Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.110
      1 /*	$NetBSD: lfs_segment.c,v 1.110 2003/03/15 02:27:18 kristerw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.110 2003/03/15 02:27:18 kristerw Exp $");
     75 
     76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
     77 
     78 #if defined(_KERNEL_OPT)
     79 #include "opt_ddb.h"
     80 #endif
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/namei.h>
     85 #include <sys/kernel.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/file.h>
     88 #include <sys/stat.h>
     89 #include <sys/buf.h>
     90 #include <sys/proc.h>
     91 #include <sys/vnode.h>
     92 #include <sys/mount.h>
     93 
     94 #include <miscfs/specfs/specdev.h>
     95 #include <miscfs/fifofs/fifo.h>
     96 
     97 #include <ufs/ufs/inode.h>
     98 #include <ufs/ufs/dir.h>
     99 #include <ufs/ufs/ufsmount.h>
    100 #include <ufs/ufs/ufs_extern.h>
    101 
    102 #include <ufs/lfs/lfs.h>
    103 #include <ufs/lfs/lfs_extern.h>
    104 
    105 #include <uvm/uvm.h>
    106 #include <uvm/uvm_extern.h>
    107 
    108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    109 
    110 extern int count_lock_queue(void);
    111 extern struct simplelock vnode_free_list_slock;		/* XXX */
    112 extern int lfs_subsys_pages;
    113 
    114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    115 static void lfs_super_aiodone(struct buf *);
    116 static void lfs_cluster_aiodone(struct buf *);
    117 static void lfs_cluster_callback(struct buf *);
    118 
    119 /*
    120  * Determine if it's OK to start a partial in this segment, or if we need
    121  * to go on to a new segment.
    122  */
    123 #define	LFS_PARTIAL_FITS(fs) \
    124 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    125 	fragstofsb((fs), (fs)->lfs_frag))
    126 
    127 void	 lfs_callback(struct buf *);
    128 int	 lfs_gather(struct lfs *, struct segment *,
    129 	     struct vnode *, int (*)(struct lfs *, struct buf *));
    130 int	 lfs_gatherblock(struct segment *, struct buf *, int *);
    131 void	 lfs_iset(struct inode *, daddr_t, time_t);
    132 int	 lfs_match_fake(struct lfs *, struct buf *);
    133 int	 lfs_match_data(struct lfs *, struct buf *);
    134 int	 lfs_match_dindir(struct lfs *, struct buf *);
    135 int	 lfs_match_indir(struct lfs *, struct buf *);
    136 int	 lfs_match_tindir(struct lfs *, struct buf *);
    137 void	 lfs_newseg(struct lfs *);
    138 /* XXX ondisk32 */
    139 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    140 void	 lfs_supercallback(struct buf *);
    141 void	 lfs_updatemeta(struct segment *);
    142 int	 lfs_vref(struct vnode *);
    143 void	 lfs_vunref(struct vnode *);
    144 void	 lfs_writefile(struct lfs *, struct segment *, struct vnode *);
    145 int	 lfs_writeinode(struct lfs *, struct segment *, struct inode *);
    146 int	 lfs_writeseg(struct lfs *, struct segment *);
    147 void	 lfs_writesuper(struct lfs *, daddr_t);
    148 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    149 	    struct segment *sp, int dirops);
    150 
    151 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    152 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    153 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    154 int	lfs_dirvcount = 0;		/* # active dirops */
    155 
    156 /* Statistics Counters */
    157 int lfs_dostats = 1;
    158 struct lfs_stats lfs_stats;
    159 
    160 extern int locked_queue_count;
    161 extern long locked_queue_bytes;
    162 
    163 /* op values to lfs_writevnodes */
    164 #define	VN_REG		0
    165 #define	VN_DIROP	1
    166 #define	VN_EMPTY	2
    167 #define VN_CLEAN	3
    168 
    169 #define LFS_MAX_ACTIVE		10
    170 
    171 /*
    172  * XXX KS - Set modification time on the Ifile, so the cleaner can
    173  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    174  * since we don't really need this to be flushed to disk (and in any
    175  * case that wouldn't happen to the Ifile until we checkpoint).
    176  */
    177 void
    178 lfs_imtime(struct lfs *fs)
    179 {
    180 	struct timespec ts;
    181 	struct inode *ip;
    182 
    183 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    184 	ip = VTOI(fs->lfs_ivnode);
    185 	ip->i_ffs_mtime = ts.tv_sec;
    186 	ip->i_ffs_mtimensec = ts.tv_nsec;
    187 }
    188 
    189 /*
    190  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    191  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    192  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    193  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    194  */
    195 
    196 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    197 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    198 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    199 
    200 int
    201 lfs_vflush(struct vnode *vp)
    202 {
    203 	struct inode *ip;
    204 	struct lfs *fs;
    205 	struct segment *sp;
    206 	struct buf *bp, *nbp, *tbp, *tnbp;
    207 	int error, s;
    208 	int flushed;
    209 #if 0
    210 	int redo;
    211 #endif
    212 
    213 	ip = VTOI(vp);
    214 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    215 
    216 	if (ip->i_flag & IN_CLEANING) {
    217 #ifdef DEBUG_LFS
    218 		ivndebug(vp,"vflush/in_cleaning");
    219 #endif
    220 		LFS_CLR_UINO(ip, IN_CLEANING);
    221 		LFS_SET_UINO(ip, IN_MODIFIED);
    222 
    223 		/*
    224 		 * Toss any cleaning buffers that have real counterparts
    225 		 * to avoid losing new data.
    226 		 */
    227 		s = splbio();
    228 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    229 			nbp = LIST_NEXT(bp, b_vnbufs);
    230 			if (!LFS_IS_MALLOC_BUF(bp))
    231 				continue;
    232 			/*
    233 			 * Look for pages matching the range covered
    234 			 * by cleaning blocks.  It's okay if more dirty
    235 			 * pages appear, so long as none disappear out
    236 			 * from under us.
    237 			 */
    238 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    239 			    vp != fs->lfs_ivnode) {
    240 				struct vm_page *pg;
    241 				voff_t off;
    242 
    243 				simple_lock(&vp->v_interlock);
    244 				for (off = lblktosize(fs, bp->b_lblkno);
    245 				     off < lblktosize(fs, bp->b_lblkno + 1);
    246 				     off += PAGE_SIZE) {
    247 					pg = uvm_pagelookup(&vp->v_uobj, off);
    248 					if (pg == NULL)
    249 						continue;
    250 					if ((pg->flags & PG_CLEAN) == 0 ||
    251 					    pmap_is_modified(pg)) {
    252 						fs->lfs_avail += btofsb(fs,
    253 							bp->b_bcount);
    254 						wakeup(&fs->lfs_avail);
    255 						lfs_freebuf(fs, bp);
    256 						bp = NULL;
    257 						goto nextbp;
    258 					}
    259 				}
    260 				simple_unlock(&vp->v_interlock);
    261 			}
    262 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    263 			    tbp = tnbp)
    264 			{
    265 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    266 				if (tbp->b_vp == bp->b_vp
    267 				   && tbp->b_lblkno == bp->b_lblkno
    268 				   && tbp != bp)
    269 				{
    270 					fs->lfs_avail += btofsb(fs,
    271 						bp->b_bcount);
    272 					wakeup(&fs->lfs_avail);
    273 					lfs_freebuf(fs, bp);
    274 					bp = NULL;
    275 					break;
    276 				}
    277 			}
    278 		    nextbp:
    279 			;
    280 		}
    281 		splx(s);
    282 	}
    283 
    284 	/* If the node is being written, wait until that is done */
    285 	s = splbio();
    286 	if (WRITEINPROG(vp)) {
    287 #ifdef DEBUG_LFS
    288 		ivndebug(vp,"vflush/writeinprog");
    289 #endif
    290 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    291 	}
    292 	splx(s);
    293 
    294 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    295 	lfs_seglock(fs, SEGM_SYNC);
    296 
    297 	/* If we're supposed to flush a freed inode, just toss it */
    298 	/* XXX - seglock, so these buffers can't be gathered, right? */
    299 	if (ip->i_ffs_mode == 0) {
    300 		printf("lfs_vflush: ino %d is freed, not flushing\n",
    301 			ip->i_number);
    302 		s = splbio();
    303 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    304 			nbp = LIST_NEXT(bp, b_vnbufs);
    305 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    306 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    307 				wakeup(&fs->lfs_avail);
    308 			}
    309 			/* Copied from lfs_writeseg */
    310 			if (bp->b_flags & B_CALL) {
    311 				biodone(bp);
    312 			} else {
    313 				bremfree(bp);
    314 				LFS_UNLOCK_BUF(bp);
    315 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    316 					 B_GATHERED);
    317 				bp->b_flags |= B_DONE;
    318 				reassignbuf(bp, vp);
    319 				brelse(bp);
    320 			}
    321 		}
    322 		splx(s);
    323 		LFS_CLR_UINO(ip, IN_CLEANING);
    324 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    325 		ip->i_flag &= ~IN_ALLMOD;
    326 		printf("lfs_vflush: done not flushing ino %d\n",
    327 			ip->i_number);
    328 		lfs_segunlock(fs);
    329 		return 0;
    330 	}
    331 
    332 	SET_FLUSHING(fs,vp);
    333 	if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
    334 	    (fs->lfs_sp->seg_flags & SEGM_CKP)) {
    335 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    336 		CLR_FLUSHING(fs,vp);
    337 		lfs_segunlock(fs);
    338 		return error;
    339 	}
    340 	sp = fs->lfs_sp;
    341 
    342 	flushed = 0;
    343 	if (VPISEMPTY(vp)) {
    344 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    345 		++flushed;
    346 	} else if ((ip->i_flag & IN_CLEANING) &&
    347 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    348 #ifdef DEBUG_LFS
    349 		ivndebug(vp,"vflush/clean");
    350 #endif
    351 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    352 		++flushed;
    353 	} else if (lfs_dostats) {
    354 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    355 			++lfs_stats.vflush_invoked;
    356 #ifdef DEBUG_LFS
    357 		ivndebug(vp,"vflush");
    358 #endif
    359 	}
    360 
    361 #ifdef DIAGNOSTIC
    362 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
    363 	if (vp->v_flag & VDIROP) {
    364 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
    365 		/* panic("VDIROP being flushed...this can\'t happen"); */
    366 	}
    367 	if (vp->v_usecount < 0) {
    368 		printf("usecount=%ld\n", (long)vp->v_usecount);
    369 		panic("lfs_vflush: usecount<0");
    370 	}
    371 #endif
    372 
    373 #if 1 /* XXX */
    374 	do {
    375 		do {
    376 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    377 				lfs_writefile(fs, sp, vp);
    378 		} while (lfs_writeinode(fs, sp, ip));
    379 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    380 #else
    381 	if (flushed && vp != fs->lfs_ivnode)
    382 		lfs_writeseg(fs, sp);
    383 	else do {
    384 		fs->lfs_flags &= ~LFS_IFDIRTY;
    385 		lfs_writefile(fs, sp, vp);
    386 		redo = lfs_writeinode(fs, sp, ip);
    387 		redo += lfs_writeseg(fs, sp);
    388 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    389 	} while (redo && vp == fs->lfs_ivnode);
    390 #endif
    391 	if (lfs_dostats) {
    392 		++lfs_stats.nwrites;
    393 		if (sp->seg_flags & SEGM_SYNC)
    394 			++lfs_stats.nsync_writes;
    395 		if (sp->seg_flags & SEGM_CKP)
    396 			++lfs_stats.ncheckpoints;
    397 	}
    398 	/*
    399 	 * If we were called from somewhere that has already held the seglock
    400 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    401 	 * the write to complete because we are still locked.
