Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.12
      1 /*	$NetBSD: lfs_segment.c,v 1.12 1998/09/11 21:27:12 pk Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/namei.h>
     41 #include <sys/kernel.h>
     42 #include <sys/resourcevar.h>
     43 #include <sys/file.h>
     44 #include <sys/stat.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/conf.h>
     48 #include <sys/vnode.h>
     49 #include <sys/malloc.h>
     50 #include <sys/mount.h>
     51 
     52 #include <miscfs/specfs/specdev.h>
     53 #include <miscfs/fifofs/fifo.h>
     54 
     55 #include <ufs/ufs/quota.h>
     56 #include <ufs/ufs/inode.h>
     57 #include <ufs/ufs/dir.h>
     58 #include <ufs/ufs/ufsmount.h>
     59 #include <ufs/ufs/ufs_extern.h>
     60 
     61 #include <ufs/lfs/lfs.h>
     62 #include <ufs/lfs/lfs_extern.h>
     63 
     64 extern int count_lock_queue __P((void));
     65 extern struct simplelock vnode_free_list_slock;		/* XXX */
     66 extern TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* XXX */
     67 
     68 #define MAX_ACTIVE	10
     69 /*
     70  * Determine if it's OK to start a partial in this segment, or if we need
     71  * to go on to a new segment.
     72  */
     73 #define	LFS_PARTIAL_FITS(fs) \
     74 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
     75 	1 << (fs)->lfs_fsbtodb)
     76 
     77 void	 lfs_callback __P((struct buf *));
     78 void	 lfs_gather __P((struct lfs *, struct segment *,
     79 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
     80 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
     81 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
     82 int	 lfs_match_data __P((struct lfs *, struct buf *));
     83 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
     84 int	 lfs_match_indir __P((struct lfs *, struct buf *));
     85 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
     86 void	 lfs_newseg __P((struct lfs *));
     87 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
     88 void	 lfs_supercallback __P((struct buf *));
     89 void	 lfs_updatemeta __P((struct segment *));
     90 int	 lfs_vref __P((struct vnode *));
     91 void	 lfs_vunref __P((struct vnode *));
     92 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
     93 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
     94 int	 lfs_writeseg __P((struct lfs *, struct segment *));
     95 void	 lfs_writesuper __P((struct lfs *));
     96 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
     97 	    struct segment *sp, int dirops));
     98 
     99 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    100 
    101 /* Statistics Counters */
    102 #define DOSTATS
    103 struct lfs_stats lfs_stats;
    104 
    105 /* op values to lfs_writevnodes */
    106 #define	VN_REG	0
    107 #define	VN_DIROP	1
    108 #define	VN_EMPTY	2
    109 
    110 /*
    111  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    112  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    113  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    114  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    115  */
    116 
    117 int
    118 lfs_vflush(vp)
    119 	struct vnode *vp;
    120 {
    121 	struct inode *ip;
    122 	struct lfs *fs;
    123 	struct segment *sp;
    124 
    125 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    126 	if (fs->lfs_nactive > MAX_ACTIVE)
    127 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
    128 	lfs_seglock(fs, SEGM_SYNC);
    129 	sp = fs->lfs_sp;
    130 
    131 
    132 	ip = VTOI(vp);
    133 	if (vp->v_dirtyblkhd.lh_first == NULL)
    134 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    135 
    136 	do {
    137 		do {
    138 			if (vp->v_dirtyblkhd.lh_first != NULL)
    139 				lfs_writefile(fs, sp, vp);
    140 		} while (lfs_writeinode(fs, sp, ip));
    141 
    142 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    143 
    144 #ifdef DOSTATS
    145 	++lfs_stats.nwrites;
    146 	if (sp->seg_flags & SEGM_SYNC)
    147 		++lfs_stats.nsync_writes;
    148 	if (sp->seg_flags & SEGM_CKP)
    149 		++lfs_stats.ncheckpoints;
    150 #endif
    151 	lfs_segunlock(fs);
    152 	return (0);
    153 }
    154 
    155 void
    156 lfs_writevnodes(fs, mp, sp, op)
    157 	struct lfs *fs;
    158 	struct mount *mp;
    159 	struct segment *sp;
    160 	int op;
    161 {
    162 	struct inode *ip;
    163 	struct vnode *vp;
    164 
    165 /* BEGIN HACK */
    166 #define	VN_OFFSET	(((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
    167 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
    168 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
    169 
    170 /* Find last vnode. */
    171 loop:   for (vp = mp->mnt_vnodelist.lh_first;
    172 	     vp && vp->v_mntvnodes.le_next != NULL;
    173 	     vp = vp->v_mntvnodes.le_next);
    174 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
    175 /* END HACK */
    176 /*
    177 loop:
    178 	for (vp = mp->mnt_vnodelist.lh_first;
    179 	     vp != NULL;
    180 	     vp = vp->v_mntvnodes.le_next) {
    181 */
    182 		/*
    183 		 * If the vnode that we are about to sync is no longer
    184 		 * associated with this mount point, start over.
