Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.124.2.9
      1 /*	$NetBSD: lfs_segment.c,v 1.124.2.9 2005/03/08 13:53:12 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.124.2.9 2005/03/08 13:53:12 skrll Exp $");
     71 
     72 #ifdef DEBUG
     73 # define vndebug(vp, str) do {						\
     74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     76 		     VTOI(vp)->i_number, (str), op));			\
     77 } while(0)
     78 #else
     79 # define vndebug(vp, str)
     80 #endif
     81 #define ivndebug(vp, str) \
     82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     83 
     84 #if defined(_KERNEL_OPT)
     85 #include "opt_ddb.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/namei.h>
     91 #include <sys/kernel.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/file.h>
     94 #include <sys/stat.h>
     95 #include <sys/buf.h>
     96 #include <sys/proc.h>
     97 #include <sys/vnode.h>
     98 #include <sys/mount.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 #include <miscfs/fifofs/fifo.h>
    102 
    103 #include <ufs/ufs/inode.h>
    104 #include <ufs/ufs/dir.h>
    105 #include <ufs/ufs/ufsmount.h>
    106 #include <ufs/ufs/ufs_extern.h>
    107 
    108 #include <ufs/lfs/lfs.h>
    109 #include <ufs/lfs/lfs_extern.h>
    110 
    111 #include <uvm/uvm.h>
    112 #include <uvm/uvm_extern.h>
    113 
    114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    115 
    116 extern int count_lock_queue(void);
    117 extern struct simplelock vnode_free_list_slock;		/* XXX */
    118 extern struct simplelock bqueue_slock;			/* XXX */
    119 
    120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    121 static void lfs_super_aiodone(struct buf *);
    122 static void lfs_cluster_aiodone(struct buf *);
    123 static void lfs_cluster_callback(struct buf *);
    124 
    125 /*
    126  * Determine if it's OK to start a partial in this segment, or if we need
    127  * to go on to a new segment.
    128  */
    129 #define	LFS_PARTIAL_FITS(fs) \
    130 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    131 	fragstofsb((fs), (fs)->lfs_frag))
    132 
    133 int	 lfs_match_fake(struct lfs *, struct buf *);
    134 void	 lfs_newseg(struct lfs *);
    135 /* XXX ondisk32 */
    136 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    137 void	 lfs_supercallback(struct buf *);
    138 void	 lfs_updatemeta(struct segment *);
    139 void	 lfs_writesuper(struct lfs *, daddr_t);
    140 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    141 	    struct segment *sp, int dirops);
    142 
    143 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    144 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    145 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    146 int	lfs_dirvcount = 0;		/* # active dirops */
    147 
    148 /* Statistics Counters */
    149 int lfs_dostats = 1;
    150 struct lfs_stats lfs_stats;
    151 
    152 /* op values to lfs_writevnodes */
    153 #define	VN_REG		0
    154 #define	VN_DIROP	1
    155 #define	VN_EMPTY	2
    156 #define VN_CLEAN	3
    157 
    158 /*
    159  * XXX KS - Set modification time on the Ifile, so the cleaner can
    160  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    161  * since we don't really need this to be flushed to disk (and in any
    162  * case that wouldn't happen to the Ifile until we checkpoint).
    163  */
    164 void
    165 lfs_imtime(struct lfs *fs)
    166 {
    167 	struct timespec ts;
    168 	struct inode *ip;
    169 
    170 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    171 	ip = VTOI(fs->lfs_ivnode);
    172 	ip->i_ffs1_mtime = ts.tv_sec;
    173 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    174 }
    175 
    176 /*
    177  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    178  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    179  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    180  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    181  */
    182 
    183 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    184 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    185 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    186 
    187 int
    188 lfs_vflush(struct vnode *vp)
    189 {
    190 	struct inode *ip;
    191 	struct lfs *fs;
    192 	struct segment *sp;
    193 	struct buf *bp, *nbp, *tbp, *tnbp;
    194 	int error, s;
    195 	int flushed;
    196 #if 0
    197 	int redo;
    198 #endif
    199 
    200 	ip = VTOI(vp);
    201 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    202 
    203 	if (ip->i_flag & IN_CLEANING) {
    204 		ivndebug(vp,"vflush/in_cleaning");
    205 		LFS_CLR_UINO(ip, IN_CLEANING);
    206 		LFS_SET_UINO(ip, IN_MODIFIED);
    207 
    208 		/*
    209 		 * Toss any cleaning buffers that have real counterparts
    210 		 * to avoid losing new data.
    211 		 */
    212 		s = splbio();
    213 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    214 			nbp = LIST_NEXT(bp, b_vnbufs);
    215 			if (!LFS_IS_MALLOC_BUF(bp))
    216 				continue;
    217 			/*
    218 			 * Look for pages matching the range covered
    219 			 * by cleaning blocks.  It's okay if more dirty
    220 			 * pages appear, so long as none disappear out
    221 			 * from under us.
    222 			 */
    223 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    224 			    vp != fs->lfs_ivnode) {
    225 				struct vm_page *pg;
    226 				voff_t off;
    227 
    228 				simple_lock(&vp->v_interlock);
    229 				for (off = lblktosize(fs, bp->b_lblkno);
    230 				     off < lblktosize(fs, bp->b_lblkno + 1);
    231 				     off += PAGE_SIZE) {
    232 					pg = uvm_pagelookup(&vp->v_uobj, off);
    233 					if (pg == NULL)
    234 						continue;
    235 					if ((pg->flags & PG_CLEAN) == 0 ||
    236 					    pmap_is_modified(pg)) {
    237 						fs->lfs_avail += btofsb(fs,
    238 							bp->b_bcount);
    239 						wakeup(&fs->lfs_avail);
    240 						lfs_freebuf(fs, bp);
    241 						bp = NULL;
    242 						goto nextbp;
    243 					}
    244 				}
    245 				simple_unlock(&vp->v_interlock);
    246 			}
    247 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    248 			    tbp = tnbp)
    249 			{
    250 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    251 				if (tbp->b_vp == bp->b_vp
    252 				   && tbp->b_lblkno == bp->b_lblkno
    253 				   && tbp != bp)
    254 				{
    255 					fs->lfs_avail += btofsb(fs,
    256 						bp->b_bcount);
    257 					wakeup(&fs->lfs_avail);
    258 					lfs_freebuf(fs, bp);
    259 					bp = NULL;
    260 					break;
    261 				}
    262 			}
    263 		    nextbp:
    264 			;
    265 		}
    266 		splx(s);
    267 	}
    268 
    269 	/* If the node is being written, wait until that is done */
    270 	s = splbio();
    271 	if (WRITEINPROG(vp)) {
    272 		ivndebug(vp,"vflush/writeinprog");
    273 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    274 	}
    275 	splx(s);
    276 
    277 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    278 	lfs_seglock(fs, SEGM_SYNC);
    279 
    280 	/* If we're supposed to flush a freed inode, just toss it */
    281 	/* XXX - seglock, so these buffers can't be gathered, right? */
    282 	if (ip->i_mode == 0) {
    283 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    284 		      ip->i_number));
    285 		s = splbio();
    286 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    287 			nbp = LIST_NEXT(bp, b_vnbufs);
    288 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    289 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    290 				wakeup(&fs->lfs_avail);
    291 			}
    292 			/* Copied from lfs_writeseg */
    293 			if (bp->b_flags & B_CALL) {
    294 				biodone(bp);
    295 			} else {
    296 				bremfree(bp);
    297 				LFS_UNLOCK_BUF(bp);
    298 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    299 					 B_GATHERED);
    300 				bp->b_flags |= B_DONE;
    301 				reassignbuf(bp, vp);
    302 				brelse(bp);
    303 			}
    304 		}
    305 		splx(s);
    306 		LFS_CLR_UINO(ip, IN_CLEANING);
    307 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    308 		ip->i_flag &= ~IN_ALLMOD;
    309 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    310 		      ip->i_number));
    311 		lfs_segunlock(fs);
    312 		return 0;
    313 	}
    314 
    315 	SET_FLUSHING(fs,vp);
    316 	if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
    317 	    (fs->lfs_sp->seg_flags & SEGM_CKP)) {
    318 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    319 		CLR_FLUSHING(fs,vp);
    320 		lfs_segunlock(fs);
    321 		return error;
    322 	}
    323 	sp = fs->lfs_sp;
    324 
    325 	flushed = 0;
    326 	if (VPISEMPTY(vp)) {
    327 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    328 		++flushed;
    329 	} else if ((ip->i_flag & IN_CLEANING) &&
    330 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    331 		ivndebug(vp,"vflush/clean");
    332 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    333 		++flushed;
    334 	} else if (lfs_dostats) {
    335 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    336 			++lfs_stats.vflush_invoked;
    337 		ivndebug(vp,"vflush");
    338 	}
    339 
    340 #ifdef DIAGNOSTIC
    341 	if (vp->v_flag & VDIROP) {
    342 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
    343 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
    344 	}
    345 	if (vp->v_usecount < 0) {
    346 		printf("usecount=%ld\n", (long)vp->v_usecount);
    347 		panic("lfs_vflush: usecount<0");
    348 	}
    349 #endif
    350 
    351 #if 1
    352 	do {
    353 		do {
    354 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    355 				lfs_writefile(fs, sp, vp);
    356 		} while (lfs_writeinode(fs, sp, ip));
    357 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    358 #else
    359 	if (flushed && vp != fs->lfs_ivnode)
    360 		lfs_writeseg(fs, sp);
    361 	else do {
    362 		fs->lfs_flags &= ~LFS_IFDIRTY;
    363 		lfs_writefile(fs, sp, vp);
    364 		redo = lfs_writeinode(fs, sp, ip);
    365 		redo += lfs_writeseg(fs, sp);
    366 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    367 	} while (redo && vp == fs->lfs_ivnode);
    368 #endif
    369 	if (lfs_dostats) {
    370 		++lfs_stats.nwrites;
    371 		if (sp->seg_flags & SEGM_SYNC)
    372 			++lfs_stats.nsync_writes;
    373 		if (sp->seg_flags & SEGM_CKP)
    374 			++lfs_stats.ncheckpoints;
    375 	}
    376 	/*
    377 	 * If we were called from somewhere that has already held the seglock
    378 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    379 	 * the write to complete because we are still locked.
