lfs_segment.c revision 1.128 1 /* $NetBSD: lfs_segment.c,v 1.128 2003/07/12 16:17:52 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.128 2003/07/12 16:17:52 yamt Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93
94 #include <miscfs/specfs/specdev.h>
95 #include <miscfs/fifofs/fifo.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
109
110 extern int count_lock_queue(void);
111 extern struct simplelock vnode_free_list_slock; /* XXX */
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 fragstofsb((fs), (fs)->lfs_frag))
125
126 void lfs_callback(struct buf *);
127 int lfs_gather(struct lfs *, struct segment *,
128 struct vnode *, int (*)(struct lfs *, struct buf *));
129 int lfs_gatherblock(struct segment *, struct buf *, int *);
130 void lfs_iset(struct inode *, daddr_t, time_t);
131 int lfs_match_fake(struct lfs *, struct buf *);
132 int lfs_match_data(struct lfs *, struct buf *);
133 int lfs_match_dindir(struct lfs *, struct buf *);
134 int lfs_match_indir(struct lfs *, struct buf *);
135 int lfs_match_tindir(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 int lfs_vref(struct vnode *);
142 void lfs_vunref(struct vnode *);
143 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
144 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
145 int lfs_writeseg(struct lfs *, struct segment *);
146 void lfs_writesuper(struct lfs *, daddr_t);
147 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
148 struct segment *sp, int dirops);
149
150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 int lfs_dirvcount = 0; /* # active dirops */
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 /* op values to lfs_writevnodes */
160 #define VN_REG 0
161 #define VN_DIROP 1
162 #define VN_EMPTY 2
163 #define VN_CLEAN 3
164
165 #define LFS_MAX_ACTIVE 10
166
167 /*
168 * XXX KS - Set modification time on the Ifile, so the cleaner can
169 * read the fs mod time off of it. We don't set IN_UPDATE here,
170 * since we don't really need this to be flushed to disk (and in any
171 * case that wouldn't happen to the Ifile until we checkpoint).
172 */
173 void
174 lfs_imtime(struct lfs *fs)
175 {
176 struct timespec ts;
177 struct inode *ip;
178
179 TIMEVAL_TO_TIMESPEC(&time, &ts);
180 ip = VTOI(fs->lfs_ivnode);
181 ip->i_ffs1_mtime = ts.tv_sec;
182 ip->i_ffs1_mtimensec = ts.tv_nsec;
183 }
184
185 /*
186 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
187 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
188 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
189 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
190 */
191
192 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
193 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
194 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
195
196 int
197 lfs_vflush(struct vnode *vp)
198 {
199 struct inode *ip;
200 struct lfs *fs;
201 struct segment *sp;
202 struct buf *bp, *nbp, *tbp, *tnbp;
203 int error, s;
204 int flushed;
205 #if 0
206 int redo;
207 #endif
208
209 ip = VTOI(vp);
210 fs = VFSTOUFS(vp->v_mount)->um_lfs;
211
212 if (ip->i_flag & IN_CLEANING) {
213 #ifdef DEBUG_LFS
214 ivndebug(vp,"vflush/in_cleaning");
215 #endif
216 LFS_CLR_UINO(ip, IN_CLEANING);
217 LFS_SET_UINO(ip, IN_MODIFIED);
218
219 /*
220 * Toss any cleaning buffers that have real counterparts
221 * to avoid losing new data.
222 */
223 s = splbio();
224 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
225 nbp = LIST_NEXT(bp, b_vnbufs);
226 if (!LFS_IS_MALLOC_BUF(bp))
227 continue;
228 /*
229 * Look for pages matching the range covered
230 * by cleaning blocks. It's okay if more dirty
231 * pages appear, so long as none disappear out
232 * from under us.
233 */
234 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
235 vp != fs->lfs_ivnode) {
236 struct vm_page *pg;
237 voff_t off;
238
239 simple_lock(&vp->v_interlock);
240 for (off = lblktosize(fs, bp->b_lblkno);
241 off < lblktosize(fs, bp->b_lblkno + 1);
242 off += PAGE_SIZE) {
243 pg = uvm_pagelookup(&vp->v_uobj, off);
244 if (pg == NULL)
245 continue;
246 if ((pg->flags & PG_CLEAN) == 0 ||
247 pmap_is_modified(pg)) {
248 fs->lfs_avail += btofsb(fs,
249 bp->b_bcount);
250 wakeup(&fs->lfs_avail);
251 lfs_freebuf(fs, bp);
252 bp = NULL;
253 goto nextbp;
254 }
255 }
256 simple_unlock(&vp->v_interlock);
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 fs->lfs_avail += btofsb(fs,
267 bp->b_bcount);
268 wakeup(&fs->lfs_avail);
269 lfs_freebuf(fs, bp);
270 bp = NULL;
271 break;
272 }
273 }
274 nextbp:
275 ;
276 }
277 splx(s);
278 }
279
280 /* If the node is being written, wait until that is done */
281 s = splbio();
282 if (WRITEINPROG(vp)) {
283 #ifdef DEBUG_LFS
284 ivndebug(vp,"vflush/writeinprog");
285 #endif
286 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
287 }
288 splx(s);
289
290 /* Protect against VXLOCK deadlock in vinvalbuf() */
291 lfs_seglock(fs, SEGM_SYNC);
292
293 /* If we're supposed to flush a freed inode, just toss it */
294 /* XXX - seglock, so these buffers can't be gathered, right? */
295 if (ip->i_mode == 0) {
296 printf("lfs_vflush: ino %d is freed, not flushing\n",
297 ip->i_number);
298 s = splbio();
299 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
300 nbp = LIST_NEXT(bp, b_vnbufs);
301 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
302 fs->lfs_avail += btofsb(fs, bp->b_bcount);
303 wakeup(&fs->lfs_avail);
304 }
305 /* Copied from lfs_writeseg */
306 if (bp->b_flags & B_CALL) {
307 biodone(bp);
308 } else {
309 bremfree(bp);
310 LFS_UNLOCK_BUF(bp);
311 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
312 B_GATHERED);
313 bp->b_flags |= B_DONE;
314 reassignbuf(bp, vp);
315 brelse(bp);
316 }
317 }
318 splx(s);
319 LFS_CLR_UINO(ip, IN_CLEANING);
320 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
321 ip->i_flag &= ~IN_ALLMOD;
322 printf("lfs_vflush: done not flushing ino %d\n",
323 ip->i_number);
324 lfs_segunlock(fs);
325 return 0;
326 }
327
328 SET_FLUSHING(fs,vp);
329 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
330 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
331 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
332 CLR_FLUSHING(fs,vp);
333 lfs_segunlock(fs);
334 return error;
335 }
336 sp = fs->lfs_sp;
337
338 flushed = 0;
339 if (VPISEMPTY(vp)) {
340 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
341 ++flushed;
342 } else if ((ip->i_flag & IN_CLEANING) &&
343 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
344 #ifdef DEBUG_LFS
345 ivndebug(vp,"vflush/clean");
346 #endif
347 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
348 ++flushed;
349 } else if (lfs_dostats) {
350 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
351 ++lfs_stats.vflush_invoked;
352 #ifdef DEBUG_LFS
353 ivndebug(vp,"vflush");
354 #endif
355 }
356
357 #ifdef DIAGNOSTIC
358 /* XXX KS This actually can happen right now, though it shouldn't(?) */
359 if (vp->v_flag & VDIROP) {
360 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
361 /* panic("VDIROP being flushed...this can\'t happen"); */
362 }
363 if (vp->v_usecount < 0) {
364 printf("usecount=%ld\n", (long)vp->v_usecount);
365 panic("lfs_vflush: usecount<0");
366 }
367 #endif
368
369 #if 1
370 do {
371 do {
372 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
373 lfs_writefile(fs, sp, vp);
374 } while (lfs_writeinode(fs, sp, ip));
375 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
376 #else
377 if (flushed && vp != fs->lfs_ivnode)
378 lfs_writeseg(fs, sp);
379 else do {
380 fs->lfs_flags &= ~LFS_IFDIRTY;
381 lfs_writefile(fs, sp, vp);
382 redo = lfs_writeinode(fs, sp, ip);
383 redo += lfs_writeseg(fs, sp);
384 redo += (fs->lfs_flags & LFS_IFDIRTY);
385 } while (redo && vp == fs->lfs_ivnode);
386 #endif
387 if (lfs_dostats) {
388 ++lfs_stats.nwrites;
389 if (sp->seg_flags & SEGM_SYNC)
390 ++lfs_stats.nsync_writes;
391 if (sp->seg_flags & SEGM_CKP)
392 ++lfs_stats.ncheckpoints;
393 }
394 /*
395 * If we were called from somewhere that has already held the seglock
396 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
397 * the write to complete because we are still locked.
