;
770 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
771 fip->fi_version = ifp->if_version;
772 brelse(bp);
773
774 if (sp->seg_flags & SEGM_CLEAN) {
775 lfs_gather(fs, sp, vp, lfs_match_fake);
776 /*
777 * For a file being flushed, we need to write *all* blocks.
778 * This means writing the cleaning blocks first, and then
779 * immediately following with any non-cleaning blocks.
780 * The same is true of the Ifile since checkpoints assume
781 * that all valid Ifile blocks are written.
782 */
783 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
784 lfs_gather(fs, sp, vp, lfs_match_data);
785 /*
786 * Don't call VOP_PUTPAGES: if we're flushing,
787 * we've already done it, and the Ifile doesn't
788 * use the page cache.
789 */
790 }
791 } else {
792 lfs_gather(fs, sp, vp, lfs_match_data);
793 #ifdef LFS_UBC
794 /*
795 * If we're flushing, we've already called VOP_PUTPAGES
796 * so don't do it again. Otherwise, we want to write
797 * everything we've got.
798 */
799 if (!IS_FLUSHING(fs, vp)) {
800 simple_lock(&vp->v_interlock);
801 VOP_PUTPAGES(vp, 0, 0,
802 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED |
803 PGO_BUSYFAIL);
804 }
805 #endif
806 }
807
808 /*
809 * It may not be necessary to write the meta-data blocks at this point,
810 * as the roll-forward recovery code should be able to reconstruct the
811 * list.
812 *
813 * We have to write them anyway, though, under two conditions: (1) the
814 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
815 * checkpointing.
816 *
817 * BUT if we are cleaning, we might have indirect blocks that refer to
818 * new blocks not being written yet, in addition to fragments being
819 * moved out of a cleaned segment. If that is the case, don't
820 * write the indirect blocks, or the finfo will have a small block
821 * in the middle of it!
822 * XXX in this case isn't the inode size wrong too?
823 */
824 frag = 0;
825 if (sp->seg_flags & SEGM_CLEAN) {
826 for (i = 0; i < NDADDR; i++)
827 if (ip->i_lfs_fragsize[i] > 0 &&
828 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
829 ++frag;
830 }
831 #ifdef DIAGNOSTIC
832 if (frag > 1)
833 panic("lfs_writefile: more than one fragment!");
834 #endif
835 if (IS_FLUSHING(fs, vp) ||
836 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
837 lfs_gather(fs, sp, vp, lfs_match_indir);
838 lfs_gather(fs, sp, vp, lfs_match_dindir);
839 lfs_gather(fs, sp, vp, lfs_match_tindir);
840 }
841 fip = sp->fip;
842 if (fip->fi_nblocks != 0) {
843 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
844 sizeof(int32_t) * (fip->fi_nblocks));
845 sp->start_lbp = &sp->fip->fi_blocks[0];
846 } else {
847 sp->sum_bytes_left += FINFOSIZE;
848 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
849 }
850 }
851
852 int
853 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
854 {
855 struct buf *bp, *ibp;
856 struct dinode *cdp;
857 IFILE *ifp;
858 SEGUSE *sup;
859 daddr_t daddr;
860 int32_t *daddrp; /* XXX ondisk32 */
861 ino_t ino;
862 int error, i, ndx, fsb = 0;
863 int redo_ifile = 0;
864 struct timespec ts;
865 int gotblk = 0;
866
867 if (!(ip->i_flag & IN_ALLMOD))
868 return (0);
869
870 /* Allocate a new inode block if necessary. */
871 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
872 /* Allocate a new segment if necessary. */
873 if (sp->seg_bytes_left < fs->lfs_ibsize ||
874 sp->sum_bytes_left < sizeof(int32_t))
875 (void) lfs_writeseg(fs, sp);
876
877 /* Get next inode block. */
878 daddr = fs->lfs_offset;
879 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
880 sp->ibp = *sp->cbpp++ =
881 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
882 fs->lfs_ibsize, 0, 0);
883 gotblk++;
884
885 /* Zero out inode numbers */
886 for (i = 0; i < INOPB(fs); ++i)
887 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
888
889 ++sp->start_bpp;
890 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
891 /* Set remaining space counters. */
892 sp->seg_bytes_left -= fs->lfs_ibsize;
893 sp->sum_bytes_left -= sizeof(int32_t);
894 ndx = fs->lfs_sumsize / sizeof(int32_t) -
895 sp->ninodes / INOPB(fs) - 1;
896 ((int32_t *)(sp->segsum))[ndx] = daddr;
897 }
898
899 /* Update the inode times and copy the inode onto the inode page. */
900 TIMEVAL_TO_TIMESPEC(&time, &ts);
901 /* XXX kludge --- don't redirty the ifile just to put times on it */
902 if (ip->i_number != LFS_IFILE_INUM)
903 LFS_ITIMES(ip, &ts, &ts, &ts);
904
905 /*
906 * If this is the Ifile, and we've already written the Ifile in this
907 * partial segment, just overwrite it (it's not on disk yet) and
908 * continue.
909 *
910 * XXX we know that the bp that we get the second time around has
911 * already been gathered.
912 */
913 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
914 *(sp->idp) = ip->i_din.ffs_din;
915 ip->i_lfs_osize = ip->i_ffs_size;
916 return 0;
917 }
918
919 bp = sp->ibp;
920 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
921 *cdp = ip->i_din.ffs_din;
922 #ifdef LFS_IFILE_FRAG_ADDRESSING
923 if (fs->lfs_version > 1)
924 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
925 #endif
926
927 /*
928 * If we are cleaning, ensure that we don't write UNWRITTEN disk
929 * addresses to disk; possibly revert the inode size.
930 * XXX By not writing these blocks, we are making the lfs_avail
931 * XXX count on disk wrong by the same amount. We should be
932 * XXX able to "borrow" from lfs_avail and return it after the
933 * XXX Ifile is written. See also in lfs_writeseg.
934 */
935 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
936 cdp->di_size = ip->i_lfs_osize;
937 #ifdef DEBUG_LFS
938 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
939 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
940 #endif
941 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
942 daddrp++) {
943 if (*daddrp == UNWRITTEN) {
944 #ifdef DEBUG_LFS
945 printf("lfs_writeinode: wiping UNWRITTEN\n");
946 #endif
947 *daddrp = 0;
948 }
949 }
950 } else {
951 /* If all blocks are goig to disk, update the "size on disk" */
952 ip->i_lfs_osize = ip->i_ffs_size;
953 }
954
955 if (ip->i_flag & IN_CLEANING)
956 LFS_CLR_UINO(ip, IN_CLEANING);
957 else {
958 /* XXX IN_ALLMOD */
959 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
960 IN_UPDATE);
961 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
962 LFS_CLR_UINO(ip, IN_MODIFIED);
963 #ifdef DEBUG_LFS
964 else
965 printf("lfs_writeinode: ino %d: real blks=%d, "
966 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
967 ip->i_lfs_effnblks);
968 #endif
969 }
970
971 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
972 sp->idp = ((struct dinode *)bp->b_data) +
973 (sp->ninodes % INOPB(fs));
974 if (gotblk) {
975 LFS_LOCK_BUF(bp);
976 brelse(bp);
977 }
978
979 /* Increment inode count in segment summary block. */
980 ++((SEGSUM *)(sp->segsum))->ss_ninos;
981
982 /* If this page is full, set flag to allocate a new page. */
983 if (++sp->ninodes % INOPB(fs) == 0)
984 sp->ibp = NULL;
985
986 /*
987 * If updating the ifile, update the super-block. Update the disk
988 * address and access times for this inode in the ifile.