    185 		 */
    186 		if (vp->v_mount != mp)
    187 			goto loop;
    188 
    189 		/* XXX ignore dirops for now
    190 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
    191 		    op != VN_DIROP && (vp->v_flag & VDIROP))
    192 			continue;
    193 		*/
    194 
    195 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
    196 			continue;
    197 
    198 		if (vp->v_type == VNON)
    199 			continue;
    200 
    201 		if (lfs_vref(vp))
    202 			continue;
    203 
    204 		/*
    205 		 * Write the inode/file if dirty and it's not the
    206 		 * the IFILE.
    207 		 */
    208 		ip = VTOI(vp);
    209 		if ((ip->i_flag &
    210 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
    211 		    vp->v_dirtyblkhd.lh_first != NULL) &&
    212 		    ip->i_number != LFS_IFILE_INUM) {
    213 			if (vp->v_dirtyblkhd.lh_first != NULL)
    214 				lfs_writefile(fs, sp, vp);
    215 			(void) lfs_writeinode(fs, sp, ip);
    216 		}
    217 		vp->v_flag &= ~VDIROP;
    218 		lfs_vunref(vp);
    219 	}
    220 }
    221 
    222 int
    223 lfs_segwrite(mp, flags)
    224 	struct mount *mp;
    225 	int flags;			/* Do a checkpoint. */
    226 {
    227 	struct buf *bp;
    228 	struct inode *ip;
    229 	struct lfs *fs;
    230 	struct segment *sp;
    231 	struct vnode *vp;
    232 	SEGUSE *segusep;
    233 	ufs_daddr_t ibno;
    234 	CLEANERINFO *cip;
    235 	int clean, do_ckp, error, i;
    236 
    237 	fs = VFSTOUFS(mp)->um_lfs;
    238 
    239  	/*
    240  	 * If we have fewer than 2 clean segments, wait until cleaner
    241 	 * writes.
    242  	 */
    243 	do {
    244 		LFS_CLEANERINFO(cip, fs, bp);
    245 		clean = cip->clean;
    246 		brelse(bp);
    247 		if (clean <= 2 || fs->lfs_avail <= 0) {
    248 			/* printf ("segs clean: %d\n", clean); */
    249 			wakeup(&lfs_allclean_wakeup);
    250 			wakeup(&fs->lfs_nextseg);
    251 			error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    252 			    "lfs writer", 0);
    253 			if (error)
    254 				return (error);
    255 		}
    256 	} while (clean <= 2 || fs->lfs_avail <= 0);
    257 
    258 	/*
    259 	 * Allocate a segment structure and enough space to hold pointers to
    260 	 * the maximum possible number of buffers which can be described in a
    261 	 * single summary block.
    262 	 */
    263 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
    264 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    265 	sp = fs->lfs_sp;
    266 
    267 	lfs_writevnodes(fs, mp, sp, VN_REG);
    268 
    269 	/* XXX ignore ordering of dirops for now */
    270 	/* XXX
    271 	fs->lfs_writer = 1;
    272 	if (fs->lfs_dirops && (error =
    273 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
    274 		free(sp->bpp, M_SEGMENT);
    275 		free(sp, M_SEGMENT);
    276 		fs->lfs_writer = 0;
    277 		return (error);
    278 	}
    279 
    280 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
    281 	*/
    282 
    283 	/*
    284 	 * If we are doing a checkpoint, mark everything since the
    285 	 * last checkpoint as no longer ACTIVE.
    286 	 */
    287 	if (do_ckp)
    288 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    289 		     --ibno >= fs->lfs_cleansz; ) {
    290 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
    291 			    NOCRED, &bp))
    292 
    293 				panic("lfs: ifile read");
    294 			segusep = (SEGUSE *)bp->b_data;
    295 			for (i = fs->lfs_sepb; i--; segusep++)
    296 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    297 
    298 			error = VOP_BWRITE(bp);
    299 		}
    300 
    301 	if (do_ckp || fs->lfs_doifile) {
    302 redo:
    303 		vp = fs->lfs_ivnode;
    304 		while (vget(vp, LK_EXCLUSIVE))
    305 			continue;
    306 		ip = VTOI(vp);
    307 		if (vp->v_dirtyblkhd.lh_first != NULL)
    308 			lfs_writefile(fs, sp, vp);
    309 		(void)lfs_writeinode(fs, sp, ip);
    310 		vput(vp);
    311 		if (lfs_writeseg(fs, sp) && do_ckp)
    312 			goto redo;
    313 	} else
    314 		(void) lfs_writeseg(fs, sp);
    315 
    316 	/*
    317 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
    318 	 * moment, the user's process hangs around so we can sleep.