    380 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    381 	 * we must explicitly wait, if that is the case.
    382 	 *
    383 	 * We compare the iocount against 1, not 0, because it is
    384 	 * artificially incremented by lfs_seglock().
    385 	 */
    386 	simple_lock(&fs->lfs_interlock);
    387 	if (fs->lfs_seglock > 1) {
    388 		simple_unlock(&fs->lfs_interlock);
    389 		while (fs->lfs_iocount > 1)
    390 			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
    391 				     "lfs_vflush", 0);
    392 	} else
    393 		simple_unlock(&fs->lfs_interlock);
    394 
    395 	lfs_segunlock(fs);
    396 
    397 	/* Wait for these buffers to be recovered by aiodoned */
    398 	s = splbio();
    399 	simple_lock(&global_v_numoutput_slock);
    400 	while (vp->v_numoutput > 0) {
    401 		vp->v_flag |= VBWAIT;
    402 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
    403 			&global_v_numoutput_slock);
    404 	}
    405 	simple_unlock(&global_v_numoutput_slock);
    406 	splx(s);
    407 
    408 	CLR_FLUSHING(fs,vp);
    409 	return (0);
    410 }
    411 
    412 int
    413 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    414 {
    415 	struct inode *ip;
    416 	struct vnode *vp, *nvp;
    417 	int inodes_written = 0, only_cleaning;
    418 
    419 #ifndef LFS_NO_BACKVP_HACK
    420 	/* BEGIN HACK */
    421 #define	VN_OFFSET	\
    422 	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    423 #define	BACK_VP(VP)	\
    424 	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    425 #define	BEG_OF_VLIST	\
    426 	((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
    427 	- VN_OFFSET))
    428 
    429 	/* Find last vnode. */
    430  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    431 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    432 	     vp = LIST_NEXT(vp, v_mntvnodes));
    433 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    434 		nvp = BACK_VP(vp);
    435 #else
    436 	loop:
    437 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    438 		nvp = LIST_NEXT(vp, v_mntvnodes);
    439 #endif
    440 		/*
    441 		 * If the vnode that we are about to sync is no longer
    442 		 * associated with this mount point, start over.
    443 		 */
    444 		if (vp->v_mount != mp) {
    445 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    446 			/*
    447 			 * After this, pages might be busy
    448 			 * due to our own previous putpages.
    449 			 * Start actual segment write here to avoid deadlock.
    450 			 */
    451 			(void)lfs_writeseg(fs, sp);
    452 			goto loop;
    453 		}
    454 
    455 		if (vp->v_type == VNON) {
    456 			continue;
    457 		}
    458 
    459 		ip = VTOI(vp);
    460 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    461 		    (op != VN_DIROP && op != VN_CLEAN &&
    462 		    (vp->v_flag & VDIROP))) {
    463 			vndebug(vp,"dirop");
    464 			continue;
    465 		}
    466 
    467 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    468 			vndebug(vp,"empty");
    469 			continue;
    470 		}
    471 
    472 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    473 		   && vp != fs->lfs_flushvp
    474 		   && !(ip->i_flag & IN_CLEANING)) {
    475 			vndebug(vp,"cleaning");
    476 			continue;
    477 		}
    478 
    479 		if (lfs_vref(vp)) {
    480 			vndebug(vp,"vref");
    481 			continue;
    482 		}
    483 
    484 		only_cleaning = 0;
    485 		/*
    486 		 * Write the inode/file if dirty and it's not the IFILE.
    487 		 */
    488 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    489 			only_cleaning =
    490 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    491 
    492 			if (ip->i_number != LFS_IFILE_INUM)
    493 				lfs_writefile(fs, sp, vp);
    494 			if (!VPISEMPTY(vp)) {
    495 				if (WRITEINPROG(vp)) {
    496 					ivndebug(vp,"writevnodes/write2");
    497 				} else if (!(ip->i_flag & IN_ALLMOD)) {
    498 					LFS_SET_UINO(ip, IN_MODIFIED);
    499 				}
    500 			}
    501 			(void) lfs_writeinode(fs, sp, ip);
    502 			inodes_written++;
    503 		}
    504 
    505 		if (lfs_clean_vnhead && only_cleaning)
    506 			lfs_vunref_head(vp);
    507 		else
    508 			lfs_vunref(vp);
    509 	}
    510 	return inodes_written;
    511 }
    512 
    513 /*
    514  * Do a checkpoint.
    515  */
    516 int
    517 lfs_segwrite(struct mount *mp, int flags)
    518 {
    519 	struct buf *bp;
    520 	struct inode *ip;
    521 	struct lfs *fs;
    522 	struct segment *sp;
    523 	struct vnode *vp;
    524 	SEGUSE *segusep;
    525 	int do_ckp, did_ckp, error, s;
    526 	unsigned n, segleft, maxseg, sn, i, curseg;
    527 	int writer_set = 0;
    528 	int dirty;
    529 	int redo;
    530 
    531 	fs = VFSTOUFS(mp)->um_lfs;
    532 
    533 	if (fs->lfs_ronly)
    534 		return EROFS;
    535 
    536 	lfs_imtime(fs);
    537 
    538 	/*
    539 	 * Allocate a segment structure and enough space to hold pointers to
    540 	 * the maximum possible number of buffers which can be described in a
    541 	 * single summary block.
    542 	 */
    543 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    544 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    545 	sp = fs->lfs_sp;
    546 
    547 	/*
    548 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    549 	 * in which case we have to flush *all* buffers off of this vnode.
    550 	 * We don't care about other nodes, but write any non-dirop nodes
    551 	 * anyway in anticipation of another getnewvnode().
    552 	 *
    553 	 * If we're cleaning we only write cleaning and ifile blocks, and
    554 	 * no dirops, since otherwise we'd risk corruption in a crash.
    555 	 */
    556 	if (sp->seg_flags & SEGM_CLEAN)
    557 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    558 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    559 		lfs_writevnodes(fs, mp, sp, VN_REG);
    560 		if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    561 			error = lfs_writer_enter(fs, "lfs writer");
    562 			if (error) {
    563 				DLOG((DLOG_SEG, "segwrite mysterious error\n"));
    564 				/* XXX why not segunlock? */
    565 				pool_put(&fs->lfs_bpppool, sp->bpp);
    566 				sp->bpp = NULL;
    567 				pool_put(&fs->lfs_segpool, sp);
    568 				sp = fs->lfs_sp = NULL;
    569 				return (error);
    570 			}
    571 			writer_set = 1;
    572 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    573 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    574 		}
    575 	}
    576 
    577 	/*
    578 	 * If we are doing a checkpoint, mark everything since the
    579 	 * last checkpoint as no longer ACTIVE.
    580 	 */
    581 	if (do_ckp) {
    582 		segleft = fs->lfs_nseg;
    583 		curseg = 0;
    584 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    585 			dirty = 0;
    586 			if (bread(fs->lfs_ivnode,
    587 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
    588 				panic("lfs_segwrite: ifile read");
    589 			segusep = (SEGUSE *)bp->b_data;
    590 			maxseg = min(segleft, fs->lfs_sepb);
    591 			for (i = 0; i < maxseg; i++) {
    592 				sn = curseg + i;
    593 				if (sn != dtosn(fs, fs->lfs_curseg) &&
    594 				    segusep->su_flags & SEGUSE_ACTIVE) {
    595 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    596 					--fs->lfs_nactive;
    597 					++dirty;
    598 				}
    599 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    600 					segusep->su_flags;
    601 				if (fs->lfs_version > 1)
    602 					++segusep;
    603 				else
    604 					segusep = (SEGUSE *)
    605 						((SEGUSE_V1 *)segusep + 1);
    606 			}
    607 
    608 			if (dirty)
    609 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    610 			else
    611 				brelse(bp);
    612 			segleft -= fs->lfs_sepb;
    613 			curseg += fs->lfs_sepb;
    614 		}
    615 	}
    616 
    617 	did_ckp = 0;
    618 	if (do_ckp || fs->lfs_doifile) {
    619 		do {
    620 			vp = fs->lfs_ivnode;
    621 
    622 #ifdef DEBUG
    623 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
    624 #endif
    625 			fs->lfs_flags &= ~LFS_IFDIRTY;
    626 
    627 			ip = VTOI(vp);
    628 
    629 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    630 				lfs_writefile(fs, sp, vp);
    631 
    632 			if (ip->i_flag & IN_ALLMOD)
    633 				++did_ckp;
    634 			redo = lfs_writeinode(fs, sp, ip);
    635 			redo += lfs_writeseg(fs, sp);
    636 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    637 		} while (redo && do_ckp);
    638 
    639 		/*
    640 		 * Unless we are unmounting, the Ifile may continue to have
    641 		 * dirty blocks even after a checkpoint, due to changes to
    642 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    643 		 * for other parts of the Ifile to be dirty after the loop
    644 		 * above, since we hold the segment lock.
    645 		 */
    646 		s = splbio();
    647 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    648 			LFS_CLR_UINO(ip, IN_ALLMOD);
    649 		}
    650 #ifdef DIAGNOSTIC
    651 		else if (do_ckp) {
    652 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    653 				if (bp->b_lblkno < fs->lfs_cleansz +
    654 				    fs->lfs_segtabsz &&
    655 				    !(bp->b_flags & B_GATHERED)) {
    656 					panic("dirty blocks");
    657 				}
    658 			}
    659 		}
    660 #endif
    661 		splx(s);
    662 	} else {
    663 		(void) lfs_writeseg(fs, sp);
    664 	}
    665 
    666 	/* Note Ifile no longer needs to be written */
    667 	fs->lfs_doifile = 0;
    668 	if (writer_set)
    669 		lfs_writer_leave(fs);
    670 
    671 	/*
    672 	 * If we didn't write the Ifile, we didn't really do anything.