398 * Since lfs_vflush() must return the vnode with no dirty buffers,
399 * we must explicitly wait, if that is the case.
400 *
401 * We compare the iocount against 1, not 0, because it is
402 * artificially incremented by lfs_seglock().
403 */
404 simple_lock(&fs->lfs_interlock);
405 if (fs->lfs_seglock > 1) {
406 simple_unlock(&fs->lfs_interlock);
407 while (fs->lfs_iocount > 1)
408 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
409 "lfs_vflush", 0);
410 } else
411 simple_unlock(&fs->lfs_interlock);
412
413 lfs_segunlock(fs);
414
415 /* Wait for these buffers to be recovered by aiodoned */
416 s = splbio();
417 simple_lock(&global_v_numoutput_slock);
418 while (vp->v_numoutput > 0) {
419 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
420 &global_v_numoutput_slock);
421 }
422 simple_unlock(&global_v_numoutput_slock);
423 splx(s);
424
425 CLR_FLUSHING(fs,vp);
426 return (0);
427 }
428
429 #ifdef DEBUG_LFS_VERBOSE
430 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
431 #else
432 # define vndebug(vp,str)
433 #endif
434
435 int
436 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
437 {
438 struct inode *ip;
439 struct vnode *vp, *nvp;
440 int inodes_written = 0, only_cleaning;
441
442 #ifndef LFS_NO_BACKVP_HACK
443 /* BEGIN HACK */
444 #define VN_OFFSET \
445 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
446 #define BACK_VP(VP) \
447 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
448 #define BEG_OF_VLIST \
449 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
450 - VN_OFFSET))
451
452 /* Find last vnode. */
453 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
454 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
455 vp = LIST_NEXT(vp, v_mntvnodes));
456 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
457 nvp = BACK_VP(vp);
458 #else
459 loop:
460 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
461 nvp = LIST_NEXT(vp, v_mntvnodes);
462 #endif
463 /*
464 * If the vnode that we are about to sync is no longer
465 * associated with this mount point, start over.
466 */
467 if (vp->v_mount != mp) {
468 printf("lfs_writevnodes: starting over\n");
469 /*
470 * After this, pages might be busy
471 * due to our own previous putpages.
472 * Start actual segment write here to avoid deadlock.
473 */
474 (void)lfs_writeseg(fs, sp);
475 goto loop;
476 }
477
478 if (vp->v_type == VNON) {
479 continue;
480 }
481
482 ip = VTOI(vp);
483 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
484 (op != VN_DIROP && op != VN_CLEAN &&
485 (vp->v_flag & VDIROP))) {
486 vndebug(vp,"dirop");
487 continue;
488 }
489
490 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
491 vndebug(vp,"empty");
492 continue;
493 }
494
495 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
496 && vp != fs->lfs_flushvp
497 && !(ip->i_flag & IN_CLEANING)) {
498 vndebug(vp,"cleaning");
499 continue;
500 }
501
502 if (lfs_vref(vp)) {
503 vndebug(vp,"vref");
504 continue;
505 }
506
507 only_cleaning = 0;
508 /*
509 * Write the inode/file if dirty and it's not the IFILE.
510 */
511 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
512 only_cleaning =
513 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
514
515 if (ip->i_number != LFS_IFILE_INUM)
516 lfs_writefile(fs, sp, vp);
517 if (!VPISEMPTY(vp)) {
518 if (WRITEINPROG(vp)) {
519 #ifdef DEBUG_LFS
520 ivndebug(vp,"writevnodes/write2");
521 #endif
522 } else if (!(ip->i_flag & IN_ALLMOD)) {
523 #ifdef DEBUG_LFS
524 printf("<%d>",ip->i_number);
525 #endif
526 LFS_SET_UINO(ip, IN_MODIFIED);
527 }
528 }
529 (void) lfs_writeinode(fs, sp, ip);
530 inodes_written++;
531 }
532
533 if (lfs_clean_vnhead && only_cleaning)
534 lfs_vunref_head(vp);
535 else
536 lfs_vunref(vp);
537 }
538 return inodes_written;
539 }
540
541 /*
542 * Do a checkpoint.
543 */
544 int
545 lfs_segwrite(struct mount *mp, int flags)
546 {
547 struct buf *bp;
548 struct inode *ip;
549 struct lfs *fs;
550 struct segment *sp;
551 struct vnode *vp;
552 SEGUSE *segusep;
553 int do_ckp, did_ckp, error, s;
554 unsigned n, segleft, maxseg, sn, i, curseg;
555 int writer_set = 0;
556 int dirty;
557 int redo;
558
559 fs = VFSTOUFS(mp)->um_lfs;
560
561 if (fs->lfs_ronly)
562 return EROFS;
563
564 lfs_imtime(fs);
565
566 /*
567 * Allocate a segment structure and enough space to hold pointers to
568 * the maximum possible number of buffers which can be described in a
569 * single summary block.
