lfs_segment.c revision 1.115 1 /* $NetBSD: lfs_segment.c,v 1.115 2003/03/21 06:26:36 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.115 2003/03/21 06:26:36 perseant Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93
94 #include <miscfs/specfs/specdev.h>
95 #include <miscfs/fifofs/fifo.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
109
110 extern int count_lock_queue(void);
111 extern struct simplelock vnode_free_list_slock; /* XXX */
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 fragstofsb((fs), (fs)->lfs_frag))
125
126 void lfs_callback(struct buf *);
127 int lfs_gather(struct lfs *, struct segment *,
128 struct vnode *, int (*)(struct lfs *, struct buf *));
129 int lfs_gatherblock(struct segment *, struct buf *, int *);
130 void lfs_iset(struct inode *, daddr_t, time_t);
131 int lfs_match_fake(struct lfs *, struct buf *);
132 int lfs_match_data(struct lfs *, struct buf *);
133 int lfs_match_dindir(struct lfs *, struct buf *);
134 int lfs_match_indir(struct lfs *, struct buf *);
135 int lfs_match_tindir(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 int lfs_vref(struct vnode *);
142 void lfs_vunref(struct vnode *);
143 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
144 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
145 int lfs_writeseg(struct lfs *, struct segment *);
146 void lfs_writesuper(struct lfs *, daddr_t);
147 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
148 struct segment *sp, int dirops);
149
150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 int lfs_dirvcount = 0; /* # active dirops */
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 extern int locked_queue_count;
160 extern long locked_queue_bytes;
161
162 /* op values to lfs_writevnodes */
163 #define VN_REG 0
164 #define VN_DIROP 1
165 #define VN_EMPTY 2
166 #define VN_CLEAN 3
167
168 #define LFS_MAX_ACTIVE 10
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 TIMEVAL_TO_TIMESPEC(&time, &ts);
183 ip = VTOI(fs->lfs_ivnode);
184 ip->i_ffs_mtime = ts.tv_sec;
185 ip->i_ffs_mtimensec = ts.tv_nsec;
186 }
187
188 /*
189 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
190 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
191 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
192 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
193 */
194
195 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 #if 0
209 int redo;
210 #endif
211
212 ip = VTOI(vp);
213 fs = VFSTOUFS(vp->v_mount)->um_lfs;
214
215 if (ip->i_flag & IN_CLEANING) {
216 #ifdef DEBUG_LFS
217 ivndebug(vp,"vflush/in_cleaning");
218 #endif
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 goto nextbp;
257 }
258 }
259 simple_unlock(&vp->v_interlock);
260 }
261 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
262 tbp = tnbp)
263 {
264 tnbp = LIST_NEXT(tbp, b_vnbufs);
265 if (tbp->b_vp == bp->b_vp
266 && tbp->b_lblkno == bp->b_lblkno
267 && tbp != bp)
268 {
269 fs->lfs_avail += btofsb(fs,
270 bp->b_bcount);
271 wakeup(&fs->lfs_avail);
272 lfs_freebuf(fs, bp);
273 bp = NULL;
274 break;
275 }
276 }
277 nextbp:
278 ;
279 }
280 splx(s);
281 }
282
283 /* If the node is being written, wait until that is done */
284 s = splbio();
285 if (WRITEINPROG(vp)) {
286 #ifdef DEBUG_LFS
287 ivndebug(vp,"vflush/writeinprog");
288 #endif
289 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
290 }
291 splx(s);
292
293 /* Protect against VXLOCK deadlock in vinvalbuf() */
294 lfs_seglock(fs, SEGM_SYNC);
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 /* XXX - seglock, so these buffers can't be gathered, right? */
298 if (ip->i_ffs_mode == 0) {
299 printf("lfs_vflush: ino %d is freed, not flushing\n",
300 ip->i_number);
301 s = splbio();
302 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
303 nbp = LIST_NEXT(bp, b_vnbufs);
304 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
305 fs->lfs_avail += btofsb(fs, bp->b_bcount);
306 wakeup(&fs->lfs_avail);
307 }
308 /* Copied from lfs_writeseg */
309 if (bp->b_flags & B_CALL) {
310 biodone(bp);
311 } else {
312 bremfree(bp);
313 LFS_UNLOCK_BUF(bp);
314 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
315 B_GATHERED);
316 bp->b_flags |= B_DONE;
317 reassignbuf(bp, vp);
318 brelse(bp);
319 }
320 }
321 splx(s);
322 LFS_CLR_UINO(ip, IN_CLEANING);
323 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
324 ip->i_flag &= ~IN_ALLMOD;
325 printf("lfs_vflush: done not flushing ino %d\n",
326 ip->i_number);
327 lfs_segunlock(fs);
328 return 0;
329 }
330
331 SET_FLUSHING(fs,vp);
332 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
333 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
334 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
335 CLR_FLUSHING(fs,vp);
336 lfs_segunlock(fs);
337 return error;
338 }
339 sp = fs->lfs_sp;
340
341 flushed = 0;
342 if (VPISEMPTY(vp)) {
343 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
344 ++flushed;
345 } else if ((ip->i_flag & IN_CLEANING) &&
346 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
347 #ifdef DEBUG_LFS
348 ivndebug(vp,"vflush/clean");
349 #endif
350 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
351 ++flushed;
352 } else if (lfs_dostats) {
353 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
354 ++lfs_stats.vflush_invoked;
355 #ifdef DEBUG_LFS
356 ivndebug(vp,"vflush");
357 #endif
358 }
359
360 #ifdef DIAGNOSTIC
361 /* XXX KS This actually can happen right now, though it shouldn't(?) */
362 if (vp->v_flag & VDIROP) {
363 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
364 /* panic("VDIROP being flushed...this can\'t happen"); */
365 }
366 if (vp->v_usecount < 0) {
367 printf("usecount=%ld\n", (long)vp->v_usecount);
368 panic("lfs_vflush: usecount<0");
369 }
370 #endif
371
372 #if 1
373 do {
374 do {
375 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
376 lfs_writefile(fs, sp, vp);
377 } while (lfs_writeinode(fs, sp, ip));
378 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
379 #else
380 if (flushed && vp != fs->lfs_ivnode)
381 lfs_writeseg(fs, sp);
382 else do {
383 fs->lfs_flags &= ~LFS_IFDIRTY;
384 lfs_writefile(fs, sp, vp);
385 redo = lfs_writeinode(fs, sp, ip);
386 redo += lfs_writeseg(fs, sp);
387 redo += (fs->lfs_flags & LFS_IFDIRTY);
388 } while (redo && vp == fs->lfs_ivnode);
389 #endif
390 if (lfs_dostats) {
391 ++lfs_stats.nwrites;
392 if (sp->seg_flags & SEGM_SYNC)
393 ++lfs_stats.nsync_writes;
394 if (sp->seg_flags & SEGM_CKP)
395 ++lfs_stats.ncheckpoints;
396 }
397 /*
398 * If we were called from somewhere that has already held the seglock
399 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
400 * the write to complete because we are still locked.
401 * Since lfs_vflush() must return the vnode with no dirty buffers,
402 * we must explicitly wait, if that is the case.
403 *
404 * We compare the iocount against 1, not 0, because it is
405 * artificially incremented by lfs_seglock().
406 */
407 simple_lock(&fs->lfs_interlock);
408 if (fs->lfs_seglock > 1) {
409 simple_unlock(&fs->lfs_interlock);
410 while (fs->lfs_iocount > 1)
411 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
412 "lfs_vflush", 0);
413 } else
414 simple_unlock(&fs->lfs_interlock);
415
416 lfs_segunlock(fs);
417
418 CLR_FLUSHING(fs,vp);
419 return (0);
420 }
421
422 #ifdef DEBUG_LFS_VERBOSE
423 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
424 #else
425 # define vndebug(vp,str)
426 #endif
427
428 int
429 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
430 {
431 struct inode *ip;
432 struct vnode *vp, *nvp;
433 int inodes_written = 0, only_cleaning;
434
435 #ifndef LFS_NO_BACKVP_HACK
436 /* BEGIN HACK */
437 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
438 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
439 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
440
441 /* Find last vnode. */
442 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
443 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
444 vp = LIST_NEXT(vp, v_mntvnodes));
445 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
446 nvp = BACK_VP(vp);
447 #else
448 loop:
449 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
450 nvp = LIST_NEXT(vp, v_mntvnodes);
451 #endif
452 /*
453 * If the vnode that we are about to sync is no longer
454 * associated with this mount point, start over.
455 */
456 if (vp->v_mount != mp) {
457 printf("lfs_writevnodes: starting over\n");
458 /*
459 * After this, pages might be busy
460 * due to our own previous putpages.
461 * Start actual segment write here to avoid deadlock.
462 */
463 (void)lfs_writeseg(fs, sp);
464 goto loop;
465 }
466
467 if (vp->v_type == VNON) {
468 continue;
469 }
470
471 ip = VTOI(vp);
472 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
473 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
474 vndebug(vp,"dirop");
475 continue;
476 }
477
478 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
479 vndebug(vp,"empty");
480 continue;
481 }
482
483 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
484 && vp != fs->lfs_flushvp
485 && !(ip->i_flag & IN_CLEANING)) {
486 vndebug(vp,"cleaning");
487 continue;
488 }
489
490 if (lfs_vref(vp)) {
491 vndebug(vp,"vref");
492 continue;
493 }
494
495 only_cleaning = 0;
496 /*
497 * Write the inode/file if dirty and it's not the IFILE.