    673 	 * That means that (1) there is a checkpoint on disk and (2)
    674 	 * nothing has changed since it was written.
    675 	 *
    676 	 * Take the flags off of the segment so that lfs_segunlock
    677 	 * doesn't have to write the superblock either.
    678 	 */
    679 	if (do_ckp && !did_ckp) {
    680 		sp->seg_flags &= ~SEGM_CKP;
    681 	}
    682 
    683 	if (lfs_dostats) {
    684 		++lfs_stats.nwrites;
    685 		if (sp->seg_flags & SEGM_SYNC)
    686 			++lfs_stats.nsync_writes;
    687 		if (sp->seg_flags & SEGM_CKP)
    688 			++lfs_stats.ncheckpoints;
    689 	}
    690 	lfs_segunlock(fs);
    691 	return (0);
    692 }
    693 
    694 /*
    695  * Write the dirty blocks associated with a vnode.
    696  */
    697 void
    698 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    699 {
    700 	struct buf *bp;
    701 	struct finfo *fip;
    702 	struct inode *ip;
    703 	IFILE *ifp;
    704 	int i, frag;
    705 
    706 	ip = VTOI(vp);
    707 
    708 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    709 	    sp->sum_bytes_left < sizeof(struct finfo))
    710 		(void) lfs_writeseg(fs, sp);
    711 
    712 	sp->sum_bytes_left -= FINFOSIZE;
    713 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    714 
    715 	if (vp->v_flag & VDIROP)
    716 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    717 
    718 	fip = sp->fip;
    719 	fip->fi_nblocks = 0;
    720 	fip->fi_ino = ip->i_number;
    721 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    722 	fip->fi_version = ifp->if_version;
    723 	brelse(bp);
    724 
    725 	if (sp->seg_flags & SEGM_CLEAN) {
    726 		lfs_gather(fs, sp, vp, lfs_match_fake);
    727 		/*
    728 		 * For a file being flushed, we need to write *all* blocks.
    729 		 * This means writing the cleaning blocks first, and then
    730 		 * immediately following with any non-cleaning blocks.
    731 		 * The same is true of the Ifile since checkpoints assume
    732 		 * that all valid Ifile blocks are written.
    733 		 */
    734 		if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
    735 			lfs_gather(fs, sp, vp, lfs_match_data);
    736 			/*
    737 			 * Don't call VOP_PUTPAGES: if we're flushing,
    738 			 * we've already done it, and the Ifile doesn't
    739 			 * use the page cache.
    740 			 */
    741 		}
    742 	} else {
    743 		lfs_gather(fs, sp, vp, lfs_match_data);
    744 		/*
    745 		 * If we're flushing, we've already called VOP_PUTPAGES
    746 		 * so don't do it again.  Otherwise, we want to write
    747 		 * everything we've got.
    748 		 */
    749 		if (!IS_FLUSHING(fs, vp)) {
    750 			simple_lock(&vp->v_interlock);
    751 			VOP_PUTPAGES(vp, 0, 0,
    752 				     PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    753 		}
    754 	}
    755 
    756 	/*
    757 	 * It may not be necessary to write the meta-data blocks at this point,
    758 	 * as the roll-forward recovery code should be able to reconstruct the
    759 	 * list.
    760 	 *
    761 	 * We have to write them anyway, though, under two conditions: (1) the
    762 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    763 	 * checkpointing.
    764 	 *
    765 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    766 	 * new blocks not being written yet, in addition to fragments being
    767 	 * moved out of a cleaned segment.  If that is the case, don't
    768 	 * write the indirect blocks, or the finfo will have a small block
    769 	 * in the middle of it!
    770 	 * XXX in this case isn't the inode size wrong too?
    771 	 */
    772 	frag = 0;
    773 	if (sp->seg_flags & SEGM_CLEAN) {
    774 		for (i = 0; i < NDADDR; i++)
    775 			if (ip->i_lfs_fragsize[i] > 0 &&
    776 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    777 				++frag;
    778 	}
    779 #ifdef DIAGNOSTIC
    780 	if (frag > 1)
    781 		panic("lfs_writefile: more than one fragment!");
    782 #endif
    783 	if (IS_FLUSHING(fs, vp) ||
    784 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    785 		lfs_gather(fs, sp, vp, lfs_match_indir);
    786 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    787 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    788 	}
    789 	fip = sp->fip;
    790 	if (fip->fi_nblocks != 0) {
    791 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    792 				   sizeof(int32_t) * (fip->fi_nblocks));
    793 		sp->start_lbp = &sp->fip->fi_blocks[0];
    794 	} else {
    795 		sp->sum_bytes_left += FINFOSIZE;
    796 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    797 	}
    798 }
    799 
    800 int
    801 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    802 {
    803 	struct buf *bp, *ibp;
    804 	struct ufs1_dinode *cdp;
    805 	IFILE *ifp;
    806 	SEGUSE *sup;
    807 	daddr_t daddr;
    808 	int32_t *daddrp;	/* XXX ondisk32 */
    809 	ino_t ino;
    810 	int error, i, ndx, fsb = 0;
    811 	int redo_ifile = 0;
    812 	struct timespec ts;
    813 	int gotblk = 0;
    814 
    815 	if (!(ip->i_flag & IN_ALLMOD))
    816 		return (0);
    817 
    818 	/* Allocate a new inode block if necessary. */
    819 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    820 	    sp->ibp == NULL) {
    821 		/* Allocate a new segment if necessary. */
    822 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    823 		    sp->sum_bytes_left < sizeof(int32_t))
    824 			(void) lfs_writeseg(fs, sp);
    825 
    826 		/* Get next inode block. */
    827 		daddr = fs->lfs_offset;
    828 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    829 		sp->ibp = *sp->cbpp++ =
    830 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
    831 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
    832 		gotblk++;
    833 
    834 		/* Zero out inode numbers */
    835 		for (i = 0; i < INOPB(fs); ++i)
    836 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
    837 			    0;
    838 
    839 		++sp->start_bpp;
    840 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    841 		/* Set remaining space counters. */
    842 		sp->seg_bytes_left -= fs->lfs_ibsize;
    843 		sp->sum_bytes_left -= sizeof(int32_t);
    844 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    845 			sp->ninodes / INOPB(fs) - 1;
    846 		((int32_t *)(sp->segsum))[ndx] = daddr;
    847 	}
    848 
    849 	/* Update the inode times and copy the inode onto the inode page. */
    850 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    851 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    852 	if (ip->i_number != LFS_IFILE_INUM)
    853 		LFS_ITIMES(ip, &ts, &ts, &ts);
    854 
    855 	/*
    856 	 * If this is the Ifile, and we've already written the Ifile in this
    857 	 * partial segment, just overwrite it (it's not on disk yet) and
    858 	 * continue.
    859 	 *
    860 	 * XXX we know that the bp that we get the second time around has
    861 	 * already been gathered.
    862 	 */
    863 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    864 		*(sp->idp) = *ip->i_din.ffs1_din;
    865 		ip->i_lfs_osize = ip->i_size;
    866 		return 0;
    867 	}
    868 
    869 	bp = sp->ibp;
    870 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    871 	*cdp = *ip->i_din.ffs1_din;
    872 
    873 	/*
    874 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
    875 	 * addresses to disk; possibly revert the inode size.
    876 	 * XXX By not writing these blocks, we are making the lfs_avail
    877 	 * XXX count on disk wrong by the same amount.	We should be
    878 	 * XXX able to "borrow" from lfs_avail and return it after the
    879 	 * XXX Ifile is written.  See also in lfs_writeseg.
    880 	 */
    881 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
    882 		cdp->di_size = ip->i_lfs_osize;
    883 		DLOG((DLOG_VNODE, "lfs_writeinode: cleansing ino %d (%d != %d)\n",
    884 		      ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks));
    885 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
    886 		     daddrp++) {
    887 			if (*daddrp == UNWRITTEN) {
    888 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
    889 				*daddrp = 0;
    890 			}
    891 		}
    892 	} else {
    893 		/* If all blocks are goig to disk, update the "size on disk" */
    894 		ip->i_lfs_osize = ip->i_size;
    895 	}
    896 
    897 	if (ip->i_flag & IN_CLEANING)
    898 		LFS_CLR_UINO(ip, IN_CLEANING);
    899 	else {
    900 		/* XXX IN_ALLMOD */
    901 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
    902 			     IN_UPDATE | IN_MODIFY);
    903 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
    904 			LFS_CLR_UINO(ip, IN_MODIFIED);
    905 		else
    906 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
    907 			      "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
    908 			      ip->i_lfs_effnblks));
    909 	}
    910 
    911 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
    912 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
    913 			(sp->ninodes % INOPB(fs));
    914 	if (gotblk) {
    915 		LFS_LOCK_BUF(bp);
    916 		brelse(bp);
    917 	}
    918 
    919 	/* Increment inode count in segment summary block. */
    920 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    921 
    922 	/* If this page is full, set flag to allocate a new page. */
    923 	if (++sp->ninodes % INOPB(fs) == 0)
    924 		sp->ibp = NULL;
    925 
    926 	/*
    927 	 * If updating the ifile, update the super-block.  Update the disk
    928 	 * address and access times for this inode in the ifile.
