lfs_segment.c revision 1.119 1 /* $NetBSD: lfs_segment.c,v 1.119 2003/04/02 10:39:41 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.119 2003/04/02 10:39:41 fvdl Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93
94 #include <miscfs/specfs/specdev.h>
95 #include <miscfs/fifofs/fifo.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
109
110 extern int count_lock_queue(void);
111 extern struct simplelock vnode_free_list_slock; /* XXX */
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 fragstofsb((fs), (fs)->lfs_frag))
125
126 void lfs_callback(struct buf *);
127 int lfs_gather(struct lfs *, struct segment *,
128 struct vnode *, int (*)(struct lfs *, struct buf *));
129 int lfs_gatherblock(struct segment *, struct buf *, int *);
130 void lfs_iset(struct inode *, daddr_t, time_t);
131 int lfs_match_fake(struct lfs *, struct buf *);
132 int lfs_match_data(struct lfs *, struct buf *);
133 int lfs_match_dindir(struct lfs *, struct buf *);
134 int lfs_match_indir(struct lfs *, struct buf *);
135 int lfs_match_tindir(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 int lfs_vref(struct vnode *);
142 void lfs_vunref(struct vnode *);
143 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
144 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
145 int lfs_writeseg(struct lfs *, struct segment *);
146 void lfs_writesuper(struct lfs *, daddr_t);
147 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
148 struct segment *sp, int dirops);
149
150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 int lfs_dirvcount = 0; /* # active dirops */
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 extern int locked_queue_count;
160 extern long locked_queue_bytes;
161
162 /* op values to lfs_writevnodes */
163 #define VN_REG 0
164 #define VN_DIROP 1
165 #define VN_EMPTY 2
166 #define VN_CLEAN 3
167
168 #define LFS_MAX_ACTIVE 10
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 TIMEVAL_TO_TIMESPEC(&time, &ts);
183 ip = VTOI(fs->lfs_ivnode);
184 ip->i_ffs1_mtime = ts.tv_sec;
185 ip->i_ffs1_mtimensec = ts.tv_nsec;
186 }
187
188 /*
189 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
190 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
191 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
192 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
193 */
194
195 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 #if 0
209 int redo;
210 #endif
211
212 ip = VTOI(vp);
213 fs = VFSTOUFS(vp->v_mount)->um_lfs;
214
215 if (ip->i_flag & IN_CLEANING) {
216 #ifdef DEBUG_LFS
217 ivndebug(vp,"vflush/in_cleaning");
218 #endif
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 goto nextbp;
257 }
258 }
259 simple_unlock(&vp->v_interlock);
260 }
261 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
262 tbp = tnbp)
263 {
264 tnbp = LIST_NEXT(tbp, b_vnbufs);
265 if (tbp->b_vp == bp->b_vp
266 && tbp->b_lblkno == bp->b_lblkno
267 && tbp != bp)
268 {
269 fs->lfs_avail += btofsb(fs,
270 bp->b_bcount);
271 wakeup(&fs->lfs_avail);
272 lfs_freebuf(fs, bp);
273 bp = NULL;
274 break;
275 }
276 }
277 nextbp:
278 ;
279 }
280 splx(s);
281 }
282
283 /* If the node is being written, wait until that is done */
284 s = splbio();
285 if (WRITEINPROG(vp)) {
286 #ifdef DEBUG_LFS
287 ivndebug(vp,"vflush/writeinprog");
288 #endif
289 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
290 }
291 splx(s);
292
293 /* Protect against VXLOCK deadlock in vinvalbuf() */
294 lfs_seglock(fs, SEGM_SYNC);
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 /* XXX - seglock, so these buffers can't be gathered, right? */
298 if (ip->i_mode == 0) {
299 printf("lfs_vflush: ino %d is freed, not flushing\n",
300 ip->i_number);
301 s = splbio();
302 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
303 nbp = LIST_NEXT(bp, b_vnbufs);
304 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
305 fs->lfs_avail += btofsb(fs, bp->b_bcount);
306 wakeup(&fs->lfs_avail);
307 }
308 /* Copied from lfs_writeseg */
309 if (bp->b_flags & B_CALL) {
310 biodone(bp);
311 } else {
312 bremfree(bp);
313 LFS_UNLOCK_BUF(bp);
314 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
315 B_GATHERED);
316 bp->b_flags |= B_DONE;
317 reassignbuf(bp, vp);
318 brelse(bp);
319 }
320 }
321 splx(s);
322 LFS_CLR_UINO(ip, IN_CLEANING);
323 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
324 ip->i_flag &= ~IN_ALLMOD;
325 printf("lfs_vflush: done not flushing ino %d\n",
326 ip->i_number);
327 lfs_segunlock(fs);
328 return 0;
329 }
330
331 SET_FLUSHING(fs,vp);
332 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
333 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
334 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
335 CLR_FLUSHING(fs,vp);
336 lfs_segunlock(fs);
337 return error;
338 }
339 sp = fs->lfs_sp;
340
341 flushed = 0;
342 if (VPISEMPTY(vp)) {
343 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
344 ++flushed;
345 } else if ((ip->i_flag & IN_CLEANING) &&
346 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
347 #ifdef DEBUG_LFS
348 ivndebug(vp,"vflush/clean");
349 #endif
350 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
351 ++flushed;
352 } else if (lfs_dostats) {
353 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
354 ++lfs_stats.vflush_invoked;
355 #ifdef DEBUG_LFS
356 ivndebug(vp,"vflush");
357 #endif
358 }
359
360 #ifdef DIAGNOSTIC
361 /* XXX KS This actually can happen right now, though it shouldn't(?) */
362 if (vp->v_flag & VDIROP) {
363 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
364 /* panic("VDIROP being flushed...this can\'t happen"); */
365 }
366 if (vp->v_usecount < 0) {
367 printf("usecount=%ld\n", (long)vp->v_usecount);
368 panic("lfs_vflush: usecount<0");
369 }
370 #endif
371
372 #if 1
373 do {
374 do {
375 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
376 lfs_writefile(fs, sp, vp);
377 } while (lfs_writeinode(fs, sp, ip));
378 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
379 #else
380 if (flushed && vp != fs->lfs_ivnode)
381 lfs_writeseg(fs, sp);
382 else do {
383 fs->lfs_flags &= ~LFS_IFDIRTY;
384 lfs_writefile(fs, sp, vp);
385 redo = lfs_writeinode(fs, sp, ip);
386 redo += lfs_writeseg(fs, sp);
387 redo += (fs->lfs_flags & LFS_IFDIRTY);
388 } while (redo && vp == fs->lfs_ivnode);
389 #endif
390 if (lfs_dostats) {
391 ++lfs_stats.nwrites;
392 if (sp->seg_flags & SEGM_SYNC)
393 ++lfs_stats.nsync_writes;
394 if (sp->seg_flags & SEGM_CKP)
395 ++lfs_stats.ncheckpoints;
396 }
397 /*
398 * If we were called from somewhere that has already held the seglock
399 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
400 * the write to complete because we are still locked.
401 * Since lfs_vflush() must return the vnode with no dirty buffers,
402 * we must explicitly wait, if that is the case.
403 *
404 * We compare the iocount against 1, not 0, because it is
405 * artificially incremented by lfs_seglock().
406 */
407 simple_lock(&fs->lfs_interlock);
408 if (fs->lfs_seglock > 1) {
409 simple_unlock(&fs->lfs_interlock);
410 while (fs->lfs_iocount > 1)
411 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
412 "lfs_vflush", 0);
413 } else
414 simple_unlock(&fs->lfs_interlock);
415
416 lfs_segunlock(fs);
417
418 CLR_FLUSHING(fs,vp);
419 return (0);
420 }
421
422 #ifdef DEBUG_LFS_VERBOSE
423 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
424 #else
425 # define vndebug(vp,str)
426 #endif
427
428 int
429 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
430 {
431 struct inode *ip;
432 struct vnode *vp, *nvp;
433 int inodes_written = 0, only_cleaning;
434
435 #ifndef LFS_NO_BACKVP_HACK
436 /* BEGIN HACK */
437 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
438 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
439 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
440
441 /* Find last vnode. */
442 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
443 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
444 vp = LIST_NEXT(vp, v_mntvnodes));
445 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
446 nvp = BACK_VP(vp);
447 #else
448 loop:
449 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
450 nvp = LIST_NEXT(vp, v_mntvnodes);
451 #endif
452 /*
453 * If the vnode that we are about to sync is no longer
454 * associated with this mount point, start over.
455 */
456 if (vp->v_mount != mp) {
457 printf("lfs_writevnodes: starting over\n");
458 /*
459 * After this, pages might be busy
460 * due to our own previous putpages.
461 * Start actual segment write here to avoid deadlock.
462 */
463 (void)lfs_writeseg(fs, sp);
464 goto loop;
465 }
466
467 if (vp->v_type == VNON) {
468 continue;
469 }
470
471 ip = VTOI(vp);
472 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
473 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
474 vndebug(vp,"dirop");
475 continue;
476 }
477
478 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
479 vndebug(vp,"empty");
480 continue;
481 }
482
483 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
484 && vp != fs->lfs_flushvp
485 && !(ip->i_flag & IN_CLEANING)) {
486 vndebug(vp,"cleaning");
487 continue;
488 }
489
490 if (lfs_vref(vp)) {
491 vndebug(vp,"vref");
492 continue;
493 }
494
495 only_cleaning = 0;
496 /*
497 * Write the inode/file if dirty and it's not the IFILE.