570 */
571 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
572 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
573 sp = fs->lfs_sp;
574
575 /*
576 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
577 * in which case we have to flush *all* buffers off of this vnode.
578 * We don't care about other nodes, but write any non-dirop nodes
579 * anyway in anticipation of another getnewvnode().
580 *
581 * If we're cleaning we only write cleaning and ifile blocks, and
582 * no dirops, since otherwise we'd risk corruption in a crash.
583 */
584 if (sp->seg_flags & SEGM_CLEAN)
585 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
586 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
587 lfs_writevnodes(fs, mp, sp, VN_REG);
588 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
589 error = lfs_writer_enter(fs, "lfs writer");
590 if (error) {
591 printf("segwrite mysterious error\n");
592 /* XXX why not segunlock? */
593 pool_put(&fs->lfs_bpppool, sp->bpp);
594 sp->bpp = NULL;
595 pool_put(&fs->lfs_segpool, sp);
596 sp = fs->lfs_sp = NULL;
597 return (error);
598 }
599 writer_set = 1;
600 lfs_writevnodes(fs, mp, sp, VN_DIROP);
601 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
602 }
603 }
604
605 /*
606 * If we are doing a checkpoint, mark everything since the
607 * last checkpoint as no longer ACTIVE.
608 */
609 if (do_ckp) {
610 segleft = fs->lfs_nseg;
611 curseg = 0;
612 for (n = 0; n < fs->lfs_segtabsz; n++) {
613 dirty = 0;
614 if (bread(fs->lfs_ivnode,
615 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
616 panic("lfs_segwrite: ifile read");
617 segusep = (SEGUSE *)bp->b_data;
618 maxseg = min(segleft, fs->lfs_sepb);
619 for (i = 0; i < maxseg; i++) {
620 sn = curseg + i;
621 if (sn != fs->lfs_curseg &&
622 segusep->su_flags & SEGUSE_ACTIVE) {
623 segusep->su_flags &= ~SEGUSE_ACTIVE;
624 --fs->lfs_nactive;
625 ++dirty;
626 }
627 fs->lfs_suflags[fs->lfs_activesb][sn] =
628 segusep->su_flags;
629 if (fs->lfs_version > 1)
630 ++segusep;
631 else
632 segusep = (SEGUSE *)
633 ((SEGUSE_V1 *)segusep + 1);
634 }
635
636 if (dirty)
637 error = LFS_BWRITE_LOG(bp); /* Ifile */
638 else
639 brelse(bp);
640 segleft -= fs->lfs_sepb;
641 curseg += fs->lfs_sepb;
642 }
643 }
644
645 did_ckp = 0;
646 if (do_ckp || fs->lfs_doifile) {
647 do {
648 vp = fs->lfs_ivnode;
649
650 #ifdef DEBUG
651 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
652 #endif
653 fs->lfs_flags &= ~LFS_IFDIRTY;
654
655 ip = VTOI(vp);
656
657 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
658 lfs_writefile(fs, sp, vp);
659
660 if (ip->i_flag & IN_ALLMOD)
661 ++did_ckp;
662 redo = lfs_writeinode(fs, sp, ip);
663 redo += lfs_writeseg(fs, sp);
664 redo += (fs->lfs_flags & LFS_IFDIRTY);
665 } while (redo && do_ckp);
666
667 /*
668 * Unless we are unmounting, the Ifile may continue to have
669 * dirty blocks even after a checkpoint, due to changes to
670 * inodes' atime. If we're checkpointing, it's "impossible"
671 * for other parts of the Ifile to be dirty after the loop
672 * above, since we hold the segment lock.
673 */
674 s = splbio();
675 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
676 LFS_CLR_UINO(ip, IN_ALLMOD);
677 }
678 #ifdef DIAGNOSTIC
679 else if (do_ckp) {
680 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
681 if (bp->b_lblkno < fs->lfs_cleansz +
682 fs->lfs_segtabsz &&
683 !(bp->b_flags & B_GATHERED)) {
684 panic("dirty blocks");
685 }
686 }
687 }
688 #endif
689 splx(s);
690 } else {
691 (void) lfs_writeseg(fs, sp);
692 }
693
694 /* Note Ifile no longer needs to be written */
695 fs->lfs_doifile = 0;
696 if (writer_set)
697 lfs_writer_leave(fs);
698
699 /*
700 * If we didn't write the Ifile, we didn't really do anything.
701 * That means that (1) there is a checkpoint on disk and (2)
702 * nothing has changed since it was written.
703 *
704 * Take the flags off of the segment so that lfs_segunlock
705 * doesn't have to write the superblock either.
706 */
707 if (do_ckp && !did_ckp) {
708 sp->seg_flags &= ~SEGM_CKP;
709 }
710
711 if (lfs_dostats) {
712 ++lfs_stats.nwrites;
713 if (sp->seg_flags & SEGM_SYNC)
714 ++lfs_stats.nsync_writes;
715 if (sp->seg_flags & SEGM_CKP)
716 ++lfs_stats.ncheckpoints;
717 }
718 lfs_segunlock(fs);
719 return (0);
720 }
721
722 /*
723 * Write the dirty blocks associated with a vnode.
724 */
725 void
726 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
727 {
728 struct buf *bp;
729 struct finfo *fip;
730 struct inode *ip;
731 IFILE *ifp;
732 int i, frag;
733
734 ip = VTOI(vp);
735
736 if (sp->seg_bytes_left < fs->lfs_bsize ||
737 sp->sum_bytes_left < sizeof(struct finfo))
738 (void) lfs_writeseg(fs, sp);
739
740 sp->sum_bytes_left -= FINFOSIZE;
741 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
742
743 if (vp->v_flag & VDIROP)
744 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
745
746 fip = sp->fip;
747 fip->fi_nblocks = 0;
748 fip->fi_ino = ip->i_number;
749 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
750 fip->fi_version = ifp->if_version;
751 brelse(bp);
752
753 if (sp->seg_flags & SEGM_CLEAN) {
754 lfs_gather(fs, sp, vp, lfs_match_fake);
755 /*
756 * For a file being flushed, we need to write *all* blocks.
757 * This means writing the cleaning blocks first, and then
758 * immediately following with any non-cleaning blocks.
759 * The same is true of the Ifile since checkpoints assume
760 * that all valid Ifile blocks are written.
761 */
762 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
763 lfs_gather(fs, sp, vp, lfs_match_data);
764 /*
765 * Don't call VOP_PUTPAGES: if we're flushing,
766 * we've already done it, and the Ifile doesn't
767 * use the page cache.
768 */
769 }
770 } else {
771 lfs_gather(fs, sp, vp, lfs_match_data);
772 /*
773 * If we're flushing, we've already called VOP_PUTPAGES
774 * so don't do it again. Otherwise, we want to write
775 * everything we've got.