    929 	 */
    930 	ino = ip->i_number;
    931 	if (ino == LFS_IFILE_INUM) {
    932 		daddr = fs->lfs_idaddr;
    933 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    934 	} else {
    935 		LFS_IENTRY(ifp, fs, ino, ibp);
    936 		daddr = ifp->if_daddr;
    937 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    938 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
    939 	}
    940 
    941 	/*
    942 	 * The inode's last address should not be in the current partial
    943 	 * segment, except under exceptional circumstances (lfs_writevnodes
    944 	 * had to start over, and in the meantime more blocks were written
    945 	 * to a vnode).	 Both inodes will be accounted to this segment
    946 	 * in lfs_writeseg so we need to subtract the earlier version
    947 	 * here anyway.	 The segment count can temporarily dip below
    948 	 * zero here; keep track of how many duplicates we have in
    949 	 * "dupino" so we don't panic below.
    950 	 */
    951 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
    952 		++sp->ndupino;
    953 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
    954 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
    955 		      (long long)daddr, sp->ndupino));
    956 	}
    957 	/*
    958 	 * Account the inode: it no longer belongs to its former segment,
    959 	 * though it will not belong to the new segment until that segment
    960 	 * is actually written.
    961 	 */
    962 	if (daddr != LFS_UNUSED_DADDR) {
    963 		u_int32_t oldsn = dtosn(fs, daddr);
    964 #ifdef DIAGNOSTIC
    965 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
    966 #endif
    967 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    968 #ifdef DIAGNOSTIC
    969 		if (sup->su_nbytes +
    970 		    sizeof (struct ufs1_dinode) * ndupino
    971 		      < sizeof (struct ufs1_dinode)) {
    972 			printf("lfs_writeinode: negative bytes "
    973 			       "(segment %" PRIu32 " short by %d, "
    974 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
    975 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
    976 			       "ndupino=%d)\n",
    977 			       dtosn(fs, daddr),
    978 			       (int)sizeof (struct ufs1_dinode) *
    979 				   (1 - sp->ndupino) - sup->su_nbytes,
    980 			       oldsn, sp->seg_number, daddr,
    981 			       (unsigned int)sup->su_nbytes,
    982 			       sp->ndupino);
    983 			panic("lfs_writeinode: negative bytes");
    984 			sup->su_nbytes = sizeof (struct ufs1_dinode);
    985 		}
    986 #endif
    987 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
    988 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
    989 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
    990 		redo_ifile =
    991 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    992 		if (redo_ifile)
    993 			fs->lfs_flags |= LFS_IFDIRTY;
    994 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
    995 	}
    996 	return (redo_ifile);
    997 }
    998 
    999 int
   1000 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1001 {
   1002 	struct lfs *fs;
   1003 	int version;
   1004 	int j, blksinblk;
   1005 
   1006 	/*
   1007 	 * If full, finish this segment.  We may be doing I/O, so
   1008 	 * release and reacquire the splbio().
   1009 	 */
   1010 #ifdef DIAGNOSTIC
   1011 	if (sp->vp == NULL)
   1012 		panic ("lfs_gatherblock: Null vp in segment");
   1013 #endif
   1014 	fs = sp->fs;
   1015 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1016 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1017 	    sp->seg_bytes_left < bp->b_bcount) {
   1018 		if (sptr)
   1019 			splx(*sptr);
   1020 		lfs_updatemeta(sp);
   1021 
   1022 		version = sp->fip->fi_version;
   1023 		(void) lfs_writeseg(fs, sp);
   1024 
   1025 		sp->fip->fi_version = version;
   1026 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1027 		/* Add the current file to the segment summary. */
   1028 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1029 		sp->sum_bytes_left -= FINFOSIZE;
   1030 
   1031 		if (sptr)
   1032 			*sptr = splbio();
   1033 		return (1);
   1034 	}
   1035 
   1036 	if (bp->b_flags & B_GATHERED) {
   1037 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1038 		      " lbn %" PRId64 "\n",
   1039 		      sp->fip->fi_ino, bp->b_lblkno));
   1040 		return (0);
   1041 	}
   1042 
   1043 	/* Insert into the buffer list, update the FINFO block. */
   1044 	bp->b_flags |= B_GATHERED;
   1045 
   1046 	/* This block's accounting moves from lfs_favail to lfs_avail */
   1047 	lfs_deregister_block(sp->vp, bp->b_lblkno);
   1048 
   1049 	*sp->cbpp++ = bp;
   1050 	for (j = 0; j < blksinblk; j++)
   1051 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1052 
   1053 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1054 	sp->seg_bytes_left -= bp->b_bcount;
   1055 	return (0);
   1056 }
   1057 
   1058 int
   1059 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1060     int (*match)(struct lfs *, struct buf *))
   1061 {
   1062 	struct buf *bp, *nbp;
   1063 	int s, count = 0;
   1064 
   1065 	KASSERT(sp->vp == NULL);
   1066 	sp->vp = vp;
   1067 	s = splbio();
   1068 
   1069 #ifndef LFS_NO_BACKBUF_HACK
   1070 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1071 # define	BUF_OFFSET	\
   1072 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1073 # define	BACK_BUF(BP)	\
   1074 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1075 # define	BEG_OF_LIST	\
   1076 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1077 
   1078 loop:
   1079 	/* Find last buffer. */
   1080 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1081 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1082 	     bp = LIST_NEXT(bp, b_vnbufs))
   1083 		/* nothing */;
   1084 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1085 		nbp = BACK_BUF(bp);
   1086 #else /* LFS_NO_BACKBUF_HACK */
   1087 loop:
   1088 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1089 		nbp = LIST_NEXT(bp, b_vnbufs);
   1090 #endif /* LFS_NO_BACKBUF_HACK */
   1091 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1092 #ifdef DEBUG
   1093 			if (vp == fs->lfs_ivnode &&
   1094 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1095 				DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
   1096 				      PRId64 " busy (%x)",
   1097 				      bp->b_lblkno, bp->b_flags));
   1098 #endif
   1099 			continue;
   1100 		}
   1101 		if (vp->v_type == VBLK) {
   1102 			/* For block devices, just write the blocks. */
   1103 			/* XXX Do we even need to do this? */
   1104 			/*
   1105 			 * Get the block before bwrite,
   1106 			 * so we don't corrupt the free list
   1107 			 */
   1108 			bp->b_flags |= B_BUSY;
   1109 			bremfree(bp);
   1110 			bwrite(bp);
   1111 		} else {
   1112 #ifdef DIAGNOSTIC
   1113 # ifdef LFS_USE_B_INVAL
   1114 			if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1115 				DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1116 				      " is B_INVAL\n", bp->b_lblkno));
   1117 				VOP_PRINT(bp->b_vp);
   1118 			}
   1119 # endif /* LFS_USE_B_INVAL */
   1120 			if (!(bp->b_flags & B_DELWRI))
   1121 				panic("lfs_gather: bp not B_DELWRI");
   1122 			if (!(bp->b_flags & B_LOCKED)) {
   1123 				DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1124 				      " blk %" PRId64 " not B_LOCKED\n",
   1125 				      bp->b_lblkno,
   1126 				      dbtofsb(fs, bp->b_blkno)));
   1127 				VOP_PRINT(bp->b_vp);
   1128 				panic("lfs_gather: bp not B_LOCKED");
   1129 			}
   1130 #endif
   1131 			if (lfs_gatherblock(sp, bp, &s)) {
   1132 				goto loop;
   1133 			}
   1134 		}
   1135 		count++;
   1136 	}
   1137 	splx(s);
   1138 	lfs_updatemeta(sp);
   1139 	KASSERT(sp->vp == vp);
   1140 	sp->vp = NULL;
   1141 	return count;
   1142 }
   1143 
   1144 #if DEBUG
   1145 # define DEBUG_OOFF(n) do {						\
   1146 	if (ooff == 0) {						\
   1147 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1148 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1149 			", was 0x0 (or %" PRId64 ")\n",			\
   1150 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1151 	}								\
   1152 } while (0)
   1153 #else
   1154 # define DEBUG_OOFF(n)
   1155 #endif
   1156 
   1157 /*
   1158  * Change the given block's address to ndaddr, finding its previous
   1159  * location using ufs_bmaparray().
   1160  *
   1161  * Account for this change in the segment table.
   1162  *
   1163  * called with sp == NULL by roll-forwarding code.
   1164  */
   1165 void
   1166 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1167     daddr_t lbn, int32_t ndaddr, int size)
   1168 {
   1169 	SEGUSE *sup;
   1170 	struct buf *bp;
   1171 	struct indir a[NIADDR + 2], *ap;
   1172 	struct inode *ip;
   1173 	daddr_t daddr, ooff;
   1174 	int num, error;
   1175 	int bb, osize, obb;
   1176 
   1177 	KASSERT(sp == NULL || sp->vp == vp);
   1178 	ip = VTOI(vp);
   1179 
   1180 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1181 	if (error)
   1182 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1183 
   1184 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1185 	KASSERT(daddr <= LFS_MAX_DADDR);
   1186 	if (daddr > 0)
   1187 		daddr = dbtofsb(fs, daddr);
   1188 
   1189 	bb = fragstofsb(fs, numfrags(fs, size));
   1190 	switch (num) {
   1191 	    case 0:
   1192 		    ooff = ip->i_ffs1_db[lbn];
   1193 		    DEBUG_OOFF(0);
   1194 		    if (ooff == UNWRITTEN)
   1195 			    ip->i_ffs1_blocks += bb;
   1196 		    else {
   1197 			    /* possible fragment truncation or extension */
   1198 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1199 			    ip->i_ffs1_blocks += (bb - obb);
   1200 		    }
   1201 		    ip->i_ffs1_db[lbn] = ndaddr;
   1202 		    break;
   1203 	    case 1:
   1204 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1205 		    DEBUG_OOFF(1);
   1206 		    if (ooff == UNWRITTEN)
   1207 			    ip->i_ffs1_blocks += bb;
   1208 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1209 		    break;
   1210 	    default:
   1211 		    ap = &a[num - 1];
   1212 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1213 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1214 				  ap->in_lbn);
   1215 
   1216 		    /* XXX ondisk32 */
   1217 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1218 		    DEBUG_OOFF(num);
   1219 		    if (ooff == UNWRITTEN)
   1220 			    ip->i_ffs1_blocks += bb;
   1221 		    /* XXX ondisk32 */
   1222 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1223 		    (void) VOP_BWRITE(bp);
   1224 	}
   1225 
   1226 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1227 
   1228 	/*
   1229 	 * Though we'd rather it couldn't, this *can* happen right now
   1230 	 * if cleaning blocks and regular blocks coexist.