498 */
499 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
500 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
501
502 if (ip->i_number != LFS_IFILE_INUM)
503 lfs_writefile(fs, sp, vp);
504 if (!VPISEMPTY(vp)) {
505 if (WRITEINPROG(vp)) {
506 #ifdef DEBUG_LFS
507 ivndebug(vp,"writevnodes/write2");
508 #endif
509 } else if (!(ip->i_flag & IN_ALLMOD)) {
510 #ifdef DEBUG_LFS
511 printf("<%d>",ip->i_number);
512 #endif
513 LFS_SET_UINO(ip, IN_MODIFIED);
514 }
515 }
516 (void) lfs_writeinode(fs, sp, ip);
517 inodes_written++;
518 }
519
520 if (lfs_clean_vnhead && only_cleaning)
521 lfs_vunref_head(vp);
522 else
523 lfs_vunref(vp);
524 }
525 return inodes_written;
526 }
527
528 /*
529 * Do a checkpoint.
530 */
531 int
532 lfs_segwrite(struct mount *mp, int flags)
533 {
534 struct buf *bp;
535 struct inode *ip;
536 struct lfs *fs;
537 struct segment *sp;
538 struct vnode *vp;
539 SEGUSE *segusep;
540 daddr_t ibno;
541 int do_ckp, did_ckp, error, i, s;
542 int writer_set = 0;
543 int dirty;
544 int redo;
545 int sn;
546
547 fs = VFSTOUFS(mp)->um_lfs;
548
549 if (fs->lfs_ronly)
550 return EROFS;
551
552 lfs_imtime(fs);
553
554 /*
555 * Allocate a segment structure and enough space to hold pointers to
556 * the maximum possible number of buffers which can be described in a
557 * single summary block.
558 */
559 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
560 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
561 sp = fs->lfs_sp;
562
563 /*
564 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
565 * in which case we have to flush *all* buffers off of this vnode.
566 * We don't care about other nodes, but write any non-dirop nodes
567 * anyway in anticipation of another getnewvnode().
568 *
569 * If we're cleaning we only write cleaning and ifile blocks, and
570 * no dirops, since otherwise we'd risk corruption in a crash.
571 */
572 if (sp->seg_flags & SEGM_CLEAN)
573 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
574 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
575 lfs_writevnodes(fs, mp, sp, VN_REG);
576 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
577 while (fs->lfs_dirops)
578 if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
579 "lfs writer", 0)))
580 {
581 printf("segwrite mysterious error\n");
582 /* XXX why not segunlock? */
583 pool_put(&fs->lfs_bpppool, sp->bpp);
584 sp->bpp = NULL;
585 pool_put(&fs->lfs_segpool, sp);
586 sp = fs->lfs_sp = NULL;
587 return (error);
588 }
589 fs->lfs_writer++;
590 writer_set = 1;
591 lfs_writevnodes(fs, mp, sp, VN_DIROP);
592 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
593 }
594 }
595
596 /*
597 * If we are doing a checkpoint, mark everything since the
598 * last checkpoint as no longer ACTIVE.
599 */
600 if (do_ckp) {
601 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
602 --ibno >= fs->lfs_cleansz; ) {
603 dirty = 0;
604 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
605
606 panic("lfs_segwrite: ifile read");
607 segusep = (SEGUSE *)bp->b_data;
608 for (i = fs->lfs_sepb; i > 0; i--) {
609 sn = (ibno - fs->lfs_cleansz) * fs->lfs_sepb +
610 fs->lfs_sepb - i;
611 if (segusep->su_flags & SEGUSE_ACTIVE) {
612 segusep->su_flags &= ~SEGUSE_ACTIVE;
613 --fs->lfs_nactive;
614 ++dirty;
615 }
616 fs->lfs_suflags[fs->lfs_activesb][sn] =
617 segusep->su_flags;
618 if (fs->lfs_version > 1)
619 ++segusep;
620 else
621 segusep = (SEGUSE *)
622 ((SEGUSE_V1 *)segusep + 1);
623 }
624
625 /* But the current segment is still ACTIVE */
626 segusep = (SEGUSE *)bp->b_data;
627 if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
628 (ibno-fs->lfs_cleansz)) {
629 sn = dtosn(fs, fs->lfs_curseg);
630 if (fs->lfs_version > 1)
631 segusep[sn % fs->lfs_sepb].su_flags |=
632 SEGUSE_ACTIVE;
633 else
634 ((SEGUSE *)
635 ((SEGUSE_V1 *)(bp->b_data) +
636 (sn % fs->lfs_sepb)))->su_flags
637 |= SEGUSE_ACTIVE;
638 fs->lfs_suflags[fs->lfs_activesb][sn] |=
639 SEGUSE_ACTIVE;
640 ++fs->lfs_nactive;
641 --dirty;
642 }
643 if (dirty)
644 error = LFS_BWRITE_LOG(bp); /* Ifile */
645 else
646 brelse(bp);
647 }
648 }
649
650 did_ckp = 0;
651 if (do_ckp || fs->lfs_doifile) {
652 do {
653 vp = fs->lfs_ivnode;
654
655 #ifdef DEBUG
656 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
657 #endif
658 fs->lfs_flags &= ~LFS_IFDIRTY;
659
660 ip = VTOI(vp);
661
662 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
663 lfs_writefile(fs, sp, vp);
664
665 if (ip->i_flag & IN_ALLMOD)
666 ++did_ckp;
667 redo = lfs_writeinode(fs, sp, ip);
668 redo += lfs_writeseg(fs, sp);
669 redo += (fs->lfs_flags & LFS_IFDIRTY);
670 } while (redo && do_ckp);
671
672 /*
673 * Unless we are unmounting, the Ifile may continue to have
674 * dirty blocks even after a checkpoint, due to changes to
675 * inodes' atime. If we're checkpointing, it's "impossible"
676 * for other parts of the Ifile to be dirty after the loop
677 * above, since we hold the segment lock.
678 */
679 s = splbio();
680 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
681 LFS_CLR_UINO(ip, IN_ALLMOD);
682 }
683 #ifdef DIAGNOSTIC
684 else if (do_ckp) {
685 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
686 if (bp->b_lblkno < fs->lfs_cleansz +
687 fs->lfs_segtabsz &&
688 !(bp->b_flags & B_GATHERED)) {
689 panic("dirty blocks");
690 }
691 }
692 }
693 #endif
694 splx(s);
695 } else {
696 (void) lfs_writeseg(fs, sp);
697 }
698
699 /* Note Ifile no longer needs to be written */
700 fs->lfs_doifile = 0;
701 if (writer_set && --fs->lfs_writer == 0)
702 wakeup(&fs->lfs_dirops);
703
704 /*
705 * If we didn't write the Ifile, we didn't really do anything.
706 * That means that (1) there is a checkpoint on disk and (2)
707 * nothing has changed since it was written.
708 *
709 * Take the flags off of the segment so that lfs_segunlock
710 * doesn't have to write the superblock either.
711 */
712 if (do_ckp && !did_ckp) {
713 sp->seg_flags &= ~SEGM_CKP;
714 }
715
716 if (lfs_dostats) {
717 ++lfs_stats.nwrites;
718 if (sp->seg_flags & SEGM_SYNC)
719 ++lfs_stats.nsync_writes;
720 if (sp->seg_flags & SEGM_CKP)
721 ++lfs_stats.ncheckpoints;
722 }
723 lfs_segunlock(fs);
724 return (0);
725 }
726
727 /*
728 * Write the dirty blocks associated with a vnode.
729 */
730 void
731 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
732 {
733 struct buf *bp;
734 struct finfo *fip;
735 struct inode *ip;
736 IFILE *ifp;
737 int i, frag;
738
739 ip = VTOI(vp);
740
741 if (sp->seg_bytes_left < fs->lfs_bsize ||
742 sp->sum_bytes_left < sizeof(struct finfo))
743 (void) lfs_writeseg(fs, sp);
744
745 sp->sum_bytes_left -= FINFOSIZE;
746 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
747
748 if (vp->v_flag & VDIROP)
749 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
750
751 fip = sp->fip;
752 fip->fi_nblocks = 0;
753 fip->fi_ino = ip->i_number;
754 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
755 fip->fi_version = ifp->if_version;
756 brelse(bp);
757
758 if (sp->seg_flags & SEGM_CLEAN) {
759 lfs_gather(fs, sp, vp, lfs_match_fake);
760 /*
761 * For a file being flushed, we need to write *all* blocks.
762 * This means writing the cleaning blocks first, and then
763 * immediately following with any non-cleaning blocks.
764 * The same is true of the Ifile since checkpoints assume
765 * that all valid Ifile blocks are written.
766 */
767 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
768 lfs_gather(fs, sp, vp, lfs_match_data);
769 /*
770 * Don't call VOP_PUTPAGES: if we're flushing,
771 * we've already done it, and the Ifile doesn't
772 * use the page cache.