    319 	 */
    320 	/* XXX ignore dirops for now
    321 	fs->lfs_writer = 0;
    322 	fs->lfs_doifile = 0;
    323 	wakeup(&fs->lfs_dirops);
    324 	*/
    325 
    326 #ifdef DOSTATS
    327 	++lfs_stats.nwrites;
    328 	if (sp->seg_flags & SEGM_SYNC)
    329 		++lfs_stats.nsync_writes;
    330 	if (sp->seg_flags & SEGM_CKP)
    331 		++lfs_stats.ncheckpoints;
    332 #endif
    333 	lfs_segunlock(fs);
    334 	return (0);
    335 }
    336 
    337 /*
    338  * Write the dirty blocks associated with a vnode.
    339  */
    340 void
    341 lfs_writefile(fs, sp, vp)
    342 	struct lfs *fs;
    343 	struct segment *sp;
    344 	struct vnode *vp;
    345 {
    346 	struct buf *bp;
    347 	struct finfo *fip;
    348 	IFILE *ifp;
    349 
    350 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    351 	    sp->sum_bytes_left < sizeof(struct finfo))
    352 		(void) lfs_writeseg(fs, sp);
    353 
    354 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    355 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    356 
    357 	fip = sp->fip;
    358 	fip->fi_nblocks = 0;
    359 	fip->fi_ino = VTOI(vp)->i_number;
    360 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    361 	fip->fi_version = ifp->if_version;
    362 	brelse(bp);
    363 
    364 	/*
    365 	 * It may not be necessary to write the meta-data blocks at this point,
    366 	 * as the roll-forward recovery code should be able to reconstruct the
    367 	 * list.
    368 	 */
    369 	lfs_gather(fs, sp, vp, lfs_match_data);
    370 	lfs_gather(fs, sp, vp, lfs_match_indir);
    371 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    372 #ifdef TRIPLE
    373 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    374 #endif
    375 
    376 	fip = sp->fip;
    377 	if (fip->fi_nblocks != 0) {
    378 		sp->fip =
    379 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
    380 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks - 1));
    381 		sp->start_lbp = &sp->fip->fi_blocks[0];
    382 	} else {
    383 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(ufs_daddr_t);
    384 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    385 	}
    386 }
    387 
    388 int
    389 lfs_writeinode(fs, sp, ip)
    390 	struct lfs *fs;
    391 	struct segment *sp;
    392 	struct inode *ip;
    393 {
    394 	struct buf *bp, *ibp;
    395 	IFILE *ifp;
    396 	SEGUSE *sup;
    397 	ufs_daddr_t daddr;
    398 	ino_t ino;
    399 	int error, i, ndx;
    400 	int redo_ifile = 0;
    401 	struct timespec ts;
    402 
    403 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
    404 		return(0);
    405 
    406 	/* Allocate a new inode block if necessary. */
    407 	if (sp->ibp == NULL) {
    408 		/* Allocate a new segment if necessary. */
    409 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    410 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    411 			(void) lfs_writeseg(fs, sp);
    412 
    413 		/* Get next inode block. */
    414 		daddr = fs->lfs_offset;
    415 		fs->lfs_offset += fsbtodb(fs, 1);
    416 		sp->ibp = *sp->cbpp++ =
    417 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    418 		    fs->lfs_bsize);
    419 		/* Zero out inode numbers */
    420 		for (i = 0; i < INOPB(fs); ++i)
    421 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    422 		++sp->start_bpp;
    423 		fs->lfs_avail -= fsbtodb(fs, 1);
    424 		/* Set remaining space counters. */
    425 		sp->seg_bytes_left -= fs->lfs_bsize;
    426 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    427 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
    428 		    sp->ninodes / INOPB(fs) - 1;
    429 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    430 	}
    431 
    432 	/* Update the inode times and copy the inode onto the inode page. */
    433 	if (ip->i_flag & IN_MODIFIED)
    434 		--fs->lfs_uinodes;
    435 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    436 	FFS_ITIMES(ip, &ts, &ts, &ts);
    437 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
    438 	bp = sp->ibp;
    439 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din.ffs_din;
    440 	/* Increment inode count in segment summary block. */
    441 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    442 
    443 	/* If this page is full, set flag to allocate a new page. */
    444 	if (++sp->ninodes % INOPB(fs) == 0)
    445 		sp->ibp = NULL;
    446 
    447 	/*
    448 	 * If updating the ifile, update the super-block.  Update the disk
    449 	 * address and access times for this inode in the ifile.
    450 	 */
    451 	ino = ip->i_number;
    452 	if (ino == LFS_IFILE_INUM) {
    453 		daddr = fs->lfs_idaddr;
    454 		fs->lfs_idaddr = bp->b_blkno;
    455 	} else {
    456 		LFS_IENTRY(ifp, fs, ino, ibp);
    457 		daddr = ifp->if_daddr;
    458 		ifp->if_daddr = bp->b_blkno;
    459 		error = VOP_BWRITE(ibp);
    460 	}
    461 
    462 	/*
    463 	 * No need to update segment usage if there was no former inode address
    464 	 * or if the last inode address is in the current partial segment.