989 */
990 ino = ip->i_number;
991 if (ino == LFS_IFILE_INUM) {
992 daddr = fs->lfs_idaddr;
993 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
994 } else {
995 LFS_IENTRY(ifp, fs, ino, ibp);
996 daddr = ifp->if_daddr;
997 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
998 #ifdef LFS_DEBUG_NEXTFREE
999 if (ino > 3 && ifp->if_nextfree) {
1000 vprint("lfs_writeinode",ITOV(ip));
1001 printf("lfs_writeinode: updating free ino %d\n",
1002 ip->i_number);
1003 }
1004 #endif
1005 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1006 }
1007
1008 /*
1009 * The inode's last address should not be in the current partial
1010 * segment, except under exceptional circumstances (lfs_writevnodes
1011 * had to start over, and in the meantime more blocks were written
1012 * to a vnode). Both inodes will be accounted to this segment
1013 * in lfs_writeseg so we need to subtract the earlier version
1014 * here anyway. The segment count can temporarily dip below
1015 * zero here; keep track of how many duplicates we have in
1016 * "dupino" so we don't panic below.
1017 */
1018 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1019 ++sp->ndupino;
1020 printf("lfs_writeinode: last inode addr in current pseg "
1021 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1022 (long long)daddr, sp->ndupino);
1023 }
1024 /*
1025 * Account the inode: it no longer belongs to its former segment,
1026 * though it will not belong to the new segment until that segment
1027 * is actually written.
1028 */
1029 if (daddr != LFS_UNUSED_DADDR) {
1030 u_int32_t oldsn = dtosn(fs, daddr);
1031 #ifdef DIAGNOSTIC
1032 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1033 #endif
1034 LFS_SEGENTRY(sup, fs, oldsn, bp);
1035 #ifdef DIAGNOSTIC
1036 if (sup->su_nbytes + DINODE_SIZE * ndupino < DINODE_SIZE) {
1037 printf("lfs_writeinode: negative bytes "
1038 "(segment %" PRIu32 " short by %d, "
1039 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1040 ", daddr=%" PRId64 ", su_nbytes=%u, "
1041 "ndupino=%d)\n",
1042 dtosn(fs, daddr),
1043 (int)DINODE_SIZE * (1 - sp->ndupino)
1044 - sup->su_nbytes,
1045 oldsn, sp->seg_number, daddr,
1046 (unsigned int)sup->su_nbytes,
1047 sp->ndupino);
1048 panic("lfs_writeinode: negative bytes");
1049 sup->su_nbytes = DINODE_SIZE;
1050 }
1051 #endif
1052 #ifdef DEBUG_SU_NBYTES
1053 printf("seg %d -= %d for ino %d inode\n",
1054 dtosn(fs, daddr), DINODE_SIZE, ino);
1055 #endif
1056 sup->su_nbytes -= DINODE_SIZE;
1057 redo_ifile =
1058 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1059 if (redo_ifile)
1060 fs->lfs_flags |= LFS_IFDIRTY;
1061 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1062 }
1063 return (redo_ifile);
1064 }
1065
1066 int
1067 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1068 {
1069 struct lfs *fs;
1070 int version;
1071 int j, blksinblk;
1072
1073 /*
1074 * If full, finish this segment. We may be doing I/O, so
1075 * release and reacquire the splbio().
1076 */
1077 #ifdef DIAGNOSTIC
1078 if (sp->vp == NULL)
1079 panic ("lfs_gatherblock: Null vp in segment");
1080 #endif
1081 fs = sp->fs;
1082 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1083 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1084 sp->seg_bytes_left < bp->b_bcount) {
1085 if (sptr)
1086 splx(*sptr);
1087 lfs_updatemeta(sp);
1088
1089 version = sp->fip->fi_version;
1090 (void) lfs_writeseg(fs, sp);
1091
1092 sp->fip->fi_version = version;
1093 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1094 /* Add the current file to the segment summary. */
1095 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1096 sp->sum_bytes_left -= FINFOSIZE;
1097
1098 if (sptr)
1099 *sptr = splbio();
1100 return (1);
1101 }
1102
1103 #ifdef DEBUG
1104 if (bp->b_flags & B_GATHERED) {
1105 printf("lfs_gatherblock: already gathered! Ino %d,"
1106 " lbn %" PRId64 "\n",
1107 sp->fip->fi_ino, bp->b_lblkno);
1108 return (0);
1109 }
1110 #endif
1111 /* Insert into the buffer list, update the FINFO block. */
1112 bp->b_flags |= B_GATHERED;
1113 bp->b_flags &= ~B_DONE;
1114
1115 *sp->cbpp++ = bp;
1116 for (j = 0; j < blksinblk; j++)
1117 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1118
1119 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1120 sp->seg_bytes_left -= bp->b_bcount;
1121 return (0);
1122 }
1123
1124 int
1125 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1126 {
1127 struct buf *bp, *nbp;
1128 int s, count = 0;
1129
1130 sp->vp = vp;
1131 s = splbio();
1132
1133 #ifndef LFS_NO_BACKBUF_HACK
1134 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1135 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1136 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1137 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1138 /* Find last buffer. */
1139 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1140 bp = LIST_NEXT(bp, b_vnbufs));
1141 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1142 nbp = BACK_BUF(bp);
1143 #else /* LFS_NO_BACKBUF_HACK */
1144 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1145 nbp = LIST_NEXT(bp, b_vnbufs);
1146 #endif /* LFS_NO_BACKBUF_HACK */
1147 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1148 #ifdef DEBUG_LFS
1149 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1150 printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
1151 #endif
1152 continue;
1153 }
1154 if (vp->v_type == VBLK) {
1155 /* For block devices, just write the blocks. */
1156 /* XXX Do we really need to even do this? */
1157 #ifdef DEBUG_LFS
1158 if (count == 0)
1159 printf("BLK(");
1160 printf(".");
1161 #endif
1162 /* Get the block before bwrite, so we don't corrupt the free list */
1163 bp->b_flags |= B_BUSY;
1164 bremfree(bp);
1165 bwrite(bp);
1166 } else {
1167 #ifdef DIAGNOSTIC
1168 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1169 printf("lfs_gather: lbn %" PRId64 " is "
1170 "B_INVAL\n", bp->b_lblkno);
1171 VOP_PRINT(bp->b_vp);
1172 }
1173 if (!(bp->b_flags & B_DELWRI))
1174 panic("lfs_gather: bp not B_DELWRI");
1175 if (!(bp->b_flags & B_LOCKED)) {
1176 printf("lfs_gather: lbn %" PRId64 " blk "
1177 "%" PRId64 " not B_LOCKED\n",
1178 bp->b_lblkno,
1179 dbtofsb(fs, bp->b_blkno));
1180 VOP_PRINT(bp->b_vp);
1181 panic("lfs_gather: bp not B_LOCKED");
1182 }
1183 #endif
1184 if (lfs_gatherblock(sp, bp, &s)) {
1185 goto loop;
1186 }
1187 }
1188 count++;
1189 }
1190 splx(s);
1191 #ifdef DEBUG_LFS
1192 if (vp->v_type == VBLK && count)
1193 printf(")\n");
1194 #endif
1195 lfs_updatemeta(sp);
1196 sp->vp = NULL;
1197 return count;
1198 }
1199
1200 #if DEBUG
1201 # define DEBUG_OOFF(n) do { \
1202 if (ooff == 0) { \
1203 printf("lfs_updatemeta[%d]: warning: writing " \
1204 "ino %d lbn %" PRId64 " at 0x%" PRIx64 \
1205 ", was 0x0\n", (n), ip->i_number, lbn, daddr); \
1206 } \
1207 } while(0)
1208 #else
1209 # define DEBUG_OOFF(n)
1210 #endif
1211
1212 /*
1213 * Change the given block's address to ndaddr, finding its previous
1214 * location using ufs_bmaparray().
1215 *
1216 * Account for this change in the segment table.