773 */
774 }
775 } else {
776 lfs_gather(fs, sp, vp, lfs_match_data);
777 /*
778 * If we're flushing, we've already called VOP_PUTPAGES
779 * so don't do it again. Otherwise, we want to write
780 * everything we've got.
781 */
782 if (!IS_FLUSHING(fs, vp)) {
783 simple_lock(&vp->v_interlock);
784 VOP_PUTPAGES(vp, 0, 0,
785 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED |
786 PGO_BUSYFAIL);
787 }
788 }
789
790 /*
791 * It may not be necessary to write the meta-data blocks at this point,
792 * as the roll-forward recovery code should be able to reconstruct the
793 * list.
794 *
795 * We have to write them anyway, though, under two conditions: (1) the
796 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
797 * checkpointing.
798 *
799 * BUT if we are cleaning, we might have indirect blocks that refer to
800 * new blocks not being written yet, in addition to fragments being
801 * moved out of a cleaned segment. If that is the case, don't
802 * write the indirect blocks, or the finfo will have a small block
803 * in the middle of it!
804 * XXX in this case isn't the inode size wrong too?
805 */
806 frag = 0;
807 if (sp->seg_flags & SEGM_CLEAN) {
808 for (i = 0; i < NDADDR; i++)
809 if (ip->i_lfs_fragsize[i] > 0 &&
810 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
811 ++frag;
812 }
813 #ifdef DIAGNOSTIC
814 if (frag > 1)
815 panic("lfs_writefile: more than one fragment!");
816 #endif
817 if (IS_FLUSHING(fs, vp) ||
818 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
819 lfs_gather(fs, sp, vp, lfs_match_indir);
820 lfs_gather(fs, sp, vp, lfs_match_dindir);
821 lfs_gather(fs, sp, vp, lfs_match_tindir);
822 }
823 fip = sp->fip;
824 if (fip->fi_nblocks != 0) {
825 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
826 sizeof(int32_t) * (fip->fi_nblocks));
827 sp->start_lbp = &sp->fip->fi_blocks[0];
828 } else {
829 sp->sum_bytes_left += FINFOSIZE;
830 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
831 }
832 }
833
834 int
835 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
836 {
837 struct buf *bp, *ibp;
838 struct dinode *cdp;
839 IFILE *ifp;
840 SEGUSE *sup;
841 daddr_t daddr;
842 int32_t *daddrp; /* XXX ondisk32 */
843 ino_t ino;
844 int error, i, ndx, fsb = 0;
845 int redo_ifile = 0;
846 struct timespec ts;
847 int gotblk = 0;
848
849 if (!(ip->i_flag & IN_ALLMOD))
850 return (0);
851
852 /* Allocate a new inode block if necessary. */
853 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
854 /* Allocate a new segment if necessary. */
855 if (sp->seg_bytes_left < fs->lfs_ibsize ||
856 sp->sum_bytes_left < sizeof(int32_t))
857 (void) lfs_writeseg(fs, sp);
858
859 /* Get next inode block. */
860 daddr = fs->lfs_offset;
861 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
862 sp->ibp = *sp->cbpp++ =
863 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
864 fs->lfs_ibsize, 0, 0);
865 gotblk++;
866
867 /* Zero out inode numbers */
868 for (i = 0; i < INOPB(fs); ++i)
869 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
870
871 ++sp->start_bpp;
872 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
873 /* Set remaining space counters. */
874 sp->seg_bytes_left -= fs->lfs_ibsize;
875 sp->sum_bytes_left -= sizeof(int32_t);
876 ndx = fs->lfs_sumsize / sizeof(int32_t) -
877 sp->ninodes / INOPB(fs) - 1;
878 ((int32_t *)(sp->segsum))[ndx] = daddr;
879 }
880
881 /* Update the inode times and copy the inode onto the inode page. */
882 TIMEVAL_TO_TIMESPEC(&time, &ts);
883 /* XXX kludge --- don't redirty the ifile just to put times on it */
884 if (ip->i_number != LFS_IFILE_INUM)
885 LFS_ITIMES(ip, &ts, &ts, &ts);
886
887 /*
888 * If this is the Ifile, and we've already written the Ifile in this
889 * partial segment, just overwrite it (it's not on disk yet) and
890 * continue.
891 *
892 * XXX we know that the bp that we get the second time around has
893 * already been gathered.
894 */
895 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
896 *(sp->idp) = ip->i_din.ffs_din;
897 ip->i_lfs_osize = ip->i_ffs_size;
898 return 0;
899 }
900
901 bp = sp->ibp;
902 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
903 *cdp = ip->i_din.ffs_din;
904 #ifdef LFS_IFILE_FRAG_ADDRESSING
905 if (fs->lfs_version > 1)
906 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
907 #endif
908
909 /*
910 * If we are cleaning, ensure that we don't write UNWRITTEN disk
911 * addresses to disk; possibly revert the inode size.
912 * XXX By not writing these blocks, we are making the lfs_avail
913 * XXX count on disk wrong by the same amount. We should be
914 * XXX able to "borrow" from lfs_avail and return it after the
915 * XXX Ifile is written. See also in lfs_writeseg.
916 */
917 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
918 cdp->di_size = ip->i_lfs_osize;
919 #ifdef DEBUG_LFS
920 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
921 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
922 #endif
923 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
924 daddrp++) {
925 if (*daddrp == UNWRITTEN) {
926 #ifdef DEBUG_LFS
927 printf("lfs_writeinode: wiping UNWRITTEN\n");
928 #endif
929 *daddrp = 0;
930 }
931 }
932 } else {
933 /* If all blocks are goig to disk, update the "size on disk" */
934 ip->i_lfs_osize = ip->i_ffs_size;
935 }
936
937 if (ip->i_flag & IN_CLEANING)
938 LFS_CLR_UINO(ip, IN_CLEANING);
939 else {
940 /* XXX IN_ALLMOD */
941 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
942 IN_UPDATE);
943 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
944 LFS_CLR_UINO(ip, IN_MODIFIED);
945 #ifdef DEBUG_LFS
946 else
947 printf("lfs_writeinode: ino %d: real blks=%d, "
948 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
949 ip->i_lfs_effnblks);
950 #endif
951 }
952
953 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
954 sp->idp = ((struct dinode *)bp->b_data) +
955 (sp->ninodes % INOPB(fs));
956 if (gotblk) {
957 LFS_LOCK_BUF(bp);
958 brelse(bp);
959 }
960
961 /* Increment inode count in segment summary block. */
962 ++((SEGSUM *)(sp->segsum))->ss_ninos;
963
964 /* If this page is full, set flag to allocate a new page. */
965 if (++sp->ninodes % INOPB(fs) == 0)
966 sp->ibp = NULL;
967
968 /*
969 * If updating the ifile, update the super-block. Update the disk
970 * address and access times for this inode in the ifile.
971 */
972 ino = ip->i_number;
973 if (ino == LFS_IFILE_INUM) {
974 daddr = fs->lfs_idaddr;
975 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
976 } else {
977 LFS_IENTRY(ifp, fs, ino, ibp);
978 daddr = ifp->if_daddr;
979 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
980 #ifdef LFS_DEBUG_NEXTFREE
981 if (ino > 3 && ifp->if_nextfree) {
982 vprint("lfs_writeinode",ITOV(ip));
983 printf("lfs_writeinode: updating free ino %d\n",
984 ip->i_number);
985 }
986 #endif
987 error = LFS_BWRITE_LOG(ibp); /* Ifile */
988 }
989
990 /*
991 * The inode's last address should not be in the current partial
992 * segment, except under exceptional circumstances (lfs_writevnodes
993 * had to start over, and in the meantime more blocks were written
994 * to a vnode). Both inodes will be accounted to this segment
995 * in lfs_writeseg so we need to subtract the earlier version
996 * here anyway. The segment count can temporarily dip below
997 * zero here; keep track of how many duplicates we have in
998 * "dupino" so we don't panic below.
999 */
1000 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1001 ++sp->ndupino;
1002 printf("lfs_writeinode: last inode addr in current pseg "
1003 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1004 (long long)daddr, sp->ndupino);
1005 }
1006 /*
1007 * Account the inode: it no longer belongs to its former segment,
1008 * though it will not belong to the new segment until that segment
1009 * is actually written.
