lfs_segment.c revision 1.118 1 /* $NetBSD: lfs_segment.c,v 1.118 2003/04/01 14:58:43 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.118 2003/04/01 14:58:43 yamt Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93
94 #include <miscfs/specfs/specdev.h>
95 #include <miscfs/fifofs/fifo.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
109
110 extern int count_lock_queue(void);
111 extern struct simplelock vnode_free_list_slock; /* XXX */
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 fragstofsb((fs), (fs)->lfs_frag))
125
126 void lfs_callback(struct buf *);
127 int lfs_gather(struct lfs *, struct segment *,
128 struct vnode *, int (*)(struct lfs *, struct buf *));
129 int lfs_gatherblock(struct segment *, struct buf *, int *);
130 void lfs_iset(struct inode *, daddr_t, time_t);
131 int lfs_match_fake(struct lfs *, struct buf *);
132 int lfs_match_data(struct lfs *, struct buf *);
133 int lfs_match_dindir(struct lfs *, struct buf *);
134 int lfs_match_indir(struct lfs *, struct buf *);
135 int lfs_match_tindir(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 int lfs_vref(struct vnode *);
142 void lfs_vunref(struct vnode *);
143 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
144 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
145 int lfs_writeseg(struct lfs *, struct segment *);
146 void lfs_writesuper(struct lfs *, daddr_t);
147 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
148 struct segment *sp, int dirops);
149
150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 int lfs_dirvcount = 0; /* # active dirops */
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 extern int locked_queue_count;
160 extern long locked_queue_bytes;
161
162 /* op values to lfs_writevnodes */
163 #define VN_REG 0
164 #define VN_DIROP 1
165 #define VN_EMPTY 2
166 #define VN_CLEAN 3
167
168 #define LFS_MAX_ACTIVE 10
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 TIMEVAL_TO_TIMESPEC(&time, &ts);
183 ip = VTOI(fs->lfs_ivnode);
184 ip->i_ffs_mtime = ts.tv_sec;
185 ip->i_ffs_mtimensec = ts.tv_nsec;
186 }
187
188 /*
189 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
190 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
191 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
192 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
193 */
194
195 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 #if 0
209 int redo;
210 #endif
211
212 ip = VTOI(vp);
213 fs = VFSTOUFS(vp->v_mount)->um_lfs;
214
215 if (ip->i_flag & IN_CLEANING) {
216 #ifdef DEBUG_LFS
217 ivndebug(vp,"vflush/in_cleaning");
218 #endif
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 goto nextbp;
257 }
258 }
259 simple_unlock(&vp->v_interlock);
260 }
261 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
262 tbp = tnbp)
263 {
264 tnbp = LIST_NEXT(tbp, b_vnbufs);
265 if (tbp->b_vp == bp->b_vp
266 && tbp->b_lblkno == bp->b_lblkno
267 && tbp != bp)
268 {
269 fs->lfs_avail += btofsb(fs,
270 bp->b_bcount);
271 wakeup(&fs->lfs_avail);
272 lfs_freebuf(fs, bp);
273 bp = NULL;
274 break;
275 }
276 }
277 nextbp:
278 ;
279 }
280 splx(s);
281 }
282
283 /* If the node is being written, wait until that is done */
284 s = splbio();
285 if (WRITEINPROG(vp)) {
286 #ifdef DEBUG_LFS
287 ivndebug(vp,"vflush/writeinprog");
288 #endif
289 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
290 }
291 splx(s);
292
293 /* Protect against VXLOCK deadlock in vinvalbuf() */
294 lfs_seglock(fs, SEGM_SYNC);
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 /* XXX - seglock, so these buffers can't be gathered, right? */
298 if (ip->i_ffs_mode == 0) {
299 printf("lfs_vflush: ino %d is freed, not flushing\n",
300 ip->i_number);
301 s = splbio();
302 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
303 nbp = LIST_NEXT(bp, b_vnbufs);
304 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
305 fs->lfs_avail += btofsb(fs, bp->b_bcount);
306 wakeup(&fs->lfs_avail);
307 }
308 /* Copied from lfs_writeseg */
309 if (bp->b_flags & B_CALL) {
310 biodone(bp);
311 } else {
312 bremfree(bp);
313 LFS_UNLOCK_BUF(bp);
314 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
315 B_GATHERED);
316 bp->b_flags |= B_DONE;
317 reassignbuf(bp, vp);
318 brelse(bp);
319 }
320 }
321 splx(s);
322 LFS_CLR_UINO(ip, IN_CLEANING);
323 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
324 ip->i_flag &= ~IN_ALLMOD;
325 printf("lfs_vflush: done not flushing ino %d\n",
326 ip->i_number);
327 lfs_segunlock(fs);
328 return 0;
329 }
330
331 SET_FLUSHING(fs,vp);
332 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
333 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
334 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
335 CLR_FLUSHING(fs,vp);
336 lfs_segunlock(fs);
337 return error;
338 }
339 sp = fs->lfs_sp;
340
341 flushed = 0;
342 if (VPISEMPTY(vp)) {
343 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
344 ++flushed;
345 } else if ((ip->i_flag & IN_CLEANING) &&
346 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
347 #ifdef DEBUG_LFS
348 ivndebug(vp,"vflush/clean");
349 #endif
350 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
351 ++flushed;
352 } else if (lfs_dostats) {
353 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
354 ++lfs_stats.vflush_invoked;
355 #ifdef DEBUG_LFS
356 ivndebug(vp,"vflush");
357 #endif
358 }
359
360 #ifdef DIAGNOSTIC
361 /* XXX KS This actually can happen right now, though it shouldn't(?) */
362 if (vp->v_flag & VDIROP) {
363 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
364 /* panic("VDIROP being flushed...this can\'t happen"); */
365 }
366 if (vp->v_usecount < 0) {
367 printf("usecount=%ld\n", (long)vp->v_usecount);
368 panic("lfs_vflush: usecount<0");
369 }
370 #endif
371
372 #if 1
373 do {
374 do {
375 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
376 lfs_writefile(fs, sp, vp);
377 } while (lfs_writeinode(fs, sp, ip));
378 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
379 #else
380 if (flushed && vp != fs->lfs_ivnode)
381 lfs_writeseg(fs, sp);
382 else do {
383 fs->lfs_flags &= ~LFS_IFDIRTY;
384 lfs_writefile(fs, sp, vp);
385 redo = lfs_writeinode(fs, sp, ip);
386 redo += lfs_writeseg(fs, sp);
387 redo += (fs->lfs_flags & LFS_IFDIRTY);
388 } while (redo && vp == fs->lfs_ivnode);
389 #endif
390 if (lfs_dostats) {
391 ++lfs_stats.nwrites;
392 if (sp->seg_flags & SEGM_SYNC)
393 ++lfs_stats.nsync_writes;
394 if (sp->seg_flags & SEGM_CKP)
395 ++lfs_stats.ncheckpoints;
396 }
397 /*
398 * If we were called from somewhere that has already held the seglock
399 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
400 * the write to complete because we are still locked.
401 * Since lfs_vflush() must return the vnode with no dirty buffers,
402 * we must explicitly wait, if that is the case.
403 *
404 * We compare the iocount against 1, not 0, because it is
405 * artificially incremented by lfs_seglock().
406 */
407 simple_lock(&fs->lfs_interlock);
408 if (fs->lfs_seglock > 1) {
409 simple_unlock(&fs->lfs_interlock);
410 while (fs->lfs_iocount > 1)
411 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
412 "lfs_vflush", 0);
413 } else
414 simple_unlock(&fs->lfs_interlock);
415
416 lfs_segunlock(fs);
417
418 CLR_FLUSHING(fs,vp);
419 return (0);
420 }
421
422 #ifdef DEBUG_LFS_VERBOSE
423 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
424 #else
425 # define vndebug(vp,str)
426 #endif
427
428 int
429 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
430 {
431 struct inode *ip;
432 struct vnode *vp, *nvp;
433 int inodes_written = 0, only_cleaning;
434
435 #ifndef LFS_NO_BACKVP_HACK
436 /* BEGIN HACK */
437 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
438 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
439 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
440
441 /* Find last vnode. */
442 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
443 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
444 vp = LIST_NEXT(vp, v_mntvnodes));
445 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
446 nvp = BACK_VP(vp);
447 #else
448 loop:
449 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
450 nvp = LIST_NEXT(vp, v_mntvnodes);
451 #endif
452 /*
453 * If the vnode that we are about to sync is no longer
454 * associated with this mount point, start over.
455 */
456 if (vp->v_mount != mp) {
457 printf("lfs_writevnodes: starting over\n");
458 /*
459 * After this, pages might be busy
460 * due to our own previous putpages.
461 * Start actual segment write here to avoid deadlock.
462 */
463 (void)lfs_writeseg(fs, sp);
464 goto loop;
465 }
466
467 if (vp->v_type == VNON) {
468 continue;
469 }
470
471 ip = VTOI(vp);
472 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
473 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
474 vndebug(vp,"dirop");
475 continue;
476 }
477
478 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
479 vndebug(vp,"empty");
480 continue;
481 }
482
483 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
484 && vp != fs->lfs_flushvp
485 && !(ip->i_flag & IN_CLEANING)) {
486 vndebug(vp,"cleaning");
487 continue;
488 }
489
490 if (lfs_vref(vp)) {
491 vndebug(vp,"vref");
492 continue;
493 }
494
495 only_cleaning = 0;
496 /*
497 * Write the inode/file if dirty and it's not the IFILE.