1217 */
1218 void
1219 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1220 int32_t ndaddr, int size)
1221 {
1222 SEGUSE *sup;
1223 struct buf *bp;
1224 struct indir a[NIADDR + 2], *ap;
1225 struct inode *ip;
1226 struct vnode *vp;
1227 daddr_t daddr, ooff;
1228 int num, error;
1229 int bb, osize, obb;
1230
1231 vp = sp->vp;
1232 ip = VTOI(vp);
1233
1234 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1235 if (error)
1236 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1237 if (daddr > 0)
1238 daddr = dbtofsb(fs, daddr);
1239
1240 bb = fragstofsb(fs, numfrags(fs, size));
1241 switch (num) {
1242 case 0:
1243 ooff = ip->i_ffs_db[lbn];
1244 DEBUG_OOFF(0);
1245 if (ooff == UNWRITTEN)
1246 ip->i_ffs_blocks += bb;
1247 else {
1248 /* possible fragment truncation or extension */
1249 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1250 ip->i_ffs_blocks += (bb - obb);
1251 }
1252 ip->i_ffs_db[lbn] = ndaddr;
1253 break;
1254 case 1:
1255 ooff = ip->i_ffs_ib[a[0].in_off];
1256 DEBUG_OOFF(1);
1257 if (ooff == UNWRITTEN)
1258 ip->i_ffs_blocks += bb;
1259 ip->i_ffs_ib[a[0].in_off] = ndaddr;
1260 break;
1261 default:
1262 ap = &a[num - 1];
1263 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1264 panic("lfs_updatemeta: bread bno %" PRId64,
1265 ap->in_lbn);
1266
1267 /* XXX ondisk32 */
1268 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1269 DEBUG_OOFF(num);
1270 if (ooff == UNWRITTEN)
1271 ip->i_ffs_blocks += bb;
1272 /* XXX ondisk32 */
1273 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1274 (void) VOP_BWRITE(bp);
1275 }
1276 KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr);
1277
1278 /*
1279 * Update segment usage information, based on old size
1280 * and location.
1281 */
1282 if (daddr > 0) {
1283 u_int32_t oldsn = dtosn(fs, daddr);
1284 #ifdef DIAGNOSTIC
1285 int ndupino = (sp->seg_number == oldsn) ?
1286 sp->ndupino : 0;
1287 #endif
1288 if (lbn >= 0 && lbn < NDADDR)
1289 osize = ip->i_lfs_fragsize[lbn];
1290 else
1291 osize = fs->lfs_bsize;
1292 LFS_SEGENTRY(sup, fs, oldsn, bp);
1293 #ifdef DIAGNOSTIC
1294 if (sup->su_nbytes + DINODE_SIZE * ndupino < osize) {
1295 printf("lfs_updatemeta: negative bytes "
1296 "(segment %" PRIu32 " short by %" PRId64
1297 ")\n", dtosn(fs, daddr),
1298 (int64_t)osize -
1299 (DINODE_SIZE * sp->ndupino +
1300 sup->su_nbytes));
1301 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1302 ", addr = 0x%" PRIx64 "\n",
1303 VTOI(sp->vp)->i_number, lbn, daddr);
1304 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1305 panic("lfs_updatemeta: negative bytes");
1306 sup->su_nbytes = osize - DINODE_SIZE * sp->ndupino;
1307 }
1308 #endif
1309 #ifdef DEBUG_SU_NBYTES
1310 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1311 " db 0x%" PRIx64 "\n",
1312 dtosn(fs, daddr), osize,
1313 VTOI(sp->vp)->i_number, lbn, daddr);
1314 #endif
1315 sup->su_nbytes -= osize;
1316 if (!(bp->b_flags & B_GATHERED))
1317 fs->lfs_flags |= LFS_IFDIRTY;
1318 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1319 }
1320 /*
1321 * Now that this block has a new address, and its old
1322 * segment no longer owns it, we can forget about its
1323 * old size.
1324 */
1325 if (lbn >= 0 && lbn < NDADDR)
1326 ip->i_lfs_fragsize[lbn] = size;
1327 }
1328
1329 /*
1330 * Update the metadata that points to the blocks listed in the FINFO
1331 * array.
1332 */
1333 void
1334 lfs_updatemeta(struct segment *sp)
1335 {
1336 struct buf *sbp;
1337 struct lfs *fs;
1338 struct vnode *vp;
1339 daddr_t lbn;
1340 int i, nblocks, num;
1341 int bb;
1342 int bytesleft, size;
1343
1344 vp = sp->vp;
1345 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1346 KASSERT(nblocks >= 0);
1347 if (vp == NULL || nblocks == 0)
1348 return;
1349
1350 /*
1351 * This count may be high due to oversize blocks from lfs_gop_write.
1352 * Correct for this. (XXX we should be able to keep track of these.)
1353 */
1354 fs = sp->fs;
1355 for (i = 0; i < nblocks; i++) {
1356 if (sp->start_bpp[i] == NULL) {
1357 printf("nblocks = %d, not %d\n", i, nblocks);
1358 nblocks = i;
1359 break;
1360 }
1361 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1362 nblocks -= num - 1;
1363 }
1364
1365 /*
1366 * Sort the blocks.
1367 *
1368 * We have to sort even if the blocks come from the
1369 * cleaner, because there might be other pending blocks on the
1370 * same inode...and if we don't sort, and there are fragments
1371 * present, blocks may be written in the wrong place.
1372 */
1373 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1374
1375 /*
1376 * Record the length of the last block in case it's a fragment.
1377 * If there are indirect blocks present, they sort last. An
1378 * indirect block will be lfs_bsize and its presence indicates
1379 * that you cannot have fragments.
1380 *
1381 * XXX This last is a lie. A cleaned fragment can coexist with
1382 * XXX a later indirect block. This will continue to be
1383 * XXX true until lfs_markv is fixed to do everything with
1384 * XXX fake blocks (including fake inodes and fake indirect blocks).
1385 */
1386 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1387 fs->lfs_bmask) + 1;
1388
1389 /*
1390 * Assign disk addresses, and update references to the logical
1391 * block and the segment usage information.
1392 */
1393 for (i = nblocks; i--; ++sp->start_bpp) {
1394 sbp = *sp->start_bpp;
1395 lbn = *sp->start_lbp;
1396
1397 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1398
1399 /*
1400 * If we write a frag in the wrong place, the cleaner won't
1401 * be able to correctly identify its size later, and the
1402 * segment will be uncleanable. (Even worse, it will assume
1403 * that the indirect block that actually ends the list
1404 * is of a smaller size!)
1405 */
1406 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1407 panic("lfs_updatemeta: fragment is not last block");
1408
1409 /*
1410 * For each subblock in this possibly oversized block,
1411 * update its address on disk.
1412 */
1413 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1414 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1415 bytesleft -= fs->lfs_bsize) {
1416 size = MIN(bytesleft, fs->lfs_bsize);
1417 bb = fragstofsb(fs, numfrags(fs, size));
1418 lbn = *sp->start_lbp++;
1419 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1420 fs->lfs_offset += bb;
1421 }
1422
1423 }
1424 }
1425
1426 /*
1427 * Start a new segment.
1428 */
1429 int
1430 lfs_initseg(struct lfs *fs)
1431 {
1432 struct segment *sp;
1433 SEGUSE *sup;
1434 SEGSUM *ssp;
1435 struct buf *bp, *sbp;
1436 int repeat;
1437
1438 sp = fs->lfs_sp;
1439
1440 repeat = 0;
1441 /* Advance to the next segment. */
1442 if (!LFS_PARTIAL_FITS(fs)) {
1443 /* lfs_avail eats the remaining space */
1444 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1445 fs->lfs_curseg);
1446 /* Wake up any cleaning procs waiting on this file system. */
1447 wakeup(&lfs_allclean_wakeup);
1448 wakeup(&fs->lfs_nextseg);
1449 lfs_newseg(fs);
1450 repeat = 1;
1451 fs->lfs_offset = fs->lfs_curseg;
1452
1453 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1454 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1455
1456 /*
1457 * If the segment contains a superblock, update the offset
1458 * and summary address to skip over it.