    402 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    403 	 * we must explicitly wait, if that is the case.
    404 	 *
    405 	 * We compare the iocount against 1, not 0, because it is
    406 	 * artificially incremented by lfs_seglock().
    407 	 */
    408 	if (fs->lfs_seglock > 1) {
    409 		while (fs->lfs_iocount > 1)
    410 			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
    411 				     "lfs_vflush", 0);
    412 	}
    413 	lfs_segunlock(fs);
    414 
    415 	CLR_FLUSHING(fs,vp);
    416 	return (0);
    417 }
    418 
    419 #ifdef DEBUG_LFS_VERBOSE
    420 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
    421 #else
    422 # define vndebug(vp,str)
    423 #endif
    424 
    425 int
    426 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    427 {
    428 	struct inode *ip;
    429 	struct vnode *vp, *nvp;
    430 	int inodes_written = 0, only_cleaning;
    431 
    432 #ifndef LFS_NO_BACKVP_HACK
    433 	/* BEGIN HACK */
    434 #define	VN_OFFSET	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    435 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    436 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
    437 
    438 	/* Find last vnode. */
    439  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    440 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    441 	     vp = LIST_NEXT(vp, v_mntvnodes));
    442 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    443 		nvp = BACK_VP(vp);
    444 #else
    445 	loop:
    446 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    447 		nvp = LIST_NEXT(vp, v_mntvnodes);
    448 #endif
    449 		/*
    450 		 * If the vnode that we are about to sync is no longer
    451 		 * associated with this mount point, start over.
    452 		 */
    453 		if (vp->v_mount != mp) {
    454 			printf("lfs_writevnodes: starting over\n");
    455 			goto loop;
    456 		}
    457 
    458 		if (vp->v_type == VNON) {
    459 			continue;
    460 		}
    461 
    462 		ip = VTOI(vp);
    463 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    464 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
    465 			vndebug(vp,"dirop");
    466 			continue;
    467 		}
    468 
    469 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    470 			vndebug(vp,"empty");
    471 			continue;
    472 		}
    473 
    474 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    475 		   && vp != fs->lfs_flushvp
    476 		   && !(ip->i_flag & IN_CLEANING)) {
    477 			vndebug(vp,"cleaning");
    478 			continue;
    479 		}
    480 
    481 		if (lfs_vref(vp)) {
    482 			vndebug(vp,"vref");
    483 			continue;
    484 		}
    485 
    486 		only_cleaning = 0;
    487 		/*
    488 		 * Write the inode/file if dirty and it's not the IFILE.
    489 		 */
    490 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    491 			only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    492 
    493 			if (ip->i_number != LFS_IFILE_INUM)
    494 				lfs_writefile(fs, sp, vp);
    495 			if (!VPISEMPTY(vp)) {
    496 				if (WRITEINPROG(vp)) {
    497 #ifdef DEBUG_LFS
    498 					ivndebug(vp,"writevnodes/write2");
    499 #endif
    500 				} else if (!(ip->i_flag & IN_ALLMOD)) {
    501 #ifdef DEBUG_LFS
    502 					printf("<%d>",ip->i_number);
    503 #endif
    504 					LFS_SET_UINO(ip, IN_MODIFIED);
    505 				}
    506 			}
    507 			(void) lfs_writeinode(fs, sp, ip);
    508 			inodes_written++;
    509 		}
    510 
    511 		if (lfs_clean_vnhead && only_cleaning)
    512 			lfs_vunref_head(vp);
    513 		else
    514 			lfs_vunref(vp);
    515 	}
    516 	return inodes_written;
    517 }
    518 
    519 /*
    520  * Do a checkpoint.
    521  */
    522 int
    523 lfs_segwrite(struct mount *mp, int flags)
    524 {
    525 	struct buf *bp;
    526 	struct inode *ip;
    527 	struct lfs *fs;
    528 	struct segment *sp;
    529 	struct vnode *vp;
    530 	SEGUSE *segusep;
    531 	daddr_t ibno;
    532 	int do_ckp, did_ckp, error, i;
    533 	int writer_set = 0;
    534 	int dirty;
    535 	int redo;
    536 	int loopcount;
    537 	int sn;
    538 
    539 	fs = VFSTOUFS(mp)->um_lfs;
    540 
    541 	if (fs->lfs_ronly)
    542 		return EROFS;
    543 
    544 	lfs_imtime(fs);
    545 
    546 	/* printf("lfs_segwrite: ifile flags are 0x%lx\n",
    547 	       (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
    548 
    549 #if 0
    550 	/*
    551 	 * If we are not the cleaner, and there is no space available,
    552 	 * wait until cleaner writes.
    553 	 */
    554 	if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
    555 				      (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
    556 	{
    557 		while (fs->lfs_avail <= 0) {
    558 			LFS_CLEANERINFO(cip, fs, bp);
    559 			LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
    560 
    561 			wakeup(&lfs_allclean_wakeup);
    562 			wakeup(&fs->lfs_nextseg);
    563 			error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
    564 				       0);
    565 			if (error) {
    566 				return (error);
    567 			}
    568 		}
    569 	}
    570 #endif
    571 	/*
    572 	 * Allocate a segment structure and enough space to hold pointers to
    573 	 * the maximum possible number of buffers which can be described in a
    574 	 * single summary block.
    575 	 */
    576 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    577 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    578 	sp = fs->lfs_sp;
    579 
    580 	/*
    581 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    582 	 * in which case we have to flush *all* buffers off of this vnode.
    583 	 * We don't care about other nodes, but write any non-dirop nodes
    584 	 * anyway in anticipation of another getnewvnode().
    585 	 *
    586 	 * If we're cleaning we only write cleaning and ifile blocks, and
    587 	 * no dirops, since otherwise we'd risk corruption in a crash.
    588 	 */
    589 	if (sp->seg_flags & SEGM_CLEAN)
    590 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    591 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    592 		lfs_writevnodes(fs, mp, sp, VN_REG);
    593 		if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    594 			while (fs->lfs_dirops)
    595 				if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
    596 						"lfs writer", 0)))
    597 				{
    598 					printf("segwrite mysterious error\n");
    599 					/* XXX why not segunlock? */
    600 					pool_put(&fs->lfs_bpppool, sp->bpp);
    601 					sp->bpp = NULL;
    602 					pool_put(&fs->lfs_segpool, sp);
    603 					sp = fs->lfs_sp = NULL;
    604 					return (error);
    605 				}
    606 			fs->lfs_writer++;
    607 			writer_set = 1;
    608 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    609 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    610 		}
    611 	}
    612 
    613 	/*
    614 	 * If we are doing a checkpoint, mark everything since the
    615 	 * last checkpoint as no longer ACTIVE.
    616 	 */
    617 	if (do_ckp) {
    618 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    619 		     --ibno >= fs->lfs_cleansz; ) {
    620 			dirty = 0;
    621 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
    622 
    623 				panic("lfs_segwrite: ifile read");
    624 			segusep = (SEGUSE *)bp->b_data;
    625 			for (i = fs->lfs_sepb; i > 0; i--) {
    626 				sn = (ibno - fs->lfs_cleansz) * fs->lfs_sepb +
    627 					fs->lfs_sepb - i;
    628 				if (segusep->su_flags & SEGUSE_ACTIVE) {
    629 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    630 					--fs->lfs_nactive;
    631 					++dirty;
    632 				}
    633 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    634 					segusep->su_flags;
    635 				if (fs->lfs_version > 1)
    636 					++segusep;
    637 				else
    638 					segusep = (SEGUSE *)
    639 						((SEGUSE_V1 *)segusep + 1);
    640 			}
    641 
    642 			/* But the current segment is still ACTIVE */
    643 			segusep = (SEGUSE *)bp->b_data;
    644 			if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
    645 			    (ibno-fs->lfs_cleansz)) {
    646 				sn = dtosn(fs, fs->lfs_curseg);
    647 				if (fs->lfs_version > 1)
    648 					segusep[sn % fs->lfs_sepb].su_flags |=
    649 						     SEGUSE_ACTIVE;
    650 				else
    651 					((SEGUSE *)
    652 					 ((SEGUSE_V1 *)(bp->b_data) +
    653 					  (sn % fs->lfs_sepb)))->su_flags
    654 						   |= SEGUSE_ACTIVE;
    655 				fs->lfs_suflags[fs->lfs_activesb][sn] |=
    656 					SEGUSE_ACTIVE;
    657 				++fs->lfs_nactive;
    658 				--dirty;
    659 			}
    660 			if (dirty)
    661 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    662 			else
    663 				brelse(bp);
    664 		}
    665 	}
    666 
    667 	did_ckp = 0;
    668 	if (do_ckp || fs->lfs_doifile) {
    669 		loopcount = 10;
    670 		do {
    671 			vp = fs->lfs_ivnode;
    672 
    673 #ifdef DEBUG
    674 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
    675 #endif
    676 			fs->lfs_flags &= ~LFS_IFDIRTY;
    677 
    678 			ip = VTOI(vp);
    679 
    680 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    681 				lfs_writefile(fs, sp, vp);
    682 
    683 			if (ip->i_flag & IN_ALLMOD)
    684 				++did_ckp;
    685 			redo = lfs_writeinode(fs, sp, ip);
    686 			redo += lfs_writeseg(fs, sp);
    687 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    688 		} while (redo && do_ckp && --loopcount > 0);
    689 		if (loopcount <= 0)
    690 			printf("lfs_segwrite: possibly invalid checkpoint!\n");
    691 
    692 		/* The ifile should now be all clear */
    693 		if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
    694 			struct buf *bp;
    695 			int s, warned = 0, dopanic = 0;
    696 			s = splbio();
    697 			for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
    698 				if (!(bp->b_flags & B_GATHERED)) {
    699 					if (!warned)
    700 						printf("lfs_segwrite: ifile still has dirty blocks?!\n");
    701 					++dopanic;
    702 					++warned;
    703 					printf("bp=%p, lbn %" PRId64 ", "
    704 						"flags 0x%lx\n",
    705 						bp, bp->b_lblkno,
    706 						bp->b_flags);
    707 				}
    708 			}
    709 			if (dopanic)
    710 				panic("dirty blocks");
    711 			splx(s);
    712 		}
    713 		LFS_CLR_UINO(ip, IN_ALLMOD);
    714 	} else {
    715 		(void) lfs_writeseg(fs, sp);
    716 	}
    717 
    718 	/*
    719 	 * If the I/O count is non-zero, sleep until it reaches zero.