498 */
499 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
500 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
501
502 if (ip->i_number != LFS_IFILE_INUM)
503 lfs_writefile(fs, sp, vp);
504 if (!VPISEMPTY(vp)) {
505 if (WRITEINPROG(vp)) {
506 #ifdef DEBUG_LFS
507 ivndebug(vp,"writevnodes/write2");
508 #endif
509 } else if (!(ip->i_flag & IN_ALLMOD)) {
510 #ifdef DEBUG_LFS
511 printf("<%d>",ip->i_number);
512 #endif
513 LFS_SET_UINO(ip, IN_MODIFIED);
514 }
515 }
516 (void) lfs_writeinode(fs, sp, ip);
517 inodes_written++;
518 }
519
520 if (lfs_clean_vnhead && only_cleaning)
521 lfs_vunref_head(vp);
522 else
523 lfs_vunref(vp);
524 }
525 return inodes_written;
526 }
527
528 /*
529 * Do a checkpoint.
530 */
531 int
532 lfs_segwrite(struct mount *mp, int flags)
533 {
534 struct buf *bp;
535 struct inode *ip;
536 struct lfs *fs;
537 struct segment *sp;
538 struct vnode *vp;
539 SEGUSE *segusep;
540 int do_ckp, did_ckp, error, s;
541 unsigned n, segleft, maxseg, sn, i, curseg;
542 int writer_set = 0;
543 int dirty;
544 int redo;
545
546 fs = VFSTOUFS(mp)->um_lfs;
547
548 if (fs->lfs_ronly)
549 return EROFS;
550
551 lfs_imtime(fs);
552
553 /*
554 * Allocate a segment structure and enough space to hold pointers to
555 * the maximum possible number of buffers which can be described in a
556 * single summary block.
557 */
558 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
559 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
560 sp = fs->lfs_sp;
561
562 /*
563 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
564 * in which case we have to flush *all* buffers off of this vnode.
565 * We don't care about other nodes, but write any non-dirop nodes
566 * anyway in anticipation of another getnewvnode().
567 *
568 * If we're cleaning we only write cleaning and ifile blocks, and
569 * no dirops, since otherwise we'd risk corruption in a crash.
570 */
571 if (sp->seg_flags & SEGM_CLEAN)
572 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
573 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
574 lfs_writevnodes(fs, mp, sp, VN_REG);
575 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
576 while (fs->lfs_dirops)
577 if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
578 "lfs writer", 0)))
579 {
580 printf("segwrite mysterious error\n");
581 /* XXX why not segunlock? */
582 pool_put(&fs->lfs_bpppool, sp->bpp);
583 sp->bpp = NULL;
584 pool_put(&fs->lfs_segpool, sp);
585 sp = fs->lfs_sp = NULL;
586 return (error);
587 }
588 fs->lfs_writer++;
589 writer_set = 1;
590 lfs_writevnodes(fs, mp, sp, VN_DIROP);
591 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
592 }
593 }
594
595 /*
596 * If we are doing a checkpoint, mark everything since the
597 * last checkpoint as no longer ACTIVE.
598 */
599 if (do_ckp) {
600 segleft = fs->lfs_nseg;
601 curseg = 0;
602 for (n = 0; n < fs->lfs_segtabsz; n++) {
603 dirty = 0;
604 if (bread(fs->lfs_ivnode,
605 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
606
607 panic("lfs_segwrite: ifile read");
608 segusep = (SEGUSE *)bp->b_data;
609 maxseg = min(segleft, fs->lfs_sepb);
610 for (i = 0; i < maxseg; i++) {
611 sn = curseg + i;
612 if (sn != fs->lfs_curseg &&
613 segusep->su_flags & SEGUSE_ACTIVE) {
614 segusep->su_flags &= ~SEGUSE_ACTIVE;
615 --fs->lfs_nactive;
616 ++dirty;
617 }
618 fs->lfs_suflags[fs->lfs_activesb][sn] =
619 segusep->su_flags;
620 if (fs->lfs_version > 1)
621 ++segusep;
622 else
623 segusep = (SEGUSE *)
624 ((SEGUSE_V1 *)segusep + 1);
625 }
626
627 if (dirty)
628 error = LFS_BWRITE_LOG(bp); /* Ifile */
629 else
630 brelse(bp);
631 segleft -= fs->lfs_sepb;
632 curseg += fs->lfs_sepb;
633 }
634 }
635
636 did_ckp = 0;
637 if (do_ckp || fs->lfs_doifile) {
638 do {
639 vp = fs->lfs_ivnode;
640
641 #ifdef DEBUG
642 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
643 #endif
644 fs->lfs_flags &= ~LFS_IFDIRTY;
645
646 ip = VTOI(vp);
647
648 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
649 lfs_writefile(fs, sp, vp);
650
651 if (ip->i_flag & IN_ALLMOD)
652 ++did_ckp;
653 redo = lfs_writeinode(fs, sp, ip);
654 redo += lfs_writeseg(fs, sp);
655 redo += (fs->lfs_flags & LFS_IFDIRTY);
656 } while (redo && do_ckp);
657
658 /*
659 * Unless we are unmounting, the Ifile may continue to have
660 * dirty blocks even after a checkpoint, due to changes to
661 * inodes' atime. If we're checkpointing, it's "impossible"
662 * for other parts of the Ifile to be dirty after the loop
663 * above, since we hold the segment lock.
664 */
665 s = splbio();
666 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
667 LFS_CLR_UINO(ip, IN_ALLMOD);
668 }
669 #ifdef DIAGNOSTIC
670 else if (do_ckp) {
671 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
672 if (bp->b_lblkno < fs->lfs_cleansz +
673 fs->lfs_segtabsz &&
674 !(bp->b_flags & B_GATHERED)) {
675 panic("dirty blocks");
676 }
677 }
678 }
679 #endif
680 splx(s);
681 } else {
682 (void) lfs_writeseg(fs, sp);
683 }
684
685 /* Note Ifile no longer needs to be written */
686 fs->lfs_doifile = 0;
687 if (writer_set && --fs->lfs_writer == 0)
688 wakeup(&fs->lfs_dirops);
689
690 /*
691 * If we didn't write the Ifile, we didn't really do anything.
692 * That means that (1) there is a checkpoint on disk and (2)
693 * nothing has changed since it was written.
694 *
695 * Take the flags off of the segment so that lfs_segunlock
696 * doesn't have to write the superblock either.
697 */
698 if (do_ckp && !did_ckp) {
699 sp->seg_flags &= ~SEGM_CKP;
700 }
701
702 if (lfs_dostats) {
703 ++lfs_stats.nwrites;
704 if (sp->seg_flags & SEGM_SYNC)
705 ++lfs_stats.nsync_writes;
706 if (sp->seg_flags & SEGM_CKP)
707 ++lfs_stats.ncheckpoints;
708 }
709 lfs_segunlock(fs);
710 return (0);
711 }
712
713 /*
714 * Write the dirty blocks associated with a vnode.
715 */
716 void
717 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
718 {
719 struct buf *bp;
720 struct finfo *fip;
721 struct inode *ip;
722 IFILE *ifp;
723 int i, frag;
724
725 ip = VTOI(vp);
726
727 if (sp->seg_bytes_left < fs->lfs_bsize ||
728 sp->sum_bytes_left < sizeof(struct finfo))
729 (void) lfs_writeseg(fs, sp);
730
731 sp->sum_bytes_left -= FINFOSIZE;
732 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
733
734 if (vp->v_flag & VDIROP)
735 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
736
737 fip = sp->fip;
738 fip->fi_nblocks = 0;
739 fip->fi_ino = ip->i_number;
740 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
741 fip->fi_version = ifp->if_version;
742 brelse(bp);
743
744 if (sp->seg_flags & SEGM_CLEAN) {
745 lfs_gather(fs, sp, vp, lfs_match_fake);
746 /*
747 * For a file being flushed, we need to write *all* blocks.
748 * This means writing the cleaning blocks first, and then
749 * immediately following with any non-cleaning blocks.
750 * The same is true of the Ifile since checkpoints assume
751 * that all valid Ifile blocks are written.
752 */
753 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
754 lfs_gather(fs, sp, vp, lfs_match_data);
755 /*
756 * Don't call VOP_PUTPAGES: if we're flushing,
757 * we've already done it, and the Ifile doesn't
758 * use the page cache.
759 */
760 }
761 } else {
762 lfs_gather(fs, sp, vp, lfs_match_data);
763 /*
764 * If we're flushing, we've already called VOP_PUTPAGES
765 * so don't do it again. Otherwise, we want to write
766 * everything we've got.
767 */
768 if (!IS_FLUSHING(fs, vp)) {
769 simple_lock(&vp->v_interlock);
770 VOP_PUTPAGES(vp, 0, 0,
771 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED |
772 PGO_BUSYFAIL);
773 }
774 }
775
776 /*
777 * It may not be necessary to write the meta-data blocks at this point,
778 * as the roll-forward recovery code should be able to reconstruct the
779 * list.