776 */
777 if (!IS_FLUSHING(fs, vp)) {
778 simple_lock(&vp->v_interlock);
779 VOP_PUTPAGES(vp, 0, 0,
780 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
781 }
782 }
783
784 /*
785 * It may not be necessary to write the meta-data blocks at this point,
786 * as the roll-forward recovery code should be able to reconstruct the
787 * list.
788 *
789 * We have to write them anyway, though, under two conditions: (1) the
790 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
791 * checkpointing.
792 *
793 * BUT if we are cleaning, we might have indirect blocks that refer to
794 * new blocks not being written yet, in addition to fragments being
795 * moved out of a cleaned segment. If that is the case, don't
796 * write the indirect blocks, or the finfo will have a small block
797 * in the middle of it!
798 * XXX in this case isn't the inode size wrong too?
799 */
800 frag = 0;
801 if (sp->seg_flags & SEGM_CLEAN) {
802 for (i = 0; i < NDADDR; i++)
803 if (ip->i_lfs_fragsize[i] > 0 &&
804 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
805 ++frag;
806 }
807 #ifdef DIAGNOSTIC
808 if (frag > 1)
809 panic("lfs_writefile: more than one fragment!");
810 #endif
811 if (IS_FLUSHING(fs, vp) ||
812 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
813 lfs_gather(fs, sp, vp, lfs_match_indir);
814 lfs_gather(fs, sp, vp, lfs_match_dindir);
815 lfs_gather(fs, sp, vp, lfs_match_tindir);
816 }
817 fip = sp->fip;
818 if (fip->fi_nblocks != 0) {
819 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
820 sizeof(int32_t) * (fip->fi_nblocks));
821 sp->start_lbp = &sp->fip->fi_blocks[0];
822 } else {
823 sp->sum_bytes_left += FINFOSIZE;
824 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
825 }
826 }
827
828 int
829 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
830 {
831 struct buf *bp, *ibp;
832 struct ufs1_dinode *cdp;
833 IFILE *ifp;
834 SEGUSE *sup;
835 daddr_t daddr;
836 int32_t *daddrp; /* XXX ondisk32 */
837 ino_t ino;
838 int error, i, ndx, fsb = 0;
839 int redo_ifile = 0;
840 struct timespec ts;
841 int gotblk = 0;
842
843 if (!(ip->i_flag & IN_ALLMOD))
844 return (0);
845
846 /* Allocate a new inode block if necessary. */
847 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
848 sp->ibp == NULL) {
849 /* Allocate a new segment if necessary. */
850 if (sp->seg_bytes_left < fs->lfs_ibsize ||
851 sp->sum_bytes_left < sizeof(int32_t))
852 (void) lfs_writeseg(fs, sp);
853
854 /* Get next inode block. */
855 daddr = fs->lfs_offset;
856 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
857 sp->ibp = *sp->cbpp++ =
858 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
859 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
860 gotblk++;
861
862 /* Zero out inode numbers */
863 for (i = 0; i < INOPB(fs); ++i)
864 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
865 0;
866
867 ++sp->start_bpp;
868 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
869 /* Set remaining space counters. */
870 sp->seg_bytes_left -= fs->lfs_ibsize;
871 sp->sum_bytes_left -= sizeof(int32_t);
872 ndx = fs->lfs_sumsize / sizeof(int32_t) -
873 sp->ninodes / INOPB(fs) - 1;
874 ((int32_t *)(sp->segsum))[ndx] = daddr;
875 }
876
877 /* Update the inode times and copy the inode onto the inode page. */
878 TIMEVAL_TO_TIMESPEC(&time, &ts);
879 /* XXX kludge --- don't redirty the ifile just to put times on it */
880 if (ip->i_number != LFS_IFILE_INUM)
881 LFS_ITIMES(ip, &ts, &ts, &ts);
882
883 /*
884 * If this is the Ifile, and we've already written the Ifile in this
885 * partial segment, just overwrite it (it's not on disk yet) and
886 * continue.
887 *
888 * XXX we know that the bp that we get the second time around has
889 * already been gathered.
890 */
891 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
892 *(sp->idp) = *ip->i_din.ffs1_din;
893 ip->i_lfs_osize = ip->i_size;
894 return 0;
895 }
896
897 bp = sp->ibp;
898 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
899 *cdp = *ip->i_din.ffs1_din;
900 #ifdef LFS_IFILE_FRAG_ADDRESSING
901 if (fs->lfs_version > 1)
902 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
903 #endif
904
905 /*
906 * If we are cleaning, ensure that we don't write UNWRITTEN disk
907 * addresses to disk; possibly revert the inode size.
908 * XXX By not writing these blocks, we are making the lfs_avail
909 * XXX count on disk wrong by the same amount. We should be
910 * XXX able to "borrow" from lfs_avail and return it after the
911 * XXX Ifile is written. See also in lfs_writeseg.
912 */
913 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
914 cdp->di_size = ip->i_lfs_osize;
915 #ifdef DEBUG_LFS
916 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
917 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks);
918 #endif
919 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
920 daddrp++) {
921 if (*daddrp == UNWRITTEN) {
922 #ifdef DEBUG_LFS
923 printf("lfs_writeinode: wiping UNWRITTEN\n");
924 #endif
925 *daddrp = 0;
926 }
927 }
928 } else {
929 /* If all blocks are goig to disk, update the "size on disk" */
930 ip->i_lfs_osize = ip->i_size;
931 }
932
933 if (ip->i_flag & IN_CLEANING)
934 LFS_CLR_UINO(ip, IN_CLEANING);
935 else {
936 /* XXX IN_ALLMOD */
937 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
938 IN_UPDATE);
939 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
940 LFS_CLR_UINO(ip, IN_MODIFIED);
941 #ifdef DEBUG_LFS
942 else
943 printf("lfs_writeinode: ino %d: real blks=%d, "
944 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
945 ip->i_lfs_effnblks);
946 #endif
947 }
948
949 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
950 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
951 (sp->ninodes % INOPB(fs));
952 if (gotblk) {
953 LFS_LOCK_BUF(bp);
954 brelse(bp);
955 }
956
957 /* Increment inode count in segment summary block. */
958 ++((SEGSUM *)(sp->segsum))->ss_ninos;
959
960 /* If this page is full, set flag to allocate a new page. */
961 if (++sp->ninodes % INOPB(fs) == 0)
962 sp->ibp = NULL;
963
964 /*
965 * If updating the ifile, update the super-block. Update the disk
966 * address and access times for this inode in the ifile.