1459 */
1460 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1461 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1462 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1463 sp->seg_bytes_left -= LFS_SBPAD;
1464 }
1465 brelse(bp);
1466 /* Segment zero could also contain the labelpad */
1467 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1468 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1469 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1470 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1471 }
1472 } else {
1473 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1474 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1475 (fs->lfs_offset - fs->lfs_curseg));
1476 }
1477 fs->lfs_lastpseg = fs->lfs_offset;
1478
1479 sp->fs = fs;
1480 sp->ibp = NULL;
1481 sp->idp = NULL;
1482 sp->ninodes = 0;
1483 sp->ndupino = 0;
1484
1485 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1486 sp->cbpp = sp->bpp;
1487 #ifdef LFS_MALLOC_SUMMARY
1488 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1489 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1490 sp->segsum = (*sp->cbpp)->b_data;
1491 #else
1492 sbp = *sp->cbpp = getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1493 fsbtodb(fs, fs->lfs_offset), NBPG, 0, 0);
1494 /* memset(sbp->b_data, 0x5a, NBPG); */
1495 sp->segsum = (*sp->cbpp)->b_data + NBPG - fs->lfs_sumsize;
1496 #endif
1497 memset(sp->segsum, 0, fs->lfs_sumsize);
1498 sp->start_bpp = ++sp->cbpp;
1499 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1500
1501 /* Set point to SEGSUM, initialize it. */
1502 ssp = sp->segsum;
1503 ssp->ss_next = fs->lfs_nextseg;
1504 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1505 ssp->ss_magic = SS_MAGIC;
1506
1507 /* Set pointer to first FINFO, initialize it. */
1508 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1509 sp->fip->fi_nblocks = 0;
1510 sp->start_lbp = &sp->fip->fi_blocks[0];
1511 sp->fip->fi_lastlength = 0;
1512
1513 sp->seg_bytes_left -= fs->lfs_sumsize;
1514 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1515
1516 #ifndef LFS_MALLOC_SUMMARY
1517 LFS_LOCK_BUF(sbp);
1518 brelse(sbp);
1519 #endif
1520 return (repeat);
1521 }
1522
1523 /*
1524 * Return the next segment to write.
1525 */
1526 void
1527 lfs_newseg(struct lfs *fs)
1528 {
1529 CLEANERINFO *cip;
1530 SEGUSE *sup;
1531 struct buf *bp;
1532 int curseg, isdirty, sn;
1533
1534 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1535 #ifdef DEBUG_SU_NBYTES
1536 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1537 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1538 #endif
1539 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1540 sup->su_nbytes = 0;
1541 sup->su_nsums = 0;
1542 sup->su_ninos = 0;
1543 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1544
1545 LFS_CLEANERINFO(cip, fs, bp);
1546 --cip->clean;
1547 ++cip->dirty;
1548 fs->lfs_nclean = cip->clean;
1549 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1550
1551 fs->lfs_lastseg = fs->lfs_curseg;
1552 fs->lfs_curseg = fs->lfs_nextseg;
1553 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1554 sn = (sn + 1) % fs->lfs_nseg;
1555 if (sn == curseg)
1556 panic("lfs_nextseg: no clean segments");
1557 LFS_SEGENTRY(sup, fs, sn, bp);
1558 isdirty = sup->su_flags & SEGUSE_DIRTY;
1559 /* Check SEGUSE_EMPTY as we go along */
1560 if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY))
1561 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1562 else
1563 brelse(bp);
1564
1565 if (!isdirty)
1566 break;
1567 }
1568
1569 ++fs->lfs_nactive;
1570 fs->lfs_nextseg = sntod(fs, sn);
1571 if (lfs_dostats) {
1572 ++lfs_stats.segsused;
1573 }
1574 }
1575
1576 static struct buf **
1577 lookahead_pagemove(struct buf **bpp, int nblocks, size_t *size)
1578 {
1579 size_t maxsize;
1580 #ifndef LFS_NO_PAGEMOVE
1581 struct buf *bp;
1582 #endif
1583
1584 maxsize = *size;
1585 *size = 0;
1586 #ifdef LFS_NO_PAGEMOVE
1587 return bpp;
1588 #else
1589 while((bp = *bpp) != NULL && *size < maxsize && nblocks--) {
1590 if(LFS_IS_MALLOC_BUF(bp))
1591 return bpp;
1592 if(bp->b_bcount % NBPG)
1593 return bpp;
1594 *size += bp->b_bcount;
1595 ++bpp;
1596 }
1597 return NULL;
1598 #endif
1599 }
1600
1601 #define BQUEUES 4 /* XXX */
1602 #define BQ_EMPTY 3 /* XXX */
1603 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1604 extern struct simplelock bqueue_slock;
1605
1606 #define BUFHASH(dvp, lbn) \
1607 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1608 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1609 /*
1610 * Insq/Remq for the buffer hash lists.
1611 */
1612 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1613 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1614
1615 static struct buf *
1616 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1617 {
1618 struct lfs_cluster *cl;
1619 struct buf **bpp, *bp;
1620 int s;
1621
1622 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1623 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1624 memset(cl, 0, sizeof(*cl));
1625 cl->fs = fs;
1626 cl->bpp = bpp;
1627 cl->bufcount = 0;
1628 cl->bufsize = 0;
1629
1630 /* If this segment is being written synchronously, note that */
1631 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1632 cl->flags |= LFS_CL_SYNC;
1633 cl->seg = fs->lfs_sp;
1634 ++cl->seg->seg_iocount;
1635 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1636 }
1637
1638 /* Get an empty buffer header, or maybe one with something on it */
1639 s = splbio();
1640 simple_lock(&bqueue_slock);
1641 if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1642 simple_lock(&bp->b_interlock);
1643 bremfree(bp);
1644 /* clear out various other fields */
1645 bp->b_flags = B_BUSY;
1646 bp->b_dev = NODEV;
1647 bp->b_blkno = bp->b_lblkno = 0;
1648 bp->b_error = 0;
1649 bp->b_resid = 0;
1650 bp->b_bcount = 0;
1651
1652 /* nuke any credentials we were holding */
1653 /* XXXXXX */
1654
1655 bremhash(bp);
1656
1657 /* disassociate us from our vnode, if we had one... */
1658 if (bp->b_vp)
1659 brelvp(bp);
1660 }
1661 while (!bp)
1662 bp = getnewbuf(0, 0);
1663 bgetvp(vp, bp);
1664 binshash(bp,&invalhash);
1665 simple_unlock(&bp->b_interlock);
1666 simple_unlock(&bqueue_slock);
1667 splx(s);
1668 bp->b_bcount = 0;
1669 bp->b_blkno = bp->b_lblkno = addr;
1670
1671 bp->b_flags |= B_CALL;
1672 bp->b_iodone = lfs_cluster_callback;
1673 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1674 bp->b_saveaddr = (caddr_t)cl;
1675
1676 return bp;
1677 }
1678
1679 int
1680 lfs_writeseg(struct lfs *fs, struct segment *sp)
1681 {
1682 struct buf **bpp, *bp, *cbp, *newbp, **pmlastbpp;
1683 SEGUSE *sup;
1684 SEGSUM *ssp;
1685 dev_t i_dev;
1686 char *datap, *dp;
1687 int i, s;
1688 int do_again, nblocks, byteoffset;
1689 size_t el_size;
1690 struct lfs_cluster *cl;
1691 int (*strategy)(void *);
1692 struct vop_strategy_args vop_strategy_a;
1693 u_short ninos;
1694 struct vnode *devvp;
1695 char *p;
1696 struct vnode *vp;
1697 struct inode *ip;
1698 size_t pmsize;
1699 int use_pagemove;
1700 int32_t *daddrp; /* XXX ondisk32 */
1701 int changed;
1702 #if defined(DEBUG) && defined(LFS_PROPELLER)
1703 static int propeller;
1704 char propstring[4] = "-\\|/";
1705
1706 printf("%c\b",propstring[propeller++]);
1707 if (propeller == 4)
1708 propeller = 0;
1709 #endif
1710
1711 /*
1712 * If there are no buffers other than the segment summary to write
1713 * and it is not a checkpoint, don't do anything. On a checkpoint,
1714 * even if there aren't any buffers, you need to write the superblock.