    465 	 */
    466 	if (daddr != LFS_UNUSED_DADDR &&
    467 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    468 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    469 #ifdef DIAGNOSTIC
    470 		if (sup->su_nbytes < sizeof(struct dinode)) {
    471 			/* XXX -- Change to a panic. */
    472 			printf("lfs: negative bytes (segment %d)\n",
    473 			    datosn(fs, daddr));
    474 			panic("negative bytes");
    475 		}
    476 #endif
    477 		sup->su_nbytes -= sizeof(struct dinode);
    478 		redo_ifile =
    479 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    480 		error = VOP_BWRITE(bp);
    481 	}
    482 	return (redo_ifile);
    483 }
    484 
    485 int
    486 lfs_gatherblock(sp, bp, sptr)
    487 	struct segment *sp;
    488 	struct buf *bp;
    489 	int *sptr;
    490 {
    491 	struct lfs *fs;
    492 	int version;
    493 
    494 	/*
    495 	 * If full, finish this segment.  We may be doing I/O, so
    496 	 * release and reacquire the splbio().
    497 	 */
    498 #ifdef DIAGNOSTIC
    499 	if (sp->vp == NULL)
    500 		panic ("lfs_gatherblock: Null vp in segment");
    501 #endif
    502 	fs = sp->fs;
    503 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
    504 	    sp->seg_bytes_left < bp->b_bcount) {
    505 		if (sptr)
    506 			splx(*sptr);
    507 		lfs_updatemeta(sp);
    508 
    509 		version = sp->fip->fi_version;
    510 		(void) lfs_writeseg(fs, sp);
    511 
    512 		sp->fip->fi_version = version;
    513 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    514 		/* Add the current file to the segment summary. */
    515 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    516 		sp->sum_bytes_left -=
    517 		    sizeof(struct finfo) - sizeof(ufs_daddr_t);
    518 
    519 		if (sptr)
    520 			*sptr = splbio();
    521 		return(1);
    522 	}
    523 
    524 	/* Insert into the buffer list, update the FINFO block. */
    525 	bp->b_flags |= B_GATHERED;
    526 	*sp->cbpp++ = bp;
    527 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    528 
    529 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    530 	sp->seg_bytes_left -= bp->b_bcount;
    531 	return(0);
    532 }
    533 
    534 void
    535 lfs_gather(fs, sp, vp, match)
    536 	struct lfs *fs;
    537 	struct segment *sp;
    538 	struct vnode *vp;
    539 	int (*match) __P((struct lfs *, struct buf *));
    540 {
    541 	struct buf *bp;
    542 	int s;
    543 
    544 	sp->vp = vp;
    545 	s = splbio();
    546 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
    547 /* BEGIN HACK */
    548 #define	BUF_OFFSET	(((caddr_t)&bp->b_vnbufs.le_next) - (caddr_t)bp)
    549 #define	BACK_BUF(BP)	((struct buf *)(((caddr_t)BP->b_vnbufs.le_prev) - BUF_OFFSET))
    550 #define	BEG_OF_LIST	((struct buf *)(((caddr_t)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
    551 
    552 
    553 /*loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {*/
    554 /* Find last buffer. */
    555 loop:   for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
    556 	    bp = bp->b_vnbufs.le_next);
    557 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
    558 /* END HACK */
    559 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
    560 		    bp->b_flags & B_GATHERED)
    561 			continue;
    562 #ifdef DIAGNOSTIC
    563 		if (!(bp->b_flags & B_DELWRI))
    564 			panic("lfs_gather: bp not B_DELWRI");
    565 		if (!(bp->b_flags & B_LOCKED))
    566 			panic("lfs_gather: bp not B_LOCKED");
    567 #endif
    568 		if (lfs_gatherblock(sp, bp, &s))
    569 			goto loop;
    570 	}
    571 	splx(s);
    572 	lfs_updatemeta(sp);
    573 	sp->vp = NULL;
    574 }
    575 
    576 
    577 /*
    578  * Update the metadata that points to the blocks listed in the FINFO
    579  * array.
    580  */
    581 void
    582 lfs_updatemeta(sp)
    583 	struct segment *sp;
    584 {
    585 	SEGUSE *sup;
    586 	struct buf *bp;
    587 	struct lfs *fs;
    588 	struct vnode *vp;
    589 	struct indir a[NIADDR + 2], *ap;
    590 	struct inode *ip;
    591 	ufs_daddr_t daddr, lbn, off;
    592 	int error, i, nblocks, num;
    593 
    594 	vp = sp->vp;
    595 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    596 	if (nblocks < 0)
    597 		panic("This is a bad thing\n");
    598 	if (vp == NULL || nblocks == 0)
    599 		return;
    600 
    601 	/* Sort the blocks. */
    602 	if (!(sp->seg_flags & SEGM_CLEAN))
    603 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    604 
    605 	/*
    606 	 * Record the length of the last block in case it's a fragment.