   1231 	 */
   1232 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1233 
   1234 	/*
   1235 	 * Update segment usage information, based on old size
   1236 	 * and location.
   1237 	 */
   1238 	if (daddr > 0) {
   1239 		u_int32_t oldsn = dtosn(fs, daddr);
   1240 #ifdef DIAGNOSTIC
   1241 		int ndupino;
   1242 
   1243 		if (sp && sp->seg_number == oldsn) {
   1244 			ndupino = sp->ndupino;
   1245 		} else {
   1246 			ndupino = 0;
   1247 		}
   1248 #endif
   1249 		KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
   1250 		if (lbn >= 0 && lbn < NDADDR)
   1251 			osize = ip->i_lfs_fragsize[lbn];
   1252 		else
   1253 			osize = fs->lfs_bsize;
   1254 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1255 #ifdef DIAGNOSTIC
   1256 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
   1257 		    < osize) {
   1258 			printf("lfs_updatemeta: negative bytes "
   1259 			       "(segment %" PRIu32 " short by %" PRId64
   1260 			       ")\n", dtosn(fs, daddr),
   1261 			       (int64_t)osize -
   1262 			       (sizeof (struct ufs1_dinode) * ndupino +
   1263 				sup->su_nbytes));
   1264 			printf("lfs_updatemeta: ino %d, lbn %" PRId64
   1265 			       ", addr = 0x%" PRIx64 "\n",
   1266 			       ip->i_number, lbn, daddr);
   1267 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1268 			panic("lfs_updatemeta: negative bytes");
   1269 			sup->su_nbytes = osize -
   1270 			    sizeof (struct ufs1_dinode) * ndupino;
   1271 		}
   1272 #endif
   1273 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1274 		      " db 0x%" PRIx64 "\n",
   1275 		      dtosn(fs, daddr), osize,
   1276 		      ip->i_number, lbn, daddr));
   1277 		sup->su_nbytes -= osize;
   1278 		if (!(bp->b_flags & B_GATHERED))
   1279 			fs->lfs_flags |= LFS_IFDIRTY;
   1280 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1281 	}
   1282 	/*
   1283 	 * Now that this block has a new address, and its old
   1284 	 * segment no longer owns it, we can forget about its
   1285 	 * old size.
   1286 	 */
   1287 	if (lbn >= 0 && lbn < NDADDR)
   1288 		ip->i_lfs_fragsize[lbn] = size;
   1289 }
   1290 
   1291 /*
   1292  * Update the metadata that points to the blocks listed in the FINFO
   1293  * array.
   1294  */
   1295 void
   1296 lfs_updatemeta(struct segment *sp)
   1297 {
   1298 	struct buf *sbp;
   1299 	struct lfs *fs;
   1300 	struct vnode *vp;
   1301 	daddr_t lbn;
   1302 	int i, nblocks, num;
   1303 	int bb;
   1304 	int bytesleft, size;
   1305 
   1306 	vp = sp->vp;
   1307 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1308 	KASSERT(nblocks >= 0);
   1309 	KASSERT(vp != NULL);
   1310 	if (nblocks == 0)
   1311 		return;
   1312 
   1313 	/*
   1314 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1315 	 * Correct for this. (XXX we should be able to keep track of these.)
   1316 	 */
   1317 	fs = sp->fs;
   1318 	for (i = 0; i < nblocks; i++) {
   1319 		if (sp->start_bpp[i] == NULL) {
   1320 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1321 			nblocks = i;
   1322 			break;
   1323 		}
   1324 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1325 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1326 		nblocks -= num - 1;
   1327 	}
   1328 
   1329 	KASSERT(vp->v_type == VREG ||
   1330 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1331 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1332 
   1333 	/*
   1334 	 * Sort the blocks.
   1335 	 *
   1336 	 * We have to sort even if the blocks come from the
   1337 	 * cleaner, because there might be other pending blocks on the
   1338 	 * same inode...and if we don't sort, and there are fragments
   1339 	 * present, blocks may be written in the wrong place.
   1340 	 */
   1341 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1342 
   1343 	/*
   1344 	 * Record the length of the last block in case it's a fragment.
   1345 	 * If there are indirect blocks present, they sort last.  An
   1346 	 * indirect block will be lfs_bsize and its presence indicates
   1347 	 * that you cannot have fragments.
   1348 	 *
   1349 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1350 	 * XXX a later indirect block.	This will continue to be
   1351 	 * XXX true until lfs_markv is fixed to do everything with
   1352 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1353 	 */
   1354 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1355 		fs->lfs_bmask) + 1;
   1356 
   1357 	/*
   1358 	 * Assign disk addresses, and update references to the logical
   1359 	 * block and the segment usage information.
   1360 	 */
   1361 	for (i = nblocks; i--; ++sp->start_bpp) {
   1362 		sbp = *sp->start_bpp;
   1363 		lbn = *sp->start_lbp;
   1364 		KASSERT(sbp->b_lblkno == lbn);
   1365 
   1366 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1367 
   1368 		/*
   1369 		 * If we write a frag in the wrong place, the cleaner won't
   1370 		 * be able to correctly identify its size later, and the
   1371 		 * segment will be uncleanable.	 (Even worse, it will assume
   1372 		 * that the indirect block that actually ends the list
   1373 		 * is of a smaller size!)
   1374 		 */
   1375 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1376 			panic("lfs_updatemeta: fragment is not last block");
   1377 
   1378 		/*
   1379 		 * For each subblock in this possibly oversized block,
   1380 		 * update its address on disk.
   1381 		 */
   1382 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1383 		KASSERT(vp == sbp->b_vp);
   1384 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1385 		     bytesleft -= fs->lfs_bsize) {
   1386 			size = MIN(bytesleft, fs->lfs_bsize);
   1387 			bb = fragstofsb(fs, numfrags(fs, size));
   1388 			lbn = *sp->start_lbp++;
   1389 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1390 			    size);
   1391 			fs->lfs_offset += bb;
   1392 		}
   1393 
   1394 	}
   1395 }
   1396 
   1397 /*
   1398  * Start a new partial segment.
   1399  *
   1400  * Return 1 when we entered to a new segment.
   1401  * Otherwise, return 0.
   1402  */
   1403 int
   1404 lfs_initseg(struct lfs *fs)
   1405 {
   1406 	struct segment *sp = fs->lfs_sp;
   1407 	SEGSUM *ssp;
   1408 	struct buf *sbp;	/* buffer for SEGSUM */
   1409 	int repeat = 0;		/* return value */
   1410 
   1411 	/* Advance to the next segment. */
   1412 	if (!LFS_PARTIAL_FITS(fs)) {
   1413 		SEGUSE *sup;
   1414 		struct buf *bp;
   1415 
   1416 		/* lfs_avail eats the remaining space */
   1417 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1418 						   fs->lfs_curseg);
   1419 		/* Wake up any cleaning procs waiting on this file system. */
   1420 		wakeup(&lfs_allclean_wakeup);
   1421 		wakeup(&fs->lfs_nextseg);
   1422 		lfs_newseg(fs);
   1423 		repeat = 1;
   1424 		fs->lfs_offset = fs->lfs_curseg;
   1425 
   1426 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1427 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1428 
   1429 		/*
   1430 		 * If the segment contains a superblock, update the offset
   1431 		 * and summary address to skip over it.
   1432 		 */
   1433 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1434 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1435 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1436 			sp->seg_bytes_left -= LFS_SBPAD;
   1437 		}
   1438 		brelse(bp);
   1439 		/* Segment zero could also contain the labelpad */
   1440 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1441 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1442 			fs->lfs_offset +=
   1443 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1444 			sp->seg_bytes_left -=
   1445 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1446 		}
   1447 	} else {
   1448 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1449 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1450 				      (fs->lfs_offset - fs->lfs_curseg));
   1451 	}
   1452 	fs->lfs_lastpseg = fs->lfs_offset;
   1453 
   1454 	/* Record first address of this partial segment */
   1455 	if (sp->seg_flags & SEGM_CLEAN) {
   1456 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1457 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1458 			/* "1" is the artificial inc in lfs_seglock */
   1459 			while (fs->lfs_iocount > 1) {
   1460 				tsleep(&fs->lfs_iocount, PRIBIO + 1,
   1461 				    "lfs_initseg", 0);
   1462 			}
   1463 			fs->lfs_cleanind = 0;
   1464 		}
   1465 	}
   1466 
   1467 	sp->fs = fs;
   1468 	sp->ibp = NULL;
   1469 	sp->idp = NULL;
   1470 	sp->ninodes = 0;
   1471 	sp->ndupino = 0;
   1472 
   1473 	sp->cbpp = sp->bpp;
   1474 
   1475 	/* Get a new buffer for SEGSUM */
   1476 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1477 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1478 
   1479 	/* ... and enter it into the buffer list. */
   1480 	*sp->cbpp = sbp;
   1481 	sp->cbpp++;
   1482 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1483 
   1484 	sp->start_bpp = sp->cbpp;
   1485 
   1486 	/* Set point to SEGSUM, initialize it. */
   1487 	ssp = sp->segsum = sbp->b_data;
   1488 	memset(ssp, 0, fs->lfs_sumsize);
   1489 	ssp->ss_next = fs->lfs_nextseg;
   1490 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1491 	ssp->ss_magic = SS_MAGIC;
   1492 
   1493 	/* Set pointer to first FINFO, initialize it. */
   1494 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1495 	sp->fip->fi_nblocks = 0;
   1496 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1497 	sp->fip->fi_lastlength = 0;
   1498 
   1499 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1500 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1501 
   1502 	return (repeat);
   1503 }
   1504 
   1505 /*
   1506  * Return the next segment to write.