498 */
499 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
500 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
501
502 if (ip->i_number != LFS_IFILE_INUM)
503 lfs_writefile(fs, sp, vp);
504 if (!VPISEMPTY(vp)) {
505 if (WRITEINPROG(vp)) {
506 #ifdef DEBUG_LFS
507 ivndebug(vp,"writevnodes/write2");
508 #endif
509 } else if (!(ip->i_flag & IN_ALLMOD)) {
510 #ifdef DEBUG_LFS
511 printf("<%d>",ip->i_number);
512 #endif
513 LFS_SET_UINO(ip, IN_MODIFIED);
514 }
515 }
516 (void) lfs_writeinode(fs, sp, ip);
517 inodes_written++;
518 }
519
520 if (lfs_clean_vnhead && only_cleaning)
521 lfs_vunref_head(vp);
522 else
523 lfs_vunref(vp);
524 }
525 return inodes_written;
526 }
527
528 /*
529 * Do a checkpoint.
530 */
531 int
532 lfs_segwrite(struct mount *mp, int flags)
533 {
534 struct buf *bp;
535 struct inode *ip;
536 struct lfs *fs;
537 struct segment *sp;
538 struct vnode *vp;
539 SEGUSE *segusep;
540 int do_ckp, did_ckp, error, s;
541 unsigned n, segleft, maxseg, sn, i, curseg;
542 int writer_set = 0;
543 int dirty;
544 int redo;
545
546 fs = VFSTOUFS(mp)->um_lfs;
547
548 if (fs->lfs_ronly)
549 return EROFS;
550
551 lfs_imtime(fs);
552
553 /*
554 * Allocate a segment structure and enough space to hold pointers to
555 * the maximum possible number of buffers which can be described in a
556 * single summary block.
557 */
558 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
559 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
560 sp = fs->lfs_sp;
561
562 /*
563 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
564 * in which case we have to flush *all* buffers off of this vnode.
565 * We don't care about other nodes, but write any non-dirop nodes
566 * anyway in anticipation of another getnewvnode().
567 *
568 * If we're cleaning we only write cleaning and ifile blocks, and
569 * no dirops, since otherwise we'd risk corruption in a crash.
570 */
571 if (sp->seg_flags & SEGM_CLEAN)
572 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
573 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
574 lfs_writevnodes(fs, mp, sp, VN_REG);
575 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
576 while (fs->lfs_dirops)
577 if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
578 "lfs writer", 0)))
579 {
580 printf("segwrite mysterious error\n");
581 /* XXX why not segunlock? */
582 pool_put(&fs->lfs_bpppool, sp->bpp);
583 sp->bpp = NULL;
584 pool_put(&fs->lfs_segpool, sp);
585 sp = fs->lfs_sp = NULL;
586 return (error);
587 }
588 fs->lfs_writer++;
589 writer_set = 1;
590 lfs_writevnodes(fs, mp, sp, VN_DIROP);
591 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
592 }
593 }
594
595 /*
596 * If we are doing a checkpoint, mark everything since the
597 * last checkpoint as no longer ACTIVE.
598 */
599 if (do_ckp) {
600 segleft = fs->lfs_nseg;
601 curseg = 0;
602 for (n = 0; n < fs->lfs_segtabsz; n++) {
603 dirty = 0;
604 if (bread(fs->lfs_ivnode,
605 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
606
607 panic("lfs_segwrite: ifile read");
608 segusep = (SEGUSE *)bp->b_data;
609 maxseg = min(segleft, fs->lfs_sepb);
610 for (i = 0; i < maxseg; i++) {
611 sn = curseg + i;
612 if (sn != fs->lfs_curseg &&
613 segusep->su_flags & SEGUSE_ACTIVE) {
614 segusep->su_flags &= ~SEGUSE_ACTIVE;
615 --fs->lfs_nactive;
616 ++dirty;
617 }
618 fs->lfs_suflags[fs->lfs_activesb][sn] =
619 segusep->su_flags;
620 if (fs->lfs_version > 1)
621 ++segusep;
622 else
623 segusep = (SEGUSE *)
624 ((SEGUSE_V1 *)segusep + 1);
625 }
626
627 if (dirty)
628 error = LFS_BWRITE_LOG(bp); /* Ifile */
629 else
630 brelse(bp);
631 segleft -= fs->lfs_sepb;
632 curseg += fs->lfs_sepb;
633 }
634 }
635
636 did_ckp = 0;
637 if (do_ckp || fs->lfs_doifile) {
638 do {
639 vp = fs->lfs_ivnode;
640
641 #ifdef DEBUG
642 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
643 #endif
644 fs->lfs_flags &= ~LFS_IFDIRTY;
645
646 ip = VTOI(vp);
647
648 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
649 lfs_writefile(fs, sp, vp);
650
651 if (ip->i_flag & IN_ALLMOD)
652 ++did_ckp;
653 redo = lfs_writeinode(fs, sp, ip);
654 redo += lfs_writeseg(fs, sp);
655 redo += (fs->lfs_flags & LFS_IFDIRTY);
656 } while (redo && do_ckp);
657
658 /*
659 * Unless we are unmounting, the Ifile may continue to have
660 * dirty blocks even after a checkpoint, due to changes to
661 * inodes' atime. If we're checkpointing, it's "impossible"
662 * for other parts of the Ifile to be dirty after the loop
663 * above, since we hold the segment lock.
664 */
665 s = splbio();
666 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
667 LFS_CLR_UINO(ip, IN_ALLMOD);
668 }
669 #ifdef DIAGNOSTIC
670 else if (do_ckp) {
671 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
672 if (bp->b_lblkno < fs->lfs_cleansz +
673 fs->lfs_segtabsz &&
674 !(bp->b_flags & B_GATHERED)) {
675 panic("dirty blocks");
676 }
677 }
678 }
679 #endif
680 splx(s);
681 } else {
682 (void) lfs_writeseg(fs, sp);
683 }
684
685 /* Note Ifile no longer needs to be written */
686 fs->lfs_doifile = 0;
687 if (writer_set && --fs->lfs_writer == 0)
688 wakeup(&fs->lfs_dirops);
689
690 /*
691 * If we didn't write the Ifile, we didn't really do anything.
692 * That means that (1) there is a checkpoint on disk and (2)
693 * nothing has changed since it was written.
694 *
695 * Take the flags off of the segment so that lfs_segunlock
696 * doesn't have to write the superblock either.
697 */
698 if (do_ckp && !did_ckp) {
699 sp->seg_flags &= ~SEGM_CKP;
700 }
701
702 if (lfs_dostats) {
703 ++lfs_stats.nwrites;
704 if (sp->seg_flags & SEGM_SYNC)
705 ++lfs_stats.nsync_writes;
706 if (sp->seg_flags & SEGM_CKP)
707 ++lfs_stats.ncheckpoints;
708 }
709 lfs_segunlock(fs);
710 return (0);
711 }
712
713 /*
714 * Write the dirty blocks associated with a vnode.
715 */
716 void
717 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
718 {
719 struct buf *bp;
720 struct finfo *fip;
721 struct inode *ip;
722 IFILE *ifp;
723 int i, frag;
724
725 ip = VTOI(vp);
726
727 if (sp->seg_bytes_left < fs->lfs_bsize ||
728 sp->sum_bytes_left < sizeof(struct finfo))
729 (void) lfs_writeseg(fs, sp);
730
731 sp->sum_bytes_left -= FINFOSIZE;
732 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
733
734 if (vp->v_flag & VDIROP)
735 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
736
737 fip = sp->fip;
738 fip->fi_nblocks = 0;
739 fip->fi_ino = ip->i_number;
740 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
741 fip->fi_version = ifp->if_version;
742 brelse(bp);
743
744 if (sp->seg_flags & SEGM_CLEAN) {
745 lfs_gather(fs, sp, vp, lfs_match_fake);
746 /*
747 * For a file being flushed, we need to write *all* blocks.
748 * This means writing the cleaning blocks first, and then
749 * immediately following with any non-cleaning blocks.
750 * The same is true of the Ifile since checkpoints assume
751 * that all valid Ifile blocks are written.
752 */
753 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
754 lfs_gather(fs, sp, vp, lfs_match_data);
755 /*
756 * Don't call VOP_PUTPAGES: if we're flushing,
757 * we've already done it, and the Ifile doesn't
758 * use the page cache.
759 */
760 }
761 } else {
762 lfs_gather(fs, sp, vp, lfs_match_data);
763 /*
764 * If we're flushing, we've already called VOP_PUTPAGES
765 * so don't do it again. Otherwise, we want to write
766 * everything we've got.
767 */
768 if (!IS_FLUSHING(fs, vp)) {
769 simple_lock(&vp->v_interlock);
770 VOP_PUTPAGES(vp, 0, 0,
771 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED |
772 PGO_BUSYFAIL);
773 }
774 }
775
776 /*
777 * It may not be necessary to write the meta-data blocks at this point,
778 * as the roll-forward recovery code should be able to reconstruct the
779 * list.
