lfs_segment.c revision 1.111 1 /* $NetBSD: lfs_segment.c,v 1.111 2003/03/15 06:58:50 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.111 2003/03/15 06:58:50 perseant Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93
94 #include <miscfs/specfs/specdev.h>
95 #include <miscfs/fifofs/fifo.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
109
110 extern int count_lock_queue(void);
111 extern struct simplelock vnode_free_list_slock; /* XXX */
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 fragstofsb((fs), (fs)->lfs_frag))
125
126 void lfs_callback(struct buf *);
127 int lfs_gather(struct lfs *, struct segment *,
128 struct vnode *, int (*)(struct lfs *, struct buf *));
129 int lfs_gatherblock(struct segment *, struct buf *, int *);
130 void lfs_iset(struct inode *, daddr_t, time_t);
131 int lfs_match_fake(struct lfs *, struct buf *);
132 int lfs_match_data(struct lfs *, struct buf *);
133 int lfs_match_dindir(struct lfs *, struct buf *);
134 int lfs_match_indir(struct lfs *, struct buf *);
135 int lfs_match_tindir(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 int lfs_vref(struct vnode *);
142 void lfs_vunref(struct vnode *);
143 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
144 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
145 int lfs_writeseg(struct lfs *, struct segment *);
146 void lfs_writesuper(struct lfs *, daddr_t);
147 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
148 struct segment *sp, int dirops);
149
150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 int lfs_dirvcount = 0; /* # active dirops */
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 extern int locked_queue_count;
160 extern long locked_queue_bytes;
161
162 /* op values to lfs_writevnodes */
163 #define VN_REG 0
164 #define VN_DIROP 1
165 #define VN_EMPTY 2
166 #define VN_CLEAN 3
167
168 #define LFS_MAX_ACTIVE 10
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 TIMEVAL_TO_TIMESPEC(&time, &ts);
183 ip = VTOI(fs->lfs_ivnode);
184 ip->i_ffs_mtime = ts.tv_sec;
185 ip->i_ffs_mtimensec = ts.tv_nsec;
186 }
187
188 /*
189 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
190 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
191 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
192 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
193 */
194
195 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 #if 0
209 int redo;
210 #endif
211
212 ip = VTOI(vp);
213 fs = VFSTOUFS(vp->v_mount)->um_lfs;
214
215 if (ip->i_flag & IN_CLEANING) {
216 #ifdef DEBUG_LFS
217 ivndebug(vp,"vflush/in_cleaning");
218 #endif
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 goto nextbp;
257 }
258 }
259 simple_unlock(&vp->v_interlock);
260 }
261 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
262 tbp = tnbp)
263 {
264 tnbp = LIST_NEXT(tbp, b_vnbufs);
265 if (tbp->b_vp == bp->b_vp
266 && tbp->b_lblkno == bp->b_lblkno
267 && tbp != bp)
268 {
269 fs->lfs_avail += btofsb(fs,
270 bp->b_bcount);
271 wakeup(&fs->lfs_avail);
272 lfs_freebuf(fs, bp);
273 bp = NULL;
274 break;
275 }
276 }
277 nextbp:
278 ;
279 }
280 splx(s);
281 }
282
283 /* If the node is being written, wait until that is done */
284 s = splbio();
285 if (WRITEINPROG(vp)) {
286 #ifdef DEBUG_LFS
287 ivndebug(vp,"vflush/writeinprog");
288 #endif
289 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
290 }
291 splx(s);
292
293 /* Protect against VXLOCK deadlock in vinvalbuf() */
294 lfs_seglock(fs, SEGM_SYNC);
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 /* XXX - seglock, so these buffers can't be gathered, right? */
298 if (ip->i_ffs_mode == 0) {
299 printf("lfs_vflush: ino %d is freed, not flushing\n",
300 ip->i_number);
301 s = splbio();
302 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
303 nbp = LIST_NEXT(bp, b_vnbufs);
304 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
305 fs->lfs_avail += btofsb(fs, bp->b_bcount);
306 wakeup(&fs->lfs_avail);
307 }
308 /* Copied from lfs_writeseg */
309 if (bp->b_flags & B_CALL) {
310 biodone(bp);
311 } else {
312 bremfree(bp);
313 LFS_UNLOCK_BUF(bp);
314 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
315 B_GATHERED);
316 bp->b_flags |= B_DONE;
317 reassignbuf(bp, vp);
318 brelse(bp);
319 }
320 }
321 splx(s);
322 LFS_CLR_UINO(ip, IN_CLEANING);
323 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
324 ip->i_flag &= ~IN_ALLMOD;
325 printf("lfs_vflush: done not flushing ino %d\n",
326 ip->i_number);
327 lfs_segunlock(fs);
328 return 0;
329 }
330
331 SET_FLUSHING(fs,vp);
332 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
333 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
334 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
335 CLR_FLUSHING(fs,vp);
336 lfs_segunlock(fs);
337 return error;
338 }
339 sp = fs->lfs_sp;
340
341 flushed = 0;
342 if (VPISEMPTY(vp)) {
343 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
344 ++flushed;
345 } else if ((ip->i_flag & IN_CLEANING) &&
346 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
347 #ifdef DEBUG_LFS
348 ivndebug(vp,"vflush/clean");
349 #endif
350 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
351 ++flushed;
352 } else if (lfs_dostats) {
353 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
354 ++lfs_stats.vflush_invoked;
355 #ifdef DEBUG_LFS
356 ivndebug(vp,"vflush");
357 #endif
358 }
359
360 #ifdef DIAGNOSTIC
361 /* XXX KS This actually can happen right now, though it shouldn't(?) */
362 if (vp->v_flag & VDIROP) {
363 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
364 /* panic("VDIROP being flushed...this can\'t happen"); */
365 }
366 if (vp->v_usecount < 0) {
367 printf("usecount=%ld\n", (long)vp->v_usecount);
368 panic("lfs_vflush: usecount<0");
369 }
370 #endif
371
372 #if 1 /* XXX */
373 do {
374 do {
375 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
376 lfs_writefile(fs, sp, vp);
377 } while (lfs_writeinode(fs, sp, ip));
378 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
379 #else
380 if (flushed && vp != fs->lfs_ivnode)
381 lfs_writeseg(fs, sp);
382 else do {
383 fs->lfs_flags &= ~LFS_IFDIRTY;
384 lfs_writefile(fs, sp, vp);
385 redo = lfs_writeinode(fs, sp, ip);
386 redo += lfs_writeseg(fs, sp);
387 redo += (fs->lfs_flags & LFS_IFDIRTY);
388 } while (redo && vp == fs->lfs_ivnode);
389 #endif
390 if (lfs_dostats) {
391 ++lfs_stats.nwrites;
392 if (sp->seg_flags & SEGM_SYNC)
393 ++lfs_stats.nsync_writes;
394 if (sp->seg_flags & SEGM_CKP)
395 ++lfs_stats.ncheckpoints;
396 }
397 /*
398 * If we were called from somewhere that has already held the seglock
399 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
400 * the write to complete because we are still locked.
401 * Since lfs_vflush() must return the vnode with no dirty buffers,
402 * we must explicitly wait, if that is the case.
403 *
404 * We compare the iocount against 1, not 0, because it is
405 * artificially incremented by lfs_seglock().
406 */
407 simple_lock(&fs->lfs_interlock);
408 if (fs->lfs_seglock > 1) {
409 simple_unlock(&fs->lfs_interlock);
410 while (fs->lfs_iocount > 1)
411 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
412 "lfs_vflush", 0);
413 } else
414 simple_unlock(&fs->lfs_interlock);
415
416 lfs_segunlock(fs);
417
418 CLR_FLUSHING(fs,vp);
419 return (0);
420 }
421
422 #ifdef DEBUG_LFS_VERBOSE
423 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
424 #else
425 # define vndebug(vp,str)
426 #endif
427
428 int
429 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
430 {
431 struct inode *ip;
432 struct vnode *vp, *nvp;
433 int inodes_written = 0, only_cleaning;
434
435 #ifndef LFS_NO_BACKVP_HACK
436 /* BEGIN HACK */
437 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
438 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
439 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
440
441 /* Find last vnode. */
442 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
443 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
444 vp = LIST_NEXT(vp, v_mntvnodes));
445 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
446 nvp = BACK_VP(vp);
447 #else
448 loop:
449 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
450 nvp = LIST_NEXT(vp, v_mntvnodes);
451 #endif
452 /*
453 * If the vnode that we are about to sync is no longer
454 * associated with this mount point, start over.
455 */
456 if (vp->v_mount != mp) {
457 printf("lfs_writevnodes: starting over\n");
458 goto loop;
459 }
460
461 if (vp->v_type == VNON) {
462 continue;
463 }
464
465 ip = VTOI(vp);
466 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
467 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
468 vndebug(vp,"dirop");
469 continue;
470 }
471
472 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
473 vndebug(vp,"empty");
474 continue;
475 }
476
477 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
478 && vp != fs->lfs_flushvp
479 && !(ip->i_flag & IN_CLEANING)) {
480 vndebug(vp,"cleaning");
481 continue;
482 }
483
484 if (lfs_vref(vp)) {
485 vndebug(vp,"vref");
486 continue;
487 }
488
489 only_cleaning = 0;
490 /*
491 * Write the inode/file if dirty and it's not the IFILE.