967 */
968 ino = ip->i_number;
969 if (ino == LFS_IFILE_INUM) {
970 daddr = fs->lfs_idaddr;
971 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
972 } else {
973 LFS_IENTRY(ifp, fs, ino, ibp);
974 daddr = ifp->if_daddr;
975 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
976 #ifdef LFS_DEBUG_NEXTFREE
977 if (ino > 3 && ifp->if_nextfree) {
978 vprint("lfs_writeinode",ITOV(ip));
979 printf("lfs_writeinode: updating free ino %d\n",
980 ip->i_number);
981 }
982 #endif
983 error = LFS_BWRITE_LOG(ibp); /* Ifile */
984 }
985
986 /*
987 * The inode's last address should not be in the current partial
988 * segment, except under exceptional circumstances (lfs_writevnodes
989 * had to start over, and in the meantime more blocks were written
990 * to a vnode). Both inodes will be accounted to this segment
991 * in lfs_writeseg so we need to subtract the earlier version
992 * here anyway. The segment count can temporarily dip below
993 * zero here; keep track of how many duplicates we have in
994 * "dupino" so we don't panic below.
995 */
996 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
997 ++sp->ndupino;
998 printf("lfs_writeinode: last inode addr in current pseg "
999 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1000 (long long)daddr, sp->ndupino);
1001 }
1002 /*
1003 * Account the inode: it no longer belongs to its former segment,
1004 * though it will not belong to the new segment until that segment
1005 * is actually written.
1006 */
1007 if (daddr != LFS_UNUSED_DADDR) {
1008 u_int32_t oldsn = dtosn(fs, daddr);
1009 #ifdef DIAGNOSTIC
1010 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1011 #endif
1012 LFS_SEGENTRY(sup, fs, oldsn, bp);
1013 #ifdef DIAGNOSTIC
1014 if (sup->su_nbytes +
1015 sizeof (struct ufs1_dinode) * ndupino
1016 < sizeof (struct ufs1_dinode)) {
1017 printf("lfs_writeinode: negative bytes "
1018 "(segment %" PRIu32 " short by %d, "
1019 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1020 ", daddr=%" PRId64 ", su_nbytes=%u, "
1021 "ndupino=%d)\n",
1022 dtosn(fs, daddr),
1023 (int)sizeof (struct ufs1_dinode) *
1024 (1 - sp->ndupino) - sup->su_nbytes,
1025 oldsn, sp->seg_number, daddr,
1026 (unsigned int)sup->su_nbytes,
1027 sp->ndupino);
1028 panic("lfs_writeinode: negative bytes");
1029 sup->su_nbytes = sizeof (struct ufs1_dinode);
1030 }
1031 #endif
1032 #ifdef DEBUG_SU_NBYTES
1033 printf("seg %d -= %d for ino %d inode\n",
1034 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino);
1035 #endif
1036 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1037 redo_ifile =
1038 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1039 if (redo_ifile)
1040 fs->lfs_flags |= LFS_IFDIRTY;
1041 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1042 }
1043 return (redo_ifile);
1044 }
1045
1046 int
1047 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1048 {
1049 struct lfs *fs;
1050 int version;
1051 int j, blksinblk;
1052
1053 /*
1054 * If full, finish this segment. We may be doing I/O, so
1055 * release and reacquire the splbio().
1056 */
1057 #ifdef DIAGNOSTIC
1058 if (sp->vp == NULL)
1059 panic ("lfs_gatherblock: Null vp in segment");
1060 #endif
1061 fs = sp->fs;
1062 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1063 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1064 sp->seg_bytes_left < bp->b_bcount) {
1065 if (sptr)
1066 splx(*sptr);
1067 lfs_updatemeta(sp);
1068
1069 version = sp->fip->fi_version;
1070 (void) lfs_writeseg(fs, sp);
1071
1072 sp->fip->fi_version = version;
1073 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1074 /* Add the current file to the segment summary. */
1075 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1076 sp->sum_bytes_left -= FINFOSIZE;
1077
1078 if (sptr)
1079 *sptr = splbio();
1080 return (1);
1081 }
1082
1083 #ifdef DEBUG
1084 if (bp->b_flags & B_GATHERED) {
1085 printf("lfs_gatherblock: already gathered! Ino %d,"
1086 " lbn %" PRId64 "\n",
1087 sp->fip->fi_ino, bp->b_lblkno);
1088 return (0);
1089 }
1090 #endif
1091 /* Insert into the buffer list, update the FINFO block. */
1092 bp->b_flags |= B_GATHERED;
1093
1094 *sp->cbpp++ = bp;
1095 for (j = 0; j < blksinblk; j++)
1096 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1097
1098 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1099 sp->seg_bytes_left -= bp->b_bcount;
1100 return (0);
1101 }
1102
1103 int
1104 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1105 int (*match)(struct lfs *, struct buf *))
1106 {
1107 struct buf *bp, *nbp;
1108 int s, count = 0;
1109
1110 sp->vp = vp;
1111 s = splbio();
1112
1113 #ifndef LFS_NO_BACKBUF_HACK
1114 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1115 # define BUF_OFFSET \
1116 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1117 # define BACK_BUF(BP) \
1118 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1119 # define BEG_OF_LIST \
1120 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1121
1122 loop:
1123 /* Find last buffer. */
1124 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1125 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1126 bp = LIST_NEXT(bp, b_vnbufs))
1127 /* nothing */;
1128 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1129 nbp = BACK_BUF(bp);
1130 #else /* LFS_NO_BACKBUF_HACK */
1131 loop:
1132 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1133 nbp = LIST_NEXT(bp, b_vnbufs);
1134 #endif /* LFS_NO_BACKBUF_HACK */
1135 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1136 #ifdef DEBUG_LFS
1137 if (vp == fs->lfs_ivnode &&
1138 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1139 printf("(%" PRId64 ":%lx)",
1140 bp->b_lblkno, bp->b_flags);
1141 #endif
1142 continue;
1143 }
1144 if (vp->v_type == VBLK) {
1145 /* For block devices, just write the blocks. */
1146 /* XXX Do we really need to even do this? */
1147 #ifdef DEBUG_LFS
1148 if (count == 0)
1149 printf("BLK(");
1150 printf(".");
1151 #endif
1152 /*
1153 * Get the block before bwrite,
1154 * so we don't corrupt the free list
1155 */
1156 bp->b_flags |= B_BUSY;
1157 bremfree(bp);
1158 bwrite(bp);
1159 } else {
1160 #ifdef DIAGNOSTIC
1161 # ifdef LFS_USE_B_INVAL
1162 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1163 printf("lfs_gather: lbn %" PRId64 " is "
1164 "B_INVAL\n", bp->b_lblkno);
1165 VOP_PRINT(bp->b_vp);
1166 }
1167 # endif /* LFS_USE_B_INVAL */
1168 if (!(bp->b_flags & B_DELWRI))
1169 panic("lfs_gather: bp not B_DELWRI");
1170 if (!(bp->b_flags & B_LOCKED)) {
1171 printf("lfs_gather: lbn %" PRId64 " blk "
1172 "%" PRId64 " not B_LOCKED\n",
1173 bp->b_lblkno,
1174 dbtofsb(fs, bp->b_blkno));
1175 VOP_PRINT(bp->b_vp);
1176 panic("lfs_gather: bp not B_LOCKED");
1177 }
1178 #endif
1179 if (lfs_gatherblock(sp, bp, &s)) {
1180 goto loop;
1181 }
1182 }
1183 count++;
1184 }
1185 splx(s);
1186 #ifdef DEBUG_LFS
1187 if (vp->v_type == VBLK && count)
1188 printf(")\n");
1189 #endif
1190 lfs_updatemeta(sp);
1191 sp->vp = NULL;
1192 return count;
1193 }
1194
1195 #if DEBUG
1196 # define DEBUG_OOFF(n) do { \
1197 if (ooff == 0) { \
1198 printf("lfs_updatemeta[%d]: warning: writing " \
1199 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1200 ", was 0x0 (or %" PRId64 ")\n", \
1201 (n), ip->i_number, lbn, ndaddr, daddr); \
1202 } \
1203 } while (0)
1204 #else
1205 # define DEBUG_OOFF(n)
1206 #endif
1207
1208 /*
1209 * Change the given block's address to ndaddr, finding its previous
1210 * location using ufs_bmaparray().