1010 */
1011 if (daddr != LFS_UNUSED_DADDR) {
1012 u_int32_t oldsn = dtosn(fs, daddr);
1013 #ifdef DIAGNOSTIC
1014 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1015 #endif
1016 LFS_SEGENTRY(sup, fs, oldsn, bp);
1017 #ifdef DIAGNOSTIC
1018 if (sup->su_nbytes + DINODE_SIZE * ndupino < DINODE_SIZE) {
1019 printf("lfs_writeinode: negative bytes "
1020 "(segment %" PRIu32 " short by %d, "
1021 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1022 ", daddr=%" PRId64 ", su_nbytes=%u, "
1023 "ndupino=%d)\n",
1024 dtosn(fs, daddr),
1025 (int)DINODE_SIZE * (1 - sp->ndupino)
1026 - sup->su_nbytes,
1027 oldsn, sp->seg_number, daddr,
1028 (unsigned int)sup->su_nbytes,
1029 sp->ndupino);
1030 panic("lfs_writeinode: negative bytes");
1031 sup->su_nbytes = DINODE_SIZE;
1032 }
1033 #endif
1034 #ifdef DEBUG_SU_NBYTES
1035 printf("seg %d -= %d for ino %d inode\n",
1036 dtosn(fs, daddr), DINODE_SIZE, ino);
1037 #endif
1038 sup->su_nbytes -= DINODE_SIZE;
1039 redo_ifile =
1040 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1041 if (redo_ifile)
1042 fs->lfs_flags |= LFS_IFDIRTY;
1043 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1044 }
1045 return (redo_ifile);
1046 }
1047
1048 int
1049 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1050 {
1051 struct lfs *fs;
1052 int version;
1053 int j, blksinblk;
1054
1055 /*
1056 * If full, finish this segment. We may be doing I/O, so
1057 * release and reacquire the splbio().
1058 */
1059 #ifdef DIAGNOSTIC
1060 if (sp->vp == NULL)
1061 panic ("lfs_gatherblock: Null vp in segment");
1062 #endif
1063 fs = sp->fs;
1064 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1065 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1066 sp->seg_bytes_left < bp->b_bcount) {
1067 if (sptr)
1068 splx(*sptr);
1069 lfs_updatemeta(sp);
1070
1071 version = sp->fip->fi_version;
1072 (void) lfs_writeseg(fs, sp);
1073
1074 sp->fip->fi_version = version;
1075 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1076 /* Add the current file to the segment summary. */
1077 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1078 sp->sum_bytes_left -= FINFOSIZE;
1079
1080 if (sptr)
1081 *sptr = splbio();
1082 return (1);
1083 }
1084
1085 #ifdef DEBUG
1086 if (bp->b_flags & B_GATHERED) {
1087 printf("lfs_gatherblock: already gathered! Ino %d,"
1088 " lbn %" PRId64 "\n",
1089 sp->fip->fi_ino, bp->b_lblkno);
1090 return (0);
1091 }
1092 #endif
1093 /* Insert into the buffer list, update the FINFO block. */
1094 bp->b_flags |= B_GATHERED;
1095 bp->b_flags &= ~B_DONE;
1096
1097 *sp->cbpp++ = bp;
1098 for (j = 0; j < blksinblk; j++)
1099 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1100
1101 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1102 sp->seg_bytes_left -= bp->b_bcount;
1103 return (0);
1104 }
1105
1106 int
1107 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1108 {
1109 struct buf *bp, *nbp;
1110 int s, count = 0;
1111
1112 sp->vp = vp;
1113 s = splbio();
1114
1115 #ifndef LFS_NO_BACKBUF_HACK
1116 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1117 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1118 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1119 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1120 /* Find last buffer. */
1121 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1122 bp = LIST_NEXT(bp, b_vnbufs));
1123 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1124 nbp = BACK_BUF(bp);
1125 #else /* LFS_NO_BACKBUF_HACK */
1126 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1127 nbp = LIST_NEXT(bp, b_vnbufs);
1128 #endif /* LFS_NO_BACKBUF_HACK */
1129 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1130 #ifdef DEBUG_LFS
1131 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1132 printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
1133 #endif
1134 continue;
1135 }
1136 if (vp->v_type == VBLK) {
1137 /* For block devices, just write the blocks. */
1138 /* XXX Do we really need to even do this? */
1139 #ifdef DEBUG_LFS
1140 if (count == 0)
1141 printf("BLK(");
1142 printf(".");
1143 #endif
1144 /* Get the block before bwrite, so we don't corrupt the free list */
1145 bp->b_flags |= B_BUSY;
1146 bremfree(bp);
1147 bwrite(bp);
1148 } else {
1149 #ifdef DIAGNOSTIC
1150 # ifdef LFS_USE_B_INVAL
1151 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1152 printf("lfs_gather: lbn %" PRId64 " is "
1153 "B_INVAL\n", bp->b_lblkno);
1154 VOP_PRINT(bp->b_vp);
1155 }
1156 # endif /* LFS_USE_B_INVAL */
1157 if (!(bp->b_flags & B_DELWRI))
1158 panic("lfs_gather: bp not B_DELWRI");
1159 if (!(bp->b_flags & B_LOCKED)) {
1160 printf("lfs_gather: lbn %" PRId64 " blk "
1161 "%" PRId64 " not B_LOCKED\n",
1162 bp->b_lblkno,
1163 dbtofsb(fs, bp->b_blkno));
1164 VOP_PRINT(bp->b_vp);
1165 panic("lfs_gather: bp not B_LOCKED");
1166 }
1167 #endif
1168 if (lfs_gatherblock(sp, bp, &s)) {
1169 goto loop;
1170 }
1171 }
1172 count++;
1173 }
1174 splx(s);
1175 #ifdef DEBUG_LFS
1176 if (vp->v_type == VBLK && count)
1177 printf(")\n");
1178 #endif
1179 lfs_updatemeta(sp);
1180 sp->vp = NULL;
1181 return count;
1182 }
1183
1184 #if DEBUG
1185 # define DEBUG_OOFF(n) do { \
1186 if (ooff == 0) { \
1187 printf("lfs_updatemeta[%d]: warning: writing " \
1188 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1189 ", was 0x0 (or %" PRId64 ")\n", \
1190 (n), ip->i_number, lbn, ndaddr, daddr); \
1191 } \
1192 } while (0)
1193 #else
1194 # define DEBUG_OOFF(n)
1195 #endif
1196
1197 /*
1198 * Change the given block's address to ndaddr, finding its previous
1199 * location using ufs_bmaparray().
1200 *
1201 * Account for this change in the segment table.
1202 */
1203 void
1204 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1205 int32_t ndaddr, int size)
1206 {
1207 SEGUSE *sup;
1208 struct buf *bp;
1209 struct indir a[NIADDR + 2], *ap;
1210 struct inode *ip;
1211 struct vnode *vp;
1212 daddr_t daddr, ooff;
1213 int num, error;
1214 int bb, osize, obb;
1215
1216 vp = sp->vp;
1217 ip = VTOI(vp);
1218
1219 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1220 if (error)
1221 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1222 if (daddr > 0)
1223 daddr = dbtofsb(fs, daddr);
1224
1225 bb = fragstofsb(fs, numfrags(fs, size));
1226 switch (num) {
1227 case 0:
1228 ooff = ip->i_ffs_db[lbn];
1229 DEBUG_OOFF(0);
1230 if (ooff == UNWRITTEN)
1231 ip->i_ffs_blocks += bb;
1232 else {
1233 /* possible fragment truncation or extension */
1234 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1235 ip->i_ffs_blocks += (bb - obb);
1236 }
1237 ip->i_ffs_db[lbn] = ndaddr;
1238 break;
1239 case 1:
1240 ooff = ip->i_ffs_ib[a[0].in_off];
1241 DEBUG_OOFF(1);
1242 if (ooff == UNWRITTEN)
1243 ip->i_ffs_blocks += bb;
1244 ip->i_ffs_ib[a[0].in_off] = ndaddr;
1245 break;
1246 default:
1247 ap = &a[num - 1];
1248 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1249 panic("lfs_updatemeta: bread bno %" PRId64,
1250 ap->in_lbn);
1251
1252 /* XXX ondisk32 */
1253 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1254 DEBUG_OOFF(num);
1255 if (ooff == UNWRITTEN)
1256 ip->i_ffs_blocks += bb;
1257 /* XXX ondisk32 */
1258 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1259 (void) VOP_BWRITE(bp);
1260 }
1261
1262 /*
1263 * Though we'd rather it couldn't, this *can* happen right now
1264 * if cleaning blocks and regular blocks coexist.
1265 */
1266 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1267
1268 /*
1269 * Update segment usage information, based on old size
1270 * and location.
1271 */
1272 if (daddr > 0) {
1273 u_int32_t oldsn = dtosn(fs, daddr);
1274 #ifdef DIAGNOSTIC
1275 int ndupino = (sp->seg_number == oldsn) ?
1276 sp->ndupino : 0;
1277 #endif
1278 if (lbn >= 0 && lbn < NDADDR)
1279 osize = ip->i_lfs_fragsize[lbn];
1280 else
1281 osize = fs->lfs_bsize;
1282 LFS_SEGENTRY(sup, fs, oldsn, bp);
1283 #ifdef DIAGNOSTIC
1284 if (sup->su_nbytes + DINODE_SIZE * ndupino < osize) {
1285 printf("lfs_updatemeta: negative bytes "
1286 "(segment %" PRIu32 " short by %" PRId64
1287 ")\n", dtosn(fs, daddr),
1288 (int64_t)osize -
1289 (DINODE_SIZE * sp->ndupino +
1290 sup->su_nbytes));
1291 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1292 ", addr = 0x%" PRIx64 "\n",
1293 VTOI(sp->vp)->i_number, lbn, daddr);
1294 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1295 panic("lfs_updatemeta: negative bytes");
1296 sup->su_nbytes = osize - DINODE_SIZE * sp->ndupino;
1297 }
1298 #endif
1299 #ifdef DEBUG_SU_NBYTES
1300 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1301 " db 0x%" PRIx64 "\n",
1302 dtosn(fs, daddr), osize,
1303 VTOI(sp->vp)->i_number, lbn, daddr);
1304 #endif
1305 sup->su_nbytes -= osize;
1306 if (!(bp->b_flags & B_GATHERED))
1307 fs->lfs_flags |= LFS_IFDIRTY;
1308 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1309 }
1310 /*
1311 * Now that this block has a new address, and its old
1312 * segment no longer owns it, we can forget about its
1313 * old size.