    720 	 * At the moment, the user's process hangs around so we can
    721 	 * sleep.
    722 	 */
    723 	if (loopcount <= 0)
    724 		fs->lfs_doifile = 1;
    725 	else
    726 		fs->lfs_doifile = 0;
    727 	if (writer_set && --fs->lfs_writer == 0)
    728 		wakeup(&fs->lfs_dirops);
    729 
    730 	/*
    731 	 * If we didn't write the Ifile, we didn't really do anything.
    732 	 * That means that (1) there is a checkpoint on disk and (2)
    733 	 * nothing has changed since it was written.
    734 	 *
    735 	 * Take the flags off of the segment so that lfs_segunlock
    736 	 * doesn't have to write the superblock either.
    737 	 */
    738 	if (do_ckp && !did_ckp) {
    739 		sp->seg_flags &= ~SEGM_CKP;
    740 		/* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
    741 	}
    742 
    743 	if (lfs_dostats) {
    744 		++lfs_stats.nwrites;
    745 		if (sp->seg_flags & SEGM_SYNC)
    746 			++lfs_stats.nsync_writes;
    747 		if (sp->seg_flags & SEGM_CKP)
    748 			++lfs_stats.ncheckpoints;
    749 	}
    750 	lfs_segunlock(fs);
    751 	return (0);
    752 }
    753 
    754 /*
    755  * Write the dirty blocks associated with a vnode.
    756  */
    757 void
    758 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    759 {
    760 	struct buf *bp;
    761 	struct finfo *fip;
    762 	struct inode *ip;
    763 	IFILE *ifp;
    764 	int i, frag;
    765 
    766 	ip = VTOI(vp);
    767 
    768 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    769 	    sp->sum_bytes_left < sizeof(struct finfo))
    770 		(void) lfs_writeseg(fs, sp);
    771 
    772 	sp->sum_bytes_left -= FINFOSIZE;
    773 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    774 
    775 	if (vp->v_flag & VDIROP)
    776 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    777 
    778 	fip = sp->fip;
    779 	fip->fi_nblocks = 0;
    780 	fip->fi_ino = ip->i_number;
    781 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    782 	fip->fi_version = ifp->if_version;
    783 	brelse(bp);
    784 
    785 	if (sp->seg_flags & SEGM_CLEAN) {
    786 		lfs_gather(fs, sp, vp, lfs_match_fake);
    787 		/*
    788 		 * For a file being flushed, we need to write *all* blocks.
    789 		 * This means writing the cleaning blocks first, and then
    790 		 * immediately following with any non-cleaning blocks.
    791 		 * The same is true of the Ifile since checkpoints assume
    792 		 * that all valid Ifile blocks are written.
    793 		 */
    794 		if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
    795 			lfs_gather(fs, sp, vp, lfs_match_data);
    796 			/*
    797 			 * Don't call VOP_PUTPAGES: if we're flushing,
    798 			 * we've already done it, and the Ifile doesn't
    799 			 * use the page cache.
    800 			 */
    801 		}
    802 	} else {
    803 		lfs_gather(fs, sp, vp, lfs_match_data);
    804 		/*
    805 		 * If we're flushing, we've already called VOP_PUTPAGES
    806 		 * so don't do it again.  Otherwise, we want to write
    807 		 * everything we've got.
    808 		 */
    809 		if (!IS_FLUSHING(fs, vp)) {
    810 			simple_lock(&vp->v_interlock);
    811 			VOP_PUTPAGES(vp, 0, 0,
    812 				     PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED |
    813 				     PGO_BUSYFAIL);
    814 		}
    815 	}
    816 
    817 	/*
    818 	 * It may not be necessary to write the meta-data blocks at this point,
    819 	 * as the roll-forward recovery code should be able to reconstruct the
    820 	 * list.
    821 	 *
    822 	 * We have to write them anyway, though, under two conditions: (1) the
    823 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    824 	 * checkpointing.
    825 	 *
    826 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    827 	 * new blocks not being written yet, in addition to fragments being
    828 	 * moved out of a cleaned segment.  If that is the case, don't
    829 	 * write the indirect blocks, or the finfo will have a small block
    830 	 * in the middle of it!
    831 	 * XXX in this case isn't the inode size wrong too?
    832 	 */
    833 	frag = 0;
    834 	if (sp->seg_flags & SEGM_CLEAN) {
    835 		for (i = 0; i < NDADDR; i++)
    836 			if (ip->i_lfs_fragsize[i] > 0 &&
    837 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    838 				++frag;
    839 	}
    840 #ifdef DIAGNOSTIC
    841 	if (frag > 1)
    842 		panic("lfs_writefile: more than one fragment!");
    843 #endif
    844 	if (IS_FLUSHING(fs, vp) ||
    845 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    846 		lfs_gather(fs, sp, vp, lfs_match_indir);
    847 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    848 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    849 	}
    850 	fip = sp->fip;
    851 	if (fip->fi_nblocks != 0) {
    852 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    853 				   sizeof(int32_t) * (fip->fi_nblocks));
    854 		sp->start_lbp = &sp->fip->fi_blocks[0];
    855 	} else {
    856 		sp->sum_bytes_left += FINFOSIZE;
    857 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    858 	}
    859 }
    860 
    861 int
    862 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    863 {
    864 	struct buf *bp, *ibp;
    865 	struct dinode *cdp;
    866 	IFILE *ifp;
    867 	SEGUSE *sup;
    868 	daddr_t daddr;
    869 	int32_t *daddrp;	/* XXX ondisk32 */
    870 	ino_t ino;
    871 	int error, i, ndx, fsb = 0;
    872 	int redo_ifile = 0;
    873 	struct timespec ts;
    874 	int gotblk = 0;
    875 
    876 	if (!(ip->i_flag & IN_ALLMOD))
    877 		return (0);
    878 
    879 	/* Allocate a new inode block if necessary. */
    880 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
    881 		/* Allocate a new segment if necessary. */
    882 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    883 		    sp->sum_bytes_left < sizeof(int32_t))
    884 			(void) lfs_writeseg(fs, sp);
    885 
    886 		/* Get next inode block. */
    887 		daddr = fs->lfs_offset;
    888 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    889 		sp->ibp = *sp->cbpp++ =
    890 			getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
    891 			       fs->lfs_ibsize, 0, 0);
    892 		gotblk++;
    893 
    894 		/* Zero out inode numbers */
    895 		for (i = 0; i < INOPB(fs); ++i)
    896 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    897 
    898 		++sp->start_bpp;
    899 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    900 		/* Set remaining space counters. */
    901 		sp->seg_bytes_left -= fs->lfs_ibsize;
    902 		sp->sum_bytes_left -= sizeof(int32_t);
    903 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    904 			sp->ninodes / INOPB(fs) - 1;
    905 		((int32_t *)(sp->segsum))[ndx] = daddr;
    906 	}
    907 
    908 	/* Update the inode times and copy the inode onto the inode page. */
    909 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    910 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    911 	if (ip->i_number != LFS_IFILE_INUM)
    912 		LFS_ITIMES(ip, &ts, &ts, &ts);
    913 
    914 	/*
    915 	 * If this is the Ifile, and we've already written the Ifile in this
    916 	 * partial segment, just overwrite it (it's not on disk yet) and
    917 	 * continue.
    918 	 *
    919 	 * XXX we know that the bp that we get the second time around has
    920 	 * already been gathered.
    921 	 */
    922 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    923 		*(sp->idp) = ip->i_din.ffs_din;
    924 		ip->i_lfs_osize = ip->i_ffs_size;
    925 		return 0;
    926 	}
    927 
    928 	bp = sp->ibp;
    929 	cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    930 	*cdp = ip->i_din.ffs_din;
    931 #ifdef LFS_IFILE_FRAG_ADDRESSING
    932 	if (fs->lfs_version > 1)
    933 		fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
    934 #endif
    935 
    936 	/*
    937 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
    938 	 * addresses to disk; possibly revert the inode size.
    939 	 * XXX By not writing these blocks, we are making the lfs_avail
    940 	 * XXX count on disk wrong by the same amount.	We should be
    941 	 * XXX able to "borrow" from lfs_avail and return it after the
    942 	 * XXX Ifile is written.  See also in lfs_writeseg.
    943 	 */
    944 	if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
    945 		cdp->di_size = ip->i_lfs_osize;
    946 #ifdef DEBUG_LFS
    947 		printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
    948 		       ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
    949 #endif
    950 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
    951 		     daddrp++) {
    952 			if (*daddrp == UNWRITTEN) {
    953 #ifdef DEBUG_LFS
    954 				printf("lfs_writeinode: wiping UNWRITTEN\n");
    955 #endif
    956 				*daddrp = 0;
    957 			}
    958 		}
    959 	} else {
    960 		/* If all blocks are goig to disk, update the "size on disk" */
    961 		ip->i_lfs_osize = ip->i_ffs_size;
    962 	}
    963 
    964 	if (ip->i_flag & IN_CLEANING)
    965 		LFS_CLR_UINO(ip, IN_CLEANING);
    966 	else {
    967 		/* XXX IN_ALLMOD */
    968 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
    969 			     IN_UPDATE);
    970 		if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
    971 			LFS_CLR_UINO(ip, IN_MODIFIED);
    972 #ifdef DEBUG_LFS
    973 		else
    974 			printf("lfs_writeinode: ino %d: real blks=%d, "
    975 			       "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
    976 			       ip->i_lfs_effnblks);
    977 #endif
    978 	}
    979 
    980 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
    981 		sp->idp = ((struct dinode *)bp->b_data) +
    982 			(sp->ninodes % INOPB(fs));
    983 	if (gotblk) {
    984 		LFS_LOCK_BUF(bp);
    985 		brelse(bp);
    986 	}
    987 
    988 	/* Increment inode count in segment summary block. */
    989 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    990 
    991 	/* If this page is full, set flag to allocate a new page. */
    992 	if (++sp->ninodes % INOPB(fs) == 0)
    993 		sp->ibp = NULL;
    994 
    995 	/*
    996 	 * If updating the ifile, update the super-block.  Update the disk
    997 	 * address and access times for this inode in the ifile.