780 *
781 * We have to write them anyway, though, under two conditions: (1) the
782 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
783 * checkpointing.
784 *
785 * BUT if we are cleaning, we might have indirect blocks that refer to
786 * new blocks not being written yet, in addition to fragments being
787 * moved out of a cleaned segment. If that is the case, don't
788 * write the indirect blocks, or the finfo will have a small block
789 * in the middle of it!
790 * XXX in this case isn't the inode size wrong too?
791 */
792 frag = 0;
793 if (sp->seg_flags & SEGM_CLEAN) {
794 for (i = 0; i < NDADDR; i++)
795 if (ip->i_lfs_fragsize[i] > 0 &&
796 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
797 ++frag;
798 }
799 #ifdef DIAGNOSTIC
800 if (frag > 1)
801 panic("lfs_writefile: more than one fragment!");
802 #endif
803 if (IS_FLUSHING(fs, vp) ||
804 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
805 lfs_gather(fs, sp, vp, lfs_match_indir);
806 lfs_gather(fs, sp, vp, lfs_match_dindir);
807 lfs_gather(fs, sp, vp, lfs_match_tindir);
808 }
809 fip = sp->fip;
810 if (fip->fi_nblocks != 0) {
811 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
812 sizeof(int32_t) * (fip->fi_nblocks));
813 sp->start_lbp = &sp->fip->fi_blocks[0];
814 } else {
815 sp->sum_bytes_left += FINFOSIZE;
816 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
817 }
818 }
819
820 int
821 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
822 {
823 struct buf *bp, *ibp;
824 struct ufs1_dinode *cdp;
825 IFILE *ifp;
826 SEGUSE *sup;
827 daddr_t daddr;
828 int32_t *daddrp; /* XXX ondisk32 */
829 ino_t ino;
830 int error, i, ndx, fsb = 0;
831 int redo_ifile = 0;
832 struct timespec ts;
833 int gotblk = 0;
834
835 if (!(ip->i_flag & IN_ALLMOD))
836 return (0);
837
838 /* Allocate a new inode block if necessary. */
839 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
840 /* Allocate a new segment if necessary. */
841 if (sp->seg_bytes_left < fs->lfs_ibsize ||
842 sp->sum_bytes_left < sizeof(int32_t))
843 (void) lfs_writeseg(fs, sp);
844
845 /* Get next inode block. */
846 daddr = fs->lfs_offset;
847 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
848 sp->ibp = *sp->cbpp++ =
849 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
850 fs->lfs_ibsize, 0, 0);
851 gotblk++;
852
853 /* Zero out inode numbers */
854 for (i = 0; i < INOPB(fs); ++i)
855 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 0;
856
857 ++sp->start_bpp;
858 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
859 /* Set remaining space counters. */
860 sp->seg_bytes_left -= fs->lfs_ibsize;
861 sp->sum_bytes_left -= sizeof(int32_t);
862 ndx = fs->lfs_sumsize / sizeof(int32_t) -
863 sp->ninodes / INOPB(fs) - 1;
864 ((int32_t *)(sp->segsum))[ndx] = daddr;
865 }
866
867 /* Update the inode times and copy the inode onto the inode page. */
868 TIMEVAL_TO_TIMESPEC(&time, &ts);
869 /* XXX kludge --- don't redirty the ifile just to put times on it */
870 if (ip->i_number != LFS_IFILE_INUM)
871 LFS_ITIMES(ip, &ts, &ts, &ts);
872
873 /*
874 * If this is the Ifile, and we've already written the Ifile in this
875 * partial segment, just overwrite it (it's not on disk yet) and
876 * continue.
877 *
878 * XXX we know that the bp that we get the second time around has
879 * already been gathered.
880 */
881 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
882 *(sp->idp) = *ip->i_din.ffs1_din;
883 ip->i_lfs_osize = ip->i_size;
884 return 0;
885 }
886
887 bp = sp->ibp;
888 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
889 *cdp = *ip->i_din.ffs1_din;
890 #ifdef LFS_IFILE_FRAG_ADDRESSING
891 if (fs->lfs_version > 1)
892 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
893 #endif
894
895 /*
896 * If we are cleaning, ensure that we don't write UNWRITTEN disk
897 * addresses to disk; possibly revert the inode size.
898 * XXX By not writing these blocks, we are making the lfs_avail
899 * XXX count on disk wrong by the same amount. We should be
900 * XXX able to "borrow" from lfs_avail and return it after the
901 * XXX Ifile is written. See also in lfs_writeseg.
902 */
903 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
904 cdp->di_size = ip->i_lfs_osize;
905 #ifdef DEBUG_LFS
906 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
907 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks);
908 #endif
909 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
910 daddrp++) {
911 if (*daddrp == UNWRITTEN) {
912 #ifdef DEBUG_LFS
913 printf("lfs_writeinode: wiping UNWRITTEN\n");
914 #endif
915 *daddrp = 0;
916 }
917 }
918 } else {
919 /* If all blocks are goig to disk, update the "size on disk" */
920 ip->i_lfs_osize = ip->i_size;
921 }
922
923 if (ip->i_flag & IN_CLEANING)
924 LFS_CLR_UINO(ip, IN_CLEANING);
925 else {
926 /* XXX IN_ALLMOD */
927 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
928 IN_UPDATE);
929 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
930 LFS_CLR_UINO(ip, IN_MODIFIED);
931 #ifdef DEBUG_LFS
932 else
933 printf("lfs_writeinode: ino %d: real blks=%d, "
934 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
935 ip->i_lfs_effnblks);
936 #endif
937 }
938
939 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
940 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
941 (sp->ninodes % INOPB(fs));
942 if (gotblk) {
943 LFS_LOCK_BUF(bp);
944 brelse(bp);
945 }
946
947 /* Increment inode count in segment summary block. */
948 ++((SEGSUM *)(sp->segsum))->ss_ninos;
949
950 /* If this page is full, set flag to allocate a new page. */
951 if (++sp->ninodes % INOPB(fs) == 0)
952 sp->ibp = NULL;
953
954 /*
955 * If updating the ifile, update the super-block. Update the disk
956 * address and access times for this inode in the ifile.
957 */
958 ino = ip->i_number;
959 if (ino == LFS_IFILE_INUM) {
960 daddr = fs->lfs_idaddr;
961 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
962 } else {
963 LFS_IENTRY(ifp, fs, ino, ibp);
964 daddr = ifp->if_daddr;
965 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
966 #ifdef LFS_DEBUG_NEXTFREE
967 if (ino > 3 && ifp->if_nextfree) {
968 vprint("lfs_writeinode",ITOV(ip));
969 printf("lfs_writeinode: updating free ino %d\n",
970 ip->i_number);
971 }
972 #endif
973 error = LFS_BWRITE_LOG(ibp); /* Ifile */
974 }
975
976 /*
977 * The inode's last address should not be in the current partial
978 * segment, except under exceptional circumstances (lfs_writevnodes
979 * had to start over, and in the meantime more blocks were written
980 * to a vnode). Both inodes will be accounted to this segment
981 * in lfs_writeseg so we need to subtract the earlier version
982 * here anyway. The segment count can temporarily dip below
983 * zero here; keep track of how many duplicates we have in
984 * "dupino" so we don't panic below.
985 */
986 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
987 ++sp->ndupino;
988 printf("lfs_writeinode: last inode addr in current pseg "
989 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
990 (long long)daddr, sp->ndupino);
991 }
992 /*
993 * Account the inode: it no longer belongs to its former segment,
994 * though it will not belong to the new segment until that segment
995 * is actually written.
996 */
997 if (daddr != LFS_UNUSED_DADDR) {
998 u_int32_t oldsn = dtosn(fs, daddr);
999 #ifdef DIAGNOSTIC
1000 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1001 #endif
1002 LFS_SEGENTRY(sup, fs, oldsn, bp);
1003 #ifdef DIAGNOSTIC
1004 if (sup->su_nbytes +
1005 sizeof (struct ufs1_dinode) * ndupino
1006 < sizeof (struct ufs1_dinode)) {
1007 printf("lfs_writeinode: negative bytes "
1008 "(segment %" PRIu32 " short by %d, "
1009 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1010 ", daddr=%" PRId64 ", su_nbytes=%u, "
1011 "ndupino=%d)\n",
1012 dtosn(fs, daddr),
1013 (int)sizeof (struct ufs1_dinode) * (1 - sp->ndupino)
1014 - sup->su_nbytes,
1015 oldsn, sp->seg_number, daddr,
1016 (unsigned int)sup->su_nbytes,
1017 sp->ndupino);
1018 panic("lfs_writeinode: negative bytes");
1019 sup->su_nbytes = sizeof (struct ufs1_dinode);
1020 }
1021 #endif
1022 #ifdef DEBUG_SU_NBYTES
1023 printf("seg %d -= %d for ino %d inode\n",
1024 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino);
1025 #endif
1026 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1027 redo_ifile =
1028 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1029 if (redo_ifile)
1030 fs->lfs_flags |= LFS_IFDIRTY;
1031 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1032 }
1033 return (redo_ifile);
1034 }
1035
1036 int
1037 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1038 {
1039 struct lfs *fs;
1040 int version;
1041 int j, blksinblk;
1042
1043 /*
1044 * If full, finish this segment. We may be doing I/O, so
1045 * release and reacquire the splbio().