780 *
781 * We have to write them anyway, though, under two conditions: (1) the
782 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
783 * checkpointing.
784 *
785 * BUT if we are cleaning, we might have indirect blocks that refer to
786 * new blocks not being written yet, in addition to fragments being
787 * moved out of a cleaned segment. If that is the case, don't
788 * write the indirect blocks, or the finfo will have a small block
789 * in the middle of it!
790 * XXX in this case isn't the inode size wrong too?
791 */
792 frag = 0;
793 if (sp->seg_flags & SEGM_CLEAN) {
794 for (i = 0; i < NDADDR; i++)
795 if (ip->i_lfs_fragsize[i] > 0 &&
796 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
797 ++frag;
798 }
799 #ifdef DIAGNOSTIC
800 if (frag > 1)
801 panic("lfs_writefile: more than one fragment!");
802 #endif
803 if (IS_FLUSHING(fs, vp) ||
804 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
805 lfs_gather(fs, sp, vp, lfs_match_indir);
806 lfs_gather(fs, sp, vp, lfs_match_dindir);
807 lfs_gather(fs, sp, vp, lfs_match_tindir);
808 }
809 fip = sp->fip;
810 if (fip->fi_nblocks != 0) {
811 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
812 sizeof(int32_t) * (fip->fi_nblocks));
813 sp->start_lbp = &sp->fip->fi_blocks[0];
814 } else {
815 sp->sum_bytes_left += FINFOSIZE;
816 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
817 }
818 }
819
820 int
821 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
822 {
823 struct buf *bp, *ibp;
824 struct dinode *cdp;
825 IFILE *ifp;
826 SEGUSE *sup;
827 daddr_t daddr;
828 int32_t *daddrp; /* XXX ondisk32 */
829 ino_t ino;
830 int error, i, ndx, fsb = 0;
831 int redo_ifile = 0;
832 struct timespec ts;
833 int gotblk = 0;
834
835 if (!(ip->i_flag & IN_ALLMOD))
836 return (0);
837
838 /* Allocate a new inode block if necessary. */
839 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
840 /* Allocate a new segment if necessary. */
841 if (sp->seg_bytes_left < fs->lfs_ibsize ||
842 sp->sum_bytes_left < sizeof(int32_t))
843 (void) lfs_writeseg(fs, sp);
844
845 /* Get next inode block. */
846 daddr = fs->lfs_offset;
847 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
848 sp->ibp = *sp->cbpp++ =
849 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
850 fs->lfs_ibsize, 0, 0);
851 gotblk++;
852
853 /* Zero out inode numbers */
854 for (i = 0; i < INOPB(fs); ++i)
855 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
856
857 ++sp->start_bpp;
858 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
859 /* Set remaining space counters. */
860 sp->seg_bytes_left -= fs->lfs_ibsize;
861 sp->sum_bytes_left -= sizeof(int32_t);
862 ndx = fs->lfs_sumsize / sizeof(int32_t) -
863 sp->ninodes / INOPB(fs) - 1;
864 ((int32_t *)(sp->segsum))[ndx] = daddr;
865 }
866
867 /* Update the inode times and copy the inode onto the inode page. */
868 TIMEVAL_TO_TIMESPEC(&time, &ts);
869 /* XXX kludge --- don't redirty the ifile just to put times on it */
870 if (ip->i_number != LFS_IFILE_INUM)
871 LFS_ITIMES(ip, &ts, &ts, &ts);
872
873 /*
874 * If this is the Ifile, and we've already written the Ifile in this
875 * partial segment, just overwrite it (it's not on disk yet) and
876 * continue.
877 *
878 * XXX we know that the bp that we get the second time around has
879 * already been gathered.
880 */
881 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
882 *(sp->idp) = ip->i_din.ffs_din;
883 ip->i_lfs_osize = ip->i_ffs_size;
884 return 0;
885 }
886
887 bp = sp->ibp;
888 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
889 *cdp = ip->i_din.ffs_din;
890 #ifdef LFS_IFILE_FRAG_ADDRESSING
891 if (fs->lfs_version > 1)
892 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
893 #endif
894
895 /*
896 * If we are cleaning, ensure that we don't write UNWRITTEN disk
897 * addresses to disk; possibly revert the inode size.
898 * XXX By not writing these blocks, we are making the lfs_avail
899 * XXX count on disk wrong by the same amount. We should be
900 * XXX able to "borrow" from lfs_avail and return it after the
901 * XXX Ifile is written. See also in lfs_writeseg.
902 */
903 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
904 cdp->di_size = ip->i_lfs_osize;
905 #ifdef DEBUG_LFS
906 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
907 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
908 #endif
909 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
910 daddrp++) {
911 if (*daddrp == UNWRITTEN) {
912 #ifdef DEBUG_LFS
913 printf("lfs_writeinode: wiping UNWRITTEN\n");
914 #endif
915 *daddrp = 0;
916 }
917 }
918 } else {
919 /* If all blocks are goig to disk, update the "size on disk" */
920 ip->i_lfs_osize = ip->i_ffs_size;
921 }
922
923 if (ip->i_flag & IN_CLEANING)
924 LFS_CLR_UINO(ip, IN_CLEANING);
925 else {
926 /* XXX IN_ALLMOD */
927 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
928 IN_UPDATE);
929 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
930 LFS_CLR_UINO(ip, IN_MODIFIED);
931 #ifdef DEBUG_LFS
932 else
933 printf("lfs_writeinode: ino %d: real blks=%d, "
934 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
935 ip->i_lfs_effnblks);
936 #endif
937 }
938
939 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
940 sp->idp = ((struct dinode *)bp->b_data) +
941 (sp->ninodes % INOPB(fs));
942 if (gotblk) {
943 LFS_LOCK_BUF(bp);
944 brelse(bp);
945 }
946
947 /* Increment inode count in segment summary block. */
948 ++((SEGSUM *)(sp->segsum))->ss_ninos;
949
950 /* If this page is full, set flag to allocate a new page. */
951 if (++sp->ninodes % INOPB(fs) == 0)
952 sp->ibp = NULL;
953
954 /*
955 * If updating the ifile, update the super-block. Update the disk
956 * address and access times for this inode in the ifile.
957 */
958 ino = ip->i_number;
959 if (ino == LFS_IFILE_INUM) {
960 daddr = fs->lfs_idaddr;
961 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
962 } else {
963 LFS_IENTRY(ifp, fs, ino, ibp);
964 daddr = ifp->if_daddr;
965 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
966 #ifdef LFS_DEBUG_NEXTFREE
967 if (ino > 3 && ifp->if_nextfree) {
968 vprint("lfs_writeinode",ITOV(ip));
969 printf("lfs_writeinode: updating free ino %d\n",
970 ip->i_number);
971 }
972 #endif
973 error = LFS_BWRITE_LOG(ibp); /* Ifile */
974 }
975
976 /*
977 * The inode's last address should not be in the current partial
978 * segment, except under exceptional circumstances (lfs_writevnodes
979 * had to start over, and in the meantime more blocks were written
980 * to a vnode). Both inodes will be accounted to this segment
981 * in lfs_writeseg so we need to subtract the earlier version
982 * here anyway. The segment count can temporarily dip below
983 * zero here; keep track of how many duplicates we have in
984 * "dupino" so we don't panic below.
985 */
986 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
987 ++sp->ndupino;
988 printf("lfs_writeinode: last inode addr in current pseg "
989 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
990 (long long)daddr, sp->ndupino);
991 }
992 /*
993 * Account the inode: it no longer belongs to its former segment,
994 * though it will not belong to the new segment until that segment
995 * is actually written.
996 */
997 if (daddr != LFS_UNUSED_DADDR) {
998 u_int32_t oldsn = dtosn(fs, daddr);
999 #ifdef DIAGNOSTIC
1000 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1001 #endif
1002 LFS_SEGENTRY(sup, fs, oldsn, bp);
1003 #ifdef DIAGNOSTIC
1004 if (sup->su_nbytes + DINODE_SIZE * ndupino < DINODE_SIZE) {
1005 printf("lfs_writeinode: negative bytes "
1006 "(segment %" PRIu32 " short by %d, "
1007 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1008 ", daddr=%" PRId64 ", su_nbytes=%u, "
1009 "ndupino=%d)\n",
1010 dtosn(fs, daddr),
1011 (int)DINODE_SIZE * (1 - sp->ndupino)
1012 - sup->su_nbytes,
1013 oldsn, sp->seg_number, daddr,
1014 (unsigned int)sup->su_nbytes,
1015 sp->ndupino);
1016 panic("lfs_writeinode: negative bytes");
1017 sup->su_nbytes = DINODE_SIZE;
1018 }
1019 #endif
1020 #ifdef DEBUG_SU_NBYTES
1021 printf("seg %d -= %d for ino %d inode\n",
1022 dtosn(fs, daddr), DINODE_SIZE, ino);
1023 #endif
1024 sup->su_nbytes -= DINODE_SIZE;
1025 redo_ifile =
1026 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1027 if (redo_ifile)
1028 fs->lfs_flags |= LFS_IFDIRTY;
1029 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1030 }
1031 return (redo_ifile);
1032 }
1033
1034 int
1035 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1036 {
1037 struct lfs *fs;
1038 int version;
1039 int j, blksinblk;
1040
1041 /*
1042 * If full, finish this segment. We may be doing I/O, so
1043 * release and reacquire the splbio().