492 */
493 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
494 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
495
496 if (ip->i_number != LFS_IFILE_INUM)
497 lfs_writefile(fs, sp, vp);
498 if (!VPISEMPTY(vp)) {
499 if (WRITEINPROG(vp)) {
500 #ifdef DEBUG_LFS
501 ivndebug(vp,"writevnodes/write2");
502 #endif
503 } else if (!(ip->i_flag & IN_ALLMOD)) {
504 #ifdef DEBUG_LFS
505 printf("<%d>",ip->i_number);
506 #endif
507 LFS_SET_UINO(ip, IN_MODIFIED);
508 }
509 }
510 (void) lfs_writeinode(fs, sp, ip);
511 inodes_written++;
512 }
513
514 if (lfs_clean_vnhead && only_cleaning)
515 lfs_vunref_head(vp);
516 else
517 lfs_vunref(vp);
518 }
519 return inodes_written;
520 }
521
522 /*
523 * Do a checkpoint.
524 */
525 int
526 lfs_segwrite(struct mount *mp, int flags)
527 {
528 struct buf *bp;
529 struct inode *ip;
530 struct lfs *fs;
531 struct segment *sp;
532 struct vnode *vp;
533 SEGUSE *segusep;
534 daddr_t ibno;
535 int do_ckp, did_ckp, error, i;
536 int writer_set = 0;
537 int dirty;
538 int redo;
539 int loopcount;
540 int sn;
541
542 fs = VFSTOUFS(mp)->um_lfs;
543
544 if (fs->lfs_ronly)
545 return EROFS;
546
547 lfs_imtime(fs);
548
549 /*
550 * Allocate a segment structure and enough space to hold pointers to
551 * the maximum possible number of buffers which can be described in a
552 * single summary block.
553 */
554 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
555 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
556 sp = fs->lfs_sp;
557
558 /*
559 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
560 * in which case we have to flush *all* buffers off of this vnode.
561 * We don't care about other nodes, but write any non-dirop nodes
562 * anyway in anticipation of another getnewvnode().
563 *
564 * If we're cleaning we only write cleaning and ifile blocks, and
565 * no dirops, since otherwise we'd risk corruption in a crash.
566 */
567 if (sp->seg_flags & SEGM_CLEAN)
568 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
569 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
570 lfs_writevnodes(fs, mp, sp, VN_REG);
571 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
572 while (fs->lfs_dirops)
573 if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
574 "lfs writer", 0)))
575 {
576 printf("segwrite mysterious error\n");
577 /* XXX why not segunlock? */
578 pool_put(&fs->lfs_bpppool, sp->bpp);
579 sp->bpp = NULL;
580 pool_put(&fs->lfs_segpool, sp);
581 sp = fs->lfs_sp = NULL;
582 return (error);
583 }
584 fs->lfs_writer++;
585 writer_set = 1;
586 lfs_writevnodes(fs, mp, sp, VN_DIROP);
587 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
588 }
589 }
590
591 /*
592 * If we are doing a checkpoint, mark everything since the
593 * last checkpoint as no longer ACTIVE.
594 */
595 if (do_ckp) {
596 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
597 --ibno >= fs->lfs_cleansz; ) {
598 dirty = 0;
599 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
600
601 panic("lfs_segwrite: ifile read");
602 segusep = (SEGUSE *)bp->b_data;
603 for (i = fs->lfs_sepb; i > 0; i--) {
604 sn = (ibno - fs->lfs_cleansz) * fs->lfs_sepb +
605 fs->lfs_sepb - i;
606 if (segusep->su_flags & SEGUSE_ACTIVE) {
607 segusep->su_flags &= ~SEGUSE_ACTIVE;
608 --fs->lfs_nactive;
609 ++dirty;
610 }
611 fs->lfs_suflags[fs->lfs_activesb][sn] =
612 segusep->su_flags;
613 if (fs->lfs_version > 1)
614 ++segusep;
615 else
616 segusep = (SEGUSE *)
617 ((SEGUSE_V1 *)segusep + 1);
618 }
619
620 /* But the current segment is still ACTIVE */
621 segusep = (SEGUSE *)bp->b_data;
622 if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
623 (ibno-fs->lfs_cleansz)) {
624 sn = dtosn(fs, fs->lfs_curseg);
625 if (fs->lfs_version > 1)
626 segusep[sn % fs->lfs_sepb].su_flags |=
627 SEGUSE_ACTIVE;
628 else
629 ((SEGUSE *)
630 ((SEGUSE_V1 *)(bp->b_data) +
631 (sn % fs->lfs_sepb)))->su_flags
632 |= SEGUSE_ACTIVE;
633 fs->lfs_suflags[fs->lfs_activesb][sn] |=
634 SEGUSE_ACTIVE;
635 ++fs->lfs_nactive;
636 --dirty;
637 }
638 if (dirty)
639 error = LFS_BWRITE_LOG(bp); /* Ifile */
640 else
641 brelse(bp);
642 }
643 }
644
645 did_ckp = 0;
646 if (do_ckp || fs->lfs_doifile) {
647 loopcount = 10;
648 do {
649 vp = fs->lfs_ivnode;
650
651 #ifdef DEBUG
652 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
653 #endif
654 fs->lfs_flags &= ~LFS_IFDIRTY;
655
656 ip = VTOI(vp);
657
658 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
659 lfs_writefile(fs, sp, vp);
660
661 if (ip->i_flag & IN_ALLMOD)
662 ++did_ckp;
663 redo = lfs_writeinode(fs, sp, ip);
664 redo += lfs_writeseg(fs, sp);
665 redo += (fs->lfs_flags & LFS_IFDIRTY);
666 } while (redo && do_ckp && --loopcount > 0);
667 if (loopcount <= 0)
668 printf("lfs_segwrite: possibly invalid checkpoint!\n");
669
670 /* The ifile should now be all clear */
671 if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
672 struct buf *bp;
673 int s, warned = 0, dopanic = 0;
674 s = splbio();
675 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
676 if (!(bp->b_flags & B_GATHERED)) {
677 if (!warned)
678 printf("lfs_segwrite: ifile still has dirty blocks?!\n");
679 ++dopanic;
680 ++warned;
681 printf("bp=%p, lbn %" PRId64 ", "
682 "flags 0x%lx\n",
683 bp, bp->b_lblkno,
684 bp->b_flags);
685 }
686 }
687 if (dopanic)
688 panic("dirty blocks");
689 splx(s);
690 }
691 LFS_CLR_UINO(ip, IN_ALLMOD);
692 } else {
693 (void) lfs_writeseg(fs, sp);
694 }
695
696 /*
697 * If the I/O count is non-zero, sleep until it reaches zero.
698 * At the moment, the user's process hangs around so we can
699 * sleep.
700 */
701 if (loopcount <= 0)
702 fs->lfs_doifile = 1;
703 else
704 fs->lfs_doifile = 0;
705 if (writer_set && --fs->lfs_writer == 0)
706 wakeup(&fs->lfs_dirops);
707
708 /*
709 * If we didn't write the Ifile, we didn't really do anything.
710 * That means that (1) there is a checkpoint on disk and (2)
711 * nothing has changed since it was written.
712 *
713 * Take the flags off of the segment so that lfs_segunlock
714 * doesn't have to write the superblock either.
715 */
716 if (do_ckp && !did_ckp) {
717 sp->seg_flags &= ~SEGM_CKP;
718 /* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
719 }
720
721 if (lfs_dostats) {
722 ++lfs_stats.nwrites;
723 if (sp->seg_flags & SEGM_SYNC)
724 ++lfs_stats.nsync_writes;
725 if (sp->seg_flags & SEGM_CKP)
726 ++lfs_stats.ncheckpoints;
727 }
728 lfs_segunlock(fs);
729 return (0);
730 }
731
732 /*
733 * Write the dirty blocks associated with a vnode.
734 */
735 void
736 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
737 {
738 struct buf *bp;
739 struct finfo *fip;
740 struct inode *ip;
741 IFILE *ifp;
742 int i, frag;
743
744 ip = VTOI(vp);
745
746 if (sp->seg_bytes_left < fs->lfs_bsize ||
747 sp->sum_bytes_left < sizeof(struct finfo))
748 (void) lfs_writeseg(fs, sp);
749
750 sp->sum_bytes_left -= FINFOSIZE;
751 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
752
753 if (vp->v_flag & VDIROP)
754 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
755
756 fip = sp->fip;
757 fip->fi_nblocks = 0;
758 fip->fi_ino = ip->i_number;
759 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
760 fip->fi_version = ifp->if_version;
761 brelse(bp);
762
763 if (sp->seg_flags & SEGM_CLEAN) {
764 lfs_gather(fs, sp, vp, lfs_match_fake);
765 /*
766 * For a file being flushed, we need to write *all* blocks.
767 * This means writing the cleaning blocks first, and then
768 * immediately following with any non-cleaning blocks.
769 * The same is true of the Ifile since checkpoints assume
770 * that all valid Ifile blocks are written.
771 */
772 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
773 lfs_gather(fs, sp, vp, lfs_match_data);
774 /*
775 * Don't call VOP_PUTPAGES: if we're flushing,
776 * we've already done it, and the Ifile doesn't
777 * use the page cache.