    998 	 */
    999 	ino = ip->i_number;
   1000 	if (ino == LFS_IFILE_INUM) {
   1001 		daddr = fs->lfs_idaddr;
   1002 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
   1003 	} else {
   1004 		LFS_IENTRY(ifp, fs, ino, ibp);
   1005 		daddr = ifp->if_daddr;
   1006 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
   1007 #ifdef LFS_DEBUG_NEXTFREE
   1008 		if (ino > 3 && ifp->if_nextfree) {
   1009 			vprint("lfs_writeinode",ITOV(ip));
   1010 			printf("lfs_writeinode: updating free ino %d\n",
   1011 				ip->i_number);
   1012 		}
   1013 #endif
   1014 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
   1015 	}
   1016 
   1017 	/*
   1018 	 * The inode's last address should not be in the current partial
   1019 	 * segment, except under exceptional circumstances (lfs_writevnodes
   1020 	 * had to start over, and in the meantime more blocks were written
   1021 	 * to a vnode).	 Both inodes will be accounted to this segment
   1022 	 * in lfs_writeseg so we need to subtract the earlier version
   1023 	 * here anyway.	 The segment count can temporarily dip below
   1024 	 * zero here; keep track of how many duplicates we have in
   1025 	 * "dupino" so we don't panic below.
   1026 	 */
   1027 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
   1028 		++sp->ndupino;
   1029 		printf("lfs_writeinode: last inode addr in current pseg "
   1030 		       "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
   1031 			(long long)daddr, sp->ndupino);
   1032 	}
   1033 	/*
   1034 	 * Account the inode: it no longer belongs to its former segment,
   1035 	 * though it will not belong to the new segment until that segment
   1036 	 * is actually written.
   1037 	 */
   1038 	if (daddr != LFS_UNUSED_DADDR) {
   1039 		u_int32_t oldsn = dtosn(fs, daddr);
   1040 #ifdef DIAGNOSTIC
   1041 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1042 #endif
   1043 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1044 #ifdef DIAGNOSTIC
   1045 		if (sup->su_nbytes + DINODE_SIZE * ndupino < DINODE_SIZE) {
   1046 			printf("lfs_writeinode: negative bytes "
   1047 			       "(segment %" PRIu32 " short by %d, "
   1048 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1049 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1050 			       "ndupino=%d)\n",
   1051 			       dtosn(fs, daddr),
   1052 			       (int)DINODE_SIZE * (1 - sp->ndupino)
   1053 				   - sup->su_nbytes,
   1054 			       oldsn, sp->seg_number, daddr,
   1055 			       (unsigned int)sup->su_nbytes,
   1056 			       sp->ndupino);
   1057 			panic("lfs_writeinode: negative bytes");
   1058 			sup->su_nbytes = DINODE_SIZE;
   1059 		}
   1060 #endif
   1061 #ifdef DEBUG_SU_NBYTES
   1062 		printf("seg %d -= %d for ino %d inode\n",
   1063 		       dtosn(fs, daddr), DINODE_SIZE, ino);
   1064 #endif
   1065 		sup->su_nbytes -= DINODE_SIZE;
   1066 		redo_ifile =
   1067 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1068 		if (redo_ifile)
   1069 			fs->lfs_flags |= LFS_IFDIRTY;
   1070 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1071 	}
   1072 	return (redo_ifile);
   1073 }
   1074 
   1075 int
   1076 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1077 {
   1078 	struct lfs *fs;
   1079 	int version;
   1080 	int j, blksinblk;
   1081 
   1082 	/*
   1083 	 * If full, finish this segment.  We may be doing I/O, so
   1084 	 * release and reacquire the splbio().
   1085 	 */
   1086 #ifdef DIAGNOSTIC
   1087 	if (sp->vp == NULL)
   1088 		panic ("lfs_gatherblock: Null vp in segment");
   1089 #endif
   1090 	fs = sp->fs;
   1091 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1092 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1093 	    sp->seg_bytes_left < bp->b_bcount) {
   1094 		if (sptr)
   1095 			splx(*sptr);
   1096 		lfs_updatemeta(sp);
   1097 
   1098 		version = sp->fip->fi_version;
   1099 		(void) lfs_writeseg(fs, sp);
   1100 
   1101 		sp->fip->fi_version = version;
   1102 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1103 		/* Add the current file to the segment summary. */
   1104 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1105 		sp->sum_bytes_left -= FINFOSIZE;
   1106 
   1107 		if (sptr)
   1108 			*sptr = splbio();
   1109 		return (1);
   1110 	}
   1111 
   1112 #ifdef DEBUG
   1113 	if (bp->b_flags & B_GATHERED) {
   1114 		printf("lfs_gatherblock: already gathered! Ino %d,"
   1115 		       " lbn %" PRId64 "\n",
   1116 		       sp->fip->fi_ino, bp->b_lblkno);
   1117 		return (0);
   1118 	}
   1119 #endif
   1120 	/* Insert into the buffer list, update the FINFO block. */
   1121 	bp->b_flags |= B_GATHERED;
   1122 	bp->b_flags &= ~B_DONE;
   1123 
   1124 	*sp->cbpp++ = bp;
   1125 	for (j = 0; j < blksinblk; j++)
   1126 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1127 
   1128 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1129 	sp->seg_bytes_left -= bp->b_bcount;
   1130 	return (0);
   1131 }
   1132 
   1133 int
   1134 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
   1135 {
   1136 	struct buf *bp, *nbp;
   1137 	int s, count = 0;
   1138 
   1139 	sp->vp = vp;
   1140 	s = splbio();
   1141 
   1142 #ifndef LFS_NO_BACKBUF_HACK
   1143 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1144 # define	BUF_OFFSET	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1145 # define	BACK_BUF(BP)	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1146 # define	BEG_OF_LIST	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1147 /* Find last buffer. */
   1148 loop:	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1149 	    bp = LIST_NEXT(bp, b_vnbufs));
   1150 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1151 		nbp = BACK_BUF(bp);
   1152 #else /* LFS_NO_BACKBUF_HACK */
   1153 loop:	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1154 		nbp = LIST_NEXT(bp, b_vnbufs);
   1155 #endif /* LFS_NO_BACKBUF_HACK */
   1156 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1157 #ifdef DEBUG_LFS
   1158 			if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1159 				printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
   1160 #endif
   1161 			continue;
   1162 		}
   1163 		if (vp->v_type == VBLK) {
   1164 			/* For block devices, just write the blocks. */
   1165 			/* XXX Do we really need to even do this? */
   1166 #ifdef DEBUG_LFS
   1167 			if (count == 0)
   1168 				printf("BLK(");
   1169 			printf(".");
   1170 #endif
   1171 			/* Get the block before bwrite, so we don't corrupt the free list */
   1172 			bp->b_flags |= B_BUSY;
   1173 			bremfree(bp);
   1174 			bwrite(bp);
   1175 		} else {
   1176 #ifdef DIAGNOSTIC
   1177 # ifdef LFS_USE_B_INVAL
   1178 			if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1179 				printf("lfs_gather: lbn %" PRId64 " is "
   1180 					"B_INVAL\n", bp->b_lblkno);
   1181 				VOP_PRINT(bp->b_vp);
   1182 			}
   1183 # endif /* LFS_USE_B_INVAL */
   1184 			if (!(bp->b_flags & B_DELWRI))
   1185 				panic("lfs_gather: bp not B_DELWRI");
   1186 			if (!(bp->b_flags & B_LOCKED)) {
   1187 				printf("lfs_gather: lbn %" PRId64 " blk "
   1188 					"%" PRId64 " not B_LOCKED\n",
   1189 					bp->b_lblkno,
   1190 					dbtofsb(fs, bp->b_blkno));
   1191 				VOP_PRINT(bp->b_vp);
   1192 				panic("lfs_gather: bp not B_LOCKED");
   1193 			}
   1194 #endif
   1195 			if (lfs_gatherblock(sp, bp, &s)) {
   1196 				goto loop;
   1197 			}
   1198 		}
   1199 		count++;
   1200 	}
   1201 	splx(s);
   1202 #ifdef DEBUG_LFS
   1203 	if (vp->v_type == VBLK && count)
   1204 		printf(")\n");
   1205 #endif
   1206 	lfs_updatemeta(sp);
   1207 	sp->vp = NULL;
   1208 	return count;
   1209 }
   1210 
   1211 #if DEBUG
   1212 # define DEBUG_OOFF(n) do {						\
   1213 	if (ooff == 0) {						\
   1214 		printf("lfs_updatemeta[%d]: warning: writing "		\
   1215 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1216 			", was 0x0 (or %" PRId64 ")\n",			\
   1217 			(n), ip->i_number, lbn, ndaddr, daddr);		\
   1218 	}								\
   1219 } while(0)
   1220 #else
   1221 # define DEBUG_OOFF(n)
   1222 #endif
   1223 
   1224 /*
   1225  * Change the given block's address to ndaddr, finding its previous
   1226  * location using ufs_bmaparray().
   1227  *
   1228  * Account for this change in the segment table.
   1229  */
   1230 void
   1231 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
   1232 		  int32_t ndaddr, int size)
   1233 {
   1234 	SEGUSE *sup;
   1235 	struct buf *bp;
   1236 	struct indir a[NIADDR + 2], *ap;
   1237 	struct inode *ip;
   1238 	struct vnode *vp;
   1239 	daddr_t daddr, ooff;
   1240 	int num, error;
   1241 	int bb, osize, obb;
   1242 
   1243 	vp = sp->vp;
   1244 	ip = VTOI(vp);
   1245 
   1246 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
   1247 	if (error)
   1248 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1249 	if (daddr > 0)
   1250 		daddr = dbtofsb(fs, daddr);
   1251 
   1252 	bb = fragstofsb(fs, numfrags(fs, size));
   1253 	switch (num) {
   1254 	    case 0:
   1255 		    ooff = ip->i_ffs_db[lbn];
   1256 		    DEBUG_OOFF(0);
   1257 		    if (ooff == UNWRITTEN)
   1258 			    ip->i_ffs_blocks += bb;
   1259 		    else {
   1260 			    /* possible fragment truncation or extension */
   1261 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1262 			    ip->i_ffs_blocks += (bb - obb);
   1263 		    }
   1264 		    ip->i_ffs_db[lbn] = ndaddr;
   1265 		    break;
   1266 	    case 1:
   1267 		    ooff = ip->i_ffs_ib[a[0].in_off];
   1268 		    DEBUG_OOFF(1);
   1269 		    if (ooff == UNWRITTEN)
   1270 			    ip->i_ffs_blocks += bb;
   1271 		    ip->i_ffs_ib[a[0].in_off] = ndaddr;
   1272 		    break;
   1273 	    default:
   1274 		    ap = &a[num - 1];
   1275 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1276 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1277 				  ap->in_lbn);
   1278 
   1279 		    /* XXX ondisk32 */
   1280 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1281 		    DEBUG_OOFF(num);
   1282 		    if (ooff == UNWRITTEN)
   1283 			    ip->i_ffs_blocks += bb;
   1284 		    /* XXX ondisk32 */
   1285 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1286 		    (void) VOP_BWRITE(bp);
   1287 	}
   1288 
   1289 	/*
   1290 	 * Though we'd rather it couldn't, this *can* happen right now
   1291 	 * if cleaning blocks and regular blocks coexist.