1046 */
1047 #ifdef DIAGNOSTIC
1048 if (sp->vp == NULL)
1049 panic ("lfs_gatherblock: Null vp in segment");
1050 #endif
1051 fs = sp->fs;
1052 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1053 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1054 sp->seg_bytes_left < bp->b_bcount) {
1055 if (sptr)
1056 splx(*sptr);
1057 lfs_updatemeta(sp);
1058
1059 version = sp->fip->fi_version;
1060 (void) lfs_writeseg(fs, sp);
1061
1062 sp->fip->fi_version = version;
1063 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1064 /* Add the current file to the segment summary. */
1065 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1066 sp->sum_bytes_left -= FINFOSIZE;
1067
1068 if (sptr)
1069 *sptr = splbio();
1070 return (1);
1071 }
1072
1073 #ifdef DEBUG
1074 if (bp->b_flags & B_GATHERED) {
1075 printf("lfs_gatherblock: already gathered! Ino %d,"
1076 " lbn %" PRId64 "\n",
1077 sp->fip->fi_ino, bp->b_lblkno);
1078 return (0);
1079 }
1080 #endif
1081 /* Insert into the buffer list, update the FINFO block. */
1082 bp->b_flags |= B_GATHERED;
1083 bp->b_flags &= ~B_DONE;
1084
1085 *sp->cbpp++ = bp;
1086 for (j = 0; j < blksinblk; j++)
1087 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1088
1089 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1090 sp->seg_bytes_left -= bp->b_bcount;
1091 return (0);
1092 }
1093
1094 int
1095 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1096 {
1097 struct buf *bp, *nbp;
1098 int s, count = 0;
1099
1100 sp->vp = vp;
1101 s = splbio();
1102
1103 #ifndef LFS_NO_BACKBUF_HACK
1104 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1105 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1106 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1107 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1108 /* Find last buffer. */
1109 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1110 bp = LIST_NEXT(bp, b_vnbufs));
1111 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1112 nbp = BACK_BUF(bp);
1113 #else /* LFS_NO_BACKBUF_HACK */
1114 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1115 nbp = LIST_NEXT(bp, b_vnbufs);
1116 #endif /* LFS_NO_BACKBUF_HACK */
1117 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1118 #ifdef DEBUG_LFS
1119 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1120 printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
1121 #endif
1122 continue;
1123 }
1124 if (vp->v_type == VBLK) {
1125 /* For block devices, just write the blocks. */
1126 /* XXX Do we really need to even do this? */
1127 #ifdef DEBUG_LFS
1128 if (count == 0)
1129 printf("BLK(");
1130 printf(".");
1131 #endif
1132 /* Get the block before bwrite, so we don't corrupt the free list */
1133 bp->b_flags |= B_BUSY;
1134 bremfree(bp);
1135 bwrite(bp);
1136 } else {
1137 #ifdef DIAGNOSTIC
1138 # ifdef LFS_USE_B_INVAL
1139 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1140 printf("lfs_gather: lbn %" PRId64 " is "
1141 "B_INVAL\n", bp->b_lblkno);
1142 VOP_PRINT(bp->b_vp);
1143 }
1144 # endif /* LFS_USE_B_INVAL */
1145 if (!(bp->b_flags & B_DELWRI))
1146 panic("lfs_gather: bp not B_DELWRI");
1147 if (!(bp->b_flags & B_LOCKED)) {
1148 printf("lfs_gather: lbn %" PRId64 " blk "
1149 "%" PRId64 " not B_LOCKED\n",
1150 bp->b_lblkno,
1151 dbtofsb(fs, bp->b_blkno));
1152 VOP_PRINT(bp->b_vp);
1153 panic("lfs_gather: bp not B_LOCKED");
1154 }
1155 #endif
1156 if (lfs_gatherblock(sp, bp, &s)) {
1157 goto loop;
1158 }
1159 }
1160 count++;
1161 }
1162 splx(s);
1163 #ifdef DEBUG_LFS
1164 if (vp->v_type == VBLK && count)
1165 printf(")\n");
1166 #endif
1167 lfs_updatemeta(sp);
1168 sp->vp = NULL;
1169 return count;
1170 }
1171
1172 #if DEBUG
1173 # define DEBUG_OOFF(n) do { \
1174 if (ooff == 0) { \
1175 printf("lfs_updatemeta[%d]: warning: writing " \
1176 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1177 ", was 0x0 (or %" PRId64 ")\n", \
1178 (n), ip->i_number, lbn, ndaddr, daddr); \
1179 } \
1180 } while (0)
1181 #else
1182 # define DEBUG_OOFF(n)
1183 #endif
1184
1185 /*
1186 * Change the given block's address to ndaddr, finding its previous
1187 * location using ufs_bmaparray().
1188 *
1189 * Account for this change in the segment table.
1190 */
1191 void
1192 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1193 int32_t ndaddr, int size)
1194 {
1195 SEGUSE *sup;
1196 struct buf *bp;
1197 struct indir a[NIADDR + 2], *ap;
1198 struct inode *ip;
1199 struct vnode *vp;
1200 daddr_t daddr, ooff;
1201 int num, error;
1202 int bb, osize, obb;
1203
1204 vp = sp->vp;
1205 ip = VTOI(vp);
1206
1207 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1208 if (error)
1209 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1210
1211 KASSERT(daddr <= LFS_MAX_DADDR);
1212 if (daddr > 0)
1213 daddr = dbtofsb(fs, daddr);
1214
1215 bb = fragstofsb(fs, numfrags(fs, size));
1216 switch (num) {
1217 case 0:
1218 ooff = ip->i_ffs1_db[lbn];
1219 DEBUG_OOFF(0);
1220 if (ooff == UNWRITTEN)
1221 ip->i_ffs1_blocks += bb;
1222 else {
1223 /* possible fragment truncation or extension */
1224 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1225 ip->i_ffs1_blocks += (bb - obb);
1226 }
1227 ip->i_ffs1_db[lbn] = ndaddr;
1228 break;
1229 case 1:
1230 ooff = ip->i_ffs1_ib[a[0].in_off];
1231 DEBUG_OOFF(1);
1232 if (ooff == UNWRITTEN)
1233 ip->i_ffs1_blocks += bb;
1234 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1235 break;
1236 default:
1237 ap = &a[num - 1];
1238 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1239 panic("lfs_updatemeta: bread bno %" PRId64,
1240 ap->in_lbn);
1241
1242 /* XXX ondisk32 */
1243 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1244 DEBUG_OOFF(num);
1245 if (ooff == UNWRITTEN)
1246 ip->i_ffs1_blocks += bb;
1247 /* XXX ondisk32 */
1248 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1249 (void) VOP_BWRITE(bp);
1250 }
1251
1252 /*
1253 * Though we'd rather it couldn't, this *can* happen right now
1254 * if cleaning blocks and regular blocks coexist.
1255 */
1256 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1257
1258 /*
1259 * Update segment usage information, based on old size
1260 * and location.
1261 */
1262 if (daddr > 0) {
1263 u_int32_t oldsn = dtosn(fs, daddr);
1264 #ifdef DIAGNOSTIC
1265 int ndupino = (sp->seg_number == oldsn) ?
1266 sp->ndupino : 0;
1267 #endif
1268 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1269 if (lbn >= 0 && lbn < NDADDR)
1270 osize = ip->i_lfs_fragsize[lbn];
1271 else
1272 osize = fs->lfs_bsize;
1273 LFS_SEGENTRY(sup, fs, oldsn, bp);
1274 #ifdef DIAGNOSTIC
1275 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1276 < osize) {
1277 printf("lfs_updatemeta: negative bytes "
1278 "(segment %" PRIu32 " short by %" PRId64
1279 ")\n", dtosn(fs, daddr),
1280 (int64_t)osize -
1281 (sizeof (struct ufs1_dinode) * sp->ndupino +
1282 sup->su_nbytes));
1283 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1284 ", addr = 0x%" PRIx64 "\n",
1285 VTOI(sp->vp)->i_number, lbn, daddr);
1286 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1287 panic("lfs_updatemeta: negative bytes");
1288 sup->su_nbytes = osize -
1289 sizeof (struct ufs1_dinode) * sp->ndupino;
1290 }
1291 #endif
1292 #ifdef DEBUG_SU_NBYTES
1293 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1294 " db 0x%" PRIx64 "\n",
1295 dtosn(fs, daddr), osize,
1296 VTOI(sp->vp)->i_number, lbn, daddr);
1297 #endif
1298 sup->su_nbytes -= osize;
1299 if (!(bp->b_flags & B_GATHERED))
1300 fs->lfs_flags |= LFS_IFDIRTY;
1301 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1302 }
1303 /*
1304 * Now that this block has a new address, and its old
1305 * segment no longer owns it, we can forget about its
1306 * old size.
1307 */
1308 if (lbn >= 0 && lbn < NDADDR)
1309 ip->i_lfs_fragsize[lbn] = size;
1310 }
1311
1312 /*
1313 * Update the metadata that points to the blocks listed in the FINFO
1314 * array.