1314 */
1315 if (lbn >= 0 && lbn < NDADDR)
1316 ip->i_lfs_fragsize[lbn] = size;
1317 }
1318
1319 /*
1320 * Update the metadata that points to the blocks listed in the FINFO
1321 * array.
1322 */
1323 void
1324 lfs_updatemeta(struct segment *sp)
1325 {
1326 struct buf *sbp;
1327 struct lfs *fs;
1328 struct vnode *vp;
1329 daddr_t lbn;
1330 int i, nblocks, num;
1331 int bb;
1332 int bytesleft, size;
1333
1334 vp = sp->vp;
1335 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1336 KASSERT(nblocks >= 0);
1337 if (vp == NULL || nblocks == 0)
1338 return;
1339
1340 /*
1341 * This count may be high due to oversize blocks from lfs_gop_write.
1342 * Correct for this. (XXX we should be able to keep track of these.)
1343 */
1344 fs = sp->fs;
1345 for (i = 0; i < nblocks; i++) {
1346 if (sp->start_bpp[i] == NULL) {
1347 printf("nblocks = %d, not %d\n", i, nblocks);
1348 nblocks = i;
1349 break;
1350 }
1351 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1352 nblocks -= num - 1;
1353 }
1354
1355 /*
1356 * Sort the blocks.
1357 *
1358 * We have to sort even if the blocks come from the
1359 * cleaner, because there might be other pending blocks on the
1360 * same inode...and if we don't sort, and there are fragments
1361 * present, blocks may be written in the wrong place.
1362 */
1363 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1364
1365 /*
1366 * Record the length of the last block in case it's a fragment.
1367 * If there are indirect blocks present, they sort last. An
1368 * indirect block will be lfs_bsize and its presence indicates
1369 * that you cannot have fragments.
1370 *
1371 * XXX This last is a lie. A cleaned fragment can coexist with
1372 * XXX a later indirect block. This will continue to be
1373 * XXX true until lfs_markv is fixed to do everything with
1374 * XXX fake blocks (including fake inodes and fake indirect blocks).
1375 */
1376 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1377 fs->lfs_bmask) + 1;
1378
1379 /*
1380 * Assign disk addresses, and update references to the logical
1381 * block and the segment usage information.
1382 */
1383 for (i = nblocks; i--; ++sp->start_bpp) {
1384 sbp = *sp->start_bpp;
1385 lbn = *sp->start_lbp;
1386
1387 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1388
1389 /*
1390 * If we write a frag in the wrong place, the cleaner won't
1391 * be able to correctly identify its size later, and the
1392 * segment will be uncleanable. (Even worse, it will assume
1393 * that the indirect block that actually ends the list
1394 * is of a smaller size!)
1395 */
1396 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1397 panic("lfs_updatemeta: fragment is not last block");
1398
1399 /*
1400 * For each subblock in this possibly oversized block,
1401 * update its address on disk.
1402 */
1403 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1404 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1405 bytesleft -= fs->lfs_bsize) {
1406 size = MIN(bytesleft, fs->lfs_bsize);
1407 bb = fragstofsb(fs, numfrags(fs, size));
1408 lbn = *sp->start_lbp++;
1409 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1410 fs->lfs_offset += bb;
1411 }
1412
1413 }
1414 }
1415
1416 /*
1417 * Start a new segment.
1418 */
1419 int
1420 lfs_initseg(struct lfs *fs)
1421 {
1422 struct segment *sp;
1423 SEGUSE *sup;
1424 SEGSUM *ssp;
1425 struct buf *bp, *sbp;
1426 int repeat;
1427
1428 sp = fs->lfs_sp;
1429
1430 repeat = 0;
1431
1432 /* Advance to the next segment. */
1433 if (!LFS_PARTIAL_FITS(fs)) {
1434 /* lfs_avail eats the remaining space */
1435 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1436 fs->lfs_curseg);
1437 /* Wake up any cleaning procs waiting on this file system. */
1438 wakeup(&lfs_allclean_wakeup);
1439 wakeup(&fs->lfs_nextseg);
1440 lfs_newseg(fs);
1441 repeat = 1;
1442 fs->lfs_offset = fs->lfs_curseg;
1443
1444 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1445 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1446
1447 /*
1448 * If the segment contains a superblock, update the offset
1449 * and summary address to skip over it.
1450 */
1451 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1452 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1453 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1454 sp->seg_bytes_left -= LFS_SBPAD;
1455 }
1456 brelse(bp);
1457 /* Segment zero could also contain the labelpad */
1458 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1459 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1460 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1461 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1462 }
1463 } else {
1464 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1465 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1466 (fs->lfs_offset - fs->lfs_curseg));
1467 }
1468 fs->lfs_lastpseg = fs->lfs_offset;
1469
1470 /* Record first address of this partial segment */
1471 if (sp->seg_flags & SEGM_CLEAN) {
1472 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1473 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1474 /* "1" is the artificial inc in lfs_seglock */
1475 while (fs->lfs_iocount > 1) {
1476 tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0);
1477 }
1478 fs->lfs_cleanind = 0;
1479 }
1480 }
1481
1482 sp->fs = fs;
1483 sp->ibp = NULL;
1484 sp->idp = NULL;
1485 sp->ninodes = 0;
1486 sp->ndupino = 0;
1487
1488 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1489 sp->cbpp = sp->bpp;
1490 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1491 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1492 sp->segsum = (*sp->cbpp)->b_data;
1493 memset(sp->segsum, 0, fs->lfs_sumsize);
1494 sp->start_bpp = ++sp->cbpp;
1495 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1496
1497 /* Set point to SEGSUM, initialize it. */
1498 ssp = sp->segsum;
1499 ssp->ss_next = fs->lfs_nextseg;
1500 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1501 ssp->ss_magic = SS_MAGIC;
1502
1503 /* Set pointer to first FINFO, initialize it. */
1504 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1505 sp->fip->fi_nblocks = 0;
1506 sp->start_lbp = &sp->fip->fi_blocks[0];
1507 sp->fip->fi_lastlength = 0;
1508
1509 sp->seg_bytes_left -= fs->lfs_sumsize;
1510 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1511
1512 return (repeat);
1513 }
1514
1515 /*
1516 * Return the next segment to write.
1517 */
1518 void
1519 lfs_newseg(struct lfs *fs)
1520 {
1521 CLEANERINFO *cip;
1522 SEGUSE *sup;
1523 struct buf *bp;
1524 int curseg, isdirty, sn;
1525
1526 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1527 #ifdef DEBUG_SU_NBYTES
1528 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1529 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1530 #endif
1531 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1532 sup->su_nbytes = 0;
1533 sup->su_nsums = 0;
1534 sup->su_ninos = 0;
1535 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1536
1537 LFS_CLEANERINFO(cip, fs, bp);
1538 --cip->clean;
1539 ++cip->dirty;
1540 fs->lfs_nclean = cip->clean;
1541 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1542
1543 fs->lfs_lastseg = fs->lfs_curseg;
1544 fs->lfs_curseg = fs->lfs_nextseg;
1545 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1546 sn = (sn + 1) % fs->lfs_nseg;
1547 if (sn == curseg)
1548 panic("lfs_nextseg: no clean segments");
1549 LFS_SEGENTRY(sup, fs, sn, bp);
1550 isdirty = sup->su_flags & SEGUSE_DIRTY;
1551 /* Check SEGUSE_EMPTY as we go along */
1552 if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY))
1553 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1554 else
1555 brelse(bp);
1556
1557 if (!isdirty)
1558 break;
1559 }
1560
1561 ++fs->lfs_nactive;
1562 fs->lfs_nextseg = sntod(fs, sn);
1563 if (lfs_dostats) {
1564 ++lfs_stats.segsused;
1565 }
1566 }
1567
1568 #define BQUEUES 4 /* XXX */
1569 #define BQ_EMPTY 3 /* XXX */
1570 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1571 extern struct simplelock bqueue_slock;
1572
1573 #define BUFHASH(dvp, lbn) \
1574 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1575 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1576 /*
1577 * Insq/Remq for the buffer hash lists.