   1292 	 */
   1293 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1294 
   1295 	/*
   1296 	 * Update segment usage information, based on old size
   1297 	 * and location.
   1298 	 */
   1299 	if (daddr > 0) {
   1300 		u_int32_t oldsn = dtosn(fs, daddr);
   1301 #ifdef DIAGNOSTIC
   1302 		int ndupino = (sp->seg_number == oldsn) ?
   1303 			sp->ndupino : 0;
   1304 #endif
   1305 		if (lbn >= 0 && lbn < NDADDR)
   1306 			osize = ip->i_lfs_fragsize[lbn];
   1307 		else
   1308 			osize = fs->lfs_bsize;
   1309 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1310 #ifdef DIAGNOSTIC
   1311 		if (sup->su_nbytes + DINODE_SIZE * ndupino < osize) {
   1312 			printf("lfs_updatemeta: negative bytes "
   1313 			       "(segment %" PRIu32 " short by %" PRId64
   1314 			       ")\n", dtosn(fs, daddr),
   1315 			       (int64_t)osize -
   1316 			       (DINODE_SIZE * sp->ndupino +
   1317 				sup->su_nbytes));
   1318 			printf("lfs_updatemeta: ino %d, lbn %" PRId64
   1319 			       ", addr = 0x%" PRIx64 "\n",
   1320 			       VTOI(sp->vp)->i_number, lbn, daddr);
   1321 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1322 			panic("lfs_updatemeta: negative bytes");
   1323 			sup->su_nbytes = osize - DINODE_SIZE * sp->ndupino;
   1324 		}
   1325 #endif
   1326 #ifdef DEBUG_SU_NBYTES
   1327 		printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1328 		       " db 0x%" PRIx64 "\n",
   1329 		       dtosn(fs, daddr), osize,
   1330 		       VTOI(sp->vp)->i_number, lbn, daddr);
   1331 #endif
   1332 		sup->su_nbytes -= osize;
   1333 		if (!(bp->b_flags & B_GATHERED))
   1334 			fs->lfs_flags |= LFS_IFDIRTY;
   1335 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1336 	}
   1337 	/*
   1338 	 * Now that this block has a new address, and its old
   1339 	 * segment no longer owns it, we can forget about its
   1340 	 * old size.
   1341 	 */
   1342 	if (lbn >= 0 && lbn < NDADDR)
   1343 		ip->i_lfs_fragsize[lbn] = size;
   1344 }
   1345 
   1346 /*
   1347  * Update the metadata that points to the blocks listed in the FINFO
   1348  * array.
   1349  */
   1350 void
   1351 lfs_updatemeta(struct segment *sp)
   1352 {
   1353 	struct buf *sbp;
   1354 	struct lfs *fs;
   1355 	struct vnode *vp;
   1356 	daddr_t lbn;
   1357 	int i, nblocks, num;
   1358 	int bb;
   1359 	int bytesleft, size;
   1360 
   1361 	vp = sp->vp;
   1362 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1363 	KASSERT(nblocks >= 0);
   1364 	if (vp == NULL || nblocks == 0)
   1365 		return;
   1366 
   1367 	/*
   1368 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1369 	 * Correct for this. (XXX we should be able to keep track of these.)
   1370 	 */
   1371 	fs = sp->fs;
   1372 	for (i = 0; i < nblocks; i++) {
   1373 		if (sp->start_bpp[i] == NULL) {
   1374 			printf("nblocks = %d, not %d\n", i, nblocks);
   1375 			nblocks = i;
   1376 			break;
   1377 		}
   1378 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1379 		nblocks -= num - 1;
   1380 	}
   1381 
   1382 	/*
   1383 	 * Sort the blocks.
   1384 	 *
   1385 	 * We have to sort even if the blocks come from the
   1386 	 * cleaner, because there might be other pending blocks on the
   1387 	 * same inode...and if we don't sort, and there are fragments
   1388 	 * present, blocks may be written in the wrong place.
   1389 	 */
   1390 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1391 
   1392 	/*
   1393 	 * Record the length of the last block in case it's a fragment.
   1394 	 * If there are indirect blocks present, they sort last.  An
   1395 	 * indirect block will be lfs_bsize and its presence indicates
   1396 	 * that you cannot have fragments.
   1397 	 *
   1398 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1399 	 * XXX a later indirect block.	This will continue to be
   1400 	 * XXX true until lfs_markv is fixed to do everything with
   1401 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1402 	 */
   1403 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1404 		fs->lfs_bmask) + 1;
   1405 
   1406 	/*
   1407 	 * Assign disk addresses, and update references to the logical
   1408 	 * block and the segment usage information.
   1409 	 */
   1410 	for (i = nblocks; i--; ++sp->start_bpp) {
   1411 		sbp = *sp->start_bpp;
   1412 		lbn = *sp->start_lbp;
   1413 
   1414 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1415 
   1416 		/*
   1417 		 * If we write a frag in the wrong place, the cleaner won't
   1418 		 * be able to correctly identify its size later, and the
   1419 		 * segment will be uncleanable.	 (Even worse, it will assume
   1420 		 * that the indirect block that actually ends the list
   1421 		 * is of a smaller size!)
   1422 		 */
   1423 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1424 			panic("lfs_updatemeta: fragment is not last block");
   1425 
   1426 		/*
   1427 		 * For each subblock in this possibly oversized block,
   1428 		 * update its address on disk.
   1429 		 */
   1430 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1431 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1432 		     bytesleft -= fs->lfs_bsize) {
   1433 			size = MIN(bytesleft, fs->lfs_bsize);
   1434 			bb = fragstofsb(fs, numfrags(fs, size));
   1435 			lbn = *sp->start_lbp++;
   1436 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
   1437 			fs->lfs_offset += bb;
   1438 		}
   1439 
   1440 	}
   1441 }
   1442 
   1443 /*
   1444  * Start a new segment.
   1445  */
   1446 int
   1447 lfs_initseg(struct lfs *fs)
   1448 {
   1449 	struct segment *sp;
   1450 	SEGUSE *sup;
   1451 	SEGSUM *ssp;
   1452 	struct buf *bp, *sbp;
   1453 	int repeat;
   1454 
   1455 	sp = fs->lfs_sp;
   1456 
   1457 	repeat = 0;
   1458 
   1459 	/* Advance to the next segment. */
   1460 	if (!LFS_PARTIAL_FITS(fs)) {
   1461 		/* lfs_avail eats the remaining space */
   1462 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1463 						   fs->lfs_curseg);
   1464 		/* Wake up any cleaning procs waiting on this file system. */
   1465 		wakeup(&lfs_allclean_wakeup);
   1466 		wakeup(&fs->lfs_nextseg);
   1467 		lfs_newseg(fs);
   1468 		repeat = 1;
   1469 		fs->lfs_offset = fs->lfs_curseg;
   1470 
   1471 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1472 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1473 
   1474 		/*
   1475 		 * If the segment contains a superblock, update the offset
   1476 		 * and summary address to skip over it.
   1477 		 */
   1478 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1479 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1480 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1481 			sp->seg_bytes_left -= LFS_SBPAD;
   1482 		}
   1483 		brelse(bp);
   1484 		/* Segment zero could also contain the labelpad */
   1485 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1486 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1487 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1488 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1489 		}
   1490 	} else {
   1491 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1492 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1493 				      (fs->lfs_offset - fs->lfs_curseg));
   1494 	}
   1495 	fs->lfs_lastpseg = fs->lfs_offset;
   1496 
   1497 	/* Record first address of this partial segment */
   1498 	if (sp->seg_flags & SEGM_CLEAN) {
   1499 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1500 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1501 			/* "1" is the artificial inc in lfs_seglock */
   1502 			while (fs->lfs_iocount > 1) {
   1503 				tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0);
   1504 			}
   1505 			fs->lfs_cleanind = 0;
   1506 		}
   1507 	}
   1508 
   1509 	sp->fs = fs;
   1510 	sp->ibp = NULL;
   1511 	sp->idp = NULL;
   1512 	sp->ninodes = 0;
   1513 	sp->ndupino = 0;
   1514 
   1515 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
   1516 	sp->cbpp = sp->bpp;
   1517 	sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1518 				     fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1519 	sp->segsum = (*sp->cbpp)->b_data;
   1520 	memset(sp->segsum, 0, fs->lfs_sumsize);
   1521 	sp->start_bpp = ++sp->cbpp;
   1522 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1523 
   1524 	/* Set point to SEGSUM, initialize it. */
   1525 	ssp = sp->segsum;
   1526 	ssp->ss_next = fs->lfs_nextseg;
   1527 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1528 	ssp->ss_magic = SS_MAGIC;
   1529 
   1530 	/* Set pointer to first FINFO, initialize it. */
   1531 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1532 	sp->fip->fi_nblocks = 0;
   1533 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1534 	sp->fip->fi_lastlength = 0;
   1535 
   1536 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1537 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1538 
   1539 	return (repeat);
   1540 }
   1541 
   1542 /*
   1543  * Return the next segment to write.
   1544  */
   1545 void
   1546 lfs_newseg(struct lfs *fs)
   1547 {
   1548 	CLEANERINFO *cip;
   1549 	SEGUSE *sup;
   1550 	struct buf *bp;
   1551 	int curseg, isdirty, sn;
   1552 
   1553 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1554 #ifdef DEBUG_SU_NBYTES
   1555 	printf("lfs_newseg: seg %d := 0 in newseg\n",	/* XXXDEBUG */
   1556 	       dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
   1557 #endif
   1558 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1559 	sup->su_nbytes = 0;
   1560 	sup->su_nsums = 0;
   1561 	sup->su_ninos = 0;
   1562 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1563 
   1564 	LFS_CLEANERINFO(cip, fs, bp);
   1565 	--cip->clean;
   1566 	++cip->dirty;
   1567 	fs->lfs_nclean = cip->clean;
   1568 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1569 
   1570 	fs->lfs_lastseg = fs->lfs_curseg;
   1571 	fs->lfs_curseg = fs->lfs_nextseg;
   1572 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1573 		sn = (sn + 1) % fs->lfs_nseg;
   1574 		if (sn == curseg)
   1575 			panic("lfs_nextseg: no clean segments");
   1576 		LFS_SEGENTRY(sup, fs, sn, bp);
   1577 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1578 		/* Check SEGUSE_EMPTY as we go along */
   1579 		if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY))
   1580 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1581 		else
   1582 			brelse(bp);
   1583 
   1584 		if (!isdirty)
   1585 			break;
   1586 	}
   1587 
   1588 	++fs->lfs_nactive;
   1589 	fs->lfs_nextseg = sntod(fs, sn);
   1590 	if (lfs_dostats) {
   1591 		++lfs_stats.segsused;
   1592 	}
   1593 }
   1594 
   1595 #define BQUEUES 4 /* XXX */
   1596 #define BQ_EMPTY 3 /* XXX */
   1597 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
   1598 extern struct simplelock bqueue_slock;
   1599 
   1600 #define	BUFHASH(dvp, lbn)	\
   1601 	(&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
   1602 extern LIST_HEAD(bufhashhdr, buf) invalhash;
   1603 /*
   1604  * Insq/Remq for the buffer hash lists.