1315 */
1316 void
1317 lfs_updatemeta(struct segment *sp)
1318 {
1319 struct buf *sbp;
1320 struct lfs *fs;
1321 struct vnode *vp;
1322 daddr_t lbn;
1323 int i, nblocks, num;
1324 int bb;
1325 int bytesleft, size;
1326
1327 vp = sp->vp;
1328 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1329 KASSERT(nblocks >= 0);
1330 if (vp == NULL || nblocks == 0)
1331 return;
1332
1333 /*
1334 * This count may be high due to oversize blocks from lfs_gop_write.
1335 * Correct for this. (XXX we should be able to keep track of these.)
1336 */
1337 fs = sp->fs;
1338 for (i = 0; i < nblocks; i++) {
1339 if (sp->start_bpp[i] == NULL) {
1340 printf("nblocks = %d, not %d\n", i, nblocks);
1341 nblocks = i;
1342 break;
1343 }
1344 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1345 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1346 nblocks -= num - 1;
1347 }
1348
1349 KASSERT(vp->v_type == VREG ||
1350 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1351 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1352
1353 /*
1354 * Sort the blocks.
1355 *
1356 * We have to sort even if the blocks come from the
1357 * cleaner, because there might be other pending blocks on the
1358 * same inode...and if we don't sort, and there are fragments
1359 * present, blocks may be written in the wrong place.
1360 */
1361 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1362
1363 /*
1364 * Record the length of the last block in case it's a fragment.
1365 * If there are indirect blocks present, they sort last. An
1366 * indirect block will be lfs_bsize and its presence indicates
1367 * that you cannot have fragments.
1368 *
1369 * XXX This last is a lie. A cleaned fragment can coexist with
1370 * XXX a later indirect block. This will continue to be
1371 * XXX true until lfs_markv is fixed to do everything with
1372 * XXX fake blocks (including fake inodes and fake indirect blocks).
1373 */
1374 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1375 fs->lfs_bmask) + 1;
1376
1377 /*
1378 * Assign disk addresses, and update references to the logical
1379 * block and the segment usage information.
1380 */
1381 for (i = nblocks; i--; ++sp->start_bpp) {
1382 sbp = *sp->start_bpp;
1383 lbn = *sp->start_lbp;
1384 KASSERT(sbp->b_lblkno == lbn);
1385
1386 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1387
1388 /*
1389 * If we write a frag in the wrong place, the cleaner won't
1390 * be able to correctly identify its size later, and the
1391 * segment will be uncleanable. (Even worse, it will assume
1392 * that the indirect block that actually ends the list
1393 * is of a smaller size!)
1394 */
1395 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1396 panic("lfs_updatemeta: fragment is not last block");
1397
1398 /*
1399 * For each subblock in this possibly oversized block,
1400 * update its address on disk.
1401 */
1402 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1403 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1404 bytesleft -= fs->lfs_bsize) {
1405 size = MIN(bytesleft, fs->lfs_bsize);
1406 bb = fragstofsb(fs, numfrags(fs, size));
1407 lbn = *sp->start_lbp++;
1408 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1409 fs->lfs_offset += bb;
1410 }
1411
1412 }
1413 }
1414
1415 /*
1416 * Start a new segment.
1417 */
1418 int
1419 lfs_initseg(struct lfs *fs)
1420 {
1421 struct segment *sp;
1422 SEGUSE *sup;
1423 SEGSUM *ssp;
1424 struct buf *bp, *sbp;
1425 int repeat;
1426
1427 sp = fs->lfs_sp;
1428
1429 repeat = 0;
1430
1431 /* Advance to the next segment. */
1432 if (!LFS_PARTIAL_FITS(fs)) {
1433 /* lfs_avail eats the remaining space */
1434 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1435 fs->lfs_curseg);
1436 /* Wake up any cleaning procs waiting on this file system. */
1437 wakeup(&lfs_allclean_wakeup);
1438 wakeup(&fs->lfs_nextseg);
1439 lfs_newseg(fs);
1440 repeat = 1;
1441 fs->lfs_offset = fs->lfs_curseg;
1442
1443 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1444 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1445
1446 /*
1447 * If the segment contains a superblock, update the offset
1448 * and summary address to skip over it.
1449 */
1450 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1451 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1452 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1453 sp->seg_bytes_left -= LFS_SBPAD;
1454 }
1455 brelse(bp);
1456 /* Segment zero could also contain the labelpad */
1457 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1458 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1459 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1460 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1461 }
1462 } else {
1463 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1464 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1465 (fs->lfs_offset - fs->lfs_curseg));
1466 }
1467 fs->lfs_lastpseg = fs->lfs_offset;
1468
1469 /* Record first address of this partial segment */
1470 if (sp->seg_flags & SEGM_CLEAN) {
1471 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1472 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1473 /* "1" is the artificial inc in lfs_seglock */
1474 while (fs->lfs_iocount > 1) {
1475 tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0);
1476 }
1477 fs->lfs_cleanind = 0;
1478 }
1479 }
1480
1481 sp->fs = fs;
1482 sp->ibp = NULL;
1483 sp->idp = NULL;
1484 sp->ninodes = 0;
1485 sp->ndupino = 0;
1486
1487 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1488 sp->cbpp = sp->bpp;
1489 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1490 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1491 sp->segsum = (*sp->cbpp)->b_data;
1492 memset(sp->segsum, 0, fs->lfs_sumsize);
1493 sp->start_bpp = ++sp->cbpp;
1494 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1495
1496 /* Set point to SEGSUM, initialize it. */
1497 ssp = sp->segsum;
1498 ssp->ss_next = fs->lfs_nextseg;
1499 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1500 ssp->ss_magic = SS_MAGIC;
1501
1502 /* Set pointer to first FINFO, initialize it. */
1503 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1504 sp->fip->fi_nblocks = 0;
1505 sp->start_lbp = &sp->fip->fi_blocks[0];
1506 sp->fip->fi_lastlength = 0;
1507
1508 sp->seg_bytes_left -= fs->lfs_sumsize;
1509 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1510
1511 return (repeat);
1512 }
1513
1514 /*
1515 * Return the next segment to write.
1516 */
1517 void
1518 lfs_newseg(struct lfs *fs)
1519 {
1520 CLEANERINFO *cip;
1521 SEGUSE *sup;
1522 struct buf *bp;
1523 int curseg, isdirty, sn;
1524
1525 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1526 #ifdef DEBUG_SU_NBYTES
1527 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1528 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1529 #endif
1530 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1531 sup->su_nbytes = 0;
1532 sup->su_nsums = 0;
1533 sup->su_ninos = 0;
1534 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1535
1536 LFS_CLEANERINFO(cip, fs, bp);
1537 --cip->clean;
1538 ++cip->dirty;
1539 fs->lfs_nclean = cip->clean;
1540 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1541
1542 fs->lfs_lastseg = fs->lfs_curseg;
1543 fs->lfs_curseg = fs->lfs_nextseg;
1544 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1545 sn = (sn + 1) % fs->lfs_nseg;
1546 if (sn == curseg)
1547 panic("lfs_nextseg: no clean segments");
1548 LFS_SEGENTRY(sup, fs, sn, bp);
1549 isdirty = sup->su_flags & SEGUSE_DIRTY;
1550 /* Check SEGUSE_EMPTY as we go along */
1551 if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY))
1552 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1553 else
1554 brelse(bp);
1555
1556 if (!isdirty)
1557 break;
1558 }
1559
1560 ++fs->lfs_nactive;
1561 fs->lfs_nextseg = sntod(fs, sn);
1562 if (lfs_dostats) {
1563 ++lfs_stats.segsused;
1564 }
1565 }
1566
1567 #define BQUEUES 4 /* XXX */
1568 #define BQ_EMPTY 3 /* XXX */
1569 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1570 extern struct simplelock bqueue_slock;
1571
1572 #define BUFHASH(dvp, lbn) \
1573 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1574 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1575 /*
1576 * Insq/Remq for the buffer hash lists.