    607 	 * If there are indirect blocks present, they sort last.  An
    608 	 * indirect block will be lfs_bsize and its presence indicates
    609 	 * that you cannot have fragments.
    610 	 */
    611 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
    612 
    613 	/*
    614 	 * Assign disk addresses, and update references to the logical
    615 	 * block and the segment usage information.
    616 	 */
    617 	fs = sp->fs;
    618 	for (i = nblocks; i--; ++sp->start_bpp) {
    619 		lbn = *sp->start_lbp++;
    620 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    621 		fs->lfs_offset +=
    622 		    fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
    623 
    624 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
    625 		if (error)
    626 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    627 		ip = VTOI(vp);
    628 		switch (num) {
    629 		case 0:
    630 			ip->i_ffs_db[lbn] = off;
    631 			break;
    632 		case 1:
    633 			ip->i_ffs_ib[a[0].in_off] = off;
    634 			break;
    635 		default:
    636 			ap = &a[num - 1];
    637 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    638 				panic("lfs_updatemeta: bread bno %d",
    639 				    ap->in_lbn);
    640 			/*
    641 			 * Bread may create a new indirect block which needs
    642 			 * to get counted for the inode.
    643 			 */
    644 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
    645 				ip->i_ffs_blocks += fsbtodb(fs, 1);
    646 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
    647 			}
    648 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
    649 			VOP_BWRITE(bp);
    650 		}
    651 
    652 		/* Update segment usage information. */
    653 		if (daddr != UNASSIGNED &&
    654 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    655 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    656 #ifdef DIAGNOSTIC
    657 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
    658 				/* XXX -- Change to a panic. */
    659 				printf("lfs: negative bytes (segment %d)\n",
    660 				    datosn(fs, daddr));
    661 				printf("lfs: bp = 0x%p, addr = 0x%p\n",
    662 						bp, bp->b_un.b_addr);
    663 				panic ("Negative Bytes");
    664 			}
    665 #endif
    666 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
    667 			error = VOP_BWRITE(bp);
    668 		}
    669 	}
    670 }
    671 
    672 /*
    673  * Start a new segment.
    674  */
    675 int
    676 lfs_initseg(fs)
    677 	struct lfs *fs;
    678 {
    679 	struct segment *sp;
    680 	SEGUSE *sup;
    681 	SEGSUM *ssp;
    682 	struct buf *bp;
    683 	int repeat;
    684 
    685 	sp = fs->lfs_sp;
    686 
    687 	repeat = 0;
    688 	/* Advance to the next segment. */
    689 	if (!LFS_PARTIAL_FITS(fs)) {
    690 		/* Wake up any cleaning procs waiting on this file system. */
    691 		wakeup(&lfs_allclean_wakeup);
    692 		wakeup(&fs->lfs_nextseg);
    693 
    694 		lfs_newseg(fs);
    695 		repeat = 1;
    696 		fs->lfs_offset = fs->lfs_curseg;
    697 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    698 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    699 
    700 		/*
    701 		 * If the segment contains a superblock, update the offset
    702 		 * and summary address to skip over it.
    703 		 */
    704 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    705 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    706 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    707 			sp->seg_bytes_left -= LFS_SBPAD;
    708 		}
    709 		brelse(bp);
    710 	} else {
    711 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    712 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    713 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    714 	}
    715 	fs->lfs_lastpseg = fs->lfs_offset;
    716 
    717 	sp->fs = fs;
    718 	sp->ibp = NULL;
    719 	sp->ninodes = 0;
    720 
    721 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    722 	sp->cbpp = sp->bpp;
    723 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
    724 	     LFS_SUMMARY_SIZE);
    725 	sp->segsum = (*sp->cbpp)->b_data;
    726 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    727 	sp->start_bpp = ++sp->cbpp;
    728 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    729 
    730 	/* Set point to SEGSUM, initialize it. */
    731 	ssp = sp->segsum;
    732 	ssp->ss_next = fs->lfs_nextseg;
    733 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    734 	ssp->ss_magic = SS_MAGIC;
    735 
    736 	/* Set pointer to first FINFO, initialize it. */
    737 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
    738 	sp->fip->fi_nblocks = 0;
    739 	sp->start_lbp = &sp->fip->fi_blocks[0];
    740 	sp->fip->fi_lastlength = 0;
    741 
    742 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
    743 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
    744 
    745 	return(repeat);
    746 }
    747 
    748 /*
    749  * Return the next segment to write.