1715 */
1716 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1717 return (0);
1718
1719 #if 0
1720 printf("lfs_writeseg: %d blocks at 0x%x\n", nblocks,
1721 dbtofsb(fs, sp->bpp[0]->b_blkno));
1722 #endif
1723
1724 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1725 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1726
1727 /* Update the segment usage information. */
1728 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1729
1730 /* Loop through all blocks, except the segment summary. */
1731 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1732 if ((*bpp)->b_vp != devvp) {
1733 sup->su_nbytes += (*bpp)->b_bcount;
1734 #ifdef DEBUG_SU_NBYTES
1735 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1736 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1737 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1738 (*bpp)->b_blkno);
1739 #endif
1740 }
1741 }
1742
1743 ssp = (SEGSUM *)sp->segsum;
1744
1745 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1746 #ifdef DEBUG_SU_NBYTES
1747 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1748 sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1749 ssp->ss_ninos);
1750 #endif
1751 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1752 /* sup->su_nbytes += fs->lfs_sumsize; */
1753 if (fs->lfs_version == 1)
1754 sup->su_olastmod = time.tv_sec;
1755 else
1756 sup->su_lastmod = time.tv_sec;
1757 sup->su_ninos += ninos;
1758 ++sup->su_nsums;
1759 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1760 fs->lfs_ibsize));
1761 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1762
1763 do_again = !(bp->b_flags & B_GATHERED);
1764 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1765
1766 /*
1767 * Mark blocks B_BUSY, to prevent then from being changed between
1768 * the checksum computation and the actual write.
1769 *
1770 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1771 * there are any, replace them with copies that have UNASSIGNED
1772 * instead.
1773 */
1774 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1775 ++bpp;
1776 bp = *bpp;
1777 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1778 bp->b_flags |= B_BUSY;
1779 continue;
1780 }
1781 again:
1782 s = splbio();
1783 if (bp->b_flags & B_BUSY) {
1784 #ifdef DEBUG
1785 printf("lfs_writeseg: avoiding potential data summary "
1786 "corruption for ino %d, lbn %" PRId64 "\n",
1787 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1788 #endif
1789 bp->b_flags |= B_WANTED;
1790 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1791 splx(s);
1792 goto again;
1793 }
1794 bp->b_flags |= B_BUSY;
1795 splx(s);
1796 /*
1797 * Check and replace indirect block UNWRITTEN bogosity.
1798 * XXX See comment in lfs_writefile.
1799 */
1800 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1801 VTOI(bp->b_vp)->i_ffs_blocks !=
1802 VTOI(bp->b_vp)->i_lfs_effnblks) {
1803 #ifdef DEBUG_LFS
1804 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1805 VTOI(bp->b_vp)->i_number,
1806 VTOI(bp->b_vp)->i_lfs_effnblks,
1807 VTOI(bp->b_vp)->i_ffs_blocks);
1808 #endif
1809 /* Make a copy we'll make changes to */
1810 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1811 bp->b_bcount, LFS_NB_IBLOCK);
1812 newbp->b_blkno = bp->b_blkno;
1813 memcpy(newbp->b_data, bp->b_data,
1814 newbp->b_bcount);
1815
1816 changed = 0;
1817 /* XXX ondisk32 */
1818 for (daddrp = (int32_t *)(newbp->b_data);
1819 daddrp < (int32_t *)(newbp->b_data +
1820 newbp->b_bcount); daddrp++) {
1821 if (*daddrp == UNWRITTEN) {
1822 #ifdef DEBUG_LFS
1823 off_t doff;
1824 int32_t ioff;
1825
1826 ioff = daddrp - (int32_t *)(newbp->b_data);
1827 doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1828 printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n",
1829 VTOI(bp->b_vp)->i_number,
1830 bp->b_lblkno, ioff, doff);
1831 # ifdef LFS_UBC
1832 if (bp->b_vp->v_type == VREG) {
1833 /*
1834 * What is up with this page?
1835 */
1836 struct vm_page *pg;
1837 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) {
1838 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1839 if (pg == NULL)
1840 printf(" page at %" PRIx64 " is NULL\n", doff);
1841 else
1842 printf(" page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags);
1843 }
1844 }
1845 # endif /* LFS_UBC */
1846 #endif /* DEBUG_LFS */
1847 ++changed;
1848 *daddrp = 0;
1849 }
1850 }
1851 /*
1852 * Get rid of the old buffer. Don't mark it clean,
1853 * though, if it still has dirty data on it.
1854 */
1855 if (changed) {
1856 #ifdef DEBUG_LFS
1857 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1858 " bp = %p newbp = %p\n", changed, bp,
1859 newbp);
1860 #endif
1861 *bpp = newbp;
1862 bp->b_flags &= ~(B_ERROR | B_GATHERED | B_DONE);
1863 if (bp->b_flags & B_CALL) {
1864 printf("lfs_writeseg: indir bp should not be B_CALL\n");
1865 s = splbio();
1866 biodone(bp);
1867 splx(s);
1868 bp = NULL;
1869 } else {
1870 /* Still on free list, leave it there */
1871 s = splbio();
1872 bp->b_flags &= ~B_BUSY;
1873 if (bp->b_flags & B_WANTED)
1874 wakeup(bp);
1875 splx(s);
1876 /*
1877 * We have to re-decrement lfs_avail
1878 * since this block is going to come
1879 * back around to us in the next
1880 * segment.
1881 */
1882 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1883 }
1884 } else {
1885 lfs_freebuf(fs, newbp);
1886 }
1887 }
1888 }
1889 /*
1890 * Compute checksum across data and then across summary; the first
1891 * block (the summary block) is skipped. Set the create time here
1892 * so that it's guaranteed to be later than the inode mod times.
1893 *
1894 * XXX
1895 * Fix this to do it inline, instead of malloc/copy.
1896 */
1897 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1898 if (fs->lfs_version == 1)
1899 el_size = sizeof(u_long);
1900 else
1901 el_size = sizeof(u_int32_t);
1902 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1903 ++bpp;
1904 /* Loop through gop_write cluster blocks */
1905 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1906 byteoffset += fs->lfs_bsize) {
1907 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1908 (B_CALL | B_INVAL)) {
1909 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1910 byteoffset, dp, el_size)) {
1911 panic("lfs_writeseg: copyin failed [1]: "
1912 "ino %d blk %" PRId64,
1913 VTOI((*bpp)->b_vp)->i_number,
1914 (*bpp)->b_lblkno);
1915 }
1916 } else {
1917 memcpy(dp, (*bpp)->b_data + byteoffset,
1918 el_size);
1919 }
1920 dp += el_size;
1921 }
1922 }
1923 if (fs->lfs_version == 1)
1924 ssp->ss_ocreate = time.tv_sec;
1925 else {
1926 ssp->ss_create = time.tv_sec;
1927 ssp->ss_serial = ++fs->lfs_serial;
1928 ssp->ss_ident = fs->lfs_ident;
1929 }
1930 #ifndef LFS_MALLOC_SUMMARY
1931 /* Set the summary block busy too */
1932 (*(sp->bpp))->b_flags |= B_BUSY;
1933 #endif
1934 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
1935 ssp->ss_sumsum =
1936 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1937 pool_put(&fs->lfs_bpppool, datap);
1938 datap = dp = NULL;
1939 #ifdef DIAGNOSTIC
1940 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1941 panic("lfs_writeseg: No diskspace for summary");
1942 #endif
1943 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1944 btofsb(fs, fs->lfs_sumsize));
1945
1946 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1947
1948 /*
1949 * When we simply write the blocks we lose a rotation for every block
1950 * written. To avoid this problem, we use pagemove to cluster
1951 * the buffers into a chunk and write the chunk. CHUNKSIZE is the
1952 * largest size I/O devices can handle.