778 */
779 }
780 } else {
781 lfs_gather(fs, sp, vp, lfs_match_data);
782 /*
783 * If we're flushing, we've already called VOP_PUTPAGES
784 * so don't do it again. Otherwise, we want to write
785 * everything we've got.
786 */
787 if (!IS_FLUSHING(fs, vp)) {
788 simple_lock(&vp->v_interlock);
789 VOP_PUTPAGES(vp, 0, 0,
790 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED |
791 PGO_BUSYFAIL);
792 }
793 }
794
795 /*
796 * It may not be necessary to write the meta-data blocks at this point,
797 * as the roll-forward recovery code should be able to reconstruct the
798 * list.
799 *
800 * We have to write them anyway, though, under two conditions: (1) the
801 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
802 * checkpointing.
803 *
804 * BUT if we are cleaning, we might have indirect blocks that refer to
805 * new blocks not being written yet, in addition to fragments being
806 * moved out of a cleaned segment. If that is the case, don't
807 * write the indirect blocks, or the finfo will have a small block
808 * in the middle of it!
809 * XXX in this case isn't the inode size wrong too?
810 */
811 frag = 0;
812 if (sp->seg_flags & SEGM_CLEAN) {
813 for (i = 0; i < NDADDR; i++)
814 if (ip->i_lfs_fragsize[i] > 0 &&
815 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
816 ++frag;
817 }
818 #ifdef DIAGNOSTIC
819 if (frag > 1)
820 panic("lfs_writefile: more than one fragment!");
821 #endif
822 if (IS_FLUSHING(fs, vp) ||
823 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
824 lfs_gather(fs, sp, vp, lfs_match_indir);
825 lfs_gather(fs, sp, vp, lfs_match_dindir);
826 lfs_gather(fs, sp, vp, lfs_match_tindir);
827 }
828 fip = sp->fip;
829 if (fip->fi_nblocks != 0) {
830 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
831 sizeof(int32_t) * (fip->fi_nblocks));
832 sp->start_lbp = &sp->fip->fi_blocks[0];
833 } else {
834 sp->sum_bytes_left += FINFOSIZE;
835 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
836 }
837 }
838
839 int
840 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
841 {
842 struct buf *bp, *ibp;
843 struct dinode *cdp;
844 IFILE *ifp;
845 SEGUSE *sup;
846 daddr_t daddr;
847 int32_t *daddrp; /* XXX ondisk32 */
848 ino_t ino;
849 int error, i, ndx, fsb = 0;
850 int redo_ifile = 0;
851 struct timespec ts;
852 int gotblk = 0;
853
854 if (!(ip->i_flag & IN_ALLMOD))
855 return (0);
856
857 /* Allocate a new inode block if necessary. */
858 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
859 /* Allocate a new segment if necessary. */
860 if (sp->seg_bytes_left < fs->lfs_ibsize ||
861 sp->sum_bytes_left < sizeof(int32_t))
862 (void) lfs_writeseg(fs, sp);
863
864 /* Get next inode block. */
865 daddr = fs->lfs_offset;
866 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
867 sp->ibp = *sp->cbpp++ =
868 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
869 fs->lfs_ibsize, 0, 0);
870 gotblk++;
871
872 /* Zero out inode numbers */
873 for (i = 0; i < INOPB(fs); ++i)
874 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
875
876 ++sp->start_bpp;
877 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
878 /* Set remaining space counters. */
879 sp->seg_bytes_left -= fs->lfs_ibsize;
880 sp->sum_bytes_left -= sizeof(int32_t);
881 ndx = fs->lfs_sumsize / sizeof(int32_t) -
882 sp->ninodes / INOPB(fs) - 1;
883 ((int32_t *)(sp->segsum))[ndx] = daddr;
884 }
885
886 /* Update the inode times and copy the inode onto the inode page. */
887 TIMEVAL_TO_TIMESPEC(&time, &ts);
888 /* XXX kludge --- don't redirty the ifile just to put times on it */
889 if (ip->i_number != LFS_IFILE_INUM)
890 LFS_ITIMES(ip, &ts, &ts, &ts);
891
892 /*
893 * If this is the Ifile, and we've already written the Ifile in this
894 * partial segment, just overwrite it (it's not on disk yet) and
895 * continue.
896 *
897 * XXX we know that the bp that we get the second time around has
898 * already been gathered.
899 */
900 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
901 *(sp->idp) = ip->i_din.ffs_din;
902 ip->i_lfs_osize = ip->i_ffs_size;
903 return 0;
904 }
905
906 bp = sp->ibp;
907 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
908 *cdp = ip->i_din.ffs_din;
909 #ifdef LFS_IFILE_FRAG_ADDRESSING
910 if (fs->lfs_version > 1)
911 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
912 #endif
913
914 /*
915 * If we are cleaning, ensure that we don't write UNWRITTEN disk
916 * addresses to disk; possibly revert the inode size.
917 * XXX By not writing these blocks, we are making the lfs_avail
918 * XXX count on disk wrong by the same amount. We should be
919 * XXX able to "borrow" from lfs_avail and return it after the
920 * XXX Ifile is written. See also in lfs_writeseg.
921 */
922 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
923 cdp->di_size = ip->i_lfs_osize;
924 #ifdef DEBUG_LFS
925 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
926 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
927 #endif
928 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
929 daddrp++) {
930 if (*daddrp == UNWRITTEN) {
931 #ifdef DEBUG_LFS
932 printf("lfs_writeinode: wiping UNWRITTEN\n");
933 #endif
934 *daddrp = 0;
935 }
936 }
937 } else {
938 /* If all blocks are goig to disk, update the "size on disk" */
939 ip->i_lfs_osize = ip->i_ffs_size;
940 }
941
942 if (ip->i_flag & IN_CLEANING)
943 LFS_CLR_UINO(ip, IN_CLEANING);
944 else {
945 /* XXX IN_ALLMOD */
946 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
947 IN_UPDATE);
948 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
949 LFS_CLR_UINO(ip, IN_MODIFIED);
950 #ifdef DEBUG_LFS
951 else
952 printf("lfs_writeinode: ino %d: real blks=%d, "
953 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
954 ip->i_lfs_effnblks);
955 #endif
956 }
957
958 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
959 sp->idp = ((struct dinode *)bp->b_data) +
960 (sp->ninodes % INOPB(fs));
961 if (gotblk) {
962 LFS_LOCK_BUF(bp);
963 brelse(bp);
964 }
965
966 /* Increment inode count in segment summary block. */
967 ++((SEGSUM *)(sp->segsum))->ss_ninos;
968
969 /* If this page is full, set flag to allocate a new page. */
970 if (++sp->ninodes % INOPB(fs) == 0)
971 sp->ibp = NULL;
972
973 /*
974 * If updating the ifile, update the super-block. Update the disk
975 * address and access times for this inode in the ifile.
976 */
977 ino = ip->i_number;
978 if (ino == LFS_IFILE_INUM) {
979 daddr = fs->lfs_idaddr;
980 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
981 } else {
982 LFS_IENTRY(ifp, fs, ino, ibp);
983 daddr = ifp->if_daddr;
984 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
985 #ifdef LFS_DEBUG_NEXTFREE
986 if (ino > 3 && ifp->if_nextfree) {
987 vprint("lfs_writeinode",ITOV(ip));
988 printf("lfs_writeinode: updating free ino %d\n",
989 ip->i_number);
990 }
991 #endif
992 error = LFS_BWRITE_LOG(ibp); /* Ifile */
993 }
994
995 /*
996 * The inode's last address should not be in the current partial
997 * segment, except under exceptional circumstances (lfs_writevnodes
998 * had to start over, and in the meantime more blocks were written
999 * to a vnode). Both inodes will be accounted to this segment
1000 * in lfs_writeseg so we need to subtract the earlier version
1001 * here anyway. The segment count can temporarily dip below
1002 * zero here; keep track of how many duplicates we have in
1003 * "dupino" so we don't panic below.
1004 */
1005 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1006 ++sp->ndupino;
1007 printf("lfs_writeinode: last inode addr in current pseg "
1008 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1009 (long long)daddr, sp->ndupino);
1010 }
1011 /*
1012 * Account the inode: it no longer belongs to its former segment,
1013 * though it will not belong to the new segment until that segment
1014 * is actually written.