1211 *
1212 * Account for this change in the segment table.
1213 */
1214 void
1215 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1216 int32_t ndaddr, int size)
1217 {
1218 SEGUSE *sup;
1219 struct buf *bp;
1220 struct indir a[NIADDR + 2], *ap;
1221 struct inode *ip;
1222 struct vnode *vp;
1223 daddr_t daddr, ooff;
1224 int num, error;
1225 int bb, osize, obb;
1226
1227 vp = sp->vp;
1228 ip = VTOI(vp);
1229
1230 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1231 if (error)
1232 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1233
1234 KASSERT(daddr <= LFS_MAX_DADDR);
1235 if (daddr > 0)
1236 daddr = dbtofsb(fs, daddr);
1237
1238 bb = fragstofsb(fs, numfrags(fs, size));
1239 switch (num) {
1240 case 0:
1241 ooff = ip->i_ffs1_db[lbn];
1242 DEBUG_OOFF(0);
1243 if (ooff == UNWRITTEN)
1244 ip->i_ffs1_blocks += bb;
1245 else {
1246 /* possible fragment truncation or extension */
1247 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1248 ip->i_ffs1_blocks += (bb - obb);
1249 }
1250 ip->i_ffs1_db[lbn] = ndaddr;
1251 break;
1252 case 1:
1253 ooff = ip->i_ffs1_ib[a[0].in_off];
1254 DEBUG_OOFF(1);
1255 if (ooff == UNWRITTEN)
1256 ip->i_ffs1_blocks += bb;
1257 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1258 break;
1259 default:
1260 ap = &a[num - 1];
1261 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1262 panic("lfs_updatemeta: bread bno %" PRId64,
1263 ap->in_lbn);
1264
1265 /* XXX ondisk32 */
1266 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1267 DEBUG_OOFF(num);
1268 if (ooff == UNWRITTEN)
1269 ip->i_ffs1_blocks += bb;
1270 /* XXX ondisk32 */
1271 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1272 (void) VOP_BWRITE(bp);
1273 }
1274
1275 /*
1276 * Though we'd rather it couldn't, this *can* happen right now
1277 * if cleaning blocks and regular blocks coexist.
1278 */
1279 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1280
1281 /*
1282 * Update segment usage information, based on old size
1283 * and location.
1284 */
1285 if (daddr > 0) {
1286 u_int32_t oldsn = dtosn(fs, daddr);
1287 #ifdef DIAGNOSTIC
1288 int ndupino = (sp->seg_number == oldsn) ?
1289 sp->ndupino : 0;
1290 #endif
1291 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1292 if (lbn >= 0 && lbn < NDADDR)
1293 osize = ip->i_lfs_fragsize[lbn];
1294 else
1295 osize = fs->lfs_bsize;
1296 LFS_SEGENTRY(sup, fs, oldsn, bp);
1297 #ifdef DIAGNOSTIC
1298 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1299 < osize) {
1300 printf("lfs_updatemeta: negative bytes "
1301 "(segment %" PRIu32 " short by %" PRId64
1302 ")\n", dtosn(fs, daddr),
1303 (int64_t)osize -
1304 (sizeof (struct ufs1_dinode) * sp->ndupino +
1305 sup->su_nbytes));
1306 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1307 ", addr = 0x%" PRIx64 "\n",
1308 VTOI(sp->vp)->i_number, lbn, daddr);
1309 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1310 panic("lfs_updatemeta: negative bytes");
1311 sup->su_nbytes = osize -
1312 sizeof (struct ufs1_dinode) * sp->ndupino;
1313 }
1314 #endif
1315 #ifdef DEBUG_SU_NBYTES
1316 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1317 " db 0x%" PRIx64 "\n",
1318 dtosn(fs, daddr), osize,
1319 VTOI(sp->vp)->i_number, lbn, daddr);
1320 #endif
1321 sup->su_nbytes -= osize;
1322 if (!(bp->b_flags & B_GATHERED))
1323 fs->lfs_flags |= LFS_IFDIRTY;
1324 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1325 }
1326 /*
1327 * Now that this block has a new address, and its old
1328 * segment no longer owns it, we can forget about its
1329 * old size.
1330 */
1331 if (lbn >= 0 && lbn < NDADDR)
1332 ip->i_lfs_fragsize[lbn] = size;
1333 }
1334
1335 /*
1336 * Update the metadata that points to the blocks listed in the FINFO
1337 * array.
1338 */
1339 void
1340 lfs_updatemeta(struct segment *sp)
1341 {
1342 struct buf *sbp;
1343 struct lfs *fs;
1344 struct vnode *vp;
1345 daddr_t lbn;
1346 int i, nblocks, num;
1347 int bb;
1348 int bytesleft, size;
1349
1350 vp = sp->vp;
1351 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1352 KASSERT(nblocks >= 0);
1353 if (vp == NULL || nblocks == 0)
1354 return;
1355
1356 /*
1357 * This count may be high due to oversize blocks from lfs_gop_write.
1358 * Correct for this. (XXX we should be able to keep track of these.)
1359 */
1360 fs = sp->fs;
1361 for (i = 0; i < nblocks; i++) {
1362 if (sp->start_bpp[i] == NULL) {
1363 printf("nblocks = %d, not %d\n", i, nblocks);
1364 nblocks = i;
1365 break;
1366 }
1367 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1368 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1369 nblocks -= num - 1;
1370 }
1371
1372 KASSERT(vp->v_type == VREG ||
1373 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1374 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1375
1376 /*
1377 * Sort the blocks.