1953 *
1954 * XXX - right now MAXPHYS is only 64k; could it be larger?
1955 */
1956
1957 #define CHUNKSIZE MAXPHYS
1958
1959 if (devvp == NULL)
1960 panic("devvp is NULL");
1961 for (bpp = sp->bpp, i = nblocks; i;) {
1962 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1963 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1964
1965 cbp->b_dev = i_dev;
1966 cbp->b_flags |= B_ASYNC | B_BUSY;
1967 cbp->b_bcount = 0;
1968
1969 /*
1970 * Find out if we can use pagemove to build the cluster,
1971 * or if we are stuck using malloc/copy. If this is the
1972 * first cluster, set the shift flag (see below).
1973 */
1974 pmsize = CHUNKSIZE;
1975 use_pagemove = 0;
1976 if(bpp == sp->bpp) {
1977 /* Summary blocks have to get special treatment */
1978 pmlastbpp = lookahead_pagemove(bpp + 1, i - 1, &pmsize);
1979 if(pmsize >= CHUNKSIZE - fs->lfs_sumsize ||
1980 pmlastbpp == NULL) {
1981 use_pagemove = 1;
1982 cl->flags |= LFS_CL_SHIFT;
1983 } else {
1984 /*
1985 * If we're not using pagemove, we have
1986 * to copy the summary down to the bottom
1987 * end of the block.
1988 */
1989 #ifndef LFS_MALLOC_SUMMARY
1990 memcpy((*bpp)->b_data, (*bpp)->b_data +
1991 NBPG - fs->lfs_sumsize,
1992 fs->lfs_sumsize);
1993 #endif /* LFS_MALLOC_SUMMARY */
1994 }
1995 } else {
1996 pmlastbpp = lookahead_pagemove(bpp, i, &pmsize);
1997 if(pmsize >= CHUNKSIZE || pmlastbpp == NULL) {
1998 use_pagemove = 1;
1999 }
2000 }
2001 if(use_pagemove == 0) {
2002 cl->flags |= LFS_CL_MALLOC;
2003 cl->olddata = cbp->b_data;
2004 cbp->b_data = lfs_malloc(fs, CHUNKSIZE, LFS_NB_CLUSTER);
2005 }
2006 #if defined(DEBUG) && defined(DIAGNOSTIC)
2007 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2008 / sizeof(int32_t)) {
2009 panic("lfs_writeseg: real bpp overwrite");
2010 }
2011 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
2012 panic("lfs_writeseg: theoretical bpp overwrite");
2013 }
2014 if(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount - 1))) !=
2015 dtosn(fs, dbtofsb(fs, cbp->b_blkno))) {
2016 printf("block at %" PRId64 " (%" PRIu32 "), "
2017 "cbp at %" PRId64 " (%" PRIu32 ")\n",
2018 (*bpp)->b_blkno, dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)),
2019 cbp->b_blkno, dtosn(fs, dbtofsb(fs, cbp->b_blkno)));
2020 panic("lfs_writeseg: Segment overwrite");
2021 }
2022 #endif
2023
2024 /*
2025 * Construct the cluster.
2026 */
2027 ++fs->lfs_iocount;
2028
2029 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
2030 bp = *bpp;
2031
2032 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2033 break;
2034
2035 #ifdef DIAGNOSTIC
2036 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2037 btodb(bp->b_bcount - 1))) !=
2038 sp->seg_number) {
2039 printf("blk size %ld daddr %" PRIx64 " not in seg %d\n",
2040 bp->b_bcount, bp->b_blkno,
2041 sp->seg_number);
2042 panic("segment overwrite");
2043 }
2044 #endif
2045
2046 /*
2047 * Fake buffers from the cleaner are marked as B_INVAL.
2048 * We need to copy the data from user space rather than
2049 * from the buffer indicated.
2050 * XXX == what do I do on an error?
2051 */
2052 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
2053 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2054 panic("lfs_writeseg: copyin failed [2]");
2055 } else if (use_pagemove) {
2056 pagemove(bp->b_data, p, bp->b_bcount);
2057 cbp->b_bufsize += bp->b_bcount;
2058 bp->b_bufsize -= bp->b_bcount;
2059 } else {
2060 bcopy(bp->b_data, p, bp->b_bcount);
2061 /* printf("copy in %p\n", bp->b_data); */
2062 }
2063
2064 /*
2065 * XXX If we are *not* shifting, the summary
2066 * block is only fs->lfs_sumsize. Otherwise,
2067 * it is NBPG but shifted.
2068 */
2069 if(bpp == sp->bpp && !(cl->flags & LFS_CL_SHIFT)) {
2070 p += fs->lfs_sumsize;
2071 cbp->b_bcount += fs->lfs_sumsize;
2072 cl->bufsize += fs->lfs_sumsize;
2073 } else {
2074 p += bp->b_bcount;
2075 cbp->b_bcount += bp->b_bcount;
2076 cl->bufsize += bp->b_bcount;
2077 }
2078 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2079 cl->bpp[cl->bufcount++] = bp;
2080 vp = bp->b_vp;
2081 s = splbio();
2082 V_INCR_NUMOUTPUT(vp);
2083 splx(s);
2084
2085 /*
2086 * Although it cannot be freed for reuse before the
2087 * cluster is written to disk, this buffer does not
2088 * need to be held busy. Therefore we unbusy it,
2089 * while leaving it on the locked list. It will
2090 * be freed or requeued by the callback depending
2091 * on whether it has had B_DELWRI set again in the
2092 * meantime.
2093 *
2094 * If we are using pagemove, we have to hold the block
2095 * busy to prevent its contents from changing before
2096 * it hits the disk, and invalidating the checksum.
2097 */
2098 bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
2099 #ifdef LFS_MNOBUSY
2100 if (cl->flags & LFS_CL_MALLOC) {
2101 if (!LFS_IS_MALLOC_BUF(bp)))
2102 brelse(bp); /* Still B_LOCKED */
2103 }
2104 #endif
2105 bpp++;
2106
2107 /*
2108 * If this is the last block for this vnode, but
2109 * there are other blocks on its dirty list,
2110 * set IN_MODIFIED/IN_CLEANING depending on what
2111 * sort of block. Only do this for our mount point,
2112 * not for, e.g., inode blocks that are attached to
2113 * the devvp.
2114 * XXX KS - Shouldn't we set *both* if both types
2115 * of blocks are present (traverse the dirty list?)