1044 */
1045 #ifdef DIAGNOSTIC
1046 if (sp->vp == NULL)
1047 panic ("lfs_gatherblock: Null vp in segment");
1048 #endif
1049 fs = sp->fs;
1050 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1051 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1052 sp->seg_bytes_left < bp->b_bcount) {
1053 if (sptr)
1054 splx(*sptr);
1055 lfs_updatemeta(sp);
1056
1057 version = sp->fip->fi_version;
1058 (void) lfs_writeseg(fs, sp);
1059
1060 sp->fip->fi_version = version;
1061 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1062 /* Add the current file to the segment summary. */
1063 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1064 sp->sum_bytes_left -= FINFOSIZE;
1065
1066 if (sptr)
1067 *sptr = splbio();
1068 return (1);
1069 }
1070
1071 #ifdef DEBUG
1072 if (bp->b_flags & B_GATHERED) {
1073 printf("lfs_gatherblock: already gathered! Ino %d,"
1074 " lbn %" PRId64 "\n",
1075 sp->fip->fi_ino, bp->b_lblkno);
1076 return (0);
1077 }
1078 #endif
1079 /* Insert into the buffer list, update the FINFO block. */
1080 bp->b_flags |= B_GATHERED;
1081 bp->b_flags &= ~B_DONE;
1082
1083 *sp->cbpp++ = bp;
1084 for (j = 0; j < blksinblk; j++)
1085 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1086
1087 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1088 sp->seg_bytes_left -= bp->b_bcount;
1089 return (0);
1090 }
1091
1092 int
1093 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1094 {
1095 struct buf *bp, *nbp;
1096 int s, count = 0;
1097
1098 sp->vp = vp;
1099 s = splbio();
1100
1101 #ifndef LFS_NO_BACKBUF_HACK
1102 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1103 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1104 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1105 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1106 /* Find last buffer. */
1107 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1108 bp = LIST_NEXT(bp, b_vnbufs));
1109 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1110 nbp = BACK_BUF(bp);
1111 #else /* LFS_NO_BACKBUF_HACK */
1112 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1113 nbp = LIST_NEXT(bp, b_vnbufs);
1114 #endif /* LFS_NO_BACKBUF_HACK */
1115 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1116 #ifdef DEBUG_LFS
1117 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1118 printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
1119 #endif
1120 continue;
1121 }
1122 if (vp->v_type == VBLK) {
1123 /* For block devices, just write the blocks. */
1124 /* XXX Do we really need to even do this? */
1125 #ifdef DEBUG_LFS
1126 if (count == 0)
1127 printf("BLK(");
1128 printf(".");
1129 #endif
1130 /* Get the block before bwrite, so we don't corrupt the free list */
1131 bp->b_flags |= B_BUSY;
1132 bremfree(bp);
1133 bwrite(bp);
1134 } else {
1135 #ifdef DIAGNOSTIC
1136 # ifdef LFS_USE_B_INVAL
1137 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1138 printf("lfs_gather: lbn %" PRId64 " is "
1139 "B_INVAL\n", bp->b_lblkno);
1140 VOP_PRINT(bp->b_vp);
1141 }
1142 # endif /* LFS_USE_B_INVAL */
1143 if (!(bp->b_flags & B_DELWRI))
1144 panic("lfs_gather: bp not B_DELWRI");
1145 if (!(bp->b_flags & B_LOCKED)) {
1146 printf("lfs_gather: lbn %" PRId64 " blk "
1147 "%" PRId64 " not B_LOCKED\n",
1148 bp->b_lblkno,
1149 dbtofsb(fs, bp->b_blkno));
1150 VOP_PRINT(bp->b_vp);
1151 panic("lfs_gather: bp not B_LOCKED");
1152 }
1153 #endif
1154 if (lfs_gatherblock(sp, bp, &s)) {
1155 goto loop;
1156 }
1157 }
1158 count++;
1159 }
1160 splx(s);
1161 #ifdef DEBUG_LFS
1162 if (vp->v_type == VBLK && count)
1163 printf(")\n");
1164 #endif
1165 lfs_updatemeta(sp);
1166 sp->vp = NULL;
1167 return count;
1168 }
1169
1170 #if DEBUG
1171 # define DEBUG_OOFF(n) do { \
1172 if (ooff == 0) { \
1173 printf("lfs_updatemeta[%d]: warning: writing " \
1174 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1175 ", was 0x0 (or %" PRId64 ")\n", \
1176 (n), ip->i_number, lbn, ndaddr, daddr); \
1177 } \
1178 } while (0)
1179 #else
1180 # define DEBUG_OOFF(n)
1181 #endif
1182
1183 /*
1184 * Change the given block's address to ndaddr, finding its previous
1185 * location using ufs_bmaparray().
1186 *
1187 * Account for this change in the segment table.
1188 */
1189 void
1190 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1191 int32_t ndaddr, int size)
1192 {
1193 SEGUSE *sup;
1194 struct buf *bp;
1195 struct indir a[NIADDR + 2], *ap;
1196 struct inode *ip;
1197 struct vnode *vp;
1198 daddr_t daddr, ooff;
1199 int num, error;
1200 int bb, osize, obb;
1201
1202 vp = sp->vp;
1203 ip = VTOI(vp);
1204
1205 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1206 if (error)
1207 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1208
1209 KASSERT(daddr <= LFS_MAX_DADDR);
1210 if (daddr > 0)
1211 daddr = dbtofsb(fs, daddr);
1212
1213 bb = fragstofsb(fs, numfrags(fs, size));
1214 switch (num) {
1215 case 0:
1216 ooff = ip->i_ffs_db[lbn];
1217 DEBUG_OOFF(0);
1218 if (ooff == UNWRITTEN)
1219 ip->i_ffs_blocks += bb;
1220 else {
1221 /* possible fragment truncation or extension */
1222 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1223 ip->i_ffs_blocks += (bb - obb);
1224 }
1225 ip->i_ffs_db[lbn] = ndaddr;
1226 break;
1227 case 1:
1228 ooff = ip->i_ffs_ib[a[0].in_off];
1229 DEBUG_OOFF(1);
1230 if (ooff == UNWRITTEN)
1231 ip->i_ffs_blocks += bb;
1232 ip->i_ffs_ib[a[0].in_off] = ndaddr;
1233 break;
1234 default:
1235 ap = &a[num - 1];
1236 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1237 panic("lfs_updatemeta: bread bno %" PRId64,
1238 ap->in_lbn);
1239
1240 /* XXX ondisk32 */
1241 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1242 DEBUG_OOFF(num);
1243 if (ooff == UNWRITTEN)
1244 ip->i_ffs_blocks += bb;
1245 /* XXX ondisk32 */
1246 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1247 (void) VOP_BWRITE(bp);
1248 }
1249
1250 /*
1251 * Though we'd rather it couldn't, this *can* happen right now
1252 * if cleaning blocks and regular blocks coexist.
1253 */
1254 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1255
1256 /*
1257 * Update segment usage information, based on old size
1258 * and location.
1259 */
1260 if (daddr > 0) {
1261 u_int32_t oldsn = dtosn(fs, daddr);
1262 #ifdef DIAGNOSTIC
1263 int ndupino = (sp->seg_number == oldsn) ?
1264 sp->ndupino : 0;
1265 #endif
1266 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1267 if (lbn >= 0 && lbn < NDADDR)
1268 osize = ip->i_lfs_fragsize[lbn];
1269 else
1270 osize = fs->lfs_bsize;
1271 LFS_SEGENTRY(sup, fs, oldsn, bp);
1272 #ifdef DIAGNOSTIC
1273 if (sup->su_nbytes + DINODE_SIZE * ndupino < osize) {
1274 printf("lfs_updatemeta: negative bytes "
1275 "(segment %" PRIu32 " short by %" PRId64
1276 ")\n", dtosn(fs, daddr),
1277 (int64_t)osize -
1278 (DINODE_SIZE * sp->ndupino +
1279 sup->su_nbytes));
1280 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1281 ", addr = 0x%" PRIx64 "\n",
1282 VTOI(sp->vp)->i_number, lbn, daddr);
1283 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1284 panic("lfs_updatemeta: negative bytes");
1285 sup->su_nbytes = osize - DINODE_SIZE * sp->ndupino;
1286 }
1287 #endif
1288 #ifdef DEBUG_SU_NBYTES
1289 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1290 " db 0x%" PRIx64 "\n",
1291 dtosn(fs, daddr), osize,
1292 VTOI(sp->vp)->i_number, lbn, daddr);
1293 #endif
1294 sup->su_nbytes -= osize;
1295 if (!(bp->b_flags & B_GATHERED))
1296 fs->lfs_flags |= LFS_IFDIRTY;
1297 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1298 }
1299 /*
1300 * Now that this block has a new address, and its old
1301 * segment no longer owns it, we can forget about its
1302 * old size.
1303 */
1304 if (lbn >= 0 && lbn < NDADDR)
1305 ip->i_lfs_fragsize[lbn] = size;
1306 }
1307
1308 /*
1309 * Update the metadata that points to the blocks listed in the FINFO
1310 * array.