1577 */
1578 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1579 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1580
1581 static struct buf *
1582 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1583 {
1584 struct lfs_cluster *cl;
1585 struct buf **bpp, *bp;
1586 int s;
1587
1588 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1589 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1590 memset(cl, 0, sizeof(*cl));
1591 cl->fs = fs;
1592 cl->bpp = bpp;
1593 cl->bufcount = 0;
1594 cl->bufsize = 0;
1595
1596 /* If this segment is being written synchronously, note that */
1597 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1598 cl->flags |= LFS_CL_SYNC;
1599 cl->seg = fs->lfs_sp;
1600 ++cl->seg->seg_iocount;
1601 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1602 }
1603
1604 /* Get an empty buffer header, or maybe one with something on it */
1605 s = splbio();
1606 simple_lock(&bqueue_slock);
1607 if ((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1608 simple_lock(&bp->b_interlock);
1609 bremfree(bp);
1610 /* clear out various other fields */
1611 bp->b_flags = B_BUSY;
1612 bp->b_dev = NODEV;
1613 bp->b_blkno = bp->b_lblkno = 0;
1614 bp->b_error = 0;
1615 bp->b_resid = 0;
1616 bp->b_bcount = 0;
1617
1618 /* nuke any credentials we were holding */
1619 /* XXXXXX */
1620
1621 bremhash(bp);
1622
1623 /* disassociate us from our vnode, if we had one... */
1624 if (bp->b_vp)
1625 brelvp(bp);
1626 }
1627 while (!bp)
1628 bp = getnewbuf(0, 0);
1629 bgetvp(vp, bp);
1630 binshash(bp,&invalhash);
1631 simple_unlock(&bp->b_interlock);
1632 simple_unlock(&bqueue_slock);
1633 splx(s);
1634 bp->b_bcount = 0;
1635 bp->b_blkno = bp->b_lblkno = addr;
1636
1637 bp->b_flags |= B_CALL;
1638 bp->b_iodone = lfs_cluster_callback;
1639 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1640 bp->b_saveaddr = (caddr_t)cl;
1641
1642 return bp;
1643 }
1644
1645 int
1646 lfs_writeseg(struct lfs *fs, struct segment *sp)
1647 {
1648 struct buf **bpp, *bp, *cbp, *newbp;
1649 SEGUSE *sup;
1650 SEGSUM *ssp;
1651 dev_t i_dev;
1652 char *datap, *dp;
1653 int i, s;
1654 int do_again, nblocks, byteoffset;
1655 size_t el_size;
1656 struct lfs_cluster *cl;
1657 int (*strategy)(void *);
1658 struct vop_strategy_args vop_strategy_a;
1659 u_short ninos;
1660 struct vnode *devvp;
1661 char *p;
1662 struct vnode *vp;
1663 int32_t *daddrp; /* XXX ondisk32 */
1664 int changed;
1665 #if defined(DEBUG) && defined(LFS_PROPELLER)
1666 static int propeller;
1667 char propstring[4] = "-\\|/";
1668
1669 printf("%c\b",propstring[propeller++]);
1670 if (propeller == 4)
1671 propeller = 0;
1672 #endif
1673
1674 /*
1675 * If there are no buffers other than the segment summary to write
1676 * and it is not a checkpoint, don't do anything. On a checkpoint,
1677 * even if there aren't any buffers, you need to write the superblock.
1678 */
1679 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1680 return (0);
1681
1682 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1683 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1684
1685 /* Update the segment usage information. */
1686 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1687
1688 /* Loop through all blocks, except the segment summary. */
1689 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1690 if ((*bpp)->b_vp != devvp) {
1691 sup->su_nbytes += (*bpp)->b_bcount;
1692 #ifdef DEBUG_SU_NBYTES
1693 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1694 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1695 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1696 (*bpp)->b_blkno);
1697 #endif
1698 }
1699 }
1700
1701 ssp = (SEGSUM *)sp->segsum;
1702
1703 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1704 #ifdef DEBUG_SU_NBYTES
1705 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1706 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1707 ssp->ss_ninos);
1708 #endif
1709 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1710 /* sup->su_nbytes += fs->lfs_sumsize; */
1711 if (fs->lfs_version == 1)
1712 sup->su_olastmod = time.tv_sec;
1713 else
1714 sup->su_lastmod = time.tv_sec;
1715 sup->su_ninos += ninos;
1716 ++sup->su_nsums;
1717 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1718 fs->lfs_ibsize));
1719 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1720
1721 do_again = !(bp->b_flags & B_GATHERED);
1722 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1723
1724 /*
1725 * Mark blocks B_BUSY, to prevent then from being changed between
1726 * the checksum computation and the actual write.
1727 *
1728 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1729 * there are any, replace them with copies that have UNASSIGNED
1730 * instead.
1731 */
1732 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1733 ++bpp;
1734 bp = *bpp;
1735 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1736 bp->b_flags |= B_BUSY;
1737 continue;
1738 }
1739 again:
1740 s = splbio();
1741 if (bp->b_flags & B_BUSY) {
1742 #ifdef DEBUG
1743 printf("lfs_writeseg: avoiding potential data summary "
1744 "corruption for ino %d, lbn %" PRId64 "\n",
1745 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1746 #endif
1747 bp->b_flags |= B_WANTED;
1748 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1749 splx(s);
1750 goto again;
1751 }
1752 bp->b_flags |= B_BUSY;
1753 splx(s);
1754 /*
1755 * Check and replace indirect block UNWRITTEN bogosity.
1756 * XXX See comment in lfs_writefile.
1757 */
1758 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1759 VTOI(bp->b_vp)->i_ffs1_blocks !=
1760 VTOI(bp->b_vp)->i_lfs_effnblks) {
1761 #ifdef DEBUG_LFS
1762 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1763 VTOI(bp->b_vp)->i_number,
1764 VTOI(bp->b_vp)->i_lfs_effnblks,
1765 VTOI(bp->b_vp)->i_ffs1_blocks);
1766 #endif
1767 /* Make a copy we'll make changes to */
1768 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1769 bp->b_bcount, LFS_NB_IBLOCK);
1770 newbp->b_blkno = bp->b_blkno;
1771 memcpy(newbp->b_data, bp->b_data,
1772 newbp->b_bcount);
1773
1774 changed = 0;
1775 /* XXX ondisk32 */
1776 for (daddrp = (int32_t *)(newbp->b_data);
1777 daddrp < (int32_t *)(newbp->b_data +
1778 newbp->b_bcount); daddrp++) {
1779 if (*daddrp == UNWRITTEN) {
1780 #ifdef DEBUG_LFS
1781 off_t doff;
1782 int32_t ioff;
1783
1784 ioff = daddrp - (int32_t *)(newbp->b_data);
1785 doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1786 printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n",
1787 VTOI(bp->b_vp)->i_number,
1788 bp->b_lblkno, ioff, doff);
1789 if (bp->b_vp->v_type == VREG) {
1790 /*
1791 * What is up with this page?
1792 */
1793 struct vm_page *pg;
1794 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) {
1795 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1796 if (pg == NULL)
1797 printf(" page at %" PRIx64 " is NULL\n", doff);
1798 else
1799 printf(" page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags);
1800 }
1801 }
1802 #endif /* DEBUG_LFS */
1803 ++changed;
1804 *daddrp = 0;
1805 }
1806 }
1807 /*
1808 * Get rid of the old buffer. Don't mark it clean,
1809 * though, if it still has dirty data on it.
1810 */
1811 if (changed) {
1812 #ifdef DEBUG_LFS
1813 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1814 " bp = %p newbp = %p\n", changed, bp,
1815 newbp);
1816 #endif
1817 *bpp = newbp;
1818 bp->b_flags &= ~(B_ERROR | B_GATHERED | B_DONE);
1819 if (bp->b_flags & B_CALL) {
1820 printf("lfs_writeseg: indir bp should not be B_CALL\n");
1821 s = splbio();
1822 biodone(bp);
1823 splx(s);
1824 bp = NULL;
1825 } else {
1826 /* Still on free list, leave it there */
1827 s = splbio();
1828 bp->b_flags &= ~B_BUSY;
1829 if (bp->b_flags & B_WANTED)
1830 wakeup(bp);
1831 splx(s);
1832 /*
1833 * We have to re-decrement lfs_avail
1834 * since this block is going to come
1835 * back around to us in the next
1836 * segment.
1837 */
1838 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1839 }
1840 } else {
1841 lfs_freebuf(fs, newbp);
1842 }
1843 }
1844 }
1845 /*
1846 * Compute checksum across data and then across summary; the first
1847 * block (the summary block) is skipped. Set the create time here
1848 * so that it's guaranteed to be later than the inode mod times.
1849 *
1850 * XXX
1851 * Fix this to do it inline, instead of malloc/copy.
1852 */
1853 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1854 if (fs->lfs_version == 1)
1855 el_size = sizeof(u_long);
1856 else
1857 el_size = sizeof(u_int32_t);
1858 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1859 ++bpp;
1860 /* Loop through gop_write cluster blocks */
1861 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1862 byteoffset += fs->lfs_bsize) {
1863 #ifdef LFS_USE_B_INVAL
1864 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1865 (B_CALL | B_INVAL)) {
1866 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1867 byteoffset, dp, el_size)) {
1868 panic("lfs_writeseg: copyin failed [1]: "
1869 "ino %d blk %" PRId64,
1870 VTOI((*bpp)->b_vp)->i_number,
1871 (*bpp)->b_lblkno);
1872 }
1873 } else
1874 #endif /* LFS_USE_B_INVAL */
1875 {
1876 memcpy(dp, (*bpp)->b_data + byteoffset,
1877 el_size);
1878 }
1879 dp += el_size;
1880 }
1881 }
1882 if (fs->lfs_version == 1)
1883 ssp->ss_ocreate = time.tv_sec;
1884 else {
1885 ssp->ss_create = time.tv_sec;
1886 ssp->ss_serial = ++fs->lfs_serial;
1887 ssp->ss_ident = fs->lfs_ident;
1888 }
1889 ssp->ss_datasum = cksum(datap, dp - datap);
1890 ssp->ss_sumsum =
1891 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1892 pool_put(&fs->lfs_bpppool, datap);
1893 datap = dp = NULL;
1894 #ifdef DIAGNOSTIC
1895 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1896 panic("lfs_writeseg: No diskspace for summary");
1897 #endif
1898 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1899 btofsb(fs, fs->lfs_sumsize));
1900
1901 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1902
1903 /*
1904 * When we simply write the blocks we lose a rotation for every block
1905 * written. To avoid this problem, we cluster the buffers into a
1906 * chunk and write the chunk. MAXPHYS is the largest size I/O
1907 * devices can handle, use that for the size of the chunks.