2116 */
2117 s = splbio();
2118 if ((i == 1 ||
2119 (i > 1 && vp && *bpp && (*bpp)->b_vp != vp)) &&
2120 (bp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL &&
2121 vp->v_mount == fs->lfs_ivnode->v_mount)
2122 {
2123 ip = VTOI(vp);
2124 #ifdef DEBUG_LFS
2125 printf("lfs_writeseg: marking ino %d\n",
2126 ip->i_number);
2127 #endif
2128 if (LFS_IS_MALLOC_BUF(bp))
2129 LFS_SET_UINO(ip, IN_CLEANING);
2130 else
2131 LFS_SET_UINO(ip, IN_MODIFIED);
2132 }
2133 splx(s);
2134 wakeup(vp);
2135 }
2136 s = splbio();
2137 V_INCR_NUMOUTPUT(cbp->b_vp);
2138 splx(s);
2139 /*
2140 * In order to include the summary in a clustered block,
2141 * it may be necessary to shift the block forward (since
2142 * summary blocks are in general smaller than can be
2143 * addressed by pagemove(). After the write, the block
2144 * will be corrected before disassembly.
2145 */
2146 if(cl->flags & LFS_CL_SHIFT) {
2147 cbp->b_data += (NBPG - fs->lfs_sumsize);
2148 cbp->b_bcount -= (NBPG - fs->lfs_sumsize);
2149 }
2150 vop_strategy_a.a_desc = VDESC(vop_strategy);
2151 vop_strategy_a.a_bp = cbp;
2152 (strategy)(&vop_strategy_a);
2153 }
2154
2155 if (lfs_dostats) {
2156 ++lfs_stats.psegwrites;
2157 lfs_stats.blocktot += nblocks - 1;
2158 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2159 ++lfs_stats.psyncwrites;
2160 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2161 ++lfs_stats.pcleanwrites;
2162 lfs_stats.cleanblocks += nblocks - 1;
2163 }
2164 }
2165 return (lfs_initseg(fs) || do_again);
2166 }
2167
2168 void
2169 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2170 {
2171 struct buf *bp;
2172 dev_t i_dev;
2173 int (*strategy)(void *);
2174 int s;
2175 struct vop_strategy_args vop_strategy_a;
2176
2177 /*
2178 * If we can write one superblock while another is in
2179 * progress, we risk not having a complete checkpoint if we crash.
2180 * So, block here if a superblock write is in progress.
2181 */
2182 s = splbio();
2183 while (fs->lfs_sbactive) {
2184 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2185 }
2186 fs->lfs_sbactive = daddr;
2187 splx(s);
2188 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2189 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2190
2191 /* Set timestamp of this version of the superblock */
2192 if (fs->lfs_version == 1)
2193 fs->lfs_otstamp = time.tv_sec;
2194 fs->lfs_tstamp = time.tv_sec;
2195
2196 /* Checksum the superblock and copy it into a buffer. */
2197 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2198 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2199 memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs));
2200 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2201
2202 bp->b_dev = i_dev;
2203 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2204 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2205 bp->b_iodone = lfs_supercallback;
2206 /* XXX KS - same nasty hack as above */
2207 bp->b_saveaddr = (caddr_t)fs;
2208
2209 vop_strategy_a.a_desc = VDESC(vop_strategy);
2210 vop_strategy_a.a_bp = bp;
2211 s = splbio();
2212 V_INCR_NUMOUTPUT(bp->b_vp);
2213 splx(s);
2214 ++fs->lfs_iocount;
2215 (strategy)(&vop_strategy_a);
2216 }
2217
2218 /*
2219 * Logical block number match routines used when traversing the dirty block
2220 * chain.
2221 */
2222 int
2223 lfs_match_fake(struct lfs *fs, struct buf *bp)
2224 {
2225 return LFS_IS_MALLOC_BUF(bp);
2226 }
2227
2228 #if 0
2229 int
2230 lfs_match_real(struct lfs *fs, struct buf *bp)
2231 {
2232 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2233 }
2234 #endif
2235
2236 int
2237 lfs_match_data(struct lfs *fs, struct buf *bp)
2238 {
2239 return (bp->b_lblkno >= 0);
2240 }
2241
2242 int
2243 lfs_match_indir(struct lfs *fs, struct buf *bp)
2244 {
2245 daddr_t lbn;
2246
2247 lbn = bp->b_lblkno;
2248 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2249 }
2250
2251 int
2252 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2253 {
2254 daddr_t lbn;
2255
2256 lbn = bp->b_lblkno;
2257 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2258 }
2259
2260 int
2261 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2262 {
2263 daddr_t lbn;
2264
2265 lbn = bp->b_lblkno;
2266 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2267 }
2268
2269 /*
2270 * XXX - The only buffers that are going to hit these functions are the
2271 * segment write blocks, or the segment summaries, or the superblocks.
2272 *
2273 * All of the above are created by lfs_newbuf, and so do not need to be
2274 * released via brelse.
2275 */
2276 void
2277 lfs_callback(struct buf *bp)
2278 {
2279 struct lfs *fs;
2280
2281 fs = (struct lfs *)bp->b_saveaddr;
2282 lfs_freebuf(fs, bp);
2283 }
2284
2285 static void
2286 lfs_super_aiodone(struct buf *bp)
2287 {
2288 struct lfs *fs;
2289
2290 fs = (struct lfs *)bp->b_saveaddr;
2291 fs->lfs_sbactive = 0;
2292 wakeup(&fs->lfs_sbactive);
2293 if (--fs->lfs_iocount == 0)
2294 wakeup(&fs->lfs_iocount);
2295 lfs_freebuf(fs, bp);
2296 }
2297
2298 static void
2299 lfs_cluster_aiodone(struct buf *bp)
2300 {
2301 struct lfs_cluster *cl;
2302 struct lfs *fs;
2303 struct buf *tbp;
2304 struct vnode *vp, *devvp;
2305 int s, error=0;
2306 char *cp;
2307 extern int locked_queue_count;
2308 extern long locked_queue_bytes;
2309
2310 if(bp->b_flags & B_ERROR)
2311 error = bp->b_error;
2312
2313 cl = (struct lfs_cluster *)bp->b_saveaddr;
2314 fs = cl->fs;
2315 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2316 bp->b_saveaddr = cl->saveaddr;
2317
2318 /* If shifted, shift back now */
2319 if(cl->flags & LFS_CL_SHIFT) {
2320 bp->b_data -= (NBPG - fs->lfs_sumsize);
2321 bp->b_bcount += (NBPG - fs->lfs_sumsize);
2322 }
2323
2324 cp = (char *)bp->b_data + cl->bufsize;
2325 /* Put the pages back, and release the buffer */
2326 while(cl->bufcount--) {
2327 tbp = cl->bpp[cl->bufcount];
2328 if(!(cl->flags & LFS_CL_MALLOC)) {
2329 cp -= tbp->b_bcount;
2330 printf("pm(%p,%p,%lx)",cp,tbp->b_data,tbp->b_bcount);
2331 pagemove(cp, tbp->b_data, tbp->b_bcount);
2332 bp->b_bufsize -= tbp->b_bcount;
2333 tbp->b_bufsize += tbp->b_bcount;
2334 }
2335 if(error) {
2336 tbp->b_flags |= B_ERROR;
2337 tbp->b_error = error;
2338 }
2339
2340 /*
2341 * We're done with tbp. If it has not been re-dirtied since
2342 * the cluster was written, free it. Otherwise, keep it on
2343 * the locked list to be written again.
2344 */
2345 vp = tbp->b_vp;
2346 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2347 LFS_UNLOCK_BUF(tbp);
2348 #if 0
2349 else if (vp != devvp)
2350 printf("dirtied while busy?! bp %p, ino %d, lbn %d\n",
2351 tbp, vp ? VTOI(vp)->i_number : -1,
2352 tbp->b_lblkno);
2353 #endif
2354 tbp->b_flags &= ~B_GATHERED;
2355
2356 LFS_BCLEAN_LOG(fs, tbp);
2357
2358 /* Segment summary for a shifted cluster */
2359 if(!cl->bufcount && (cl->flags & LFS_CL_SHIFT))
2360 tbp->b_flags |= B_INVAL;
2361 if(!(tbp->b_flags & B_CALL)) {
2362 bremfree(tbp);
2363 s = splbio();
2364 if(vp)
2365 reassignbuf(tbp, vp);
2366 splx(s);
2367 tbp->b_flags |= B_ASYNC; /* for biodone */
2368 }
2369 #ifdef DIAGNOSTIC
2370 if (tbp->b_flags & B_DONE) {
2371 printf("blk %d biodone already (flags %lx)\n",
2372 cl->bufcount, (long)tbp->b_flags);
2373 }
2374 #endif
2375 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2376 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2377 /* printf("flags 0x%lx\n", tbp->b_flags); */
2378 /*
2379 * A buffer from the page daemon.