1311 */
1312 void
1313 lfs_updatemeta(struct segment *sp)
1314 {
1315 struct buf *sbp;
1316 struct lfs *fs;
1317 struct vnode *vp;
1318 daddr_t lbn;
1319 int i, nblocks, num;
1320 int bb;
1321 int bytesleft, size;
1322
1323 vp = sp->vp;
1324 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1325 KASSERT(nblocks >= 0);
1326 if (vp == NULL || nblocks == 0)
1327 return;
1328
1329 /*
1330 * This count may be high due to oversize blocks from lfs_gop_write.
1331 * Correct for this. (XXX we should be able to keep track of these.)
1332 */
1333 fs = sp->fs;
1334 for (i = 0; i < nblocks; i++) {
1335 if (sp->start_bpp[i] == NULL) {
1336 printf("nblocks = %d, not %d\n", i, nblocks);
1337 nblocks = i;
1338 break;
1339 }
1340 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1341 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1342 nblocks -= num - 1;
1343 }
1344
1345 KASSERT(vp->v_type == VREG ||
1346 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1347 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1348
1349 /*
1350 * Sort the blocks.
1351 *
1352 * We have to sort even if the blocks come from the
1353 * cleaner, because there might be other pending blocks on the
1354 * same inode...and if we don't sort, and there are fragments
1355 * present, blocks may be written in the wrong place.
1356 */
1357 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1358
1359 /*
1360 * Record the length of the last block in case it's a fragment.
1361 * If there are indirect blocks present, they sort last. An
1362 * indirect block will be lfs_bsize and its presence indicates
1363 * that you cannot have fragments.
1364 *
1365 * XXX This last is a lie. A cleaned fragment can coexist with
1366 * XXX a later indirect block. This will continue to be
1367 * XXX true until lfs_markv is fixed to do everything with
1368 * XXX fake blocks (including fake inodes and fake indirect blocks).
1369 */
1370 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1371 fs->lfs_bmask) + 1;
1372
1373 /*
1374 * Assign disk addresses, and update references to the logical
1375 * block and the segment usage information.
1376 */
1377 for (i = nblocks; i--; ++sp->start_bpp) {
1378 sbp = *sp->start_bpp;
1379 lbn = *sp->start_lbp;
1380 KASSERT(sbp->b_lblkno == lbn);
1381
1382 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1383
1384 /*
1385 * If we write a frag in the wrong place, the cleaner won't
1386 * be able to correctly identify its size later, and the
1387 * segment will be uncleanable. (Even worse, it will assume
1388 * that the indirect block that actually ends the list
1389 * is of a smaller size!)
1390 */
1391 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1392 panic("lfs_updatemeta: fragment is not last block");
1393
1394 /*
1395 * For each subblock in this possibly oversized block,
1396 * update its address on disk.
1397 */
1398 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1399 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1400 bytesleft -= fs->lfs_bsize) {
1401 size = MIN(bytesleft, fs->lfs_bsize);
1402 bb = fragstofsb(fs, numfrags(fs, size));
1403 lbn = *sp->start_lbp++;
1404 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1405 fs->lfs_offset += bb;
1406 }
1407
1408 }
1409 }
1410
1411 /*
1412 * Start a new segment.
1413 */
1414 int
1415 lfs_initseg(struct lfs *fs)
1416 {
1417 struct segment *sp;
1418 SEGUSE *sup;
1419 SEGSUM *ssp;
1420 struct buf *bp, *sbp;
1421 int repeat;
1422
1423 sp = fs->lfs_sp;
1424
1425 repeat = 0;
1426
1427 /* Advance to the next segment. */
1428 if (!LFS_PARTIAL_FITS(fs)) {
1429 /* lfs_avail eats the remaining space */
1430 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1431 fs->lfs_curseg);
1432 /* Wake up any cleaning procs waiting on this file system. */
1433 wakeup(&lfs_allclean_wakeup);
1434 wakeup(&fs->lfs_nextseg);
1435 lfs_newseg(fs);
1436 repeat = 1;
1437 fs->lfs_offset = fs->lfs_curseg;
1438
1439 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1440 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1441
1442 /*
1443 * If the segment contains a superblock, update the offset
1444 * and summary address to skip over it.
1445 */
1446 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1447 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1448 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1449 sp->seg_bytes_left -= LFS_SBPAD;
1450 }
1451 brelse(bp);
1452 /* Segment zero could also contain the labelpad */
1453 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1454 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1455 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1456 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1457 }
1458 } else {
1459 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1460 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1461 (fs->lfs_offset - fs->lfs_curseg));
1462 }
1463 fs->lfs_lastpseg = fs->lfs_offset;
1464
1465 /* Record first address of this partial segment */
1466 if (sp->seg_flags & SEGM_CLEAN) {
1467 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1468 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1469 /* "1" is the artificial inc in lfs_seglock */
1470 while (fs->lfs_iocount > 1) {
1471 tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0);
1472 }
1473 fs->lfs_cleanind = 0;
1474 }
1475 }
1476
1477 sp->fs = fs;
1478 sp->ibp = NULL;
1479 sp->idp = NULL;
1480 sp->ninodes = 0;
1481 sp->ndupino = 0;
1482
1483 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1484 sp->cbpp = sp->bpp;
1485 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1486 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1487 sp->segsum = (*sp->cbpp)->b_data;
1488 memset(sp->segsum, 0, fs->lfs_sumsize);
1489 sp->start_bpp = ++sp->cbpp;
1490 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1491
1492 /* Set point to SEGSUM, initialize it. */
1493 ssp = sp->segsum;
1494 ssp->ss_next = fs->lfs_nextseg;
1495 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1496 ssp->ss_magic = SS_MAGIC;
1497
1498 /* Set pointer to first FINFO, initialize it. */
1499 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1500 sp->fip->fi_nblocks = 0;
1501 sp->start_lbp = &sp->fip->fi_blocks[0];
1502 sp->fip->fi_lastlength = 0;
1503
1504 sp->seg_bytes_left -= fs->lfs_sumsize;
1505 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1506
1507 return (repeat);
1508 }
1509
1510 /*
1511 * Return the next segment to write.
1512 */
1513 void
1514 lfs_newseg(struct lfs *fs)
1515 {
1516 CLEANERINFO *cip;
1517 SEGUSE *sup;
1518 struct buf *bp;
1519 int curseg, isdirty, sn;
1520
1521 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1522 #ifdef DEBUG_SU_NBYTES
1523 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1524 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1525 #endif
1526 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1527 sup->su_nbytes = 0;
1528 sup->su_nsums = 0;
1529 sup->su_ninos = 0;
1530 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1531
1532 LFS_CLEANERINFO(cip, fs, bp);
1533 --cip->clean;
1534 ++cip->dirty;
1535 fs->lfs_nclean = cip->clean;
1536 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1537
1538 fs->lfs_lastseg = fs->lfs_curseg;
1539 fs->lfs_curseg = fs->lfs_nextseg;
1540 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1541 sn = (sn + 1) % fs->lfs_nseg;
1542 if (sn == curseg)
1543 panic("lfs_nextseg: no clean segments");
1544 LFS_SEGENTRY(sup, fs, sn, bp);
1545 isdirty = sup->su_flags & SEGUSE_DIRTY;
1546 /* Check SEGUSE_EMPTY as we go along */
1547 if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY))
1548 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1549 else
1550 brelse(bp);
1551
1552 if (!isdirty)
1553 break;
1554 }
1555
1556 ++fs->lfs_nactive;
1557 fs->lfs_nextseg = sntod(fs, sn);
1558 if (lfs_dostats) {
1559 ++lfs_stats.segsused;
1560 }
1561 }
1562
1563 #define BQUEUES 4 /* XXX */
1564 #define BQ_EMPTY 3 /* XXX */
1565 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1566 extern struct simplelock bqueue_slock;
1567
1568 #define BUFHASH(dvp, lbn) \
1569 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1570 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1571 /*
1572 * Insq/Remq for the buffer hash lists.