   1605  */
   1606 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
   1607 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
   1608 
   1609 static struct buf *
   1610 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1611 {
   1612 	struct lfs_cluster *cl;
   1613 	struct buf **bpp, *bp;
   1614 	int s;
   1615 
   1616 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1617 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1618 	memset(cl, 0, sizeof(*cl));
   1619 	cl->fs = fs;
   1620 	cl->bpp = bpp;
   1621 	cl->bufcount = 0;
   1622 	cl->bufsize = 0;
   1623 
   1624 	/* If this segment is being written synchronously, note that */
   1625 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1626 		cl->flags |= LFS_CL_SYNC;
   1627 		cl->seg = fs->lfs_sp;
   1628 		++cl->seg->seg_iocount;
   1629 		/* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
   1630 	}
   1631 
   1632 	/* Get an empty buffer header, or maybe one with something on it */
   1633 	s = splbio();
   1634 	simple_lock(&bqueue_slock);
   1635 	if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
   1636 		simple_lock(&bp->b_interlock);
   1637 		bremfree(bp);
   1638 		/* clear out various other fields */
   1639 		bp->b_flags = B_BUSY;
   1640 		bp->b_dev = NODEV;
   1641 		bp->b_blkno = bp->b_lblkno = 0;
   1642 		bp->b_error = 0;
   1643 		bp->b_resid = 0;
   1644 		bp->b_bcount = 0;
   1645 
   1646 		/* nuke any credentials we were holding */
   1647 		/* XXXXXX */
   1648 
   1649 		bremhash(bp);
   1650 
   1651 		/* disassociate us from our vnode, if we had one... */
   1652 		if (bp->b_vp)
   1653 			brelvp(bp);
   1654 	}
   1655 	while (!bp)
   1656 		bp = getnewbuf(0, 0);
   1657 	bgetvp(vp, bp);
   1658 	binshash(bp,&invalhash);
   1659 	simple_unlock(&bp->b_interlock);
   1660 	simple_unlock(&bqueue_slock);
   1661 	splx(s);
   1662 	bp->b_bcount = 0;
   1663 	bp->b_blkno = bp->b_lblkno = addr;
   1664 
   1665 	bp->b_flags |= B_CALL;
   1666 	bp->b_iodone = lfs_cluster_callback;
   1667 	cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
   1668 	bp->b_saveaddr = (caddr_t)cl;
   1669 
   1670 	return bp;
   1671 }
   1672 
   1673 int
   1674 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1675 {
   1676 	struct buf **bpp, *bp, *cbp, *newbp;
   1677 	SEGUSE *sup;
   1678 	SEGSUM *ssp;
   1679 	dev_t i_dev;
   1680 	char *datap, *dp;
   1681 	int i, s;
   1682 	int do_again, nblocks, byteoffset;
   1683 	size_t el_size;
   1684 	struct lfs_cluster *cl;
   1685 	int (*strategy)(void *);
   1686 	struct vop_strategy_args vop_strategy_a;
   1687 	u_short ninos;
   1688 	struct vnode *devvp;
   1689 	char *p;
   1690 	struct vnode *vp;
   1691 	int32_t *daddrp;	/* XXX ondisk32 */
   1692 	int changed;
   1693 #if defined(DEBUG) && defined(LFS_PROPELLER)
   1694 	static int propeller;
   1695 	char propstring[4] = "-\\|/";
   1696 
   1697 	printf("%c\b",propstring[propeller++]);
   1698 	if (propeller == 4)
   1699 		propeller = 0;
   1700 #endif
   1701 
   1702 	/*
   1703 	 * If there are no buffers other than the segment summary to write
   1704 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1705 	 * even if there aren't any buffers, you need to write the superblock.
   1706 	 */
   1707 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1708 		return (0);
   1709 
   1710 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1711 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1712 
   1713 	/* Update the segment usage information. */
   1714 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1715 
   1716 	/* Loop through all blocks, except the segment summary. */
   1717 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1718 		if ((*bpp)->b_vp != devvp) {
   1719 			sup->su_nbytes += (*bpp)->b_bcount;
   1720 #ifdef DEBUG_SU_NBYTES
   1721 		printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
   1722 		    " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
   1723 		    VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1724 		    (*bpp)->b_blkno);
   1725 #endif
   1726 		}
   1727 	}
   1728 
   1729 	ssp = (SEGSUM *)sp->segsum;
   1730 
   1731 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1732 #ifdef DEBUG_SU_NBYTES
   1733 	printf("seg %d += %d for %d inodes\n",	 /* XXXDEBUG */
   1734 	       sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
   1735 	       ssp->ss_ninos);
   1736 #endif
   1737 	sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
   1738 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1739 	if (fs->lfs_version == 1)
   1740 		sup->su_olastmod = time.tv_sec;
   1741 	else
   1742 		sup->su_lastmod = time.tv_sec;
   1743 	sup->su_ninos += ninos;
   1744 	++sup->su_nsums;
   1745 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
   1746 							 fs->lfs_ibsize));
   1747 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1748 
   1749 	do_again = !(bp->b_flags & B_GATHERED);
   1750 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1751 
   1752 	/*
   1753 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1754 	 * the checksum computation and the actual write.
   1755 	 *
   1756 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1757 	 * there are any, replace them with copies that have UNASSIGNED
   1758 	 * instead.
   1759 	 */
   1760 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1761 		++bpp;
   1762 		bp = *bpp;
   1763 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1764 			bp->b_flags |= B_BUSY;
   1765 			continue;
   1766 		}
   1767 	    again:
   1768 		s = splbio();
   1769 		if (bp->b_flags & B_BUSY) {
   1770 #ifdef DEBUG
   1771 			printf("lfs_writeseg: avoiding potential data summary "
   1772 			       "corruption for ino %d, lbn %" PRId64 "\n",
   1773 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
   1774 #endif
   1775 			bp->b_flags |= B_WANTED;
   1776 			tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
   1777 			splx(s);
   1778 			goto again;
   1779 		}
   1780 		bp->b_flags |= B_BUSY;
   1781 		splx(s);
   1782 		/*
   1783 		 * Check and replace indirect block UNWRITTEN bogosity.
   1784 		 * XXX See comment in lfs_writefile.
   1785 		 */
   1786 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1787 		   VTOI(bp->b_vp)->i_ffs_blocks !=
   1788 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1789 #ifdef DEBUG_LFS
   1790 			printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1791 			       VTOI(bp->b_vp)->i_number,
   1792 			       VTOI(bp->b_vp)->i_lfs_effnblks,
   1793 			       VTOI(bp->b_vp)->i_ffs_blocks);
   1794 #endif
   1795 			/* Make a copy we'll make changes to */
   1796 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1797 					   bp->b_bcount, LFS_NB_IBLOCK);
   1798 			newbp->b_blkno = bp->b_blkno;
   1799 			memcpy(newbp->b_data, bp->b_data,
   1800 			       newbp->b_bcount);
   1801 
   1802 			changed = 0;
   1803 			/* XXX ondisk32 */
   1804 			for (daddrp = (int32_t *)(newbp->b_data);
   1805 			     daddrp < (int32_t *)(newbp->b_data +
   1806 						  newbp->b_bcount); daddrp++) {
   1807 				if (*daddrp == UNWRITTEN) {
   1808 #ifdef DEBUG_LFS
   1809 					off_t doff;
   1810 					int32_t ioff;
   1811 
   1812 					ioff = daddrp - (int32_t *)(newbp->b_data);
   1813 					doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize;
   1814 					printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n",
   1815 					       VTOI(bp->b_vp)->i_number,
   1816 					       bp->b_lblkno, ioff, doff);
   1817 					if (bp->b_vp->v_type == VREG) {
   1818 						/*
   1819 						 * What is up with this page?
   1820 						 */
   1821 						struct vm_page *pg;
   1822 						for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) {
   1823 							pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
   1824 							if (pg == NULL)
   1825 								printf("  page at %" PRIx64 " is NULL\n", doff);
   1826 							else
   1827 								printf("  page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags);
   1828 						}
   1829 					}
   1830 #endif /* DEBUG_LFS */
   1831 					++changed;
   1832 					*daddrp = 0;
   1833 				}
   1834 			}
   1835 			/*
   1836 			 * Get rid of the old buffer.  Don't mark it clean,
   1837 			 * though, if it still has dirty data on it.
   1838 			 */
   1839 			if (changed) {
   1840 #ifdef DEBUG_LFS
   1841 				printf("lfs_writeseg: replacing UNWRITTEN(%d):"
   1842 					" bp = %p newbp = %p\n", changed, bp,
   1843 					newbp);
   1844 #endif
   1845 				*bpp = newbp;
   1846 				bp->b_flags &= ~(B_ERROR | B_GATHERED | B_DONE);
   1847 				if (bp->b_flags & B_CALL) {
   1848 					printf("lfs_writeseg: indir bp should not be B_CALL\n");
   1849 					s = splbio();
   1850 					biodone(bp);
   1851 					splx(s);
   1852 					bp = NULL;
   1853 				} else {
   1854 					/* Still on free list, leave it there */
   1855 					s = splbio();
   1856 					bp->b_flags &= ~B_BUSY;
   1857 					if (bp->b_flags & B_WANTED)
   1858 						wakeup(bp);
   1859 					splx(s);
   1860 					/*
   1861 					 * We have to re-decrement lfs_avail
   1862 					 * since this block is going to come
   1863 					 * back around to us in the next
   1864 					 * segment.
   1865 					 */
   1866 					fs->lfs_avail -= btofsb(fs, bp->b_bcount);
   1867 				}
   1868 			} else {
   1869 				lfs_freebuf(fs, newbp);
   1870 			}
   1871 		}
   1872 	}
   1873 	/*
   1874 	 * Compute checksum across data and then across summary; the first
   1875 	 * block (the summary block) is skipped.  Set the create time here
   1876 	 * so that it's guaranteed to be later than the inode mod times.