1578 */
1579 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1580 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1581
1582 static struct buf *
1583 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1584 {
1585 struct lfs_cluster *cl;
1586 struct buf **bpp, *bp;
1587 int s;
1588
1589 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1590 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1591 memset(cl, 0, sizeof(*cl));
1592 cl->fs = fs;
1593 cl->bpp = bpp;
1594 cl->bufcount = 0;
1595 cl->bufsize = 0;
1596
1597 /* If this segment is being written synchronously, note that */
1598 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1599 cl->flags |= LFS_CL_SYNC;
1600 cl->seg = fs->lfs_sp;
1601 ++cl->seg->seg_iocount;
1602 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1603 }
1604
1605 /* Get an empty buffer header, or maybe one with something on it */
1606 s = splbio();
1607 simple_lock(&bqueue_slock);
1608 if ((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1609 simple_lock(&bp->b_interlock);
1610 bremfree(bp);
1611 /* clear out various other fields */
1612 bp->b_flags = B_BUSY;
1613 bp->b_dev = NODEV;
1614 bp->b_blkno = bp->b_lblkno = 0;
1615 bp->b_error = 0;
1616 bp->b_resid = 0;
1617 bp->b_bcount = 0;
1618
1619 /* nuke any credentials we were holding */
1620 /* XXXXXX */
1621
1622 bremhash(bp);
1623
1624 /* disassociate us from our vnode, if we had one... */
1625 if (bp->b_vp)
1626 brelvp(bp);
1627 }
1628 while (!bp)
1629 bp = getnewbuf(0, 0);
1630 bgetvp(vp, bp);
1631 binshash(bp,&invalhash);
1632 simple_unlock(&bp->b_interlock);
1633 simple_unlock(&bqueue_slock);
1634 splx(s);
1635 bp->b_bcount = 0;
1636 bp->b_blkno = bp->b_lblkno = addr;
1637
1638 bp->b_flags |= B_CALL;
1639 bp->b_iodone = lfs_cluster_callback;
1640 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1641 bp->b_saveaddr = (caddr_t)cl;
1642
1643 return bp;
1644 }
1645
1646 int
1647 lfs_writeseg(struct lfs *fs, struct segment *sp)
1648 {
1649 struct buf **bpp, *bp, *cbp, *newbp;
1650 SEGUSE *sup;
1651 SEGSUM *ssp;
1652 dev_t i_dev;
1653 char *datap, *dp;
1654 int i, s;
1655 int do_again, nblocks, byteoffset;
1656 size_t el_size;
1657 struct lfs_cluster *cl;
1658 int (*strategy)(void *);
1659 struct vop_strategy_args vop_strategy_a;
1660 u_short ninos;
1661 struct vnode *devvp;
1662 char *p;
1663 struct vnode *vp;
1664 int32_t *daddrp; /* XXX ondisk32 */
1665 int changed;
1666 #if defined(DEBUG) && defined(LFS_PROPELLER)
1667 static int propeller;
1668 char propstring[4] = "-\\|/";
1669
1670 printf("%c\b",propstring[propeller++]);
1671 if (propeller == 4)
1672 propeller = 0;
1673 #endif
1674
1675 /*
1676 * If there are no buffers other than the segment summary to write
1677 * and it is not a checkpoint, don't do anything. On a checkpoint,
1678 * even if there aren't any buffers, you need to write the superblock.
1679 */
1680 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1681 return (0);
1682
1683 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1684 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1685
1686 /* Update the segment usage information. */
1687 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1688
1689 /* Loop through all blocks, except the segment summary. */
1690 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1691 if ((*bpp)->b_vp != devvp) {
1692 sup->su_nbytes += (*bpp)->b_bcount;
1693 #ifdef DEBUG_SU_NBYTES
1694 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1695 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1696 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1697 (*bpp)->b_blkno);
1698 #endif
1699 }
1700 }
1701
1702 ssp = (SEGSUM *)sp->segsum;
1703
1704 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1705 #ifdef DEBUG_SU_NBYTES
1706 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1707 sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1708 ssp->ss_ninos);
1709 #endif
1710 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1711 /* sup->su_nbytes += fs->lfs_sumsize; */
1712 if (fs->lfs_version == 1)
1713 sup->su_olastmod = time.tv_sec;
1714 else
1715 sup->su_lastmod = time.tv_sec;
1716 sup->su_ninos += ninos;
1717 ++sup->su_nsums;
1718 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1719 fs->lfs_ibsize));
1720 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1721
1722 do_again = !(bp->b_flags & B_GATHERED);
1723 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1724
1725 /*
1726 * Mark blocks B_BUSY, to prevent then from being changed between
1727 * the checksum computation and the actual write.
1728 *
1729 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1730 * there are any, replace them with copies that have UNASSIGNED
1731 * instead.
1732 */
1733 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1734 ++bpp;
1735 bp = *bpp;
1736 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1737 bp->b_flags |= B_BUSY;
1738 continue;
1739 }
1740 again:
1741 s = splbio();
1742 if (bp->b_flags & B_BUSY) {
1743 #ifdef DEBUG
1744 printf("lfs_writeseg: avoiding potential data summary "
1745 "corruption for ino %d, lbn %" PRId64 "\n",
1746 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1747 #endif
1748 bp->b_flags |= B_WANTED;
1749 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1750 splx(s);
1751 goto again;
1752 }
1753 bp->b_flags |= B_BUSY;
1754 splx(s);
1755 /*
1756 * Check and replace indirect block UNWRITTEN bogosity.
1757 * XXX See comment in lfs_writefile.
1758 */
1759 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1760 VTOI(bp->b_vp)->i_ffs_blocks !=
1761 VTOI(bp->b_vp)->i_lfs_effnblks) {
1762 #ifdef DEBUG_LFS
1763 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1764 VTOI(bp->b_vp)->i_number,
1765 VTOI(bp->b_vp)->i_lfs_effnblks,
1766 VTOI(bp->b_vp)->i_ffs_blocks);
1767 #endif
1768 /* Make a copy we'll make changes to */
1769 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1770 bp->b_bcount, LFS_NB_IBLOCK);
1771 newbp->b_blkno = bp->b_blkno;
1772 memcpy(newbp->b_data, bp->b_data,
1773 newbp->b_bcount);
1774
1775 changed = 0;
1776 /* XXX ondisk32 */
1777 for (daddrp = (int32_t *)(newbp->b_data);
1778 daddrp < (int32_t *)(newbp->b_data +
1779 newbp->b_bcount); daddrp++) {
1780 if (*daddrp == UNWRITTEN) {
1781 #ifdef DEBUG_LFS
1782 off_t doff;
1783 int32_t ioff;
1784
1785 ioff = daddrp - (int32_t *)(newbp->b_data);
1786 doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1787 printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n",
1788 VTOI(bp->b_vp)->i_number,
1789 bp->b_lblkno, ioff, doff);
1790 if (bp->b_vp->v_type == VREG) {
1791 /*
1792 * What is up with this page?
1793 */
1794 struct vm_page *pg;
1795 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) {
1796 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1797 if (pg == NULL)
1798 printf(" page at %" PRIx64 " is NULL\n", doff);
1799 else
1800 printf(" page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags);
1801 }
1802 }
1803 #endif /* DEBUG_LFS */
1804 ++changed;
1805 *daddrp = 0;
1806 }
1807 }
1808 /*
1809 * Get rid of the old buffer. Don't mark it clean,
1810 * though, if it still has dirty data on it.
1811 */
1812 if (changed) {
1813 #ifdef DEBUG_LFS
1814 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1815 " bp = %p newbp = %p\n", changed, bp,
1816 newbp);
1817 #endif
1818 *bpp = newbp;
1819 bp->b_flags &= ~(B_ERROR | B_GATHERED | B_DONE);
1820 if (bp->b_flags & B_CALL) {
1821 printf("lfs_writeseg: indir bp should not be B_CALL\n");
1822 s = splbio();
1823 biodone(bp);
1824 splx(s);
1825 bp = NULL;
1826 } else {
1827 /* Still on free list, leave it there */
1828 s = splbio();
1829 bp->b_flags &= ~B_BUSY;
1830 if (bp->b_flags & B_WANTED)
1831 wakeup(bp);
1832 splx(s);
1833 /*
1834 * We have to re-decrement lfs_avail
1835 * since this block is going to come
1836 * back around to us in the next
1837 * segment.
1838 */
1839 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1840 }
1841 } else {
1842 lfs_freebuf(fs, newbp);
1843 }
1844 }
1845 }
1846 /*
1847 * Compute checksum across data and then across summary; the first
1848 * block (the summary block) is skipped. Set the create time here
1849 * so that it's guaranteed to be later than the inode mod times.
1850 *
1851 * XXX
1852 * Fix this to do it inline, instead of malloc/copy.
1853 */
1854 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1855 if (fs->lfs_version == 1)
1856 el_size = sizeof(u_long);
1857 else
1858 el_size = sizeof(u_int32_t);
1859 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1860 ++bpp;
1861 /* Loop through gop_write cluster blocks */
1862 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1863 byteoffset += fs->lfs_bsize) {
1864 #ifdef LFS_USE_B_INVAL
1865 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1866 (B_CALL | B_INVAL)) {
1867 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1868 byteoffset, dp, el_size)) {
1869 panic("lfs_writeseg: copyin failed [1]: "
1870 "ino %d blk %" PRId64,
1871 VTOI((*bpp)->b_vp)->i_number,
1872 (*bpp)->b_lblkno);
1873 }
1874 } else
1875 #endif /* LFS_USE_B_INVAL */
1876 {
1877 memcpy(dp, (*bpp)->b_data + byteoffset,
1878 el_size);
1879 }
1880 dp += el_size;
1881 }
1882 }
1883 if (fs->lfs_version == 1)
1884 ssp->ss_ocreate = time.tv_sec;
1885 else {
1886 ssp->ss_create = time.tv_sec;
1887 ssp->ss_serial = ++fs->lfs_serial;
1888 ssp->ss_ident = fs->lfs_ident;
1889 }
1890 ssp->ss_datasum = cksum(datap, dp - datap);
1891 ssp->ss_sumsum =
1892 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1893 pool_put(&fs->lfs_bpppool, datap);
1894 datap = dp = NULL;
1895 #ifdef DIAGNOSTIC
1896 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1897 panic("lfs_writeseg: No diskspace for summary");
1898 #endif
1899 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1900 btofsb(fs, fs->lfs_sumsize));
1901
1902 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1903
1904 /*
1905 * When we simply write the blocks we lose a rotation for every block
1906 * written. To avoid this problem, we cluster the buffers into a
1907 * chunk and write the chunk. MAXPHYS is the largest size I/O
1908 * devices can handle, use that for the size of the chunks.