1015 */
1016 if (daddr != LFS_UNUSED_DADDR) {
1017 u_int32_t oldsn = dtosn(fs, daddr);
1018 #ifdef DIAGNOSTIC
1019 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1020 #endif
1021 LFS_SEGENTRY(sup, fs, oldsn, bp);
1022 #ifdef DIAGNOSTIC
1023 if (sup->su_nbytes + DINODE_SIZE * ndupino < DINODE_SIZE) {
1024 printf("lfs_writeinode: negative bytes "
1025 "(segment %" PRIu32 " short by %d, "
1026 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1027 ", daddr=%" PRId64 ", su_nbytes=%u, "
1028 "ndupino=%d)\n",
1029 dtosn(fs, daddr),
1030 (int)DINODE_SIZE * (1 - sp->ndupino)
1031 - sup->su_nbytes,
1032 oldsn, sp->seg_number, daddr,
1033 (unsigned int)sup->su_nbytes,
1034 sp->ndupino);
1035 panic("lfs_writeinode: negative bytes");
1036 sup->su_nbytes = DINODE_SIZE;
1037 }
1038 #endif
1039 #ifdef DEBUG_SU_NBYTES
1040 printf("seg %d -= %d for ino %d inode\n",
1041 dtosn(fs, daddr), DINODE_SIZE, ino);
1042 #endif
1043 sup->su_nbytes -= DINODE_SIZE;
1044 redo_ifile =
1045 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1046 if (redo_ifile)
1047 fs->lfs_flags |= LFS_IFDIRTY;
1048 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1049 }
1050 return (redo_ifile);
1051 }
1052
1053 int
1054 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1055 {
1056 struct lfs *fs;
1057 int version;
1058 int j, blksinblk;
1059
1060 /*
1061 * If full, finish this segment. We may be doing I/O, so
1062 * release and reacquire the splbio().
1063 */
1064 #ifdef DIAGNOSTIC
1065 if (sp->vp == NULL)
1066 panic ("lfs_gatherblock: Null vp in segment");
1067 #endif
1068 fs = sp->fs;
1069 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1070 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1071 sp->seg_bytes_left < bp->b_bcount) {
1072 if (sptr)
1073 splx(*sptr);
1074 lfs_updatemeta(sp);
1075
1076 version = sp->fip->fi_version;
1077 (void) lfs_writeseg(fs, sp);
1078
1079 sp->fip->fi_version = version;
1080 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1081 /* Add the current file to the segment summary. */
1082 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1083 sp->sum_bytes_left -= FINFOSIZE;
1084
1085 if (sptr)
1086 *sptr = splbio();
1087 return (1);
1088 }
1089
1090 #ifdef DEBUG
1091 if (bp->b_flags & B_GATHERED) {
1092 printf("lfs_gatherblock: already gathered! Ino %d,"
1093 " lbn %" PRId64 "\n",
1094 sp->fip->fi_ino, bp->b_lblkno);
1095 return (0);
1096 }
1097 #endif
1098 /* Insert into the buffer list, update the FINFO block. */
1099 bp->b_flags |= B_GATHERED;
1100 bp->b_flags &= ~B_DONE;
1101
1102 *sp->cbpp++ = bp;
1103 for (j = 0; j < blksinblk; j++)
1104 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1105
1106 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1107 sp->seg_bytes_left -= bp->b_bcount;
1108 return (0);
1109 }
1110
1111 int
1112 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1113 {
1114 struct buf *bp, *nbp;
1115 int s, count = 0;
1116
1117 sp->vp = vp;
1118 s = splbio();
1119
1120 #ifndef LFS_NO_BACKBUF_HACK
1121 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1122 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1123 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1124 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1125 /* Find last buffer. */
1126 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1127 bp = LIST_NEXT(bp, b_vnbufs));
1128 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1129 nbp = BACK_BUF(bp);
1130 #else /* LFS_NO_BACKBUF_HACK */
1131 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1132 nbp = LIST_NEXT(bp, b_vnbufs);
1133 #endif /* LFS_NO_BACKBUF_HACK */
1134 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1135 #ifdef DEBUG_LFS
1136 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1137 printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
1138 #endif
1139 continue;
1140 }
1141 if (vp->v_type == VBLK) {
1142 /* For block devices, just write the blocks. */
1143 /* XXX Do we really need to even do this? */
1144 #ifdef DEBUG_LFS
1145 if (count == 0)
1146 printf("BLK(");
1147 printf(".");
1148 #endif
1149 /* Get the block before bwrite, so we don't corrupt the free list */
1150 bp->b_flags |= B_BUSY;
1151 bremfree(bp);
1152 bwrite(bp);
1153 } else {
1154 #ifdef DIAGNOSTIC
1155 # ifdef LFS_USE_B_INVAL
1156 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1157 printf("lfs_gather: lbn %" PRId64 " is "
1158 "B_INVAL\n", bp->b_lblkno);
1159 VOP_PRINT(bp->b_vp);
1160 }
1161 # endif /* LFS_USE_B_INVAL */
1162 if (!(bp->b_flags & B_DELWRI))
1163 panic("lfs_gather: bp not B_DELWRI");
1164 if (!(bp->b_flags & B_LOCKED)) {
1165 printf("lfs_gather: lbn %" PRId64 " blk "
1166 "%" PRId64 " not B_LOCKED\n",
1167 bp->b_lblkno,
1168 dbtofsb(fs, bp->b_blkno));
1169 VOP_PRINT(bp->b_vp);
1170 panic("lfs_gather: bp not B_LOCKED");
1171 }
1172 #endif
1173 if (lfs_gatherblock(sp, bp, &s)) {
1174 goto loop;
1175 }
1176 }
1177 count++;
1178 }
1179 splx(s);
1180 #ifdef DEBUG_LFS
1181 if (vp->v_type == VBLK && count)
1182 printf(")\n");
1183 #endif
1184 lfs_updatemeta(sp);
1185 sp->vp = NULL;
1186 return count;
1187 }
1188
1189 #if DEBUG
1190 # define DEBUG_OOFF(n) do { \
1191 if (ooff == 0) { \
1192 printf("lfs_updatemeta[%d]: warning: writing " \
1193 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1194 ", was 0x0 (or %" PRId64 ")\n", \
1195 (n), ip->i_number, lbn, ndaddr, daddr); \
1196 } \
1197 } while(0)
1198 #else
1199 # define DEBUG_OOFF(n)
1200 #endif
1201
1202 /*
1203 * Change the given block's address to ndaddr, finding its previous
1204 * location using ufs_bmaparray().
1205 *
1206 * Account for this change in the segment table.
1207 */
1208 void
1209 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1210 int32_t ndaddr, int size)
1211 {
1212 SEGUSE *sup;
1213 struct buf *bp;
1214 struct indir a[NIADDR + 2], *ap;
1215 struct inode *ip;
1216 struct vnode *vp;
1217 daddr_t daddr, ooff;
1218 int num, error;
1219 int bb, osize, obb;
1220
1221 vp = sp->vp;
1222 ip = VTOI(vp);
1223
1224 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1225 if (error)
1226 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1227 if (daddr > 0)
1228 daddr = dbtofsb(fs, daddr);
1229
1230 bb = fragstofsb(fs, numfrags(fs, size));
1231 switch (num) {
1232 case 0:
1233 ooff = ip->i_ffs_db[lbn];
1234 DEBUG_OOFF(0);
1235 if (ooff == UNWRITTEN)
1236 ip->i_ffs_blocks += bb;
1237 else {
1238 /* possible fragment truncation or extension */
1239 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1240 ip->i_ffs_blocks += (bb - obb);
1241 }
1242 ip->i_ffs_db[lbn] = ndaddr;
1243 break;
1244 case 1:
1245 ooff = ip->i_ffs_ib[a[0].in_off];
1246 DEBUG_OOFF(1);
1247 if (ooff == UNWRITTEN)
1248 ip->i_ffs_blocks += bb;
1249 ip->i_ffs_ib[a[0].in_off] = ndaddr;
1250 break;
1251 default:
1252 ap = &a[num - 1];
1253 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1254 panic("lfs_updatemeta: bread bno %" PRId64,
1255 ap->in_lbn);
1256
1257 /* XXX ondisk32 */
1258 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1259 DEBUG_OOFF(num);
1260 if (ooff == UNWRITTEN)
1261 ip->i_ffs_blocks += bb;
1262 /* XXX ondisk32 */
1263 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1264 (void) VOP_BWRITE(bp);
1265 }
1266
1267 /*
1268 * Though we'd rather it couldn't, this *can* happen right now
1269 * if cleaning blocks and regular blocks coexist.
1270 */
1271 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1272
1273 /*
1274 * Update segment usage information, based on old size
1275 * and location.
1276 */
1277 if (daddr > 0) {
1278 u_int32_t oldsn = dtosn(fs, daddr);
1279 #ifdef DIAGNOSTIC
1280 int ndupino = (sp->seg_number == oldsn) ?
1281 sp->ndupino : 0;
1282 #endif
1283 if (lbn >= 0 && lbn < NDADDR)
1284 osize = ip->i_lfs_fragsize[lbn];
1285 else
1286 osize = fs->lfs_bsize;
1287 LFS_SEGENTRY(sup, fs, oldsn, bp);
1288 #ifdef DIAGNOSTIC
1289 if (sup->su_nbytes + DINODE_SIZE * ndupino < osize) {
1290 printf("lfs_updatemeta: negative bytes "
1291 "(segment %" PRIu32 " short by %" PRId64
1292 ")\n", dtosn(fs, daddr),
1293 (int64_t)osize -
1294 (DINODE_SIZE * sp->ndupino +
1295 sup->su_nbytes));
1296 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1297 ", addr = 0x%" PRIx64 "\n",
1298 VTOI(sp->vp)->i_number, lbn, daddr);
1299 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1300 panic("lfs_updatemeta: negative bytes");
1301 sup->su_nbytes = osize - DINODE_SIZE * sp->ndupino;
1302 }
1303 #endif
1304 #ifdef DEBUG_SU_NBYTES
1305 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1306 " db 0x%" PRIx64 "\n",
1307 dtosn(fs, daddr), osize,
1308 VTOI(sp->vp)->i_number, lbn, daddr);
1309 #endif
1310 sup->su_nbytes -= osize;
1311 if (!(bp->b_flags & B_GATHERED))
1312 fs->lfs_flags |= LFS_IFDIRTY;
1313 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1314 }
1315 /*
1316 * Now that this block has a new address, and its old
1317 * segment no longer owns it, we can forget about its
1318 * old size.