   1507  */
   1508 void
   1509 lfs_newseg(struct lfs *fs)
   1510 {
   1511 	CLEANERINFO *cip;
   1512 	SEGUSE *sup;
   1513 	struct buf *bp;
   1514 	int curseg, isdirty, sn;
   1515 
   1516 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1517 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1518 	      dtosn(fs, fs->lfs_nextseg)));
   1519 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1520 	sup->su_nbytes = 0;
   1521 	sup->su_nsums = 0;
   1522 	sup->su_ninos = 0;
   1523 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1524 
   1525 	LFS_CLEANERINFO(cip, fs, bp);
   1526 	--cip->clean;
   1527 	++cip->dirty;
   1528 	fs->lfs_nclean = cip->clean;
   1529 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1530 
   1531 	fs->lfs_lastseg = fs->lfs_curseg;
   1532 	fs->lfs_curseg = fs->lfs_nextseg;
   1533 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1534 		sn = (sn + 1) % fs->lfs_nseg;
   1535 		if (sn == curseg)
   1536 			panic("lfs_nextseg: no clean segments");
   1537 		LFS_SEGENTRY(sup, fs, sn, bp);
   1538 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1539 		/* Check SEGUSE_EMPTY as we go along */
   1540 		if (isdirty && sup->su_nbytes == 0 &&
   1541 		    !(sup->su_flags & SEGUSE_EMPTY))
   1542 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1543 		else
   1544 			brelse(bp);
   1545 
   1546 		if (!isdirty)
   1547 			break;
   1548 	}
   1549 
   1550 	++fs->lfs_nactive;
   1551 	fs->lfs_nextseg = sntod(fs, sn);
   1552 	if (lfs_dostats) {
   1553 		++lfs_stats.segsused;
   1554 	}
   1555 }
   1556 
   1557 static struct buf *
   1558 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1559 {
   1560 	struct lfs_cluster *cl;
   1561 	struct buf **bpp, *bp;
   1562 	int s;
   1563 
   1564 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1565 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1566 	memset(cl, 0, sizeof(*cl));
   1567 	cl->fs = fs;
   1568 	cl->bpp = bpp;
   1569 	cl->bufcount = 0;
   1570 	cl->bufsize = 0;
   1571 
   1572 	/* If this segment is being written synchronously, note that */
   1573 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1574 		cl->flags |= LFS_CL_SYNC;
   1575 		cl->seg = fs->lfs_sp;
   1576 		++cl->seg->seg_iocount;
   1577 	}
   1578 
   1579 	/* Get an empty buffer header, or maybe one with something on it */
   1580 	s = splbio();
   1581 	bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
   1582 	splx(s);
   1583 	memset(bp, 0, sizeof(*bp));
   1584 	BUF_INIT(bp);
   1585 
   1586 	bp->b_flags = B_BUSY | B_CALL;
   1587 	bp->b_dev = NODEV;
   1588 	bp->b_blkno = bp->b_lblkno = addr;
   1589 	bp->b_iodone = lfs_cluster_callback;
   1590 	bp->b_private = cl;
   1591 	bp->b_vp = vp;
   1592 
   1593 	return bp;
   1594 }
   1595 
   1596 int
   1597 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1598 {
   1599 	struct buf **bpp, *bp, *cbp, *newbp;
   1600 	SEGUSE *sup;
   1601 	SEGSUM *ssp;
   1602 	int i, s;
   1603 	int do_again, nblocks, byteoffset;
   1604 	size_t el_size;
   1605 	struct lfs_cluster *cl;
   1606 	u_short ninos;
   1607 	struct vnode *devvp;
   1608 	char *p = NULL;
   1609 	struct vnode *vp;
   1610 	int32_t *daddrp;	/* XXX ondisk32 */
   1611 	int changed;
   1612 	u_int32_t sum;
   1613 
   1614 	/*
   1615 	 * If there are no buffers other than the segment summary to write
   1616 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1617 	 * even if there aren't any buffers, you need to write the superblock.
   1618 	 */
   1619 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1620 		return (0);
   1621 
   1622 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1623 
   1624 	/* Update the segment usage information. */
   1625 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1626 
   1627 	/* Loop through all blocks, except the segment summary. */
   1628 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1629 		if ((*bpp)->b_vp != devvp) {
   1630 			sup->su_nbytes += (*bpp)->b_bcount;
   1631 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   1632 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   1633 			      sp->seg_number, (*bpp)->b_bcount,
   1634 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1635 			      (*bpp)->b_blkno));
   1636 		}
   1637 	}
   1638 
   1639 	ssp = (SEGSUM *)sp->segsum;
   1640 
   1641 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1642 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   1643 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
   1644 	      ssp->ss_ninos));
   1645 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
   1646 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1647 	if (fs->lfs_version == 1)
   1648 		sup->su_olastmod = time.tv_sec;
   1649 	else
   1650 		sup->su_lastmod = time.tv_sec;
   1651 	sup->su_ninos += ninos;
   1652 	++sup->su_nsums;
   1653 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
   1654 							 fs->lfs_ibsize));
   1655 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1656 
   1657 	do_again = !(bp->b_flags & B_GATHERED);
   1658 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1659 
   1660 	/*
   1661 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1662 	 * the checksum computation and the actual write.
   1663 	 *
   1664 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1665 	 * there are any, replace them with copies that have UNASSIGNED
   1666 	 * instead.
   1667 	 */
   1668 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1669 		++bpp;
   1670 		bp = *bpp;
   1671 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1672 			bp->b_flags |= B_BUSY;
   1673 			continue;
   1674 		}
   1675 	    again:
   1676 		s = splbio();
   1677 		if (bp->b_flags & B_BUSY) {
   1678 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   1679 			      " data summary corruption for ino %d, lbn %"
   1680 			      PRId64 "\n",
   1681 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   1682 			bp->b_flags |= B_WANTED;
   1683 			tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
   1684 			splx(s);
   1685 			goto again;
   1686 		}
   1687 		bp->b_flags |= B_BUSY;
   1688 		splx(s);
   1689 		/*
   1690 		 * Check and replace indirect block UNWRITTEN bogosity.
   1691 		 * XXX See comment in lfs_writefile.
   1692 		 */
   1693 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1694 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   1695 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1696 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1697 			      VTOI(bp->b_vp)->i_number,
   1698 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   1699 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   1700 			/* Make a copy we'll make changes to */
   1701 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1702 					   bp->b_bcount, LFS_NB_IBLOCK);
   1703 			newbp->b_blkno = bp->b_blkno;
   1704 			memcpy(newbp->b_data, bp->b_data,
   1705 			       newbp->b_bcount);
   1706 
   1707 			changed = 0;
   1708 			/* XXX ondisk32 */
   1709 			for (daddrp = (int32_t *)(newbp->b_data);
   1710 			     daddrp < (int32_t *)(newbp->b_data +
   1711 						  newbp->b_bcount); daddrp++) {
   1712 				if (*daddrp == UNWRITTEN) {
   1713 					++changed;
   1714 					*daddrp = 0;
   1715 				}
   1716 			}
   1717 			/*
   1718 			 * Get rid of the old buffer.  Don't mark it clean,
   1719 			 * though, if it still has dirty data on it.
   1720 			 */
   1721 			if (changed) {
   1722 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   1723 				      " bp = %p newbp = %p\n", changed, bp,
   1724 				      newbp));
   1725 				*bpp = newbp;
   1726 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1727 				if (bp->b_flags & B_CALL) {
   1728 					DLOG((DLOG_SEG, "lfs_writeseg: "
   1729 					      "indir bp should not be B_CALL\n"));
   1730 					s = splbio();
   1731 					biodone(bp);
   1732 					splx(s);
   1733 					bp = NULL;
   1734 				} else {
   1735 					/* Still on free list, leave it there */
   1736 					s = splbio();
   1737 					bp->b_flags &= ~B_BUSY;
   1738 					if (bp->b_flags & B_WANTED)
   1739 						wakeup(bp);
   1740 					splx(s);
   1741 					/*
   1742 					 * We have to re-decrement lfs_avail
   1743 					 * since this block is going to come
   1744 					 * back around to us in the next
   1745 					 * segment.
   1746 					 */
   1747 					fs->lfs_avail -=
   1748 					    btofsb(fs, bp->b_bcount);
   1749 				}
   1750 			} else {
   1751 				lfs_freebuf(fs, newbp);
   1752 			}
   1753 		}
   1754 	}
   1755 	/*
   1756 	 * Compute checksum across data and then across summary; the first
   1757 	 * block (the summary block) is skipped.  Set the create time here
   1758 	 * so that it's guaranteed to be later than the inode mod times.
   1759 	 */
   1760 	sum = 0;
   1761 	if (fs->lfs_version == 1)
   1762 		el_size = sizeof(u_long);
   1763 	else
   1764 		el_size = sizeof(u_int32_t);
   1765 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   1766 		++bpp;
   1767 		/* Loop through gop_write cluster blocks */
   1768 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   1769 		     byteoffset += fs->lfs_bsize) {
   1770 #ifdef LFS_USE_B_INVAL
   1771 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   1772 			    (B_CALL | B_INVAL)) {
   1773 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   1774 					   byteoffset, dp, el_size)) {
   1775 					panic("lfs_writeseg: copyin failed [1]:"
   1776 						" ino %d blk %" PRId64,
   1777 						VTOI((*bpp)->b_vp)->i_number,
   1778 						(*bpp)->b_lblkno);
   1779 				}
   1780 			} else
   1781 #endif /* LFS_USE_B_INVAL */
   1782 			{
   1783 				sum = lfs_cksum_part(
   1784 				    (*bpp)->b_data + byteoffset, el_size, sum);
   1785 			}
   1786 		}
   1787 	}
   1788 	if (fs->lfs_version == 1)
   1789 		ssp->ss_ocreate = time.tv_sec;
   1790 	else {
   1791 		ssp->ss_create = time.tv_sec;
   1792 		ssp->ss_serial = ++fs->lfs_serial;
   1793 		ssp->ss_ident  = fs->lfs_ident;
   1794 	}
   1795 	ssp->ss_datasum = lfs_cksum_fold(sum);
   1796 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   1797 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   1798 
   1799 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   1800 			  btofsb(fs, fs->lfs_sumsize));
   1801 
   1802 	/*
   1803 	 * When we simply write the blocks we lose a rotation for every block
   1804 	 * written.  To avoid this problem, we cluster the buffers into a
   1805 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   1806 	 * devices can handle, use that for the size of the chunks.