1378 *
1379 * We have to sort even if the blocks come from the
1380 * cleaner, because there might be other pending blocks on the
1381 * same inode...and if we don't sort, and there are fragments
1382 * present, blocks may be written in the wrong place.
1383 */
1384 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1385
1386 /*
1387 * Record the length of the last block in case it's a fragment.
1388 * If there are indirect blocks present, they sort last. An
1389 * indirect block will be lfs_bsize and its presence indicates
1390 * that you cannot have fragments.
1391 *
1392 * XXX This last is a lie. A cleaned fragment can coexist with
1393 * XXX a later indirect block. This will continue to be
1394 * XXX true until lfs_markv is fixed to do everything with
1395 * XXX fake blocks (including fake inodes and fake indirect blocks).
1396 */
1397 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1398 fs->lfs_bmask) + 1;
1399
1400 /*
1401 * Assign disk addresses, and update references to the logical
1402 * block and the segment usage information.
1403 */
1404 for (i = nblocks; i--; ++sp->start_bpp) {
1405 sbp = *sp->start_bpp;
1406 lbn = *sp->start_lbp;
1407 KASSERT(sbp->b_lblkno == lbn);
1408
1409 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1410
1411 /*
1412 * If we write a frag in the wrong place, the cleaner won't
1413 * be able to correctly identify its size later, and the
1414 * segment will be uncleanable. (Even worse, it will assume
1415 * that the indirect block that actually ends the list
1416 * is of a smaller size!)
1417 */
1418 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1419 panic("lfs_updatemeta: fragment is not last block");
1420
1421 /*
1422 * For each subblock in this possibly oversized block,
1423 * update its address on disk.
1424 */
1425 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1426 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1427 bytesleft -= fs->lfs_bsize) {
1428 size = MIN(bytesleft, fs->lfs_bsize);
1429 bb = fragstofsb(fs, numfrags(fs, size));
1430 lbn = *sp->start_lbp++;
1431 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1432 fs->lfs_offset += bb;
1433 }
1434
1435 }
1436 }
1437
1438 /*
1439 * Start a new segment.
1440 */
1441 int
1442 lfs_initseg(struct lfs *fs)
1443 {
1444 struct segment *sp;
1445 SEGUSE *sup;
1446 SEGSUM *ssp;
1447 struct buf *bp, *sbp;
1448 int repeat;
1449
1450 sp = fs->lfs_sp;
1451
1452 repeat = 0;
1453
1454 /* Advance to the next segment. */
1455 if (!LFS_PARTIAL_FITS(fs)) {
1456 /* lfs_avail eats the remaining space */
1457 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1458 fs->lfs_curseg);
1459 /* Wake up any cleaning procs waiting on this file system. */
1460 wakeup(&lfs_allclean_wakeup);
1461 wakeup(&fs->lfs_nextseg);
1462 lfs_newseg(fs);
1463 repeat = 1;
1464 fs->lfs_offset = fs->lfs_curseg;
1465
1466 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1467 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1468
1469 /*
1470 * If the segment contains a superblock, update the offset
1471 * and summary address to skip over it.
1472 */
1473 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1474 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1475 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1476 sp->seg_bytes_left -= LFS_SBPAD;
1477 }
1478 brelse(bp);
1479 /* Segment zero could also contain the labelpad */
1480 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1481 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1482 fs->lfs_offset +=
1483 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1484 sp->seg_bytes_left -=
1485 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1486 }
1487 } else {
1488 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1489 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1490 (fs->lfs_offset - fs->lfs_curseg));
1491 }
1492 fs->lfs_lastpseg = fs->lfs_offset;
1493
1494 /* Record first address of this partial segment */
1495 if (sp->seg_flags & SEGM_CLEAN) {
1496 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1497 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1498 /* "1" is the artificial inc in lfs_seglock */
1499 while (fs->lfs_iocount > 1) {
1500 tsleep(&fs->lfs_iocount, PRIBIO + 1,
1501 "lfs_initseg", 0);
1502 }
1503 fs->lfs_cleanind = 0;
1504 }
1505 }
1506
1507 sp->fs = fs;
1508 sp->ibp = NULL;
1509 sp->idp = NULL;
1510 sp->ninodes = 0;
1511 sp->ndupino = 0;
1512
1513 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1514 sp->cbpp = sp->bpp;
1515 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1516 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1517 sp->segsum = (*sp->cbpp)->b_data;
1518 memset(sp->segsum, 0, fs->lfs_sumsize);
1519 sp->start_bpp = ++sp->cbpp;
1520 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1521
1522 /* Set point to SEGSUM, initialize it. */
1523 ssp = sp->segsum;
1524 ssp->ss_next = fs->lfs_nextseg;
1525 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1526 ssp->ss_magic = SS_MAGIC;
1527
1528 /* Set pointer to first FINFO, initialize it. */
1529 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1530 sp->fip->fi_nblocks = 0;
1531 sp->start_lbp = &sp->fip->fi_blocks[0];
1532 sp->fip->fi_lastlength = 0;
1533
1534 sp->seg_bytes_left -= fs->lfs_sumsize;
1535 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1536
1537 return (repeat);
1538 }
1539
1540 /*
1541 * Return the next segment to write.
1542 */
1543 void
1544 lfs_newseg(struct lfs *fs)
1545 {
1546 CLEANERINFO *cip;
1547 SEGUSE *sup;
1548 struct buf *bp;
1549 int curseg, isdirty, sn;
1550
1551 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1552 #ifdef DEBUG_SU_NBYTES
1553 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1554 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1555 #endif
1556 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1557 sup->su_nbytes = 0;
1558 sup->su_nsums = 0;
1559 sup->su_ninos = 0;
1560 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1561
1562 LFS_CLEANERINFO(cip, fs, bp);
1563 --cip->clean;
1564 ++cip->dirty;
1565 fs->lfs_nclean = cip->clean;
1566 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1567
1568 fs->lfs_lastseg = fs->lfs_curseg;
1569 fs->lfs_curseg = fs->lfs_nextseg;
1570 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1571 sn = (sn + 1) % fs->lfs_nseg;
1572 if (sn == curseg)
1573 panic("lfs_nextseg: no clean segments");
1574 LFS_SEGENTRY(sup, fs, sn, bp);
1575 isdirty = sup->su_flags & SEGUSE_DIRTY;
1576 /* Check SEGUSE_EMPTY as we go along */
1577 if (isdirty && sup->su_nbytes == 0 &&
1578 !(sup->su_flags & SEGUSE_EMPTY))
1579 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1580 else
1581 brelse(bp);
1582
1583 if (!isdirty)
1584 break;
1585 }
1586
1587 ++fs->lfs_nactive;
1588 fs->lfs_nextseg = sntod(fs, sn);
1589 if (lfs_dostats) {
1590 ++lfs_stats.segsused;
1591 }
1592 }
1593
1594 #define BQUEUES 4 /* XXX */
1595 #define BQ_EMPTY 3 /* XXX */
1596 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1597 extern struct simplelock bqueue_slock;
1598
1599 #define BUFHASH(dvp, lbn) \
1600 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1601 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1602 /*
1603 * Insq/Remq for the buffer hash lists.