1319 */
1320 if (lbn >= 0 && lbn < NDADDR)
1321 ip->i_lfs_fragsize[lbn] = size;
1322 }
1323
1324 /*
1325 * Update the metadata that points to the blocks listed in the FINFO
1326 * array.
1327 */
1328 void
1329 lfs_updatemeta(struct segment *sp)
1330 {
1331 struct buf *sbp;
1332 struct lfs *fs;
1333 struct vnode *vp;
1334 daddr_t lbn;
1335 int i, nblocks, num;
1336 int bb;
1337 int bytesleft, size;
1338
1339 vp = sp->vp;
1340 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1341 KASSERT(nblocks >= 0);
1342 if (vp == NULL || nblocks == 0)
1343 return;
1344
1345 /*
1346 * This count may be high due to oversize blocks from lfs_gop_write.
1347 * Correct for this. (XXX we should be able to keep track of these.)
1348 */
1349 fs = sp->fs;
1350 for (i = 0; i < nblocks; i++) {
1351 if (sp->start_bpp[i] == NULL) {
1352 printf("nblocks = %d, not %d\n", i, nblocks);
1353 nblocks = i;
1354 break;
1355 }
1356 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1357 nblocks -= num - 1;
1358 }
1359
1360 /*
1361 * Sort the blocks.
1362 *
1363 * We have to sort even if the blocks come from the
1364 * cleaner, because there might be other pending blocks on the
1365 * same inode...and if we don't sort, and there are fragments
1366 * present, blocks may be written in the wrong place.
1367 */
1368 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1369
1370 /*
1371 * Record the length of the last block in case it's a fragment.
1372 * If there are indirect blocks present, they sort last. An
1373 * indirect block will be lfs_bsize and its presence indicates
1374 * that you cannot have fragments.
1375 *
1376 * XXX This last is a lie. A cleaned fragment can coexist with
1377 * XXX a later indirect block. This will continue to be
1378 * XXX true until lfs_markv is fixed to do everything with
1379 * XXX fake blocks (including fake inodes and fake indirect blocks).
1380 */
1381 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1382 fs->lfs_bmask) + 1;
1383
1384 /*
1385 * Assign disk addresses, and update references to the logical
1386 * block and the segment usage information.
1387 */
1388 for (i = nblocks; i--; ++sp->start_bpp) {
1389 sbp = *sp->start_bpp;
1390 lbn = *sp->start_lbp;
1391
1392 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1393
1394 /*
1395 * If we write a frag in the wrong place, the cleaner won't
1396 * be able to correctly identify its size later, and the
1397 * segment will be uncleanable. (Even worse, it will assume
1398 * that the indirect block that actually ends the list
1399 * is of a smaller size!)
1400 */
1401 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1402 panic("lfs_updatemeta: fragment is not last block");
1403
1404 /*
1405 * For each subblock in this possibly oversized block,
1406 * update its address on disk.
1407 */
1408 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1409 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1410 bytesleft -= fs->lfs_bsize) {
1411 size = MIN(bytesleft, fs->lfs_bsize);
1412 bb = fragstofsb(fs, numfrags(fs, size));
1413 lbn = *sp->start_lbp++;
1414 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1415 fs->lfs_offset += bb;
1416 }
1417
1418 }
1419 }
1420
1421 /*
1422 * Start a new segment.
1423 */
1424 int
1425 lfs_initseg(struct lfs *fs)
1426 {
1427 struct segment *sp;
1428 SEGUSE *sup;
1429 SEGSUM *ssp;
1430 struct buf *bp, *sbp;
1431 int repeat;
1432
1433 sp = fs->lfs_sp;
1434
1435 repeat = 0;
1436
1437 /* Advance to the next segment. */
1438 if (!LFS_PARTIAL_FITS(fs)) {
1439 /* lfs_avail eats the remaining space */
1440 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1441 fs->lfs_curseg);
1442 /* Wake up any cleaning procs waiting on this file system. */
1443 wakeup(&lfs_allclean_wakeup);
1444 wakeup(&fs->lfs_nextseg);
1445 lfs_newseg(fs);
1446 repeat = 1;
1447 fs->lfs_offset = fs->lfs_curseg;
1448
1449 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1450 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1451
1452 /*
1453 * If the segment contains a superblock, update the offset
1454 * and summary address to skip over it.
1455 */
1456 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1457 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1458 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1459 sp->seg_bytes_left -= LFS_SBPAD;
1460 }
1461 brelse(bp);
1462 /* Segment zero could also contain the labelpad */
1463 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1464 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1465 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1466 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1467 }
1468 } else {
1469 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1470 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1471 (fs->lfs_offset - fs->lfs_curseg));
1472 }
1473 fs->lfs_lastpseg = fs->lfs_offset;
1474
1475 /* Record first address of this partial segment */
1476 if (sp->seg_flags & SEGM_CLEAN) {
1477 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1478 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1479 /* "1" is the artificial inc in lfs_seglock */
1480 while (fs->lfs_iocount > 1) {
1481 tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0);
1482 }
1483 fs->lfs_cleanind = 0;
1484 }
1485 }
1486
1487 sp->fs = fs;
1488 sp->ibp = NULL;
1489 sp->idp = NULL;
1490 sp->ninodes = 0;
1491 sp->ndupino = 0;
1492
1493 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1494 sp->cbpp = sp->bpp;
1495 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1496 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1497 sp->segsum = (*sp->cbpp)->b_data;
1498 memset(sp->segsum, 0, fs->lfs_sumsize);
1499 sp->start_bpp = ++sp->cbpp;
1500 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1501
1502 /* Set point to SEGSUM, initialize it. */
1503 ssp = sp->segsum;
1504 ssp->ss_next = fs->lfs_nextseg;
1505 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1506 ssp->ss_magic = SS_MAGIC;
1507
1508 /* Set pointer to first FINFO, initialize it. */
1509 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1510 sp->fip->fi_nblocks = 0;
1511 sp->start_lbp = &sp->fip->fi_blocks[0];
1512 sp->fip->fi_lastlength = 0;
1513
1514 sp->seg_bytes_left -= fs->lfs_sumsize;
1515 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1516
1517 return (repeat);
1518 }
1519
1520 /*
1521 * Return the next segment to write.
1522 */
1523 void
1524 lfs_newseg(struct lfs *fs)
1525 {
1526 CLEANERINFO *cip;
1527 SEGUSE *sup;
1528 struct buf *bp;
1529 int curseg, isdirty, sn;
1530
1531 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1532 #ifdef DEBUG_SU_NBYTES
1533 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1534 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1535 #endif
1536 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1537 sup->su_nbytes = 0;
1538 sup->su_nsums = 0;
1539 sup->su_ninos = 0;
1540 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1541
1542 LFS_CLEANERINFO(cip, fs, bp);
1543 --cip->clean;
1544 ++cip->dirty;
1545 fs->lfs_nclean = cip->clean;
1546 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1547
1548 fs->lfs_lastseg = fs->lfs_curseg;
1549 fs->lfs_curseg = fs->lfs_nextseg;
1550 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1551 sn = (sn + 1) % fs->lfs_nseg;
1552 if (sn == curseg)
1553 panic("lfs_nextseg: no clean segments");
1554 LFS_SEGENTRY(sup, fs, sn, bp);
1555 isdirty = sup->su_flags & SEGUSE_DIRTY;
1556 /* Check SEGUSE_EMPTY as we go along */
1557 if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY))
1558 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1559 else
1560 brelse(bp);
1561
1562 if (!isdirty)
1563 break;
1564 }
1565
1566 ++fs->lfs_nactive;
1567 fs->lfs_nextseg = sntod(fs, sn);
1568 if (lfs_dostats) {
1569 ++lfs_stats.segsused;
1570 }
1571 }
1572
1573 #define BQUEUES 4 /* XXX */
1574 #define BQ_EMPTY 3 /* XXX */
1575 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1576 extern struct simplelock bqueue_slock;
1577
1578 #define BUFHASH(dvp, lbn) \
1579 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1580 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1581 /*
1582 * Insq/Remq for the buffer hash lists.