   1807 	 *
   1808 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   1809 	 * don't bother to copy into other clusters.
   1810 	 */
   1811 
   1812 #define CHUNKSIZE MAXPHYS
   1813 
   1814 	if (devvp == NULL)
   1815 		panic("devvp is NULL");
   1816 	for (bpp = sp->bpp, i = nblocks; i;) {
   1817 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   1818 		cl = cbp->b_private;
   1819 
   1820 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1821 		cbp->b_bcount = 0;
   1822 
   1823 #if defined(DEBUG) && defined(DIAGNOSTIC)
   1824 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   1825 		    / sizeof(int32_t)) {
   1826 			panic("lfs_writeseg: real bpp overwrite");
   1827 		}
   1828 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
   1829 			panic("lfs_writeseg: theoretical bpp overwrite");
   1830 		}
   1831 #endif
   1832 
   1833 		/*
   1834 		 * Construct the cluster.
   1835 		 */
   1836 		++fs->lfs_iocount;
   1837 		while (i && cbp->b_bcount < CHUNKSIZE) {
   1838 			bp = *bpp;
   1839 
   1840 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1841 				break;
   1842 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   1843 				break;
   1844 
   1845 			/* Clusters from GOP_WRITE are expedited */
   1846 			if (bp->b_bcount > fs->lfs_bsize) {
   1847 				if (cbp->b_bcount > 0)
   1848 					/* Put in its own buffer */
   1849 					break;
   1850 				else {
   1851 					cbp->b_data = bp->b_data;
   1852 				}
   1853 			} else if (cbp->b_bcount == 0) {
   1854 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   1855 							     LFS_NB_CLUSTER);
   1856 				cl->flags |= LFS_CL_MALLOC;
   1857 			}
   1858 #ifdef DIAGNOSTIC
   1859 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   1860 					      btodb(bp->b_bcount - 1))) !=
   1861 			    sp->seg_number) {
   1862 				printf("blk size %d daddr %" PRIx64
   1863 				    " not in seg %d\n",
   1864 				    bp->b_bcount, bp->b_blkno,
   1865 				    sp->seg_number);
   1866 				panic("segment overwrite");
   1867 			}
   1868 #endif
   1869 
   1870 #ifdef LFS_USE_B_INVAL
   1871 			/*
   1872 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1873 			 * We need to copy the data from user space rather than
   1874 			 * from the buffer indicated.
   1875 			 * XXX == what do I do on an error?
   1876 			 */
   1877 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
   1878 			    (B_CALL|B_INVAL)) {
   1879 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1880 					panic("lfs_writeseg: "
   1881 					    "copyin failed [2]");
   1882 			} else
   1883 #endif /* LFS_USE_B_INVAL */
   1884 			if (cl->flags & LFS_CL_MALLOC) {
   1885 				/* copy data into our cluster. */
   1886 				memcpy(p, bp->b_data, bp->b_bcount);
   1887 				p += bp->b_bcount;
   1888 			}
   1889 
   1890 			cbp->b_bcount += bp->b_bcount;
   1891 			cl->bufsize += bp->b_bcount;
   1892 
   1893 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   1894 			cl->bpp[cl->bufcount++] = bp;
   1895 			vp = bp->b_vp;
   1896 			s = splbio();
   1897 			reassignbuf(bp, vp);
   1898 			V_INCR_NUMOUTPUT(vp);
   1899 			splx(s);
   1900 
   1901 			bpp++;
   1902 			i--;
   1903 		}
   1904 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1905 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   1906 		else
   1907 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   1908 		s = splbio();
   1909 		V_INCR_NUMOUTPUT(devvp);
   1910 		splx(s);
   1911 		VOP_STRATEGY(devvp, cbp);
   1912 		curproc->p_stats->p_ru.ru_oublock++;
   1913 	}
   1914 
   1915 	if (lfs_dostats) {
   1916 		++lfs_stats.psegwrites;
   1917 		lfs_stats.blocktot += nblocks - 1;
   1918 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1919 			++lfs_stats.psyncwrites;
   1920 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1921 			++lfs_stats.pcleanwrites;
   1922 			lfs_stats.cleanblocks += nblocks - 1;
   1923 		}
   1924 	}
   1925 	return (lfs_initseg(fs) || do_again);
   1926 }
   1927 
   1928 void
   1929 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   1930 {
   1931 	struct buf *bp;
   1932 	int s;
   1933 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1934 
   1935 #ifdef DIAGNOSTIC
   1936 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   1937 #endif
   1938 	/*
   1939 	 * If we can write one superblock while another is in
   1940 	 * progress, we risk not having a complete checkpoint if we crash.
   1941 	 * So, block here if a superblock write is in progress.
   1942 	 */
   1943 	s = splbio();
   1944 	while (fs->lfs_sbactive) {
   1945 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   1946 	}
   1947 	fs->lfs_sbactive = daddr;
   1948 	splx(s);
   1949 
   1950 	/* Set timestamp of this version of the superblock */
   1951 	if (fs->lfs_version == 1)
   1952 		fs->lfs_otstamp = time.tv_sec;
   1953 	fs->lfs_tstamp = time.tv_sec;
   1954 
   1955 	/* Checksum the superblock and copy it into a buffer. */
   1956 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1957 	bp = lfs_newbuf(fs, devvp,
   1958 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   1959 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1960 	    LFS_SBPAD - sizeof(struct dlfs));
   1961 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   1962 
   1963 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   1964 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   1965 	bp->b_iodone = lfs_supercallback;
   1966 
   1967 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   1968 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1969 	else
   1970 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1971 	curproc->p_stats->p_ru.ru_oublock++;
   1972 	s = splbio();
   1973 	V_INCR_NUMOUTPUT(bp->b_vp);
   1974 	splx(s);
   1975 	++fs->lfs_iocount;
   1976 	VOP_STRATEGY(devvp, bp);
   1977 }
   1978 
   1979 /*
   1980  * Logical block number match routines used when traversing the dirty block
   1981  * chain.
   1982  */
   1983 int
   1984 lfs_match_fake(struct lfs *fs, struct buf *bp)
   1985 {
   1986 
   1987 	return LFS_IS_MALLOC_BUF(bp);
   1988 }
   1989 
   1990 #if 0
   1991 int
   1992 lfs_match_real(struct lfs *fs, struct buf *bp)
   1993 {
   1994 
   1995 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   1996 }
   1997 #endif
   1998 
   1999 int
   2000 lfs_match_data(struct lfs *fs, struct buf *bp)
   2001 {
   2002 
   2003 	return (bp->b_lblkno >= 0);
   2004 }
   2005 
   2006 int
   2007 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2008 {
   2009 	daddr_t lbn;
   2010 
   2011 	lbn = bp->b_lblkno;
   2012 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2013 }
   2014 
   2015 int
   2016 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2017 {
   2018 	daddr_t lbn;
   2019 
   2020 	lbn = bp->b_lblkno;
   2021 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2022 }
   2023 
   2024 int
   2025 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2026 {
   2027 	daddr_t lbn;
   2028 
   2029 	lbn = bp->b_lblkno;
   2030 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2031 }
   2032 
   2033 /*
   2034  * XXX - The only buffers that are going to hit these functions are the
   2035  * segment write blocks, or the segment summaries, or the superblocks.
   2036  *
   2037  * All of the above are created by lfs_newbuf, and so do not need to be
   2038  * released via brelse.
   2039  */
   2040 void
   2041 lfs_callback(struct buf *bp)
   2042 {
   2043 	struct lfs *fs;
   2044 
   2045 	fs = bp->b_private;
   2046 	lfs_freebuf(fs, bp);
   2047 }
   2048 
   2049 static void
   2050 lfs_super_aiodone(struct buf *bp)
   2051 {
   2052 	struct lfs *fs;
   2053 
   2054 	fs = bp->b_private;
   2055 	fs->lfs_sbactive = 0;
   2056 	wakeup(&fs->lfs_sbactive);
   2057 	if (--fs->lfs_iocount <= 1)
   2058 		wakeup(&fs->lfs_iocount);
   2059 	lfs_freebuf(fs, bp);
   2060 }
   2061 
   2062 static void
   2063 lfs_cluster_aiodone(struct buf *bp)
   2064 {
   2065 	struct lfs_cluster *cl;
   2066 	struct lfs *fs;
   2067 	struct buf *tbp, *fbp;
   2068 	struct vnode *vp, *devvp;
   2069 	struct inode *ip;
   2070 	int s, error=0;
   2071 
   2072 	if (bp->b_flags & B_ERROR)
   2073 		error = bp->b_error;
   2074 
   2075 	cl = bp->b_private;
   2076 	fs = cl->fs;
   2077 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2078 
   2079 	/* Put the pages back, and release the buffer */
   2080 	while (cl->bufcount--) {
   2081 		tbp = cl->bpp[cl->bufcount];
   2082 		KASSERT(tbp->b_flags & B_BUSY);
   2083 		if (error) {
   2084 			tbp->b_flags |= B_ERROR;
   2085 			tbp->b_error = error;
   2086 		}
   2087 
   2088 		/*
   2089 		 * We're done with tbp.	 If it has not been re-dirtied since
   2090 		 * the cluster was written, free it.  Otherwise, keep it on
   2091 		 * the locked list to be written again.