    750  */
    751 void
    752 lfs_newseg(fs)
    753 	struct lfs *fs;
    754 {
    755 	CLEANERINFO *cip;
    756 	SEGUSE *sup;
    757 	struct buf *bp;
    758 	int curseg, isdirty, sn;
    759 
    760         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
    761         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    762 	sup->su_nbytes = 0;
    763 	sup->su_nsums = 0;
    764 	sup->su_ninos = 0;
    765         (void) VOP_BWRITE(bp);
    766 
    767 	LFS_CLEANERINFO(cip, fs, bp);
    768 	--cip->clean;
    769 	++cip->dirty;
    770 	(void) VOP_BWRITE(bp);
    771 
    772 	fs->lfs_lastseg = fs->lfs_curseg;
    773 	fs->lfs_curseg = fs->lfs_nextseg;
    774 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
    775 		sn = (sn + 1) % fs->lfs_nseg;
    776 		if (sn == curseg)
    777 			panic("lfs_nextseg: no clean segments");
    778 		LFS_SEGENTRY(sup, fs, sn, bp);
    779 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    780 		brelse(bp);
    781 		if (!isdirty)
    782 			break;
    783 	}
    784 
    785 	++fs->lfs_nactive;
    786 	fs->lfs_nextseg = sntoda(fs, sn);
    787 #ifdef DOSTATS
    788 	++lfs_stats.segsused;
    789 #endif
    790 }
    791 
    792 int
    793 lfs_writeseg(fs, sp)
    794 	struct lfs *fs;
    795 	struct segment *sp;
    796 {
    797 	extern int locked_queue_count;
    798 	struct buf **bpp, *bp, *cbp;
    799 	SEGUSE *sup;
    800 	SEGSUM *ssp;
    801 	dev_t i_dev;
    802 	u_long *datap, *dp;
    803 	int do_again, i, nblocks, s;
    804 	int (*strategy)__P((void *));
    805 	struct vop_strategy_args vop_strategy_a;
    806 	u_short ninos;
    807 	char *p;
    808 
    809 	/*
    810 	 * If there are no buffers other than the segment summary to write
    811 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    812 	 * even if there aren't any buffers, you need to write the superblock.
    813 	 */
    814 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    815 		return (0);
    816 
    817 	/* Update the segment usage information. */
    818 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    819 
    820 	/* Loop through all blocks, except the segment summary. */
    821 	for (bpp = sp->bpp; ++bpp < sp->cbpp; )
    822 		sup->su_nbytes += (*bpp)->b_bcount;
    823 
    824 	ssp = (SEGSUM *)sp->segsum;
    825 
    826 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    827 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
    828 	sup->su_nbytes += LFS_SUMMARY_SIZE;
    829 	sup->su_lastmod = time.tv_sec;
    830 	sup->su_ninos += ninos;
    831 	++sup->su_nsums;
    832 	do_again = !(bp->b_flags & B_GATHERED);
    833 	(void)VOP_BWRITE(bp);
    834 	/*
    835 	 * Compute checksum across data and then across summary; the first
    836 	 * block (the summary block) is skipped.  Set the create time here
    837 	 * so that it's guaranteed to be later than the inode mod times.
    838 	 *
    839 	 * XXX
    840 	 * Fix this to do it inline, instead of malloc/copy.
    841 	 */
    842 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
    843 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    844 		if ((*++bpp)->b_flags & B_INVAL) {
    845 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
    846 				panic("lfs_writeseg: copyin failed");
    847 		} else
    848 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
    849 	}
    850 	ssp->ss_create = time.tv_sec;
    851 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
    852 	ssp->ss_sumsum =
    853 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
    854 	free(datap, M_SEGMENT);
    855 #ifdef DIAGNOSTIC
    856 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
    857 		panic("lfs_writeseg: No diskspace for summary");
    858 #endif
    859 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
    860 
    861 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    862 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    863 
    864 	/*
    865 	 * When we simply write the blocks we lose a rotation for every block
    866 	 * written.  To avoid this problem, we allocate memory in chunks, copy
    867 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
    868 	 * largest size I/O devices can handle.
    869 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
    870 	 * and brelse the buffer (which will move them to the LRU list).  Add
    871 	 * the B_CALL flag to the buffer header so we can count I/O's for the
    872 	 * checkpoints and so we can release the allocated memory.
    873 	 *
    874 	 * XXX
    875 	 * This should be removed if the new virtual memory system allows us to
    876 	 * easily make the buffers contiguous in kernel memory and if that's
    877 	 * fast enough.
    878 	 */
    879 	for (bpp = sp->bpp, i = nblocks; i;) {
    880 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    881 		    (*bpp)->b_blkno, MAXPHYS);
    882 		cbp->b_dev = i_dev;
    883 		cbp->b_flags |= B_ASYNC | B_BUSY;
    884 		cbp->b_bcount = 0;
    885 
    886 		s = splbio();
    887 		++fs->lfs_iocount;
    888 		for (p = cbp->b_data; i && cbp->b_bcount < MAXPHYS; i--) {
    889 			bp = *bpp;
    890 			if (bp->b_bcount > (MAXPHYS - cbp->b_bcount))
    891 				break;
    892 			bpp++;
    893 
    894 			/*
    895 			 * Fake buffers from the cleaner are marked as B_INVAL.