1908 *
1909 * Blocks that are already clusters (from GOP_WRITE), however, we
1910 * don't bother to copy into other clusters.
1911 */
1912
1913 #define CHUNKSIZE MAXPHYS
1914
1915 if (devvp == NULL)
1916 panic("devvp is NULL");
1917 for (bpp = sp->bpp, i = nblocks; i;) {
1918 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1919 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1920
1921 cbp->b_dev = i_dev;
1922 cbp->b_flags |= B_ASYNC | B_BUSY;
1923 cbp->b_bcount = 0;
1924
1925 cl->olddata = cbp->b_data;
1926 #if defined(DEBUG) && defined(DIAGNOSTIC)
1927 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1928 / sizeof(int32_t)) {
1929 panic("lfs_writeseg: real bpp overwrite");
1930 }
1931 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1932 panic("lfs_writeseg: theoretical bpp overwrite");
1933 }
1934 #endif
1935
1936 /*
1937 * Construct the cluster.
1938 */
1939 ++fs->lfs_iocount;
1940 while (i && cbp->b_bcount < CHUNKSIZE) {
1941 bp = *bpp;
1942
1943 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1944 break;
1945 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1946 break;
1947
1948 /* Clusters from GOP_WRITE are expedited */
1949 if (bp->b_bcount > fs->lfs_bsize) {
1950 if (cbp->b_bcount > 0)
1951 /* Put in its own buffer */
1952 break;
1953 else {
1954 cbp->b_data = bp->b_data;
1955 }
1956 } else if (cbp->b_bcount == 0) {
1957 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1958 LFS_NB_CLUSTER);
1959 cl->flags |= LFS_CL_MALLOC;
1960 }
1961 #ifdef DIAGNOSTIC
1962 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1963 btodb(bp->b_bcount - 1))) !=
1964 sp->seg_number) {
1965 printf("blk size %ld daddr %" PRIx64 " not in seg %d\n",
1966 bp->b_bcount, bp->b_blkno,
1967 sp->seg_number);
1968 panic("segment overwrite");
1969 }
1970 #endif
1971
1972 #ifdef LFS_USE_B_INVAL
1973 /*
1974 * Fake buffers from the cleaner are marked as B_INVAL.
1975 * We need to copy the data from user space rather than
1976 * from the buffer indicated.
1977 * XXX == what do I do on an error?
1978 */
1979 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1980 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1981 panic("lfs_writeseg: copyin failed [2]");
1982 } else
1983 #endif /* LFS_USE_B_INVAL */
1984 if (cl->flags & LFS_CL_MALLOC) {
1985 bcopy(bp->b_data, p, bp->b_bcount);
1986 }
1987
1988 p += bp->b_bcount;
1989 cbp->b_bcount += bp->b_bcount;
1990 cl->bufsize += bp->b_bcount;
1991
1992 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1993 cl->bpp[cl->bufcount++] = bp;
1994 vp = bp->b_vp;
1995 s = splbio();
1996 V_INCR_NUMOUTPUT(vp);
1997 splx(s);
1998
1999 bpp++;
2000 i--;
2001 }
2002 s = splbio();
2003 V_INCR_NUMOUTPUT(devvp);
2004 splx(s);
2005 vop_strategy_a.a_desc = VDESC(vop_strategy);
2006 vop_strategy_a.a_bp = cbp;
2007 (strategy)(&vop_strategy_a);
2008 curproc->p_stats->p_ru.ru_oublock++;
2009 }
2010
2011 if (lfs_dostats) {
2012 ++lfs_stats.psegwrites;
2013 lfs_stats.blocktot += nblocks - 1;
2014 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2015 ++lfs_stats.psyncwrites;
2016 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2017 ++lfs_stats.pcleanwrites;
2018 lfs_stats.cleanblocks += nblocks - 1;
2019 }
2020 }
2021 return (lfs_initseg(fs) || do_again);
2022 }
2023
2024 void
2025 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2026 {
2027 struct buf *bp;
2028 dev_t i_dev;
2029 int (*strategy)(void *);
2030 int s;
2031 struct vop_strategy_args vop_strategy_a;
2032
2033 /*
2034 * If we can write one superblock while another is in
2035 * progress, we risk not having a complete checkpoint if we crash.
2036 * So, block here if a superblock write is in progress.
2037 */
2038 s = splbio();
2039 while (fs->lfs_sbactive) {
2040 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2041 }
2042 fs->lfs_sbactive = daddr;
2043 splx(s);
2044 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2045 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2046
2047 /* Set timestamp of this version of the superblock */
2048 if (fs->lfs_version == 1)
2049 fs->lfs_otstamp = time.tv_sec;
2050 fs->lfs_tstamp = time.tv_sec;
2051
2052 /* Checksum the superblock and copy it into a buffer. */
2053 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2054 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2055 memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs));
2056 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2057
2058 bp->b_dev = i_dev;
2059 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2060 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2061 bp->b_iodone = lfs_supercallback;
2062 /* XXX KS - same nasty hack as above */
2063 bp->b_saveaddr = (caddr_t)fs;
2064
2065 vop_strategy_a.a_desc = VDESC(vop_strategy);
2066 vop_strategy_a.a_bp = bp;
2067 curproc->p_stats->p_ru.ru_oublock++;
2068 s = splbio();
2069 V_INCR_NUMOUTPUT(bp->b_vp);
2070 splx(s);
2071 ++fs->lfs_iocount;
2072 (strategy)(&vop_strategy_a);
2073 }
2074
2075 /*
2076 * Logical block number match routines used when traversing the dirty block
2077 * chain.
2078 */
2079 int
2080 lfs_match_fake(struct lfs *fs, struct buf *bp)
2081 {
2082 return LFS_IS_MALLOC_BUF(bp);
2083 }
2084
2085 #if 0
2086 int
2087 lfs_match_real(struct lfs *fs, struct buf *bp)
2088 {
2089 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2090 }
2091 #endif
2092
2093 int
2094 lfs_match_data(struct lfs *fs, struct buf *bp)
2095 {
2096 return (bp->b_lblkno >= 0);
2097 }
2098
2099 int
2100 lfs_match_indir(struct lfs *fs, struct buf *bp)
2101 {
2102 daddr_t lbn;
2103
2104 lbn = bp->b_lblkno;
2105 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2106 }
2107
2108 int
2109 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2110 {
2111 daddr_t lbn;
2112
2113 lbn = bp->b_lblkno;
2114 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2115 }
2116
2117 int
2118 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2119 {
2120 daddr_t lbn;
2121
2122 lbn = bp->b_lblkno;
2123 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2124 }
2125
2126 /*
2127 * XXX - The only buffers that are going to hit these functions are the
2128 * segment write blocks, or the segment summaries, or the superblocks.
2129 *
2130 * All of the above are created by lfs_newbuf, and so do not need to be
2131 * released via brelse.
2132 */
2133 void
2134 lfs_callback(struct buf *bp)
2135 {
2136 struct lfs *fs;
2137
2138 fs = (struct lfs *)bp->b_saveaddr;
2139 lfs_freebuf(fs, bp);
2140 }
2141
2142 static void
2143 lfs_super_aiodone(struct buf *bp)
2144 {
2145 struct lfs *fs;
2146
2147 fs = (struct lfs *)bp->b_saveaddr;
2148 fs->lfs_sbactive = 0;
2149 wakeup(&fs->lfs_sbactive);
2150 if (--fs->lfs_iocount <= 1)
2151 wakeup(&fs->lfs_iocount);
2152 lfs_freebuf(fs, bp);
2153 }
2154
2155 static void
2156 lfs_cluster_aiodone(struct buf *bp)
2157 {
2158 struct lfs_cluster *cl;
2159 struct lfs *fs;
2160 struct buf *tbp, *fbp;
2161 struct vnode *vp, *devvp;
2162 struct inode *ip;
2163 int s, error=0;
2164 char *cp;
2165 extern int locked_queue_count;
2166 extern long locked_queue_bytes;
2167
2168 if (bp->b_flags & B_ERROR)
2169 error = bp->b_error;
2170
2171 cl = (struct lfs_cluster *)bp->b_saveaddr;
2172 fs = cl->fs;
2173 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2174 bp->b_saveaddr = cl->saveaddr;
2175
2176 cp = (char *)bp->b_data + cl->bufsize;
2177 /* Put the pages back, and release the buffer */
2178 while (cl->bufcount--) {
2179 tbp = cl->bpp[cl->bufcount];
2180 if (error) {
2181 tbp->b_flags |= B_ERROR;
2182 tbp->b_error = error;
2183 }
2184
2185 /*
2186 * We're done with tbp. If it has not been re-dirtied since
2187 * the cluster was written, free it. Otherwise, keep it on
2188 * the locked list to be written again.