1583 */
1584 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1585 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1586
1587 static struct buf *
1588 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1589 {
1590 struct lfs_cluster *cl;
1591 struct buf **bpp, *bp;
1592 int s;
1593
1594 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1595 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1596 memset(cl, 0, sizeof(*cl));
1597 cl->fs = fs;
1598 cl->bpp = bpp;
1599 cl->bufcount = 0;
1600 cl->bufsize = 0;
1601
1602 /* If this segment is being written synchronously, note that */
1603 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1604 cl->flags |= LFS_CL_SYNC;
1605 cl->seg = fs->lfs_sp;
1606 ++cl->seg->seg_iocount;
1607 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1608 }
1609
1610 /* Get an empty buffer header, or maybe one with something on it */
1611 s = splbio();
1612 simple_lock(&bqueue_slock);
1613 if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1614 simple_lock(&bp->b_interlock);
1615 bremfree(bp);
1616 /* clear out various other fields */
1617 bp->b_flags = B_BUSY;
1618 bp->b_dev = NODEV;
1619 bp->b_blkno = bp->b_lblkno = 0;
1620 bp->b_error = 0;
1621 bp->b_resid = 0;
1622 bp->b_bcount = 0;
1623
1624 /* nuke any credentials we were holding */
1625 /* XXXXXX */
1626
1627 bremhash(bp);
1628
1629 /* disassociate us from our vnode, if we had one... */
1630 if (bp->b_vp)
1631 brelvp(bp);
1632 }
1633 while (!bp)
1634 bp = getnewbuf(0, 0);
1635 bgetvp(vp, bp);
1636 binshash(bp,&invalhash);
1637 simple_unlock(&bp->b_interlock);
1638 simple_unlock(&bqueue_slock);
1639 splx(s);
1640 bp->b_bcount = 0;
1641 bp->b_blkno = bp->b_lblkno = addr;
1642
1643 bp->b_flags |= B_CALL;
1644 bp->b_iodone = lfs_cluster_callback;
1645 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1646 bp->b_saveaddr = (caddr_t)cl;
1647
1648 return bp;
1649 }
1650
1651 int
1652 lfs_writeseg(struct lfs *fs, struct segment *sp)
1653 {
1654 struct buf **bpp, *bp, *cbp, *newbp;
1655 SEGUSE *sup;
1656 SEGSUM *ssp;
1657 dev_t i_dev;
1658 char *datap, *dp;
1659 int i, s;
1660 int do_again, nblocks, byteoffset;
1661 size_t el_size;
1662 struct lfs_cluster *cl;
1663 int (*strategy)(void *);
1664 struct vop_strategy_args vop_strategy_a;
1665 u_short ninos;
1666 struct vnode *devvp;
1667 char *p;
1668 struct vnode *vp;
1669 int32_t *daddrp; /* XXX ondisk32 */
1670 int changed;
1671 #if defined(DEBUG) && defined(LFS_PROPELLER)
1672 static int propeller;
1673 char propstring[4] = "-\\|/";
1674
1675 printf("%c\b",propstring[propeller++]);
1676 if (propeller == 4)
1677 propeller = 0;
1678 #endif
1679
1680 /*
1681 * If there are no buffers other than the segment summary to write
1682 * and it is not a checkpoint, don't do anything. On a checkpoint,
1683 * even if there aren't any buffers, you need to write the superblock.
1684 */
1685 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1686 return (0);
1687
1688 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1689 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1690
1691 /* Update the segment usage information. */
1692 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1693
1694 /* Loop through all blocks, except the segment summary. */
1695 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1696 if ((*bpp)->b_vp != devvp) {
1697 sup->su_nbytes += (*bpp)->b_bcount;
1698 #ifdef DEBUG_SU_NBYTES
1699 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1700 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1701 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1702 (*bpp)->b_blkno);
1703 #endif
1704 }
1705 }
1706
1707 ssp = (SEGSUM *)sp->segsum;
1708
1709 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1710 #ifdef DEBUG_SU_NBYTES
1711 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1712 sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1713 ssp->ss_ninos);
1714 #endif
1715 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1716 /* sup->su_nbytes += fs->lfs_sumsize; */
1717 if (fs->lfs_version == 1)
1718 sup->su_olastmod = time.tv_sec;
1719 else
1720 sup->su_lastmod = time.tv_sec;
1721 sup->su_ninos += ninos;
1722 ++sup->su_nsums;
1723 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1724 fs->lfs_ibsize));
1725 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1726
1727 do_again = !(bp->b_flags & B_GATHERED);
1728 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1729
1730 /*
1731 * Mark blocks B_BUSY, to prevent then from being changed between
1732 * the checksum computation and the actual write.
1733 *
1734 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1735 * there are any, replace them with copies that have UNASSIGNED
1736 * instead.
1737 */
1738 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1739 ++bpp;
1740 bp = *bpp;
1741 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1742 bp->b_flags |= B_BUSY;
1743 continue;
1744 }
1745 again:
1746 s = splbio();
1747 if (bp->b_flags & B_BUSY) {
1748 #ifdef DEBUG
1749 printf("lfs_writeseg: avoiding potential data summary "
1750 "corruption for ino %d, lbn %" PRId64 "\n",
1751 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1752 #endif
1753 bp->b_flags |= B_WANTED;
1754 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1755 splx(s);
1756 goto again;
1757 }
1758 bp->b_flags |= B_BUSY;
1759 splx(s);
1760 /*
1761 * Check and replace indirect block UNWRITTEN bogosity.
1762 * XXX See comment in lfs_writefile.
1763 */
1764 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1765 VTOI(bp->b_vp)->i_ffs_blocks !=
1766 VTOI(bp->b_vp)->i_lfs_effnblks) {
1767 #ifdef DEBUG_LFS
1768 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1769 VTOI(bp->b_vp)->i_number,
1770 VTOI(bp->b_vp)->i_lfs_effnblks,
1771 VTOI(bp->b_vp)->i_ffs_blocks);
1772 #endif
1773 /* Make a copy we'll make changes to */
1774 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1775 bp->b_bcount, LFS_NB_IBLOCK);
1776 newbp->b_blkno = bp->b_blkno;
1777 memcpy(newbp->b_data, bp->b_data,
1778 newbp->b_bcount);
1779
1780 changed = 0;
1781 /* XXX ondisk32 */
1782 for (daddrp = (int32_t *)(newbp->b_data);
1783 daddrp < (int32_t *)(newbp->b_data +
1784 newbp->b_bcount); daddrp++) {
1785 if (*daddrp == UNWRITTEN) {
1786 #ifdef DEBUG_LFS
1787 off_t doff;
1788 int32_t ioff;
1789
1790 ioff = daddrp - (int32_t *)(newbp->b_data);
1791 doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1792 printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n",
1793 VTOI(bp->b_vp)->i_number,
1794 bp->b_lblkno, ioff, doff);
1795 if (bp->b_vp->v_type == VREG) {
1796 /*
1797 * What is up with this page?
1798 */
1799 struct vm_page *pg;
1800 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) {
1801 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1802 if (pg == NULL)
1803 printf(" page at %" PRIx64 " is NULL\n", doff);
1804 else
1805 printf(" page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags);
1806 }
1807 }
1808 #endif /* DEBUG_LFS */
1809 ++changed;
1810 *daddrp = 0;
1811 }
1812 }
1813 /*
1814 * Get rid of the old buffer. Don't mark it clean,
1815 * though, if it still has dirty data on it.
1816 */
1817 if (changed) {
1818 #ifdef DEBUG_LFS
1819 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1820 " bp = %p newbp = %p\n", changed, bp,
1821 newbp);
1822 #endif
1823 *bpp = newbp;
1824 bp->b_flags &= ~(B_ERROR | B_GATHERED | B_DONE);
1825 if (bp->b_flags & B_CALL) {
1826 printf("lfs_writeseg: indir bp should not be B_CALL\n");
1827 s = splbio();
1828 biodone(bp);
1829 splx(s);
1830 bp = NULL;
1831 } else {
1832 /* Still on free list, leave it there */
1833 s = splbio();
1834 bp->b_flags &= ~B_BUSY;
1835 if (bp->b_flags & B_WANTED)
1836 wakeup(bp);
1837 splx(s);
1838 /*
1839 * We have to re-decrement lfs_avail
1840 * since this block is going to come
1841 * back around to us in the next
1842 * segment.
1843 */
1844 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1845 }
1846 } else {
1847 lfs_freebuf(fs, newbp);
1848 }
1849 }
1850 }
1851 /*
1852 * Compute checksum across data and then across summary; the first
1853 * block (the summary block) is skipped. Set the create time here
1854 * so that it's guaranteed to be later than the inode mod times.
1855 *
1856 * XXX
1857 * Fix this to do it inline, instead of malloc/copy.
1858 */
1859 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1860 if (fs->lfs_version == 1)
1861 el_size = sizeof(u_long);
1862 else
1863 el_size = sizeof(u_int32_t);
1864 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1865 ++bpp;
1866 /* Loop through gop_write cluster blocks */
1867 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1868 byteoffset += fs->lfs_bsize) {
1869 #ifdef LFS_USE_B_INVAL
1870 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1871 (B_CALL | B_INVAL)) {
1872 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1873 byteoffset, dp, el_size)) {
1874 panic("lfs_writeseg: copyin failed [1]: "
1875 "ino %d blk %" PRId64,
1876 VTOI((*bpp)->b_vp)->i_number,
1877 (*bpp)->b_lblkno);
1878 }
1879 } else
1880 #endif /* LFS_USE_B_INVAL */
1881 {
1882 memcpy(dp, (*bpp)->b_data + byteoffset,
1883 el_size);
1884 }
1885 dp += el_size;
1886 }
1887 }
1888 if (fs->lfs_version == 1)
1889 ssp->ss_ocreate = time.tv_sec;
1890 else {
1891 ssp->ss_create = time.tv_sec;
1892 ssp->ss_serial = ++fs->lfs_serial;
1893 ssp->ss_ident = fs->lfs_ident;
1894 }
1895 ssp->ss_datasum = cksum(datap, dp - datap);
1896 ssp->ss_sumsum =
1897 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1898 pool_put(&fs->lfs_bpppool, datap);
1899 datap = dp = NULL;
1900 #ifdef DIAGNOSTIC
1901 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1902 panic("lfs_writeseg: No diskspace for summary");
1903 #endif
1904 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1905 btofsb(fs, fs->lfs_sumsize));
1906
1907 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1908
1909 /*
1910 * When we simply write the blocks we lose a rotation for every block
1911 * written. To avoid this problem, we cluster the buffers into a
1912 * chunk and write the chunk. MAXPHYS is the largest size I/O
1913 * devices can handle, use that for the size of the chunks.