1573 */
1574 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1575 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1576
1577 static struct buf *
1578 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1579 {
1580 struct lfs_cluster *cl;
1581 struct buf **bpp, *bp;
1582 int s;
1583
1584 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1585 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1586 memset(cl, 0, sizeof(*cl));
1587 cl->fs = fs;
1588 cl->bpp = bpp;
1589 cl->bufcount = 0;
1590 cl->bufsize = 0;
1591
1592 /* If this segment is being written synchronously, note that */
1593 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1594 cl->flags |= LFS_CL_SYNC;
1595 cl->seg = fs->lfs_sp;
1596 ++cl->seg->seg_iocount;
1597 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1598 }
1599
1600 /* Get an empty buffer header, or maybe one with something on it */
1601 s = splbio();
1602 simple_lock(&bqueue_slock);
1603 if ((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1604 simple_lock(&bp->b_interlock);
1605 bremfree(bp);
1606 /* clear out various other fields */
1607 bp->b_flags = B_BUSY;
1608 bp->b_dev = NODEV;
1609 bp->b_blkno = bp->b_lblkno = 0;
1610 bp->b_error = 0;
1611 bp->b_resid = 0;
1612 bp->b_bcount = 0;
1613
1614 /* nuke any credentials we were holding */
1615 /* XXXXXX */
1616
1617 bremhash(bp);
1618
1619 /* disassociate us from our vnode, if we had one... */
1620 if (bp->b_vp)
1621 brelvp(bp);
1622 }
1623 while (!bp)
1624 bp = getnewbuf(0, 0);
1625 bgetvp(vp, bp);
1626 binshash(bp,&invalhash);
1627 simple_unlock(&bp->b_interlock);
1628 simple_unlock(&bqueue_slock);
1629 splx(s);
1630 bp->b_bcount = 0;
1631 bp->b_blkno = bp->b_lblkno = addr;
1632
1633 bp->b_flags |= B_CALL;
1634 bp->b_iodone = lfs_cluster_callback;
1635 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1636 bp->b_saveaddr = (caddr_t)cl;
1637
1638 return bp;
1639 }
1640
1641 int
1642 lfs_writeseg(struct lfs *fs, struct segment *sp)
1643 {
1644 struct buf **bpp, *bp, *cbp, *newbp;
1645 SEGUSE *sup;
1646 SEGSUM *ssp;
1647 dev_t i_dev;
1648 char *datap, *dp;
1649 int i, s;
1650 int do_again, nblocks, byteoffset;
1651 size_t el_size;
1652 struct lfs_cluster *cl;
1653 int (*strategy)(void *);
1654 struct vop_strategy_args vop_strategy_a;
1655 u_short ninos;
1656 struct vnode *devvp;
1657 char *p;
1658 struct vnode *vp;
1659 int32_t *daddrp; /* XXX ondisk32 */
1660 int changed;
1661 #if defined(DEBUG) && defined(LFS_PROPELLER)
1662 static int propeller;
1663 char propstring[4] = "-\\|/";
1664
1665 printf("%c\b",propstring[propeller++]);
1666 if (propeller == 4)
1667 propeller = 0;
1668 #endif
1669
1670 /*
1671 * If there are no buffers other than the segment summary to write
1672 * and it is not a checkpoint, don't do anything. On a checkpoint,
1673 * even if there aren't any buffers, you need to write the superblock.
1674 */
1675 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1676 return (0);
1677
1678 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1679 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1680
1681 /* Update the segment usage information. */
1682 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1683
1684 /* Loop through all blocks, except the segment summary. */
1685 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1686 if ((*bpp)->b_vp != devvp) {
1687 sup->su_nbytes += (*bpp)->b_bcount;
1688 #ifdef DEBUG_SU_NBYTES
1689 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1690 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1691 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1692 (*bpp)->b_blkno);
1693 #endif
1694 }
1695 }
1696
1697 ssp = (SEGSUM *)sp->segsum;
1698
1699 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1700 #ifdef DEBUG_SU_NBYTES
1701 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1702 sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1703 ssp->ss_ninos);
1704 #endif
1705 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1706 /* sup->su_nbytes += fs->lfs_sumsize; */
1707 if (fs->lfs_version == 1)
1708 sup->su_olastmod = time.tv_sec;
1709 else
1710 sup->su_lastmod = time.tv_sec;
1711 sup->su_ninos += ninos;
1712 ++sup->su_nsums;
1713 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1714 fs->lfs_ibsize));
1715 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1716
1717 do_again = !(bp->b_flags & B_GATHERED);
1718 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1719
1720 /*
1721 * Mark blocks B_BUSY, to prevent then from being changed between
1722 * the checksum computation and the actual write.
1723 *
1724 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1725 * there are any, replace them with copies that have UNASSIGNED
1726 * instead.
1727 */
1728 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1729 ++bpp;
1730 bp = *bpp;
1731 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1732 bp->b_flags |= B_BUSY;
1733 continue;
1734 }
1735 again:
1736 s = splbio();
1737 if (bp->b_flags & B_BUSY) {
1738 #ifdef DEBUG
1739 printf("lfs_writeseg: avoiding potential data summary "
1740 "corruption for ino %d, lbn %" PRId64 "\n",
1741 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1742 #endif
1743 bp->b_flags |= B_WANTED;
1744 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1745 splx(s);
1746 goto again;
1747 }
1748 bp->b_flags |= B_BUSY;
1749 splx(s);
1750 /*
1751 * Check and replace indirect block UNWRITTEN bogosity.
1752 * XXX See comment in lfs_writefile.
1753 */
1754 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1755 VTOI(bp->b_vp)->i_ffs_blocks !=
1756 VTOI(bp->b_vp)->i_lfs_effnblks) {
1757 #ifdef DEBUG_LFS
1758 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1759 VTOI(bp->b_vp)->i_number,
1760 VTOI(bp->b_vp)->i_lfs_effnblks,
1761 VTOI(bp->b_vp)->i_ffs_blocks);
1762 #endif
1763 /* Make a copy we'll make changes to */
1764 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1765 bp->b_bcount, LFS_NB_IBLOCK);
1766 newbp->b_blkno = bp->b_blkno;
1767 memcpy(newbp->b_data, bp->b_data,
1768 newbp->b_bcount);
1769
1770 changed = 0;
1771 /* XXX ondisk32 */
1772 for (daddrp = (int32_t *)(newbp->b_data);
1773 daddrp < (int32_t *)(newbp->b_data +
1774 newbp->b_bcount); daddrp++) {
1775 if (*daddrp == UNWRITTEN) {
1776 #ifdef DEBUG_LFS
1777 off_t doff;
1778 int32_t ioff;
1779
1780 ioff = daddrp - (int32_t *)(newbp->b_data);
1781 doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1782 printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n",
1783 VTOI(bp->b_vp)->i_number,
1784 bp->b_lblkno, ioff, doff);
1785 if (bp->b_vp->v_type == VREG) {
1786 /*
1787 * What is up with this page?
1788 */
1789 struct vm_page *pg;
1790 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) {
1791 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1792 if (pg == NULL)
1793 printf(" page at %" PRIx64 " is NULL\n", doff);
1794 else
1795 printf(" page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags);
1796 }
1797 }
1798 #endif /* DEBUG_LFS */
1799 ++changed;
1800 *daddrp = 0;
1801 }
1802 }
1803 /*
1804 * Get rid of the old buffer. Don't mark it clean,
1805 * though, if it still has dirty data on it.
1806 */
1807 if (changed) {
1808 #ifdef DEBUG_LFS
1809 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1810 " bp = %p newbp = %p\n", changed, bp,
1811 newbp);
1812 #endif
1813 *bpp = newbp;
1814 bp->b_flags &= ~(B_ERROR | B_GATHERED | B_DONE);
1815 if (bp->b_flags & B_CALL) {
1816 printf("lfs_writeseg: indir bp should not be B_CALL\n");
1817 s = splbio();
1818 biodone(bp);
1819 splx(s);
1820 bp = NULL;
1821 } else {
1822 /* Still on free list, leave it there */
1823 s = splbio();
1824 bp->b_flags &= ~B_BUSY;
1825 if (bp->b_flags & B_WANTED)
1826 wakeup(bp);
1827 splx(s);
1828 /*
1829 * We have to re-decrement lfs_avail
1830 * since this block is going to come
1831 * back around to us in the next
1832 * segment.
1833 */
1834 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1835 }
1836 } else {
1837 lfs_freebuf(fs, newbp);
1838 }
1839 }
1840 }
1841 /*
1842 * Compute checksum across data and then across summary; the first
1843 * block (the summary block) is skipped. Set the create time here
1844 * so that it's guaranteed to be later than the inode mod times.
1845 *
1846 * XXX
1847 * Fix this to do it inline, instead of malloc/copy.
1848 */
1849 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1850 if (fs->lfs_version == 1)
1851 el_size = sizeof(u_long);
1852 else
1853 el_size = sizeof(u_int32_t);
1854 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1855 ++bpp;
1856 /* Loop through gop_write cluster blocks */
1857 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1858 byteoffset += fs->lfs_bsize) {
1859 #ifdef LFS_USE_B_INVAL
1860 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1861 (B_CALL | B_INVAL)) {
1862 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1863 byteoffset, dp, el_size)) {
1864 panic("lfs_writeseg: copyin failed [1]: "
1865 "ino %d blk %" PRId64,
1866 VTOI((*bpp)->b_vp)->i_number,
1867 (*bpp)->b_lblkno);
1868 }
1869 } else
1870 #endif /* LFS_USE_B_INVAL */
1871 {
1872 memcpy(dp, (*bpp)->b_data + byteoffset,
1873 el_size);
1874 }
1875 dp += el_size;
1876 }
1877 }
1878 if (fs->lfs_version == 1)
1879 ssp->ss_ocreate = time.tv_sec;
1880 else {
1881 ssp->ss_create = time.tv_sec;
1882 ssp->ss_serial = ++fs->lfs_serial;
1883 ssp->ss_ident = fs->lfs_ident;
1884 }
1885 ssp->ss_datasum = cksum(datap, dp - datap);
1886 ssp->ss_sumsum =
1887 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1888 pool_put(&fs->lfs_bpppool, datap);
1889 datap = dp = NULL;
1890 #ifdef DIAGNOSTIC
1891 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1892 panic("lfs_writeseg: No diskspace for summary");
1893 #endif
1894 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1895 btofsb(fs, fs->lfs_sumsize));
1896
1897 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1898
1899 /*
1900 * When we simply write the blocks we lose a rotation for every block
1901 * written. To avoid this problem, we cluster the buffers into a
1902 * chunk and write the chunk. MAXPHYS is the largest size I/O
1903 * devices can handle, use that for the size of the chunks.