2189 */
2190 vp = tbp->b_vp;
2191
2192 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2193 LFS_UNLOCK_BUF(tbp);
2194
2195 tbp->b_flags &= ~B_GATHERED;
2196
2197 LFS_BCLEAN_LOG(fs, tbp);
2198
2199 if (!(tbp->b_flags & B_CALL)) {
2200 bremfree(tbp);
2201 s = splbio();
2202 if (vp)
2203 reassignbuf(tbp, vp);
2204 splx(s);
2205 tbp->b_flags |= B_ASYNC; /* for biodone */
2206 }
2207 #ifdef DIAGNOSTIC
2208 if (tbp->b_flags & B_DONE) {
2209 printf("blk %d biodone already (flags %lx)\n",
2210 cl->bufcount, (long)tbp->b_flags);
2211 }
2212 #endif
2213 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2214 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2215 /* printf("flags 0x%lx\n", tbp->b_flags); */
2216 /*
2217 * A buffer from the page daemon.
2218 * We use the same iodone as it does,
2219 * so we must manually disassociate its
2220 * buffers from the vp.
2221 */
2222 if (tbp->b_vp) {
2223 /* This is just silly */
2224 s = splbio();
2225 brelvp(tbp);
2226 tbp->b_vp = vp;
2227 splx(s);
2228 }
2229 /* Put it back the way it was */
2230 tbp->b_flags |= B_ASYNC;
2231 /* Master buffers have B_AGE */
2232 if (tbp->b_private == tbp)
2233 tbp->b_flags |= B_AGE;
2234 }
2235 s = splbio();
2236 biodone(tbp);
2237
2238 /*
2239 * If this is the last block for this vnode, but
2240 * there are other blocks on its dirty list,
2241 * set IN_MODIFIED/IN_CLEANING depending on what
2242 * sort of block. Only do this for our mount point,
2243 * not for, e.g., inode blocks that are attached to
2244 * the devvp.
2245 * XXX KS - Shouldn't we set *both* if both types
2246 * of blocks are present (traverse the dirty list?)
2247 */
2248 simple_lock(&global_v_numoutput_slock);
2249 if (vp != devvp && vp->v_numoutput == 0 &&
2250 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2251 ip = VTOI(vp);
2252 #ifdef DEBUG_LFS
2253 printf("lfs_cluster_aiodone: marking ino %d\n",
2254 ip->i_number);
2255 #endif
2256 if (LFS_IS_MALLOC_BUF(fbp))
2257 LFS_SET_UINO(ip, IN_CLEANING);
2258 else
2259 LFS_SET_UINO(ip, IN_MODIFIED);
2260 }
2261 simple_unlock(&global_v_numoutput_slock);
2262 splx(s);
2263 wakeup(vp);
2264 }
2265 }
2266
2267 /* Fix up the cluster buffer, and release it */
2268 if (cl->flags & LFS_CL_MALLOC)
2269 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2270 bp->b_data = cl->olddata;
2271 bp->b_bcount = 0;
2272 bp->b_iodone = NULL;
2273 bp->b_flags &= ~B_DELWRI;
2274 bp->b_flags |= B_DONE;
2275 s = splbio();
2276 reassignbuf(bp, bp->b_vp);
2277 splx(s);
2278 brelse(bp);
2279
2280 /* Note i/o done */
2281 if (cl->flags & LFS_CL_SYNC) {
2282 if (--cl->seg->seg_iocount == 0)
2283 wakeup(&cl->seg->seg_iocount);
2284 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2285 }
2286 #ifdef DIAGNOSTIC
2287 if (fs->lfs_iocount == 0)
2288 panic("lfs_cluster_aiodone: zero iocount");
2289 #endif
2290 if (--fs->lfs_iocount <= 1)
2291 wakeup(&fs->lfs_iocount);
2292
2293 pool_put(&fs->lfs_bpppool, cl->bpp);
2294 cl->bpp = NULL;
2295 pool_put(&fs->lfs_clpool, cl);
2296 }
2297
2298 static void
2299 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2300 {
2301 /* reset b_iodone for when this is a single-buf i/o. */
2302 bp->b_iodone = aiodone;
2303
2304 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2305 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2306 wakeup(&uvm.aiodoned);
2307 simple_unlock(&uvm.aiodoned_lock);
2308 }
2309
2310 static void
2311 lfs_cluster_callback(struct buf *bp)
2312 {
2313 lfs_generic_callback(bp, lfs_cluster_aiodone);
2314 }
2315
2316 void
2317 lfs_supercallback(struct buf *bp)
2318 {
2319 lfs_generic_callback(bp, lfs_super_aiodone);
2320 }
2321
2322 /*
2323 * Shellsort (diminishing increment sort) from Data Structures and
2324 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2325 * see also Knuth Vol. 3, page 84. The increments are selected from
2326 * formula (8), page 95. Roughly O(N^3/2).
2327 */
2328 /*
2329 * This is our own private copy of shellsort because we want to sort
2330 * two parallel arrays (the array of buffer pointers and the array of
2331 * logical block numbers) simultaneously. Note that we cast the array
2332 * of logical block numbers to a unsigned in this routine so that the
2333 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2334 */
2335
2336 void
2337 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2338 {
2339 static int __rsshell_increments[] = { 4, 1, 0 };
2340 int incr, *incrp, t1, t2;
2341 struct buf *bp_temp;
2342
2343 #ifdef DEBUG
2344 incr = 0;
2345 for (t1 = 0; t1 < nmemb; t1++) {
2346 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2347 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2348 /* dump before panic */
2349 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2350 nmemb, size);
2351 incr = 0;
2352 for (t1 = 0; t1 < nmemb; t1++) {
2353 const struct buf *bp = bp_array[t1];
2354
2355 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2356 PRIu64 "\n", t1,
2357 (uint64_t)bp->b_bcount,
2358 (uint64_t)bp->b_lblkno);
2359 printf("lbns:");
2360 for (t2 = 0; t2 * size < bp->b_bcount;
2361 t2++) {
2362 printf(" %" PRId32,
2363 lb_array[incr++]);
2364 }
2365 printf("\n");
2366 }
2367 panic("lfs_shellsort: inconsistent input");
2368 }
2369 }
2370 }
2371 #endif
2372
2373 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2374 for (t1 = incr; t1 < nmemb; ++t1)
2375 for (t2 = t1 - incr; t2 >= 0;)
2376 if ((u_int32_t)bp_array[t2]->b_lblkno >
2377 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2378 bp_temp = bp_array[t2];
2379 bp_array[t2] = bp_array[t2 + incr];
2380 bp_array[t2 + incr] = bp_temp;
2381 t2 -= incr;
2382 } else
2383 break;
2384
2385 /* Reform the list of logical blocks */
2386 incr = 0;
2387 for (t1 = 0; t1 < nmemb; t1++) {
2388 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2389 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2390 }
2391 }
2392 }
2393
2394 /*
2395 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2396 */
2397 int
2398 lfs_vref(struct vnode *vp)
2399 {
2400 /*
2401 * If we return 1 here during a flush, we risk vinvalbuf() not
2402 * being able to flush all of the pages from this vnode, which
2403 * will cause it to panic. So, return 0 if a flush is in progress.
2404 */
2405 if (vp->v_flag & VXLOCK) {
2406 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2407 return 0;
2408 }
2409 return (1);
2410 }
2411 return (vget(vp, 0));
2412 }
2413
2414 /*
2415 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2416 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2417 */
2418 void
2419 lfs_vunref(struct vnode *vp)
2420 {
2421 /*
2422 * Analogous to lfs_vref, if the node is flushing, fake it.
2423 */
2424 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2425 return;
2426 }
2427
2428 simple_lock(&vp->v_interlock);
2429 #ifdef DIAGNOSTIC
2430 if (vp->v_usecount <= 0) {
2431 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2432 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2433 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2434 panic("lfs_vunref: v_usecount<0");
2435 }
2436 #endif
2437 vp->v_usecount--;
2438 if (vp->v_usecount > 0) {
2439 simple_unlock(&vp->v_interlock);
2440 return;
2441 }
2442 /*
2443 * insert at tail of LRU list
2444 */
2445 simple_lock(&vnode_free_list_slock);
2446 if (vp->v_holdcnt > 0)
2447 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2448 else
2449 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2450 simple_unlock(&vnode_free_list_slock);
2451 simple_unlock(&vp->v_interlock);
2452 }
2453
2454 /*
2455 * We use this when we have vnodes that were loaded in solely for cleaning.
2456 * There is no reason to believe that these vnodes will be referenced again
2457 * soon, since the cleaning process is unrelated to normal filesystem
2458 * activity. Putting cleaned vnodes at the tail of the list has the effect
2459 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2460 * cleaning at the head of the list, instead.
2461 */
2462 void
2463 lfs_vunref_head(struct vnode *vp)
2464 {
2465 simple_lock(&vp->v_interlock);
2466 #ifdef DIAGNOSTIC
2467 if (vp->v_usecount == 0) {
2468 panic("lfs_vunref: v_usecount<0");
2469 }
2470 #endif
2471 vp->v_usecount--;
2472 if (vp->v_usecount > 0) {
2473 simple_unlock(&vp->v_interlock);
2474 return;
2475 }
2476 /*
2477 * insert at head of LRU list
2478 */
2479 simple_lock(&vnode_free_list_slock);
2480 if (vp->v_holdcnt > 0)
2481 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2482 else
2483 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2484 simple_unlock(&vnode_free_list_slock);
2485 simple_unlock(&vp->v_interlock);
2486 }
2487
2488