1914 *
1915 * Blocks that are already clusters (from GOP_WRITE), however, we
1916 * don't bother to copy into other clusters.
1917 */
1918
1919 #define CHUNKSIZE MAXPHYS
1920
1921 if (devvp == NULL)
1922 panic("devvp is NULL");
1923 for (bpp = sp->bpp, i = nblocks; i;) {
1924 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1925 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1926
1927 cbp->b_dev = i_dev;
1928 cbp->b_flags |= B_ASYNC | B_BUSY;
1929 cbp->b_bcount = 0;
1930
1931 cl->olddata = cbp->b_data;
1932 #if defined(DEBUG) && defined(DIAGNOSTIC)
1933 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1934 / sizeof(int32_t)) {
1935 panic("lfs_writeseg: real bpp overwrite");
1936 }
1937 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1938 panic("lfs_writeseg: theoretical bpp overwrite");
1939 }
1940 #endif
1941
1942 /*
1943 * Construct the cluster.
1944 */
1945 ++fs->lfs_iocount;
1946 while(i && cbp->b_bcount < CHUNKSIZE) {
1947 bp = *bpp;
1948
1949 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1950 break;
1951 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1952 break;
1953
1954 /* Clusters from GOP_WRITE are expedited */
1955 if (bp->b_bcount > fs->lfs_bsize) {
1956 if (cbp->b_bcount > 0)
1957 /* Put in its own buffer */
1958 break;
1959 else {
1960 cbp->b_data = bp->b_data;
1961 }
1962 } else if (cbp->b_bcount == 0) {
1963 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1964 LFS_NB_CLUSTER);
1965 cl->flags |= LFS_CL_MALLOC;
1966 }
1967 #ifdef DIAGNOSTIC
1968 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1969 btodb(bp->b_bcount - 1))) !=
1970 sp->seg_number) {
1971 printf("blk size %ld daddr %" PRIx64 " not in seg %d\n",
1972 bp->b_bcount, bp->b_blkno,
1973 sp->seg_number);
1974 panic("segment overwrite");
1975 }
1976 #endif
1977
1978 #ifdef LFS_USE_B_INVAL
1979 /*
1980 * Fake buffers from the cleaner are marked as B_INVAL.
1981 * We need to copy the data from user space rather than
1982 * from the buffer indicated.
1983 * XXX == what do I do on an error?
1984 */
1985 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1986 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1987 panic("lfs_writeseg: copyin failed [2]");
1988 } else
1989 #endif /* LFS_USE_B_INVAL */
1990 if (cl->flags & LFS_CL_MALLOC) {
1991 bcopy(bp->b_data, p, bp->b_bcount);
1992 }
1993
1994 p += bp->b_bcount;
1995 cbp->b_bcount += bp->b_bcount;
1996 cl->bufsize += bp->b_bcount;
1997
1998 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1999 cl->bpp[cl->bufcount++] = bp;
2000 vp = bp->b_vp;
2001 s = splbio();
2002 V_INCR_NUMOUTPUT(vp);
2003 splx(s);
2004
2005 bpp++;
2006 i--;
2007 }
2008 s = splbio();
2009 V_INCR_NUMOUTPUT(devvp);
2010 splx(s);
2011 vop_strategy_a.a_desc = VDESC(vop_strategy);
2012 vop_strategy_a.a_bp = cbp;
2013 (strategy)(&vop_strategy_a);
2014 curproc->p_stats->p_ru.ru_oublock++;
2015 }
2016
2017 if (lfs_dostats) {
2018 ++lfs_stats.psegwrites;
2019 lfs_stats.blocktot += nblocks - 1;
2020 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2021 ++lfs_stats.psyncwrites;
2022 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2023 ++lfs_stats.pcleanwrites;
2024 lfs_stats.cleanblocks += nblocks - 1;
2025 }
2026 }
2027 return (lfs_initseg(fs) || do_again);
2028 }
2029
2030 void
2031 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2032 {
2033 struct buf *bp;
2034 dev_t i_dev;
2035 int (*strategy)(void *);
2036 int s;
2037 struct vop_strategy_args vop_strategy_a;
2038
2039 /*
2040 * If we can write one superblock while another is in
2041 * progress, we risk not having a complete checkpoint if we crash.
2042 * So, block here if a superblock write is in progress.
2043 */
2044 s = splbio();
2045 while (fs->lfs_sbactive) {
2046 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2047 }
2048 fs->lfs_sbactive = daddr;
2049 splx(s);
2050 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2051 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2052
2053 /* Set timestamp of this version of the superblock */
2054 if (fs->lfs_version == 1)
2055 fs->lfs_otstamp = time.tv_sec;
2056 fs->lfs_tstamp = time.tv_sec;
2057
2058 /* Checksum the superblock and copy it into a buffer. */
2059 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2060 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2061 memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs));
2062 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2063
2064 bp->b_dev = i_dev;
2065 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2066 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2067 bp->b_iodone = lfs_supercallback;
2068 /* XXX KS - same nasty hack as above */
2069 bp->b_saveaddr = (caddr_t)fs;
2070
2071 vop_strategy_a.a_desc = VDESC(vop_strategy);
2072 vop_strategy_a.a_bp = bp;
2073 curproc->p_stats->p_ru.ru_oublock++;
2074 s = splbio();
2075 V_INCR_NUMOUTPUT(bp->b_vp);
2076 splx(s);
2077 ++fs->lfs_iocount;
2078 (strategy)(&vop_strategy_a);
2079 }
2080
2081 /*
2082 * Logical block number match routines used when traversing the dirty block
2083 * chain.
2084 */
2085 int
2086 lfs_match_fake(struct lfs *fs, struct buf *bp)
2087 {
2088 return LFS_IS_MALLOC_BUF(bp);
2089 }
2090
2091 #if 0
2092 int
2093 lfs_match_real(struct lfs *fs, struct buf *bp)
2094 {
2095 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2096 }
2097 #endif
2098
2099 int
2100 lfs_match_data(struct lfs *fs, struct buf *bp)
2101 {
2102 return (bp->b_lblkno >= 0);
2103 }
2104
2105 int
2106 lfs_match_indir(struct lfs *fs, struct buf *bp)
2107 {
2108 daddr_t lbn;
2109
2110 lbn = bp->b_lblkno;
2111 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2112 }
2113
2114 int
2115 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2116 {
2117 daddr_t lbn;
2118
2119 lbn = bp->b_lblkno;
2120 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2121 }
2122
2123 int
2124 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2125 {
2126 daddr_t lbn;
2127
2128 lbn = bp->b_lblkno;
2129 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2130 }
2131
2132 /*
2133 * XXX - The only buffers that are going to hit these functions are the
2134 * segment write blocks, or the segment summaries, or the superblocks.
2135 *
2136 * All of the above are created by lfs_newbuf, and so do not need to be
2137 * released via brelse.
2138 */
2139 void
2140 lfs_callback(struct buf *bp)
2141 {
2142 struct lfs *fs;
2143
2144 fs = (struct lfs *)bp->b_saveaddr;
2145 lfs_freebuf(fs, bp);
2146 }
2147
2148 static void
2149 lfs_super_aiodone(struct buf *bp)
2150 {
2151 struct lfs *fs;
2152
2153 fs = (struct lfs *)bp->b_saveaddr;
2154 fs->lfs_sbactive = 0;
2155 wakeup(&fs->lfs_sbactive);
2156 if (--fs->lfs_iocount <= 1)
2157 wakeup(&fs->lfs_iocount);
2158 lfs_freebuf(fs, bp);
2159 }
2160
2161 static void
2162 lfs_cluster_aiodone(struct buf *bp)
2163 {
2164 struct lfs_cluster *cl;
2165 struct lfs *fs;
2166 struct buf *tbp, *fbp;
2167 struct vnode *vp, *devvp;
2168 struct inode *ip;
2169 int s, error=0;
2170 char *cp;
2171 extern int locked_queue_count;
2172 extern long locked_queue_bytes;
2173
2174 if(bp->b_flags & B_ERROR)
2175 error = bp->b_error;
2176
2177 cl = (struct lfs_cluster *)bp->b_saveaddr;
2178 fs = cl->fs;
2179 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2180 bp->b_saveaddr = cl->saveaddr;
2181
2182 cp = (char *)bp->b_data + cl->bufsize;
2183 /* Put the pages back, and release the buffer */
2184 while(cl->bufcount--) {
2185 tbp = cl->bpp[cl->bufcount];
2186 if(error) {
2187 tbp->b_flags |= B_ERROR;
2188 tbp->b_error = error;
2189 }
2190
2191 /*
2192 * We're done with tbp. If it has not been re-dirtied since
2193 * the cluster was written, free it. Otherwise, keep it on
2194 * the locked list to be written again.