   1877 	 *
   1878 	 * XXX
   1879 	 * Fix this to do it inline, instead of malloc/copy.
   1880 	 */
   1881 	datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1882 	if (fs->lfs_version == 1)
   1883 		el_size = sizeof(u_long);
   1884 	else
   1885 		el_size = sizeof(u_int32_t);
   1886 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   1887 		++bpp;
   1888 		/* Loop through gop_write cluster blocks */
   1889 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   1890 		     byteoffset += fs->lfs_bsize) {
   1891 #ifdef LFS_USE_B_INVAL
   1892 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   1893 			    (B_CALL | B_INVAL)) {
   1894 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   1895 					   byteoffset, dp, el_size)) {
   1896 					panic("lfs_writeseg: copyin failed [1]: "
   1897 						"ino %d blk %" PRId64,
   1898 						VTOI((*bpp)->b_vp)->i_number,
   1899 						(*bpp)->b_lblkno);
   1900 				}
   1901 			} else
   1902 #endif /* LFS_USE_B_INVAL */
   1903 			{
   1904 				memcpy(dp, (*bpp)->b_data + byteoffset,
   1905 				       el_size);
   1906 			}
   1907 			dp += el_size;
   1908 		}
   1909 	}
   1910 	if (fs->lfs_version == 1)
   1911 		ssp->ss_ocreate = time.tv_sec;
   1912 	else {
   1913 		ssp->ss_create = time.tv_sec;
   1914 		ssp->ss_serial = ++fs->lfs_serial;
   1915 		ssp->ss_ident  = fs->lfs_ident;
   1916 	}
   1917 	ssp->ss_datasum = cksum(datap, dp - datap);
   1918 	ssp->ss_sumsum =
   1919 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   1920 	pool_put(&fs->lfs_bpppool, datap);
   1921 	datap = dp = NULL;
   1922 #ifdef DIAGNOSTIC
   1923 	if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
   1924 		panic("lfs_writeseg: No diskspace for summary");
   1925 #endif
   1926 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   1927 			  btofsb(fs, fs->lfs_sumsize));
   1928 
   1929 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
   1930 
   1931 	/*
   1932 	 * When we simply write the blocks we lose a rotation for every block
   1933 	 * written.  To avoid this problem, we cluster the buffers into a
   1934 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   1935 	 * devices can handle, use that for the size of the chunks.
   1936 	 *
   1937 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   1938 	 * don't bother to copy into other clusters.
   1939 	 */
   1940 
   1941 #define CHUNKSIZE MAXPHYS
   1942 
   1943 	if (devvp == NULL)
   1944 		panic("devvp is NULL");
   1945 	for (bpp = sp->bpp, i = nblocks; i;) {
   1946 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   1947 		cl = (struct lfs_cluster *)cbp->b_saveaddr;
   1948 
   1949 		cbp->b_dev = i_dev;
   1950 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1951 		cbp->b_bcount = 0;
   1952 
   1953 		cl->olddata = cbp->b_data;
   1954 #if defined(DEBUG) && defined(DIAGNOSTIC)
   1955 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   1956 		    / sizeof(int32_t)) {
   1957 			panic("lfs_writeseg: real bpp overwrite");
   1958 		}
   1959 		if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
   1960 			panic("lfs_writeseg: theoretical bpp overwrite");
   1961 		}
   1962 #endif
   1963 
   1964 		/*
   1965 		 * Construct the cluster.
   1966 		 */
   1967 		++fs->lfs_iocount;
   1968 		while(i && cbp->b_bcount < CHUNKSIZE) {
   1969 			bp = *bpp;
   1970 
   1971 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1972 				break;
   1973 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   1974 				break;
   1975 
   1976 			/* Clusters from GOP_WRITE are expedited */
   1977 			if (bp->b_bcount > fs->lfs_bsize) {
   1978 				if (cbp->b_bcount > 0)
   1979 					/* Put in its own buffer */
   1980 					break;
   1981 				else {
   1982 					cbp->b_data = bp->b_data;
   1983 				}
   1984 			} else if (cbp->b_bcount == 0) {
   1985 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   1986 							     LFS_NB_CLUSTER);
   1987 				cl->flags |= LFS_CL_MALLOC;
   1988 			}
   1989 #ifdef DIAGNOSTIC
   1990 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   1991 					      btodb(bp->b_bcount - 1))) !=
   1992 			    sp->seg_number) {
   1993 				printf("blk size %ld daddr %" PRIx64 " not in seg %d\n",
   1994 					bp->b_bcount, bp->b_blkno,
   1995 					sp->seg_number);
   1996 				panic("segment overwrite");
   1997 			}
   1998 #endif
   1999 
   2000 #ifdef LFS_USE_B_INVAL
   2001 			/*
   2002 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2003 			 * We need to copy the data from user space rather than
   2004 			 * from the buffer indicated.
   2005 			 * XXX == what do I do on an error?
   2006 			 */
   2007 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   2008 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2009 					panic("lfs_writeseg: copyin failed [2]");
   2010 			} else
   2011 #endif /* LFS_USE_B_INVAL */
   2012 			if (cl->flags & LFS_CL_MALLOC) {
   2013 				bcopy(bp->b_data, p, bp->b_bcount);
   2014 			}
   2015 
   2016 			p += bp->b_bcount;
   2017 			cbp->b_bcount += bp->b_bcount;
   2018 			cl->bufsize += bp->b_bcount;
   2019 
   2020 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   2021 			cl->bpp[cl->bufcount++] = bp;
   2022 			vp = bp->b_vp;
   2023 			s = splbio();
   2024 			V_INCR_NUMOUTPUT(vp);
   2025 			splx(s);
   2026 
   2027 			bpp++;
   2028 			i--;
   2029 		}
   2030 		s = splbio();
   2031 		V_INCR_NUMOUTPUT(devvp);
   2032 		splx(s);
   2033 		vop_strategy_a.a_desc = VDESC(vop_strategy);
   2034 		vop_strategy_a.a_bp = cbp;
   2035 		(strategy)(&vop_strategy_a);
   2036 		curproc->p_stats->p_ru.ru_oublock++;
   2037 	}
   2038 
   2039 	if (lfs_dostats) {
   2040 		++lfs_stats.psegwrites;
   2041 		lfs_stats.blocktot += nblocks - 1;
   2042 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2043 			++lfs_stats.psyncwrites;
   2044 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2045 			++lfs_stats.pcleanwrites;
   2046 			lfs_stats.cleanblocks += nblocks - 1;
   2047 		}
   2048 	}
   2049 	return (lfs_initseg(fs) || do_again);
   2050 }
   2051 
   2052 void
   2053 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2054 {
   2055 	struct buf *bp;
   2056 	dev_t i_dev;
   2057 	int (*strategy)(void *);
   2058 	int s;
   2059 	struct vop_strategy_args vop_strategy_a;
   2060 
   2061 	/*
   2062 	 * If we can write one superblock while another is in
   2063 	 * progress, we risk not having a complete checkpoint if we crash.
   2064 	 * So, block here if a superblock write is in progress.
   2065 	 */
   2066 	s = splbio();
   2067 	while (fs->lfs_sbactive) {
   2068 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   2069 	}
   2070 	fs->lfs_sbactive = daddr;
   2071 	splx(s);
   2072 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   2073 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
   2074 
   2075 	/* Set timestamp of this version of the superblock */
   2076 	if (fs->lfs_version == 1)
   2077 		fs->lfs_otstamp = time.tv_sec;
   2078 	fs->lfs_tstamp = time.tv_sec;
   2079 
   2080 	/* Checksum the superblock and copy it into a buffer. */
   2081 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2082 	bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2083 	memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs));
   2084 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2085 
   2086 	bp->b_dev = i_dev;
   2087 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2088 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2089 	bp->b_iodone = lfs_supercallback;
   2090 	/* XXX KS - same nasty hack as above */
   2091 	bp->b_saveaddr = (caddr_t)fs;
   2092 
   2093 	vop_strategy_a.a_desc = VDESC(vop_strategy);
   2094 	vop_strategy_a.a_bp = bp;
   2095 	curproc->p_stats->p_ru.ru_oublock++;
   2096 	s = splbio();
   2097 	V_INCR_NUMOUTPUT(bp->b_vp);
   2098 	splx(s);
   2099 	++fs->lfs_iocount;
   2100 	(strategy)(&vop_strategy_a);
   2101 }
   2102 
   2103 /*
   2104  * Logical block number match routines used when traversing the dirty block
   2105  * chain.
   2106  */
   2107 int
   2108 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2109 {
   2110 	return LFS_IS_MALLOC_BUF(bp);
   2111 }
   2112 
   2113 #if 0
   2114 int
   2115 lfs_match_real(struct lfs *fs, struct buf *bp)
   2116 {
   2117 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2118 }
   2119 #endif
   2120 
   2121 int
   2122 lfs_match_data(struct lfs *fs, struct buf *bp)
   2123 {
   2124 	return (bp->b_lblkno >= 0);
   2125 }
   2126 
   2127 int
   2128 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2129 {
   2130 	daddr_t lbn;
   2131 
   2132 	lbn = bp->b_lblkno;
   2133 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2134 }
   2135 
   2136 int
   2137 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2138 {
   2139 	daddr_t lbn;
   2140 
   2141 	lbn = bp->b_lblkno;
   2142 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2143 }
   2144 
   2145 int
   2146 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2147 {
   2148 	daddr_t lbn;
   2149 
   2150 	lbn = bp->b_lblkno;
   2151 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2152 }
   2153 
   2154 /*
   2155  * XXX - The only buffers that are going to hit these functions are the
   2156  * segment write blocks, or the segment summaries, or the superblocks.
   2157  *
   2158  * All of the above are created by lfs_newbuf, and so do not need to be
   2159  * released via brelse.