1904 *
1905 * Blocks that are already clusters (from GOP_WRITE), however, we
1906 * don't bother to copy into other clusters.
1907 */
1908
1909 #define CHUNKSIZE MAXPHYS
1910
1911 if (devvp == NULL)
1912 panic("devvp is NULL");
1913 for (bpp = sp->bpp, i = nblocks; i;) {
1914 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1915 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1916
1917 cbp->b_dev = i_dev;
1918 cbp->b_flags |= B_ASYNC | B_BUSY;
1919 cbp->b_bcount = 0;
1920
1921 cl->olddata = cbp->b_data;
1922 #if defined(DEBUG) && defined(DIAGNOSTIC)
1923 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1924 / sizeof(int32_t)) {
1925 panic("lfs_writeseg: real bpp overwrite");
1926 }
1927 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1928 panic("lfs_writeseg: theoretical bpp overwrite");
1929 }
1930 #endif
1931
1932 /*
1933 * Construct the cluster.
1934 */
1935 ++fs->lfs_iocount;
1936 while (i && cbp->b_bcount < CHUNKSIZE) {
1937 bp = *bpp;
1938
1939 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1940 break;
1941 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1942 break;
1943
1944 /* Clusters from GOP_WRITE are expedited */
1945 if (bp->b_bcount > fs->lfs_bsize) {
1946 if (cbp->b_bcount > 0)
1947 /* Put in its own buffer */
1948 break;
1949 else {
1950 cbp->b_data = bp->b_data;
1951 }
1952 } else if (cbp->b_bcount == 0) {
1953 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1954 LFS_NB_CLUSTER);
1955 cl->flags |= LFS_CL_MALLOC;
1956 }
1957 #ifdef DIAGNOSTIC
1958 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1959 btodb(bp->b_bcount - 1))) !=
1960 sp->seg_number) {
1961 printf("blk size %ld daddr %" PRIx64 " not in seg %d\n",
1962 bp->b_bcount, bp->b_blkno,
1963 sp->seg_number);
1964 panic("segment overwrite");
1965 }
1966 #endif
1967
1968 #ifdef LFS_USE_B_INVAL
1969 /*
1970 * Fake buffers from the cleaner are marked as B_INVAL.
1971 * We need to copy the data from user space rather than
1972 * from the buffer indicated.
1973 * XXX == what do I do on an error?
1974 */
1975 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1976 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1977 panic("lfs_writeseg: copyin failed [2]");
1978 } else
1979 #endif /* LFS_USE_B_INVAL */
1980 if (cl->flags & LFS_CL_MALLOC) {
1981 bcopy(bp->b_data, p, bp->b_bcount);
1982 }
1983
1984 p += bp->b_bcount;
1985 cbp->b_bcount += bp->b_bcount;
1986 cl->bufsize += bp->b_bcount;
1987
1988 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1989 cl->bpp[cl->bufcount++] = bp;
1990 vp = bp->b_vp;
1991 s = splbio();
1992 V_INCR_NUMOUTPUT(vp);
1993 splx(s);
1994
1995 bpp++;
1996 i--;
1997 }
1998 s = splbio();
1999 V_INCR_NUMOUTPUT(devvp);
2000 splx(s);
2001 vop_strategy_a.a_desc = VDESC(vop_strategy);
2002 vop_strategy_a.a_bp = cbp;
2003 (strategy)(&vop_strategy_a);
2004 curproc->p_stats->p_ru.ru_oublock++;
2005 }
2006
2007 if (lfs_dostats) {
2008 ++lfs_stats.psegwrites;
2009 lfs_stats.blocktot += nblocks - 1;
2010 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2011 ++lfs_stats.psyncwrites;
2012 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2013 ++lfs_stats.pcleanwrites;
2014 lfs_stats.cleanblocks += nblocks - 1;
2015 }
2016 }
2017 return (lfs_initseg(fs) || do_again);
2018 }
2019
2020 void
2021 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2022 {
2023 struct buf *bp;
2024 dev_t i_dev;
2025 int (*strategy)(void *);
2026 int s;
2027 struct vop_strategy_args vop_strategy_a;
2028
2029 /*
2030 * If we can write one superblock while another is in
2031 * progress, we risk not having a complete checkpoint if we crash.
2032 * So, block here if a superblock write is in progress.
2033 */
2034 s = splbio();
2035 while (fs->lfs_sbactive) {
2036 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2037 }
2038 fs->lfs_sbactive = daddr;
2039 splx(s);
2040 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2041 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2042
2043 /* Set timestamp of this version of the superblock */
2044 if (fs->lfs_version == 1)
2045 fs->lfs_otstamp = time.tv_sec;
2046 fs->lfs_tstamp = time.tv_sec;
2047
2048 /* Checksum the superblock and copy it into a buffer. */
2049 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2050 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2051 memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs));
2052 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2053
2054 bp->b_dev = i_dev;
2055 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2056 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2057 bp->b_iodone = lfs_supercallback;
2058 /* XXX KS - same nasty hack as above */
2059 bp->b_saveaddr = (caddr_t)fs;
2060
2061 vop_strategy_a.a_desc = VDESC(vop_strategy);
2062 vop_strategy_a.a_bp = bp;
2063 curproc->p_stats->p_ru.ru_oublock++;
2064 s = splbio();
2065 V_INCR_NUMOUTPUT(bp->b_vp);
2066 splx(s);
2067 ++fs->lfs_iocount;
2068 (strategy)(&vop_strategy_a);
2069 }
2070
2071 /*
2072 * Logical block number match routines used when traversing the dirty block
2073 * chain.
2074 */
2075 int
2076 lfs_match_fake(struct lfs *fs, struct buf *bp)
2077 {
2078 return LFS_IS_MALLOC_BUF(bp);
2079 }
2080
2081 #if 0
2082 int
2083 lfs_match_real(struct lfs *fs, struct buf *bp)
2084 {
2085 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2086 }
2087 #endif
2088
2089 int
2090 lfs_match_data(struct lfs *fs, struct buf *bp)
2091 {
2092 return (bp->b_lblkno >= 0);
2093 }
2094
2095 int
2096 lfs_match_indir(struct lfs *fs, struct buf *bp)
2097 {
2098 daddr_t lbn;
2099
2100 lbn = bp->b_lblkno;
2101 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2102 }
2103
2104 int
2105 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2106 {
2107 daddr_t lbn;
2108
2109 lbn = bp->b_lblkno;
2110 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2111 }
2112
2113 int
2114 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2115 {
2116 daddr_t lbn;
2117
2118 lbn = bp->b_lblkno;
2119 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2120 }
2121
2122 /*
2123 * XXX - The only buffers that are going to hit these functions are the
2124 * segment write blocks, or the segment summaries, or the superblocks.
2125 *
2126 * All of the above are created by lfs_newbuf, and so do not need to be
2127 * released via brelse.
2128 */
2129 void
2130 lfs_callback(struct buf *bp)
2131 {
2132 struct lfs *fs;
2133
2134 fs = (struct lfs *)bp->b_saveaddr;
2135 lfs_freebuf(fs, bp);
2136 }
2137
2138 static void
2139 lfs_super_aiodone(struct buf *bp)
2140 {
2141 struct lfs *fs;
2142
2143 fs = (struct lfs *)bp->b_saveaddr;
2144 fs->lfs_sbactive = 0;
2145 wakeup(&fs->lfs_sbactive);
2146 if (--fs->lfs_iocount <= 1)
2147 wakeup(&fs->lfs_iocount);
2148 lfs_freebuf(fs, bp);
2149 }
2150
2151 static void
2152 lfs_cluster_aiodone(struct buf *bp)
2153 {
2154 struct lfs_cluster *cl;
2155 struct lfs *fs;
2156 struct buf *tbp, *fbp;
2157 struct vnode *vp, *devvp;
2158 struct inode *ip;
2159 int s, error=0;
2160 char *cp;
2161 extern int locked_queue_count;
2162 extern long locked_queue_bytes;
2163
2164 if (bp->b_flags & B_ERROR)
2165 error = bp->b_error;
2166
2167 cl = (struct lfs_cluster *)bp->b_saveaddr;
2168 fs = cl->fs;
2169 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2170 bp->b_saveaddr = cl->saveaddr;
2171
2172 cp = (char *)bp->b_data + cl->bufsize;
2173 /* Put the pages back, and release the buffer */
2174 while (cl->bufcount--) {
2175 tbp = cl->bpp[cl->bufcount];
2176 if (error) {
2177 tbp->b_flags |= B_ERROR;
2178 tbp->b_error = error;
2179 }
2180
2181 /*
2182 * We're done with tbp. If it has not been re-dirtied since
2183 * the cluster was written, free it. Otherwise, keep it on
2184 * the locked list to be written again.