2195 */
2196 vp = tbp->b_vp;
2197 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2198 LFS_UNLOCK_BUF(tbp);
2199 #if 0
2200 else if (vp != devvp)
2201 printf("dirtied while busy?! bp %p, ino %d, lbn %d\n",
2202 tbp, vp ? VTOI(vp)->i_number : -1,
2203 tbp->b_lblkno);
2204 #endif
2205 tbp->b_flags &= ~B_GATHERED;
2206
2207 LFS_BCLEAN_LOG(fs, tbp);
2208
2209 if(!(tbp->b_flags & B_CALL)) {
2210 bremfree(tbp);
2211 s = splbio();
2212 if(vp)
2213 reassignbuf(tbp, vp);
2214 splx(s);
2215 tbp->b_flags |= B_ASYNC; /* for biodone */
2216 }
2217 #ifdef DIAGNOSTIC
2218 if (tbp->b_flags & B_DONE) {
2219 printf("blk %d biodone already (flags %lx)\n",
2220 cl->bufcount, (long)tbp->b_flags);
2221 }
2222 #endif
2223 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2224 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2225 /* printf("flags 0x%lx\n", tbp->b_flags); */
2226 /*
2227 * A buffer from the page daemon.
2228 * We use the same iodone as it does,
2229 * so we must manually disassociate its
2230 * buffers from the vp.
2231 */
2232 if (tbp->b_vp) {
2233 /* This is just silly */
2234 s = splbio();
2235 brelvp(tbp);
2236 tbp->b_vp = vp;
2237 splx(s);
2238 }
2239 /* Put it back the way it was */
2240 tbp->b_flags |= B_ASYNC;
2241 /* Master buffers have B_AGE */
2242 if (tbp->b_private == tbp)
2243 tbp->b_flags |= B_AGE;
2244 }
2245 s = splbio();
2246 biodone(tbp);
2247
2248 /*
2249 * If this is the last block for this vnode, but
2250 * there are other blocks on its dirty list,
2251 * set IN_MODIFIED/IN_CLEANING depending on what
2252 * sort of block. Only do this for our mount point,
2253 * not for, e.g., inode blocks that are attached to
2254 * the devvp.
2255 * XXX KS - Shouldn't we set *both* if both types
2256 * of blocks are present (traverse the dirty list?)
2257 */
2258 simple_lock(&global_v_numoutput_slock);
2259 if (vp != devvp && vp->v_numoutput == 0 &&
2260 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2261 ip = VTOI(vp);
2262 #ifdef DEBUG_LFS
2263 printf("lfs_cluster_aiodone: marking ino %d\n",
2264 ip->i_number);
2265 #endif
2266 if (LFS_IS_MALLOC_BUF(fbp))
2267 LFS_SET_UINO(ip, IN_CLEANING);
2268 else
2269 LFS_SET_UINO(ip, IN_MODIFIED);
2270 }
2271 simple_unlock(&global_v_numoutput_slock);
2272 splx(s);
2273 wakeup(vp);
2274 }
2275 }
2276
2277 /* Fix up the cluster buffer, and release it */
2278 if (cl->flags & LFS_CL_MALLOC)
2279 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2280 bp->b_data = cl->olddata;
2281 bp->b_bcount = 0;
2282 bp->b_iodone = NULL;
2283 bp->b_flags &= ~B_DELWRI;
2284 bp->b_flags |= B_DONE;
2285 s = splbio();
2286 reassignbuf(bp, bp->b_vp);
2287 splx(s);
2288 brelse(bp);
2289
2290 /* Note i/o done */
2291 if (cl->flags & LFS_CL_SYNC) {
2292 if (--cl->seg->seg_iocount == 0)
2293 wakeup(&cl->seg->seg_iocount);
2294 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2295 }
2296 #ifdef DIAGNOSTIC
2297 if (fs->lfs_iocount == 0)
2298 panic("lfs_cluster_aiodone: zero iocount");
2299 #endif
2300 if (--fs->lfs_iocount <= 1)
2301 wakeup(&fs->lfs_iocount);
2302
2303 pool_put(&fs->lfs_bpppool, cl->bpp);
2304 cl->bpp = NULL;
2305 pool_put(&fs->lfs_clpool, cl);
2306 }
2307
2308 static void
2309 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2310 {
2311 /* reset b_iodone for when this is a single-buf i/o. */
2312 bp->b_iodone = aiodone;
2313
2314 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2315 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2316 wakeup(&uvm.aiodoned);
2317 simple_unlock(&uvm.aiodoned_lock);
2318 }
2319
2320 static void
2321 lfs_cluster_callback(struct buf *bp)
2322 {
2323 lfs_generic_callback(bp, lfs_cluster_aiodone);
2324 }
2325
2326 void
2327 lfs_supercallback(struct buf *bp)
2328 {
2329 lfs_generic_callback(bp, lfs_super_aiodone);
2330 }
2331
2332 /*
2333 * Shellsort (diminishing increment sort) from Data Structures and
2334 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2335 * see also Knuth Vol. 3, page 84. The increments are selected from
2336 * formula (8), page 95. Roughly O(N^3/2).
2337 */
2338 /*
2339 * This is our own private copy of shellsort because we want to sort
2340 * two parallel arrays (the array of buffer pointers and the array of
2341 * logical block numbers) simultaneously. Note that we cast the array
2342 * of logical block numbers to a unsigned in this routine so that the
2343 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2344 */
2345
2346 void
2347 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2348 {
2349 static int __rsshell_increments[] = { 4, 1, 0 };
2350 int incr, *incrp, t1, t2;
2351 struct buf *bp_temp;
2352
2353 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2354 for (t1 = incr; t1 < nmemb; ++t1)
2355 for (t2 = t1 - incr; t2 >= 0;)
2356 if ((u_int32_t)bp_array[t2]->b_lblkno >
2357 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2358 bp_temp = bp_array[t2];
2359 bp_array[t2] = bp_array[t2 + incr];
2360 bp_array[t2 + incr] = bp_temp;
2361 t2 -= incr;
2362 } else
2363 break;
2364
2365 /* Reform the list of logical blocks */
2366 incr = 0;
2367 for (t1 = 0; t1 < nmemb; t1++) {
2368 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2369 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2370 }
2371 }
2372 }
2373
2374 /*
2375 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2376 */
2377 int
2378 lfs_vref(struct vnode *vp)
2379 {
2380 /*
2381 * If we return 1 here during a flush, we risk vinvalbuf() not
2382 * being able to flush all of the pages from this vnode, which
2383 * will cause it to panic. So, return 0 if a flush is in progress.
2384 */
2385 if (vp->v_flag & VXLOCK) {
2386 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2387 return 0;
2388 }
2389 return (1);
2390 }
2391 return (vget(vp, 0));
2392 }
2393
2394 /*
2395 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2396 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2397 */
2398 void
2399 lfs_vunref(struct vnode *vp)
2400 {
2401 /*
2402 * Analogous to lfs_vref, if the node is flushing, fake it.
2403 */
2404 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2405 return;
2406 }
2407
2408 simple_lock(&vp->v_interlock);
2409 #ifdef DIAGNOSTIC
2410 if (vp->v_usecount <= 0) {
2411 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2412 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2413 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2414 panic("lfs_vunref: v_usecount<0");
2415 }
2416 #endif
2417 vp->v_usecount--;
2418 if (vp->v_usecount > 0) {
2419 simple_unlock(&vp->v_interlock);
2420 return;
2421 }
2422 /*
2423 * insert at tail of LRU list
2424 */
2425 simple_lock(&vnode_free_list_slock);
2426 if (vp->v_holdcnt > 0)
2427 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2428 else
2429 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2430 simple_unlock(&vnode_free_list_slock);
2431 simple_unlock(&vp->v_interlock);
2432 }
2433
2434 /*
2435 * We use this when we have vnodes that were loaded in solely for cleaning.
2436 * There is no reason to believe that these vnodes will be referenced again
2437 * soon, since the cleaning process is unrelated to normal filesystem
2438 * activity. Putting cleaned vnodes at the tail of the list has the effect
2439 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2440 * cleaning at the head of the list, instead.
2441 */
2442 void
2443 lfs_vunref_head(struct vnode *vp)
2444 {
2445 simple_lock(&vp->v_interlock);
2446 #ifdef DIAGNOSTIC
2447 if (vp->v_usecount == 0) {
2448 panic("lfs_vunref: v_usecount<0");
2449 }
2450 #endif
2451 vp->v_usecount--;
2452 if (vp->v_usecount > 0) {
2453 simple_unlock(&vp->v_interlock);
2454 return;
2455 }
2456 /*
2457 * insert at head of LRU list
2458 */
2459 simple_lock(&vnode_free_list_slock);
2460 if (vp->v_holdcnt > 0)
2461 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2462 else
2463 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2464 simple_unlock(&vnode_free_list_slock);
2465 simple_unlock(&vp->v_interlock);
2466 }
2467
2468