1909 *
1910 * Blocks that are already clusters (from GOP_WRITE), however, we
1911 * don't bother to copy into other clusters.
1912 */
1913
1914 #define CHUNKSIZE MAXPHYS
1915
1916 if (devvp == NULL)
1917 panic("devvp is NULL");
1918 for (bpp = sp->bpp, i = nblocks; i;) {
1919 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1920 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1921
1922 cbp->b_dev = i_dev;
1923 cbp->b_flags |= B_ASYNC | B_BUSY;
1924 cbp->b_bcount = 0;
1925
1926 cl->olddata = cbp->b_data;
1927 #if defined(DEBUG) && defined(DIAGNOSTIC)
1928 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1929 / sizeof(int32_t)) {
1930 panic("lfs_writeseg: real bpp overwrite");
1931 }
1932 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1933 panic("lfs_writeseg: theoretical bpp overwrite");
1934 }
1935 #endif
1936
1937 /*
1938 * Construct the cluster.
1939 */
1940 ++fs->lfs_iocount;
1941 while (i && cbp->b_bcount < CHUNKSIZE) {
1942 bp = *bpp;
1943
1944 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1945 break;
1946 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1947 break;
1948
1949 /* Clusters from GOP_WRITE are expedited */
1950 if (bp->b_bcount > fs->lfs_bsize) {
1951 if (cbp->b_bcount > 0)
1952 /* Put in its own buffer */
1953 break;
1954 else {
1955 cbp->b_data = bp->b_data;
1956 }
1957 } else if (cbp->b_bcount == 0) {
1958 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1959 LFS_NB_CLUSTER);
1960 cl->flags |= LFS_CL_MALLOC;
1961 }
1962 #ifdef DIAGNOSTIC
1963 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1964 btodb(bp->b_bcount - 1))) !=
1965 sp->seg_number) {
1966 printf("blk size %ld daddr %" PRIx64 " not in seg %d\n",
1967 bp->b_bcount, bp->b_blkno,
1968 sp->seg_number);
1969 panic("segment overwrite");
1970 }
1971 #endif
1972
1973 #ifdef LFS_USE_B_INVAL
1974 /*
1975 * Fake buffers from the cleaner are marked as B_INVAL.
1976 * We need to copy the data from user space rather than
1977 * from the buffer indicated.
1978 * XXX == what do I do on an error?
1979 */
1980 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1981 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1982 panic("lfs_writeseg: copyin failed [2]");
1983 } else
1984 #endif /* LFS_USE_B_INVAL */
1985 if (cl->flags & LFS_CL_MALLOC) {
1986 bcopy(bp->b_data, p, bp->b_bcount);
1987 }
1988
1989 p += bp->b_bcount;
1990 cbp->b_bcount += bp->b_bcount;
1991 cl->bufsize += bp->b_bcount;
1992
1993 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1994 cl->bpp[cl->bufcount++] = bp;
1995 vp = bp->b_vp;
1996 s = splbio();
1997 V_INCR_NUMOUTPUT(vp);
1998 splx(s);
1999
2000 bpp++;
2001 i--;
2002 }
2003 s = splbio();
2004 V_INCR_NUMOUTPUT(devvp);
2005 splx(s);
2006 vop_strategy_a.a_desc = VDESC(vop_strategy);
2007 vop_strategy_a.a_bp = cbp;
2008 (strategy)(&vop_strategy_a);
2009 curproc->p_stats->p_ru.ru_oublock++;
2010 }
2011
2012 if (lfs_dostats) {
2013 ++lfs_stats.psegwrites;
2014 lfs_stats.blocktot += nblocks - 1;
2015 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2016 ++lfs_stats.psyncwrites;
2017 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2018 ++lfs_stats.pcleanwrites;
2019 lfs_stats.cleanblocks += nblocks - 1;
2020 }
2021 }
2022 return (lfs_initseg(fs) || do_again);
2023 }
2024
2025 void
2026 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2027 {
2028 struct buf *bp;
2029 dev_t i_dev;
2030 int (*strategy)(void *);
2031 int s;
2032 struct vop_strategy_args vop_strategy_a;
2033
2034 /*
2035 * If we can write one superblock while another is in
2036 * progress, we risk not having a complete checkpoint if we crash.
2037 * So, block here if a superblock write is in progress.
2038 */
2039 s = splbio();
2040 while (fs->lfs_sbactive) {
2041 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2042 }
2043 fs->lfs_sbactive = daddr;
2044 splx(s);
2045 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2046 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2047
2048 /* Set timestamp of this version of the superblock */
2049 if (fs->lfs_version == 1)
2050 fs->lfs_otstamp = time.tv_sec;
2051 fs->lfs_tstamp = time.tv_sec;
2052
2053 /* Checksum the superblock and copy it into a buffer. */
2054 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2055 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2056 memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs));
2057 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2058
2059 bp->b_dev = i_dev;
2060 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2061 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2062 bp->b_iodone = lfs_supercallback;
2063 /* XXX KS - same nasty hack as above */
2064 bp->b_saveaddr = (caddr_t)fs;
2065
2066 vop_strategy_a.a_desc = VDESC(vop_strategy);
2067 vop_strategy_a.a_bp = bp;
2068 curproc->p_stats->p_ru.ru_oublock++;
2069 s = splbio();
2070 V_INCR_NUMOUTPUT(bp->b_vp);
2071 splx(s);
2072 ++fs->lfs_iocount;
2073 (strategy)(&vop_strategy_a);
2074 }
2075
2076 /*
2077 * Logical block number match routines used when traversing the dirty block
2078 * chain.
2079 */
2080 int
2081 lfs_match_fake(struct lfs *fs, struct buf *bp)
2082 {
2083 return LFS_IS_MALLOC_BUF(bp);
2084 }
2085
2086 #if 0
2087 int
2088 lfs_match_real(struct lfs *fs, struct buf *bp)
2089 {
2090 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2091 }
2092 #endif
2093
2094 int
2095 lfs_match_data(struct lfs *fs, struct buf *bp)
2096 {
2097 return (bp->b_lblkno >= 0);
2098 }
2099
2100 int
2101 lfs_match_indir(struct lfs *fs, struct buf *bp)
2102 {
2103 daddr_t lbn;
2104
2105 lbn = bp->b_lblkno;
2106 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2107 }
2108
2109 int
2110 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2111 {
2112 daddr_t lbn;
2113
2114 lbn = bp->b_lblkno;
2115 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2116 }
2117
2118 int
2119 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2120 {
2121 daddr_t lbn;
2122
2123 lbn = bp->b_lblkno;
2124 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2125 }
2126
2127 /*
2128 * XXX - The only buffers that are going to hit these functions are the
2129 * segment write blocks, or the segment summaries, or the superblocks.
2130 *
2131 * All of the above are created by lfs_newbuf, and so do not need to be
2132 * released via brelse.
2133 */
2134 void
2135 lfs_callback(struct buf *bp)
2136 {
2137 struct lfs *fs;
2138
2139 fs = (struct lfs *)bp->b_saveaddr;
2140 lfs_freebuf(fs, bp);
2141 }
2142
2143 static void
2144 lfs_super_aiodone(struct buf *bp)
2145 {
2146 struct lfs *fs;
2147
2148 fs = (struct lfs *)bp->b_saveaddr;
2149 fs->lfs_sbactive = 0;
2150 wakeup(&fs->lfs_sbactive);
2151 if (--fs->lfs_iocount <= 1)
2152 wakeup(&fs->lfs_iocount);
2153 lfs_freebuf(fs, bp);
2154 }
2155
2156 static void
2157 lfs_cluster_aiodone(struct buf *bp)
2158 {
2159 struct lfs_cluster *cl;
2160 struct lfs *fs;
2161 struct buf *tbp, *fbp;
2162 struct vnode *vp, *devvp;
2163 struct inode *ip;
2164 int s, error=0;
2165 char *cp;
2166 extern int locked_queue_count;
2167 extern long locked_queue_bytes;
2168
2169 if (bp->b_flags & B_ERROR)
2170 error = bp->b_error;
2171
2172 cl = (struct lfs_cluster *)bp->b_saveaddr;
2173 fs = cl->fs;
2174 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2175 bp->b_saveaddr = cl->saveaddr;
2176
2177 cp = (char *)bp->b_data + cl->bufsize;
2178 /* Put the pages back, and release the buffer */
2179 while (cl->bufcount--) {
2180 tbp = cl->bpp[cl->bufcount];
2181 if (error) {
2182 tbp->b_flags |= B_ERROR;
2183 tbp->b_error = error;
2184 }
2185
2186 /*
2187 * We're done with tbp. If it has not been re-dirtied since
2188 * the cluster was written, free it. Otherwise, keep it on
2189 * the locked list to be written again.