   2160  */
   2161 void
   2162 lfs_callback(struct buf *bp)
   2163 {
   2164 	struct lfs *fs;
   2165 
   2166 	fs = (struct lfs *)bp->b_saveaddr;
   2167 	lfs_freebuf(fs, bp);
   2168 }
   2169 
   2170 static void
   2171 lfs_super_aiodone(struct buf *bp)
   2172 {
   2173 	struct lfs *fs;
   2174 
   2175 	fs = (struct lfs *)bp->b_saveaddr;
   2176 	fs->lfs_sbactive = 0;
   2177 	wakeup(&fs->lfs_sbactive);
   2178 	if (--fs->lfs_iocount <= 1)
   2179 		wakeup(&fs->lfs_iocount);
   2180 	lfs_freebuf(fs, bp);
   2181 }
   2182 
   2183 static void
   2184 lfs_cluster_aiodone(struct buf *bp)
   2185 {
   2186 	struct lfs_cluster *cl;
   2187 	struct lfs *fs;
   2188 	struct buf *tbp, *fbp;
   2189 	struct vnode *vp, *devvp;
   2190 	struct inode *ip;
   2191 	int s, error=0;
   2192 	char *cp;
   2193 	extern int locked_queue_count;
   2194 	extern long locked_queue_bytes;
   2195 
   2196 	if(bp->b_flags & B_ERROR)
   2197 		error = bp->b_error;
   2198 
   2199 	cl = (struct lfs_cluster *)bp->b_saveaddr;
   2200 	fs = cl->fs;
   2201 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2202 	bp->b_saveaddr = cl->saveaddr;
   2203 
   2204 	cp = (char *)bp->b_data + cl->bufsize;
   2205 	/* Put the pages back, and release the buffer */
   2206 	while(cl->bufcount--) {
   2207 		tbp = cl->bpp[cl->bufcount];
   2208 		if(error) {
   2209 			tbp->b_flags |= B_ERROR;
   2210 			tbp->b_error = error;
   2211 		}
   2212 
   2213 		/*
   2214 		 * We're done with tbp.	 If it has not been re-dirtied since
   2215 		 * the cluster was written, free it.  Otherwise, keep it on
   2216 		 * the locked list to be written again.
   2217 		 */
   2218 		vp = tbp->b_vp;
   2219 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2220 			LFS_UNLOCK_BUF(tbp);
   2221 #if 0
   2222 		else if (vp != devvp)
   2223 			printf("dirtied while busy?! bp %p, ino %d, lbn %d\n",
   2224 				tbp, vp ? VTOI(vp)->i_number : -1,
   2225 				tbp->b_lblkno);
   2226 #endif
   2227 		tbp->b_flags &= ~B_GATHERED;
   2228 
   2229 		LFS_BCLEAN_LOG(fs, tbp);
   2230 
   2231 		if(!(tbp->b_flags & B_CALL)) {
   2232 			bremfree(tbp);
   2233 			s = splbio();
   2234 			if(vp)
   2235 				reassignbuf(tbp, vp);
   2236 			splx(s);
   2237 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2238 		}
   2239 #ifdef DIAGNOSTIC
   2240 		if (tbp->b_flags & B_DONE) {
   2241 			printf("blk %d biodone already (flags %lx)\n",
   2242 				cl->bufcount, (long)tbp->b_flags);
   2243 		}
   2244 #endif
   2245 		if (tbp->b_flags & (B_BUSY | B_CALL)) {
   2246 			if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2247 				/* printf("flags 0x%lx\n", tbp->b_flags); */
   2248 				/*
   2249 				 * A buffer from the page daemon.
   2250 				 * We use the same iodone as it does,
   2251 				 * so we must manually disassociate its
   2252 				 * buffers from the vp.
   2253 				 */
   2254 				if (tbp->b_vp) {
   2255 					/* This is just silly */
   2256 					s = splbio();
   2257 					brelvp(tbp);
   2258 					tbp->b_vp = vp;
   2259 					splx(s);
   2260 				}
   2261 				/* Put it back the way it was */
   2262 				tbp->b_flags |= B_ASYNC;
   2263 				/* Master buffers have B_AGE */
   2264 				if (tbp->b_private == tbp)
   2265 					tbp->b_flags |= B_AGE;
   2266 			}
   2267 			s = splbio();
   2268 			biodone(tbp);
   2269 
   2270 			/*
   2271 			 * If this is the last block for this vnode, but
   2272 			 * there are other blocks on its dirty list,
   2273 			 * set IN_MODIFIED/IN_CLEANING depending on what
   2274 			 * sort of block.  Only do this for our mount point,
   2275 			 * not for, e.g., inode blocks that are attached to
   2276 			 * the devvp.
   2277 			 * XXX KS - Shouldn't we set *both* if both types
   2278 			 * of blocks are present (traverse the dirty list?)
   2279 			 */
   2280 			simple_lock(&global_v_numoutput_slock);
   2281 			if (vp != devvp && vp->v_numoutput == 0 &&
   2282 			    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2283 				ip = VTOI(vp);
   2284 #ifdef DEBUG_LFS
   2285 				printf("lfs_cluster_aiodone: marking ino %d\n",
   2286 				       ip->i_number);
   2287 #endif
   2288 				if (LFS_IS_MALLOC_BUF(fbp))
   2289 					LFS_SET_UINO(ip, IN_CLEANING);
   2290 				else
   2291 					LFS_SET_UINO(ip, IN_MODIFIED);
   2292 			}
   2293 			simple_unlock(&global_v_numoutput_slock);
   2294 			splx(s);
   2295 			wakeup(vp);
   2296 
   2297 		}
   2298 	}
   2299 
   2300 	/* Fix up the cluster buffer, and release it */
   2301 	if (cl->flags & LFS_CL_MALLOC)
   2302 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2303 	bp->b_data = cl->olddata;
   2304 	bp->b_bcount = 0;
   2305 	bp->b_iodone = NULL;
   2306 	bp->b_flags &= ~B_DELWRI;
   2307 	bp->b_flags |= B_DONE;
   2308 	s = splbio();
   2309 	reassignbuf(bp, bp->b_vp);
   2310 	splx(s);
   2311 	brelse(bp);
   2312 
   2313 	/* Note i/o done */
   2314 	if (cl->flags & LFS_CL_SYNC) {
   2315 		if (--cl->seg->seg_iocount == 0)
   2316 			wakeup(&cl->seg->seg_iocount);
   2317 		/* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
   2318 	}
   2319 #ifdef DIAGNOSTIC
   2320 	if (fs->lfs_iocount == 0)
   2321 		panic("lfs_cluster_aiodone: zero iocount");
   2322 #endif
   2323 	if (--fs->lfs_iocount <= 1)
   2324 		wakeup(&fs->lfs_iocount);
   2325 
   2326 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2327 	cl->bpp = NULL;
   2328 	pool_put(&fs->lfs_clpool, cl);
   2329 }
   2330 
   2331 static void
   2332 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2333 {
   2334 	/* reset b_iodone for when this is a single-buf i/o. */
   2335 	bp->b_iodone = aiodone;
   2336 
   2337 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2338 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2339 	wakeup(&uvm.aiodoned);
   2340 	simple_unlock(&uvm.aiodoned_lock);
   2341 }
   2342 
   2343 static void
   2344 lfs_cluster_callback(struct buf *bp)
   2345 {
   2346 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2347 }
   2348 
   2349 void
   2350 lfs_supercallback(struct buf *bp)
   2351 {
   2352 	lfs_generic_callback(bp, lfs_super_aiodone);
   2353 }
   2354 
   2355 /*
   2356  * Shellsort (diminishing increment sort) from Data Structures and
   2357  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2358  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2359  * formula (8), page 95.  Roughly O(N^3/2).
   2360  */
   2361 /*
   2362  * This is our own private copy of shellsort because we want to sort
   2363  * two parallel arrays (the array of buffer pointers and the array of
   2364  * logical block numbers) simultaneously.  Note that we cast the array
   2365  * of logical block numbers to a unsigned in this routine so that the
   2366  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2367  */
   2368 
   2369 void
   2370 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2371 {
   2372 	static int __rsshell_increments[] = { 4, 1, 0 };
   2373 	int incr, *incrp, t1, t2;
   2374 	struct buf *bp_temp;
   2375 
   2376 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2377 		for (t1 = incr; t1 < nmemb; ++t1)
   2378 			for (t2 = t1 - incr; t2 >= 0;)
   2379 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2380 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2381 					bp_temp = bp_array[t2];
   2382 					bp_array[t2] = bp_array[t2 + incr];
   2383 					bp_array[t2 + incr] = bp_temp;
   2384 					t2 -= incr;
   2385 				} else
   2386 					break;
   2387 
   2388 	/* Reform the list of logical blocks */
   2389 	incr = 0;
   2390 	for (t1 = 0; t1 < nmemb; t1++) {
   2391 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2392 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2393 		}
   2394 	}
   2395 }
   2396 
   2397 /*
   2398  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   2399  */
   2400 int
   2401 lfs_vref(struct vnode *vp)
   2402 {
   2403 	/*
   2404 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2405 	 * being able to flush all of the pages from this vnode, which
   2406 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2407 	 */
   2408 	if (vp->v_flag & VXLOCK) {
   2409 		if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   2410 			return 0;
   2411 		}
   2412 		return (1);
   2413 	}
   2414 	return (vget(vp, 0));
   2415 }
   2416 
   2417 /*
   2418  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2419  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2420  */
   2421 void
   2422 lfs_vunref(struct vnode *vp)
   2423 {
   2424 	/*
   2425 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2426 	 */
   2427 	if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   2428 		return;
   2429 	}
   2430 
   2431 	simple_lock(&vp->v_interlock);
   2432 #ifdef DIAGNOSTIC
   2433 	if (vp->v_usecount <= 0) {
   2434 		printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
   2435 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2436 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2437 		panic("lfs_vunref: v_usecount<0");
   2438 	}
   2439 #endif
   2440 	vp->v_usecount--;
   2441 	if (vp->v_usecount > 0) {
   2442 		simple_unlock(&vp->v_interlock);
   2443 		return;
   2444 	}
   2445 	/*
   2446 	 * insert at tail of LRU list
   2447 	 */
   2448 	simple_lock(&vnode_free_list_slock);
   2449 	if (vp->v_holdcnt > 0)
   2450 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2451 	else
   2452 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2453 	simple_unlock(&vnode_free_list_slock);
   2454 	simple_unlock(&vp->v_interlock);
   2455 }
   2456 
   2457 /*
   2458  * We use this when we have vnodes that were loaded in solely for cleaning.
   2459  * There is no reason to believe that these vnodes will be referenced again
   2460  * soon, since the cleaning process is unrelated to normal filesystem
   2461  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2462  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2463  * cleaning at the head of the list, instead.
   2464  */
   2465 void
   2466 lfs_vunref_head(struct vnode *vp)
   2467 {
   2468 	simple_lock(&vp->v_interlock);
   2469 #ifdef DIAGNOSTIC
   2470 	if (vp->v_usecount == 0) {
   2471 		panic("lfs_vunref: v_usecount<0");
   2472 	}
   2473 #endif
   2474 	vp->v_usecount--;
   2475 	if (vp->v_usecount > 0) {
   2476 		simple_unlock(&vp->v_interlock);
   2477 		return;
   2478 	}
   2479 	/*
   2480 	 * insert at head of LRU list
   2481 	 */
   2482 	simple_lock(&vnode_free_list_slock);
   2483 	if (vp->v_holdcnt > 0)
   2484 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2485 	else
   2486 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2487 	simple_unlock(&vnode_free_list_slock);
   2488 	simple_unlock(&vp->v_interlock);
   2489 }
   2490 
   2491