2380 * We use the same iodone as it does,
2381 * so we must manually disassociate its
2382 * buffers from the vp.
2383 */
2384 if (tbp->b_vp) {
2385 /* This is just silly */
2386 s = splbio();
2387 brelvp(tbp);
2388 tbp->b_vp = vp;
2389 splx(s);
2390 }
2391 /* Put it back the way it was */
2392 tbp->b_flags |= B_ASYNC;
2393 /* Master buffers have B_AGE */
2394 if (tbp->b_private == tbp)
2395 tbp->b_flags |= B_AGE;
2396 }
2397 s = splbio();
2398 biodone(tbp);
2399 splx(s);
2400 }
2401 }
2402
2403 /* Fix up the cluster buffer, and release it */
2404 if(!(cl->flags & LFS_CL_MALLOC) && bp->b_bufsize) {
2405 printf("PM(%p,%p,%lx)", (char *)bp->b_data + bp->b_bcount,
2406 (char *)bp->b_data, bp->b_bufsize);
2407 pagemove((char *)bp->b_data + bp->b_bcount,
2408 (char *)bp->b_data, bp->b_bufsize);
2409 }
2410 if(cl->flags & LFS_CL_MALLOC) {
2411 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2412 bp->b_data = cl->olddata;
2413 }
2414 bp->b_bcount = 0;
2415 bp->b_iodone = NULL;
2416 bp->b_flags &= ~B_DELWRI;
2417 bp->b_flags |= B_DONE;
2418 s = splbio();
2419 reassignbuf(bp, bp->b_vp);
2420 splx(s);
2421 brelse(bp);
2422
2423 /* Note i/o done */
2424 if (cl->flags & LFS_CL_SYNC) {
2425 if (--cl->seg->seg_iocount == 0)
2426 wakeup(&cl->seg->seg_iocount);
2427 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2428 }
2429 #ifdef DIAGNOSTIC
2430 if (fs->lfs_iocount == 0)
2431 panic("lfs_cluster_aiodone: zero iocount");
2432 #endif
2433 if (--fs->lfs_iocount == 0)
2434 wakeup(&fs->lfs_iocount);
2435
2436 pool_put(&fs->lfs_bpppool, cl->bpp);
2437 cl->bpp = NULL;
2438 pool_put(&fs->lfs_clpool, cl);
2439 }
2440
2441 static void
2442 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2443 {
2444 /* reset b_iodone for when this is a single-buf i/o. */
2445 bp->b_iodone = aiodone;
2446
2447 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2448 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2449 wakeup(&uvm.aiodoned);
2450 simple_unlock(&uvm.aiodoned_lock);
2451 }
2452
2453 static void
2454 lfs_cluster_callback(struct buf *bp)
2455 {
2456 lfs_generic_callback(bp, lfs_cluster_aiodone);
2457 }
2458
2459 void
2460 lfs_supercallback(struct buf *bp)
2461 {
2462 lfs_generic_callback(bp, lfs_super_aiodone);
2463 }
2464
2465 /*
2466 * Shellsort (diminishing increment sort) from Data Structures and
2467 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2468 * see also Knuth Vol. 3, page 84. The increments are selected from
2469 * formula (8), page 95. Roughly O(N^3/2).
2470 */
2471 /*
2472 * This is our own private copy of shellsort because we want to sort
2473 * two parallel arrays (the array of buffer pointers and the array of
2474 * logical block numbers) simultaneously. Note that we cast the array
2475 * of logical block numbers to a unsigned in this routine so that the
2476 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2477 */
2478
2479 void
2480 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2481 {
2482 static int __rsshell_increments[] = { 4, 1, 0 };
2483 int incr, *incrp, t1, t2;
2484 struct buf *bp_temp;
2485
2486 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2487 for (t1 = incr; t1 < nmemb; ++t1)
2488 for (t2 = t1 - incr; t2 >= 0;)
2489 if ((u_int32_t)bp_array[t2]->b_lblkno >
2490 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2491 bp_temp = bp_array[t2];
2492 bp_array[t2] = bp_array[t2 + incr];
2493 bp_array[t2 + incr] = bp_temp;
2494 t2 -= incr;
2495 } else
2496 break;
2497
2498 /* Reform the list of logical blocks */
2499 incr = 0;
2500 for (t1 = 0; t1 < nmemb; t1++) {
2501 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2502 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2503 }
2504 }
2505 }
2506
2507 /*
2508 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2509 */
2510 int
2511 lfs_vref(struct vnode *vp)
2512 {
2513 /*
2514 * If we return 1 here during a flush, we risk vinvalbuf() not
2515 * being able to flush all of the pages from this vnode, which
2516 * will cause it to panic. So, return 0 if a flush is in progress.
2517 */
2518 if (vp->v_flag & VXLOCK) {
2519 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2520 return 0;
2521 }
2522 return (1);
2523 }
2524 return (vget(vp, 0));
2525 }
2526
2527 /*
2528 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2529 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2530 */
2531 void
2532 lfs_vunref(struct vnode *vp)
2533 {
2534 /*
2535 * Analogous to lfs_vref, if the node is flushing, fake it.
2536 */
2537 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2538 return;
2539 }
2540
2541 simple_lock(&vp->v_interlock);
2542 #ifdef DIAGNOSTIC
2543 if (vp->v_usecount <= 0) {
2544 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2545 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2546 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2547 panic("lfs_vunref: v_usecount<0");
2548 }
2549 #endif
2550 vp->v_usecount--;
2551 if (vp->v_usecount > 0) {
2552 simple_unlock(&vp->v_interlock);
2553 return;
2554 }
2555 /*
2556 * insert at tail of LRU list
2557 */
2558 simple_lock(&vnode_free_list_slock);
2559 if (vp->v_holdcnt > 0)
2560 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2561 else
2562 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2563 simple_unlock(&vnode_free_list_slock);
2564 simple_unlock(&vp->v_interlock);
2565 }
2566
2567 /*
2568 * We use this when we have vnodes that were loaded in solely for cleaning.
2569 * There is no reason to believe that these vnodes will be referenced again
2570 * soon, since the cleaning process is unrelated to normal filesystem
2571 * activity. Putting cleaned vnodes at the tail of the list has the effect
2572 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2573 * cleaning at the head of the list, instead.
2574 */
2575 void
2576 lfs_vunref_head(struct vnode *vp)
2577 {
2578 simple_lock(&vp->v_interlock);
2579 #ifdef DIAGNOSTIC
2580 if (vp->v_usecount == 0) {
2581 panic("lfs_vunref: v_usecount<0");
2582 }
2583 #endif
2584 vp->v_usecount--;
2585 if (vp->v_usecount > 0) {
2586 simple_unlock(&vp->v_interlock);
2587 return;
2588 }
2589 /*
2590 * insert at head of LRU list
2591 */
2592 simple_lock(&vnode_free_list_slock);
2593 if (vp->v_holdcnt > 0)
2594 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2595 else
2596 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2597 simple_unlock(&vnode_free_list_slock);
2598 simple_unlock(&vp->v_interlock);
2599 }
2600
2601