   2092 		 */
   2093 		vp = tbp->b_vp;
   2094 
   2095 		tbp->b_flags &= ~B_GATHERED;
   2096 
   2097 		LFS_BCLEAN_LOG(fs, tbp);
   2098 
   2099 		if (!(tbp->b_flags & B_CALL)) {
   2100 			KASSERT(tbp->b_flags & B_LOCKED);
   2101 			s = splbio();
   2102 			simple_lock(&bqueue_slock);
   2103 			bremfree(tbp);
   2104 			simple_unlock(&bqueue_slock);
   2105 			if (vp)
   2106 				reassignbuf(tbp, vp);
   2107 			splx(s);
   2108 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2109 		}
   2110 
   2111 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2112 			LFS_UNLOCK_BUF(tbp);
   2113 
   2114 		if (tbp->b_flags & B_DONE) {
   2115 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2116 				cl->bufcount, (long)tbp->b_flags));
   2117 		}
   2118 
   2119 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2120 			/*
   2121 			 * A buffer from the page daemon.
   2122 			 * We use the same iodone as it does,
   2123 			 * so we must manually disassociate its
   2124 			 * buffers from the vp.
   2125 			 */
   2126 			if (tbp->b_vp) {
   2127 				/* This is just silly */
   2128 				s = splbio();
   2129 				brelvp(tbp);
   2130 				tbp->b_vp = vp;
   2131 				splx(s);
   2132 			}
   2133 			/* Put it back the way it was */
   2134 			tbp->b_flags |= B_ASYNC;
   2135 			/* Master buffers have B_AGE */
   2136 			if (tbp->b_private == tbp)
   2137 				tbp->b_flags |= B_AGE;
   2138 		}
   2139 		s = splbio();
   2140 		biodone(tbp);
   2141 
   2142 		/*
   2143 		 * If this is the last block for this vnode, but
   2144 		 * there are other blocks on its dirty list,
   2145 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2146 		 * sort of block.  Only do this for our mount point,
   2147 		 * not for, e.g., inode blocks that are attached to
   2148 		 * the devvp.
   2149 		 * XXX KS - Shouldn't we set *both* if both types
   2150 		 * of blocks are present (traverse the dirty list?)
   2151 		 */
   2152 		simple_lock(&global_v_numoutput_slock);
   2153 		if (vp != devvp && vp->v_numoutput == 0 &&
   2154 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2155 			ip = VTOI(vp);
   2156 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2157 			       ip->i_number));
   2158 			if (LFS_IS_MALLOC_BUF(fbp))
   2159 				LFS_SET_UINO(ip, IN_CLEANING);
   2160 			else
   2161 				LFS_SET_UINO(ip, IN_MODIFIED);
   2162 		}
   2163 		simple_unlock(&global_v_numoutput_slock);
   2164 		splx(s);
   2165 		wakeup(vp);
   2166 	}
   2167 
   2168 	/* Fix up the cluster buffer, and release it */
   2169 	if (cl->flags & LFS_CL_MALLOC)
   2170 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2171 	s = splbio();
   2172 	pool_put(&bufpool, bp); /* XXX should use lfs_free? */
   2173 	splx(s);
   2174 
   2175 	/* Note i/o done */
   2176 	if (cl->flags & LFS_CL_SYNC) {
   2177 		if (--cl->seg->seg_iocount == 0)
   2178 			wakeup(&cl->seg->seg_iocount);
   2179 	}
   2180 #ifdef DIAGNOSTIC
   2181 	if (fs->lfs_iocount == 0)
   2182 		panic("lfs_cluster_aiodone: zero iocount");
   2183 #endif
   2184 	if (--fs->lfs_iocount <= 1)
   2185 		wakeup(&fs->lfs_iocount);
   2186 
   2187 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2188 	cl->bpp = NULL;
   2189 	pool_put(&fs->lfs_clpool, cl);
   2190 }
   2191 
   2192 static void
   2193 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2194 {
   2195 	/* reset b_iodone for when this is a single-buf i/o. */
   2196 	bp->b_iodone = aiodone;
   2197 
   2198 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2199 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2200 	wakeup(&uvm.aiodoned);
   2201 	simple_unlock(&uvm.aiodoned_lock);
   2202 }
   2203 
   2204 static void
   2205 lfs_cluster_callback(struct buf *bp)
   2206 {
   2207 
   2208 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2209 }
   2210 
   2211 void
   2212 lfs_supercallback(struct buf *bp)
   2213 {
   2214 
   2215 	lfs_generic_callback(bp, lfs_super_aiodone);
   2216 }
   2217 
   2218 /*
   2219  * Shellsort (diminishing increment sort) from Data Structures and
   2220  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2221  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2222  * formula (8), page 95.  Roughly O(N^3/2).
   2223  */
   2224 /*
   2225  * This is our own private copy of shellsort because we want to sort
   2226  * two parallel arrays (the array of buffer pointers and the array of
   2227  * logical block numbers) simultaneously.  Note that we cast the array
   2228  * of logical block numbers to a unsigned in this routine so that the
   2229  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2230  */
   2231 
   2232 void
   2233 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2234 {
   2235 	static int __rsshell_increments[] = { 4, 1, 0 };
   2236 	int incr, *incrp, t1, t2;
   2237 	struct buf *bp_temp;
   2238 
   2239 #ifdef DEBUG
   2240 	incr = 0;
   2241 	for (t1 = 0; t1 < nmemb; t1++) {
   2242 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2243 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2244 				/* dump before panic */
   2245 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2246 				    nmemb, size);
   2247 				incr = 0;
   2248 				for (t1 = 0; t1 < nmemb; t1++) {
   2249 					const struct buf *bp = bp_array[t1];
   2250 
   2251 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2252 					    PRIu64 "\n", t1,
   2253 					    (uint64_t)bp->b_bcount,
   2254 					    (uint64_t)bp->b_lblkno);
   2255 					printf("lbns:");
   2256 					for (t2 = 0; t2 * size < bp->b_bcount;
   2257 					    t2++) {
   2258 						printf(" %" PRId32,
   2259 						    lb_array[incr++]);
   2260 					}
   2261 					printf("\n");
   2262 				}
   2263 				panic("lfs_shellsort: inconsistent input");
   2264 			}
   2265 		}
   2266 	}
   2267 #endif
   2268 
   2269 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2270 		for (t1 = incr; t1 < nmemb; ++t1)
   2271 			for (t2 = t1 - incr; t2 >= 0;)
   2272 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2273 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2274 					bp_temp = bp_array[t2];
   2275 					bp_array[t2] = bp_array[t2 + incr];
   2276 					bp_array[t2 + incr] = bp_temp;
   2277 					t2 -= incr;
   2278 				} else
   2279 					break;
   2280 
   2281 	/* Reform the list of logical blocks */
   2282 	incr = 0;
   2283 	for (t1 = 0; t1 < nmemb; t1++) {
   2284 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2285 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2286 		}
   2287 	}
   2288 }
   2289 
   2290 /*
   2291  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   2292  */
   2293 int
   2294 lfs_vref(struct vnode *vp)
   2295 {
   2296 	/*
   2297 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2298 	 * being able to flush all of the pages from this vnode, which
   2299 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2300 	 */
   2301 	if (vp->v_flag & VXLOCK) {
   2302 		if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2303 			return 0;
   2304 		}
   2305 		return (1);
   2306 	}
   2307 	return (vget(vp, 0));
   2308 }
   2309 
   2310 /*
   2311  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2312  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2313  */
   2314 void
   2315 lfs_vunref(struct vnode *vp)
   2316 {
   2317 	/*
   2318 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2319 	 */
   2320 	if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2321 		return;
   2322 	}
   2323 
   2324 	simple_lock(&vp->v_interlock);
   2325 #ifdef DIAGNOSTIC
   2326 	if (vp->v_usecount <= 0) {
   2327 		printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
   2328 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2329 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2330 		panic("lfs_vunref: v_usecount < 0");
   2331 	}
   2332 #endif
   2333 	vp->v_usecount--;
   2334 	if (vp->v_usecount > 0) {
   2335 		simple_unlock(&vp->v_interlock);
   2336 		return;
   2337 	}
   2338 	/*
   2339 	 * insert at tail of LRU list
   2340 	 */
   2341 	simple_lock(&vnode_free_list_slock);
   2342 	if (vp->v_holdcnt > 0)
   2343 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2344 	else
   2345 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2346 	simple_unlock(&vnode_free_list_slock);
   2347 	simple_unlock(&vp->v_interlock);
   2348 }
   2349 
   2350 /*
   2351  * We use this when we have vnodes that were loaded in solely for cleaning.
   2352  * There is no reason to believe that these vnodes will be referenced again
   2353  * soon, since the cleaning process is unrelated to normal filesystem
   2354  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2355  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2356  * cleaning at the head of the list, instead.
   2357  */
   2358 void
   2359 lfs_vunref_head(struct vnode *vp)
   2360 {
   2361 
   2362 	simple_lock(&vp->v_interlock);
   2363 #ifdef DIAGNOSTIC
   2364 	if (vp->v_usecount == 0) {
   2365 		panic("lfs_vunref: v_usecount<0");
   2366 	}
   2367 #endif
   2368 	vp->v_usecount--;
   2369 	if (vp->v_usecount > 0) {
   2370 		simple_unlock(&vp->v_interlock);
   2371 		return;
   2372 	}
   2373 	/*
   2374 	 * insert at head of LRU list
   2375 	 */
   2376 	simple_lock(&vnode_free_list_slock);
   2377 	if (vp->v_holdcnt > 0)
   2378 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2379 	else
   2380 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2381 	simple_unlock(&vnode_free_list_slock);
   2382 	simple_unlock(&vp->v_interlock);
   2383 }
   2384 
   2385