    896 			 * We need to copy the data from user space rather than
    897 			 * from the buffer indicated.
    898 			 * XXX == what do I do on an error?
    899 			 */
    900 			if (bp->b_flags & B_INVAL) {
    901 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
    902 					panic("lfs_writeseg: copyin failed");
    903 			} else
    904 				bcopy(bp->b_data, p, bp->b_bcount);
    905 			p += bp->b_bcount;
    906 			cbp->b_bcount += bp->b_bcount;
    907 			if (bp->b_flags & B_LOCKED)
    908 				--locked_queue_count;
    909 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    910 			     B_LOCKED | B_GATHERED);
    911 			if (bp->b_flags & B_CALL) {
    912 				/* if B_CALL, it was created with newbuf */
    913 				brelvp(bp);
    914 				if (!(bp->b_flags & B_INVAL))
    915 					free(bp->b_data, M_SEGMENT);
    916 				free(bp, M_SEGMENT);
    917 			} else {
    918 				bremfree(bp);
    919 				bp->b_flags |= B_DONE;
    920 				reassignbuf(bp, bp->b_vp);
    921 				brelse(bp);
    922 			}
    923 		}
    924 		++cbp->b_vp->v_numoutput;
    925 		splx(s);
    926 		/*
    927 		 * XXXX This is a gross and disgusting hack.  Since these
    928 		 * buffers are physically addressed, they hang off the
    929 		 * device vnode (devvp).  As a result, they have no way
    930 		 * of getting to the LFS superblock or lfs structure to
    931 		 * keep track of the number of I/O's pending.  So, I am
    932 		 * going to stuff the fs into the saveaddr field of
    933 		 * the buffer (yuk).
    934 		 */
    935 		cbp->b_saveaddr = (caddr_t)fs;
    936 		vop_strategy_a.a_desc = VDESC(vop_strategy);
    937 		vop_strategy_a.a_bp = cbp;
    938 		(strategy)(&vop_strategy_a);
    939 	}
    940 	/*
    941 	 * XXX
    942 	 * Vinvalbuf can move locked buffers off the locked queue
    943 	 * and we have no way of knowing about this.  So, after
    944 	 * doing a big write, we recalculate how many bufers are
    945 	 * really still left on the locked queue.
    946 	 */
    947 	locked_queue_count = count_lock_queue();
    948 	wakeup(&locked_queue_count);
    949 #ifdef DOSTATS
    950 	++lfs_stats.psegwrites;
    951 	lfs_stats.blocktot += nblocks - 1;
    952 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
    953 		++lfs_stats.psyncwrites;
    954 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
    955 		++lfs_stats.pcleanwrites;
    956 		lfs_stats.cleanblocks += nblocks - 1;
    957 	}
    958 #endif
    959 	return (lfs_initseg(fs) || do_again);
    960 }
    961 
    962 void
    963 lfs_writesuper(fs)
    964 	struct lfs *fs;
    965 {
    966 	struct buf *bp;
    967 	dev_t i_dev;
    968 	int (*strategy) __P((void *));
    969 	int s;
    970 	struct vop_strategy_args vop_strategy_a;
    971 
    972 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    973 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    974 
    975 	/* Checksum the superblock and copy it into a buffer. */
    976 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
    977 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
    978 	    LFS_SBPAD);
    979 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
    980 
    981 	/* XXX Toggle between first two superblocks; for now just write first */
    982 	bp->b_dev = i_dev;
    983 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
    984 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
    985 	bp->b_iodone = lfs_supercallback;
    986 	vop_strategy_a.a_desc = VDESC(vop_strategy);
    987 	vop_strategy_a.a_bp = bp;
    988 	s = splbio();
    989 	++bp->b_vp->v_numoutput;
    990 	splx(s);
    991 	(strategy)(&vop_strategy_a);
    992 }
    993 
    994 /*
    995  * Logical block number match routines used when traversing the dirty block
    996  * chain.
    997  */
    998 int
    999 lfs_match_data(fs, bp)
   1000 	struct lfs *fs;
   1001 	struct buf *bp;
   1002 {
   1003 	return (bp->b_lblkno >= 0);
   1004 }
   1005 
   1006 int
   1007 lfs_match_indir(fs, bp)
   1008 	struct lfs *fs;
   1009 	struct buf *bp;
   1010 {
   1011 	int lbn;
   1012 
   1013 	lbn = bp->b_lblkno;
   1014 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   1015 }
   1016 
   1017 int
   1018 lfs_match_dindir(fs, bp)
   1019 	struct lfs *fs;
   1020 	struct buf *bp;
   1021 {
   1022 	int lbn;
   1023 
   1024 	lbn = bp->b_lblkno;
   1025 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   1026 }
   1027 
   1028 int
   1029 lfs_match_tindir(fs, bp)
   1030 	struct lfs *fs;
   1031 	struct buf *bp;
   1032 {
   1033 	int lbn;
   1034 
   1035 	lbn = bp->b_lblkno;
   1036 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   1037 }
   1038 
   1039 /*
   1040  * Allocate a new buffer header.