2185 */
2186 vp = tbp->b_vp;
2187
2188 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2189 LFS_UNLOCK_BUF(tbp);
2190
2191 tbp->b_flags &= ~B_GATHERED;
2192
2193 LFS_BCLEAN_LOG(fs, tbp);
2194
2195 if (!(tbp->b_flags & B_CALL)) {
2196 bremfree(tbp);
2197 s = splbio();
2198 if (vp)
2199 reassignbuf(tbp, vp);
2200 splx(s);
2201 tbp->b_flags |= B_ASYNC; /* for biodone */
2202 }
2203 #ifdef DIAGNOSTIC
2204 if (tbp->b_flags & B_DONE) {
2205 printf("blk %d biodone already (flags %lx)\n",
2206 cl->bufcount, (long)tbp->b_flags);
2207 }
2208 #endif
2209 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2210 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2211 /* printf("flags 0x%lx\n", tbp->b_flags); */
2212 /*
2213 * A buffer from the page daemon.
2214 * We use the same iodone as it does,
2215 * so we must manually disassociate its
2216 * buffers from the vp.
2217 */
2218 if (tbp->b_vp) {
2219 /* This is just silly */
2220 s = splbio();
2221 brelvp(tbp);
2222 tbp->b_vp = vp;
2223 splx(s);
2224 }
2225 /* Put it back the way it was */
2226 tbp->b_flags |= B_ASYNC;
2227 /* Master buffers have B_AGE */
2228 if (tbp->b_private == tbp)
2229 tbp->b_flags |= B_AGE;
2230 }
2231 s = splbio();
2232 biodone(tbp);
2233
2234 /*
2235 * If this is the last block for this vnode, but
2236 * there are other blocks on its dirty list,
2237 * set IN_MODIFIED/IN_CLEANING depending on what
2238 * sort of block. Only do this for our mount point,
2239 * not for, e.g., inode blocks that are attached to
2240 * the devvp.
2241 * XXX KS - Shouldn't we set *both* if both types
2242 * of blocks are present (traverse the dirty list?)
2243 */
2244 simple_lock(&global_v_numoutput_slock);
2245 if (vp != devvp && vp->v_numoutput == 0 &&
2246 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2247 ip = VTOI(vp);
2248 #ifdef DEBUG_LFS
2249 printf("lfs_cluster_aiodone: marking ino %d\n",
2250 ip->i_number);
2251 #endif
2252 if (LFS_IS_MALLOC_BUF(fbp))
2253 LFS_SET_UINO(ip, IN_CLEANING);
2254 else
2255 LFS_SET_UINO(ip, IN_MODIFIED);
2256 }
2257 simple_unlock(&global_v_numoutput_slock);
2258 splx(s);
2259 wakeup(vp);
2260 }
2261 }
2262
2263 /* Fix up the cluster buffer, and release it */
2264 if (cl->flags & LFS_CL_MALLOC)
2265 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2266 bp->b_data = cl->olddata;
2267 bp->b_bcount = 0;
2268 bp->b_iodone = NULL;
2269 bp->b_flags &= ~B_DELWRI;
2270 bp->b_flags |= B_DONE;
2271 s = splbio();
2272 reassignbuf(bp, bp->b_vp);
2273 splx(s);
2274 brelse(bp);
2275
2276 /* Note i/o done */
2277 if (cl->flags & LFS_CL_SYNC) {
2278 if (--cl->seg->seg_iocount == 0)
2279 wakeup(&cl->seg->seg_iocount);
2280 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2281 }
2282 #ifdef DIAGNOSTIC
2283 if (fs->lfs_iocount == 0)
2284 panic("lfs_cluster_aiodone: zero iocount");
2285 #endif
2286 if (--fs->lfs_iocount <= 1)
2287 wakeup(&fs->lfs_iocount);
2288
2289 pool_put(&fs->lfs_bpppool, cl->bpp);
2290 cl->bpp = NULL;
2291 pool_put(&fs->lfs_clpool, cl);
2292 }
2293
2294 static void
2295 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2296 {
2297 /* reset b_iodone for when this is a single-buf i/o. */
2298 bp->b_iodone = aiodone;
2299
2300 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2301 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2302 wakeup(&uvm.aiodoned);
2303 simple_unlock(&uvm.aiodoned_lock);
2304 }
2305
2306 static void
2307 lfs_cluster_callback(struct buf *bp)
2308 {
2309 lfs_generic_callback(bp, lfs_cluster_aiodone);
2310 }
2311
2312 void
2313 lfs_supercallback(struct buf *bp)
2314 {
2315 lfs_generic_callback(bp, lfs_super_aiodone);
2316 }
2317
2318 /*
2319 * Shellsort (diminishing increment sort) from Data Structures and
2320 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2321 * see also Knuth Vol. 3, page 84. The increments are selected from
2322 * formula (8), page 95. Roughly O(N^3/2).
2323 */
2324 /*
2325 * This is our own private copy of shellsort because we want to sort
2326 * two parallel arrays (the array of buffer pointers and the array of
2327 * logical block numbers) simultaneously. Note that we cast the array
2328 * of logical block numbers to a unsigned in this routine so that the
2329 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2330 */
2331
2332 void
2333 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2334 {
2335 static int __rsshell_increments[] = { 4, 1, 0 };
2336 int incr, *incrp, t1, t2;
2337 struct buf *bp_temp;
2338
2339 #ifdef DEBUG
2340 incr = 0;
2341 for (t1 = 0; t1 < nmemb; t1++) {
2342 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2343 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2344 /* dump before panic */
2345 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2346 nmemb, size);
2347 incr = 0;
2348 for (t1 = 0; t1 < nmemb; t1++) {
2349 const struct buf *bp = bp_array[t1];
2350
2351 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2352 PRIu64 "\n", t1,
2353 (uint64_t)bp->b_bcount,
2354 (uint64_t)bp->b_lblkno);
2355 printf("lbns:");
2356 for (t2 = 0; t2 * size < bp->b_bcount;
2357 t2++) {
2358 printf(" %" PRId32,
2359 lb_array[incr++]);
2360 }
2361 printf("\n");
2362 }
2363 panic("lfs_shellsort: inconsistent input");
2364 }
2365 }
2366 }
2367 #endif
2368
2369 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2370 for (t1 = incr; t1 < nmemb; ++t1)
2371 for (t2 = t1 - incr; t2 >= 0;)
2372 if ((u_int32_t)bp_array[t2]->b_lblkno >
2373 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2374 bp_temp = bp_array[t2];
2375 bp_array[t2] = bp_array[t2 + incr];
2376 bp_array[t2 + incr] = bp_temp;
2377 t2 -= incr;
2378 } else
2379 break;
2380
2381 /* Reform the list of logical blocks */
2382 incr = 0;
2383 for (t1 = 0; t1 < nmemb; t1++) {
2384 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2385 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2386 }
2387 }
2388 }
2389
2390 /*
2391 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2392 */
2393 int
2394 lfs_vref(struct vnode *vp)
2395 {
2396 /*
2397 * If we return 1 here during a flush, we risk vinvalbuf() not
2398 * being able to flush all of the pages from this vnode, which
2399 * will cause it to panic. So, return 0 if a flush is in progress.
2400 */
2401 if (vp->v_flag & VXLOCK) {
2402 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2403 return 0;
2404 }
2405 return (1);
2406 }
2407 return (vget(vp, 0));
2408 }
2409
2410 /*
2411 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2412 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2413 */
2414 void
2415 lfs_vunref(struct vnode *vp)
2416 {
2417 /*
2418 * Analogous to lfs_vref, if the node is flushing, fake it.
2419 */
2420 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2421 return;
2422 }
2423
2424 simple_lock(&vp->v_interlock);
2425 #ifdef DIAGNOSTIC
2426 if (vp->v_usecount <= 0) {
2427 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2428 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2429 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2430 panic("lfs_vunref: v_usecount<0");
2431 }
2432 #endif
2433 vp->v_usecount--;
2434 if (vp->v_usecount > 0) {
2435 simple_unlock(&vp->v_interlock);
2436 return;
2437 }
2438 /*
2439 * insert at tail of LRU list
2440 */
2441 simple_lock(&vnode_free_list_slock);
2442 if (vp->v_holdcnt > 0)
2443 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2444 else
2445 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2446 simple_unlock(&vnode_free_list_slock);
2447 simple_unlock(&vp->v_interlock);
2448 }
2449
2450 /*
2451 * We use this when we have vnodes that were loaded in solely for cleaning.
2452 * There is no reason to believe that these vnodes will be referenced again
2453 * soon, since the cleaning process is unrelated to normal filesystem
2454 * activity. Putting cleaned vnodes at the tail of the list has the effect
2455 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2456 * cleaning at the head of the list, instead.
2457 */
2458 void
2459 lfs_vunref_head(struct vnode *vp)
2460 {
2461 simple_lock(&vp->v_interlock);
2462 #ifdef DIAGNOSTIC
2463 if (vp->v_usecount == 0) {
2464 panic("lfs_vunref: v_usecount<0");
2465 }
2466 #endif
2467 vp->v_usecount--;
2468 if (vp->v_usecount > 0) {
2469 simple_unlock(&vp->v_interlock);
2470 return;
2471 }
2472 /*
2473 * insert at head of LRU list
2474 */
2475 simple_lock(&vnode_free_list_slock);
2476 if (vp->v_holdcnt > 0)
2477 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2478 else
2479 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2480 simple_unlock(&vnode_free_list_slock);
2481 simple_unlock(&vp->v_interlock);
2482 }
2483
2484