2190 */
2191 vp = tbp->b_vp;
2192
2193 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2194 LFS_UNLOCK_BUF(tbp);
2195
2196 tbp->b_flags &= ~B_GATHERED;
2197
2198 LFS_BCLEAN_LOG(fs, tbp);
2199
2200 if (!(tbp->b_flags & B_CALL)) {
2201 bremfree(tbp);
2202 s = splbio();
2203 if (vp)
2204 reassignbuf(tbp, vp);
2205 splx(s);
2206 tbp->b_flags |= B_ASYNC; /* for biodone */
2207 }
2208 #ifdef DIAGNOSTIC
2209 if (tbp->b_flags & B_DONE) {
2210 printf("blk %d biodone already (flags %lx)\n",
2211 cl->bufcount, (long)tbp->b_flags);
2212 }
2213 #endif
2214 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2215 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2216 /* printf("flags 0x%lx\n", tbp->b_flags); */
2217 /*
2218 * A buffer from the page daemon.
2219 * We use the same iodone as it does,
2220 * so we must manually disassociate its
2221 * buffers from the vp.
2222 */
2223 if (tbp->b_vp) {
2224 /* This is just silly */
2225 s = splbio();
2226 brelvp(tbp);
2227 tbp->b_vp = vp;
2228 splx(s);
2229 }
2230 /* Put it back the way it was */
2231 tbp->b_flags |= B_ASYNC;
2232 /* Master buffers have B_AGE */
2233 if (tbp->b_private == tbp)
2234 tbp->b_flags |= B_AGE;
2235 }
2236 s = splbio();
2237 biodone(tbp);
2238
2239 /*
2240 * If this is the last block for this vnode, but
2241 * there are other blocks on its dirty list,
2242 * set IN_MODIFIED/IN_CLEANING depending on what
2243 * sort of block. Only do this for our mount point,
2244 * not for, e.g., inode blocks that are attached to
2245 * the devvp.
2246 * XXX KS - Shouldn't we set *both* if both types
2247 * of blocks are present (traverse the dirty list?)
2248 */
2249 simple_lock(&global_v_numoutput_slock);
2250 if (vp != devvp && vp->v_numoutput == 0 &&
2251 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2252 ip = VTOI(vp);
2253 #ifdef DEBUG_LFS
2254 printf("lfs_cluster_aiodone: marking ino %d\n",
2255 ip->i_number);
2256 #endif
2257 if (LFS_IS_MALLOC_BUF(fbp))
2258 LFS_SET_UINO(ip, IN_CLEANING);
2259 else
2260 LFS_SET_UINO(ip, IN_MODIFIED);
2261 }
2262 simple_unlock(&global_v_numoutput_slock);
2263 splx(s);
2264 wakeup(vp);
2265 }
2266 }
2267
2268 /* Fix up the cluster buffer, and release it */
2269 if (cl->flags & LFS_CL_MALLOC)
2270 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2271 bp->b_data = cl->olddata;
2272 bp->b_bcount = 0;
2273 bp->b_iodone = NULL;
2274 bp->b_flags &= ~B_DELWRI;
2275 bp->b_flags |= B_DONE;
2276 s = splbio();
2277 reassignbuf(bp, bp->b_vp);
2278 splx(s);
2279 brelse(bp);
2280
2281 /* Note i/o done */
2282 if (cl->flags & LFS_CL_SYNC) {
2283 if (--cl->seg->seg_iocount == 0)
2284 wakeup(&cl->seg->seg_iocount);
2285 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2286 }
2287 #ifdef DIAGNOSTIC
2288 if (fs->lfs_iocount == 0)
2289 panic("lfs_cluster_aiodone: zero iocount");
2290 #endif
2291 if (--fs->lfs_iocount <= 1)
2292 wakeup(&fs->lfs_iocount);
2293
2294 pool_put(&fs->lfs_bpppool, cl->bpp);
2295 cl->bpp = NULL;
2296 pool_put(&fs->lfs_clpool, cl);
2297 }
2298
2299 static void
2300 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2301 {
2302 /* reset b_iodone for when this is a single-buf i/o. */
2303 bp->b_iodone = aiodone;
2304
2305 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2306 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2307 wakeup(&uvm.aiodoned);
2308 simple_unlock(&uvm.aiodoned_lock);
2309 }
2310
2311 static void
2312 lfs_cluster_callback(struct buf *bp)
2313 {
2314 lfs_generic_callback(bp, lfs_cluster_aiodone);
2315 }
2316
2317 void
2318 lfs_supercallback(struct buf *bp)
2319 {
2320 lfs_generic_callback(bp, lfs_super_aiodone);
2321 }
2322
2323 /*
2324 * Shellsort (diminishing increment sort) from Data Structures and
2325 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2326 * see also Knuth Vol. 3, page 84. The increments are selected from
2327 * formula (8), page 95. Roughly O(N^3/2).
2328 */
2329 /*
2330 * This is our own private copy of shellsort because we want to sort
2331 * two parallel arrays (the array of buffer pointers and the array of
2332 * logical block numbers) simultaneously. Note that we cast the array
2333 * of logical block numbers to a unsigned in this routine so that the
2334 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2335 */
2336
2337 void
2338 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2339 {
2340 static int __rsshell_increments[] = { 4, 1, 0 };
2341 int incr, *incrp, t1, t2;
2342 struct buf *bp_temp;
2343
2344 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2345 for (t1 = incr; t1 < nmemb; ++t1)
2346 for (t2 = t1 - incr; t2 >= 0;)
2347 if ((u_int32_t)bp_array[t2]->b_lblkno >
2348 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2349 bp_temp = bp_array[t2];
2350 bp_array[t2] = bp_array[t2 + incr];
2351 bp_array[t2 + incr] = bp_temp;
2352 t2 -= incr;
2353 } else
2354 break;
2355
2356 /* Reform the list of logical blocks */
2357 incr = 0;
2358 for (t1 = 0; t1 < nmemb; t1++) {
2359 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2360 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2361 }
2362 }
2363 }
2364
2365 /*
2366 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2367 */
2368 int
2369 lfs_vref(struct vnode *vp)
2370 {
2371 /*
2372 * If we return 1 here during a flush, we risk vinvalbuf() not
2373 * being able to flush all of the pages from this vnode, which
2374 * will cause it to panic. So, return 0 if a flush is in progress.
2375 */
2376 if (vp->v_flag & VXLOCK) {
2377 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2378 return 0;
2379 }
2380 return (1);
2381 }
2382 return (vget(vp, 0));
2383 }
2384
2385 /*
2386 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2387 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2388 */
2389 void
2390 lfs_vunref(struct vnode *vp)
2391 {
2392 /*
2393 * Analogous to lfs_vref, if the node is flushing, fake it.
2394 */
2395 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2396 return;
2397 }
2398
2399 simple_lock(&vp->v_interlock);
2400 #ifdef DIAGNOSTIC
2401 if (vp->v_usecount <= 0) {
2402 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2403 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2404 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2405 panic("lfs_vunref: v_usecount<0");
2406 }
2407 #endif
2408 vp->v_usecount--;
2409 if (vp->v_usecount > 0) {
2410 simple_unlock(&vp->v_interlock);
2411 return;
2412 }
2413 /*
2414 * insert at tail of LRU list
2415 */
2416 simple_lock(&vnode_free_list_slock);
2417 if (vp->v_holdcnt > 0)
2418 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2419 else
2420 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2421 simple_unlock(&vnode_free_list_slock);
2422 simple_unlock(&vp->v_interlock);
2423 }
2424
2425 /*
2426 * We use this when we have vnodes that were loaded in solely for cleaning.
2427 * There is no reason to believe that these vnodes will be referenced again
2428 * soon, since the cleaning process is unrelated to normal filesystem
2429 * activity. Putting cleaned vnodes at the tail of the list has the effect
2430 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2431 * cleaning at the head of the list, instead.
2432 */
2433 void
2434 lfs_vunref_head(struct vnode *vp)
2435 {
2436 simple_lock(&vp->v_interlock);
2437 #ifdef DIAGNOSTIC
2438 if (vp->v_usecount == 0) {
2439 panic("lfs_vunref: v_usecount<0");
2440 }
2441 #endif
2442 vp->v_usecount--;
2443 if (vp->v_usecount > 0) {
2444 simple_unlock(&vp->v_interlock);
2445 return;
2446 }
2447 /*
2448 * insert at head of LRU list
2449 */
2450 simple_lock(&vnode_free_list_slock);
2451 if (vp->v_holdcnt > 0)
2452 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2453 else
2454 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2455 simple_unlock(&vnode_free_list_slock);
2456 simple_unlock(&vp->v_interlock);
2457 }
2458
2459