   1041  */
   1042 struct buf *
   1043 lfs_newbuf(vp, daddr, size)
   1044 	struct vnode *vp;
   1045 	ufs_daddr_t daddr;
   1046 	size_t size;
   1047 {
   1048 	struct buf *bp;
   1049 	size_t nbytes;
   1050 
   1051 	nbytes = roundup(size, DEV_BSIZE);
   1052 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
   1053 	bzero(bp, sizeof(struct buf));
   1054 	if (nbytes)
   1055 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
   1056 	bgetvp(vp, bp);
   1057 	bp->b_bufsize = size;
   1058 	bp->b_bcount = size;
   1059 	bp->b_lblkno = daddr;
   1060 	bp->b_blkno = daddr;
   1061 	bp->b_error = 0;
   1062 	bp->b_resid = 0;
   1063 	bp->b_iodone = lfs_callback;
   1064 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
   1065 	return (bp);
   1066 }
   1067 
   1068 void
   1069 lfs_callback(bp)
   1070 	struct buf *bp;
   1071 {
   1072 	struct lfs *fs;
   1073 
   1074 	fs = (struct lfs *)bp->b_saveaddr;
   1075 #ifdef DIAGNOSTIC
   1076 	if (fs->lfs_iocount == 0)
   1077 		panic("lfs_callback: zero iocount\n");
   1078 #endif
   1079 	if (--fs->lfs_iocount == 0)
   1080 		wakeup(&fs->lfs_iocount);
   1081 
   1082 	brelvp(bp);
   1083 	free(bp->b_data, M_SEGMENT);
   1084 	free(bp, M_SEGMENT);
   1085 }
   1086 
   1087 void
   1088 lfs_supercallback(bp)
   1089 	struct buf *bp;
   1090 {
   1091 	brelvp(bp);
   1092 	free(bp->b_data, M_SEGMENT);
   1093 	free(bp, M_SEGMENT);
   1094 }
   1095 
   1096 /*
   1097  * Shellsort (diminishing increment sort) from Data Structures and
   1098  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1099  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1100  * formula (8), page 95.  Roughly O(N^3/2).
   1101  */
   1102 /*
   1103  * This is our own private copy of shellsort because we want to sort
   1104  * two parallel arrays (the array of buffer pointers and the array of
   1105  * logical block numbers) simultaneously.  Note that we cast the array
   1106  * of logical block numbers to a unsigned in this routine so that the
   1107  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1108  */
   1109 void
   1110 lfs_shellsort(bp_array, lb_array, nmemb)
   1111 	struct buf **bp_array;
   1112 	ufs_daddr_t *lb_array;
   1113 	register int nmemb;
   1114 {
   1115 	static int __rsshell_increments[] = { 4, 1, 0 };
   1116 	register int incr, *incrp, t1, t2;
   1117 	struct buf *bp_temp;
   1118 	u_long lb_temp;
   1119 
   1120 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   1121 		for (t1 = incr; t1 < nmemb; ++t1)
   1122 			for (t2 = t1 - incr; t2 >= 0;)
   1123 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1124 					lb_temp = lb_array[t2];
   1125 					lb_array[t2] = lb_array[t2 + incr];
   1126 					lb_array[t2 + incr] = lb_temp;
   1127 					bp_temp = bp_array[t2];
   1128 					bp_array[t2] = bp_array[t2 + incr];
   1129 					bp_array[t2 + incr] = bp_temp;
   1130 					t2 -= incr;
   1131 				} else
   1132 					break;
   1133 }
   1134 
   1135 /*
   1136  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1137  */
   1138 int
   1139 lfs_vref(vp)
   1140 	register struct vnode *vp;
   1141 {
   1142 	if (vp->v_flag & VXLOCK)	/* XXX */
   1143 		return(1);
   1144 	return (vget(vp, 0));
   1145 }
   1146 
   1147 /*
   1148  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   1149  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   1150  */
   1151 void
   1152 lfs_vunref(vp)
   1153 	register struct vnode *vp;
   1154 {
   1155 	simple_lock(&vp->v_interlock);
   1156 	vp->v_usecount--;
   1157 	if (vp->v_usecount > 0) {
   1158 		simple_unlock(&vp->v_interlock);
   1159 		return;
   1160 	}
   1161 	/*
   1162 	 * insert at tail of LRU list
   1163 	 */
   1164 	simple_lock(&vnode_free_list_slock);
   1165 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   1166 	simple_unlock(&vnode_free_list_slock);
   1167 	simple_unlock(&vp->v_interlock);
   1168 }
   1169