1604 */
1605 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1606 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1607
1608 static struct buf *
1609 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1610 {
1611 struct lfs_cluster *cl;
1612 struct buf **bpp, *bp;
1613 int s;
1614
1615 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1616 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1617 memset(cl, 0, sizeof(*cl));
1618 cl->fs = fs;
1619 cl->bpp = bpp;
1620 cl->bufcount = 0;
1621 cl->bufsize = 0;
1622
1623 /* If this segment is being written synchronously, note that */
1624 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1625 cl->flags |= LFS_CL_SYNC;
1626 cl->seg = fs->lfs_sp;
1627 ++cl->seg->seg_iocount;
1628 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1629 }
1630
1631 /* Get an empty buffer header, or maybe one with something on it */
1632 s = splbio();
1633 simple_lock(&bqueue_slock);
1634 if ((bp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) != NULL) {
1635 simple_lock(&bp->b_interlock);
1636 bremfree(bp);
1637 /* clear out various other fields */
1638 bp->b_flags = B_BUSY;
1639 bp->b_dev = NODEV;
1640 bp->b_blkno = bp->b_lblkno = 0;
1641 bp->b_error = 0;
1642 bp->b_resid = 0;
1643 bp->b_bcount = 0;
1644
1645 /* nuke any credentials we were holding */
1646 /* XXXXXX */
1647
1648 bremhash(bp);
1649
1650 /* disassociate us from our vnode, if we had one... */
1651 if (bp->b_vp)
1652 brelvp(bp);
1653 }
1654 while (!bp)
1655 bp = getnewbuf(0, 0);
1656 bgetvp(vp, bp);
1657 binshash(bp,&invalhash);
1658 simple_unlock(&bp->b_interlock);
1659 simple_unlock(&bqueue_slock);
1660 splx(s);
1661 bp->b_bcount = 0;
1662 bp->b_blkno = bp->b_lblkno = addr;
1663
1664 bp->b_flags |= B_CALL;
1665 bp->b_iodone = lfs_cluster_callback;
1666 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1667 bp->b_saveaddr = (caddr_t)cl;
1668
1669 return bp;
1670 }
1671
1672 int
1673 lfs_writeseg(struct lfs *fs, struct segment *sp)
1674 {
1675 struct buf **bpp, *bp, *cbp, *newbp;
1676 SEGUSE *sup;
1677 SEGSUM *ssp;
1678 dev_t i_dev;
1679 char *datap, *dp;
1680 int i, s;
1681 int do_again, nblocks, byteoffset;
1682 size_t el_size;
1683 struct lfs_cluster *cl;
1684 int (*strategy)(void *);
1685 struct vop_strategy_args vop_strategy_a;
1686 u_short ninos;
1687 struct vnode *devvp;
1688 char *p;
1689 struct vnode *vp;
1690 int32_t *daddrp; /* XXX ondisk32 */
1691 int changed;
1692 #if defined(DEBUG) && defined(LFS_PROPELLER)
1693 static int propeller;
1694 char propstring[4] = "-\\|/";
1695
1696 printf("%c\b",propstring[propeller++]);
1697 if (propeller == 4)
1698 propeller = 0;
1699 #endif
1700
1701 /*
1702 * If there are no buffers other than the segment summary to write
1703 * and it is not a checkpoint, don't do anything. On a checkpoint,
1704 * even if there aren't any buffers, you need to write the superblock.
1705 */
1706 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1707 return (0);
1708
1709 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1710 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1711
1712 /* Update the segment usage information. */
1713 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1714
1715 /* Loop through all blocks, except the segment summary. */
1716 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1717 if ((*bpp)->b_vp != devvp) {
1718 sup->su_nbytes += (*bpp)->b_bcount;
1719 #ifdef DEBUG_SU_NBYTES
1720 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1721 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1722 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1723 (*bpp)->b_blkno);
1724 #endif
1725 }
1726 }
1727
1728 ssp = (SEGSUM *)sp->segsum;
1729
1730 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1731 #ifdef DEBUG_SU_NBYTES
1732 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1733 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1734 ssp->ss_ninos);
1735 #endif
1736 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1737 /* sup->su_nbytes += fs->lfs_sumsize; */
1738 if (fs->lfs_version == 1)
1739 sup->su_olastmod = time.tv_sec;
1740 else
1741 sup->su_lastmod = time.tv_sec;
1742 sup->su_ninos += ninos;
1743 ++sup->su_nsums;
1744 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1745 fs->lfs_ibsize));
1746 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1747
1748 do_again = !(bp->b_flags & B_GATHERED);
1749 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1750
1751 /*
1752 * Mark blocks B_BUSY, to prevent then from being changed between
1753 * the checksum computation and the actual write.
1754 *
1755 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1756 * there are any, replace them with copies that have UNASSIGNED
1757 * instead.
1758 */
1759 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1760 ++bpp;
1761 bp = *bpp;
1762 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1763 bp->b_flags |= B_BUSY;
1764 continue;
1765 }
1766 again:
1767 s = splbio();
1768 if (bp->b_flags & B_BUSY) {
1769 #ifdef DEBUG
1770 printf("lfs_writeseg: avoiding potential data summary "
1771 "corruption for ino %d, lbn %" PRId64 "\n",
1772 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1773 #endif
1774 bp->b_flags |= B_WANTED;
1775 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1776 splx(s);
1777 goto again;
1778 }
1779 bp->b_flags |= B_BUSY;
1780 splx(s);
1781 /*
1782 * Check and replace indirect block UNWRITTEN bogosity.
1783 * XXX See comment in lfs_writefile.
1784 */
1785 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1786 VTOI(bp->b_vp)->i_ffs1_blocks !=
1787 VTOI(bp->b_vp)->i_lfs_effnblks) {
1788 #ifdef DEBUG_LFS
1789 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1790 VTOI(bp->b_vp)->i_number,
1791 VTOI(bp->b_vp)->i_lfs_effnblks,
1792 VTOI(bp->b_vp)->i_ffs1_blocks);
1793 #endif
1794 /* Make a copy we'll make changes to */
1795 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1796 bp->b_bcount, LFS_NB_IBLOCK);
1797 newbp->b_blkno = bp->b_blkno;
1798 memcpy(newbp->b_data, bp->b_data,
1799 newbp->b_bcount);
1800
1801 changed = 0;
1802 /* XXX ondisk32 */
1803 for (daddrp = (int32_t *)(newbp->b_data);
1804 daddrp < (int32_t *)(newbp->b_data +
1805 newbp->b_bcount); daddrp++) {
1806 if (*daddrp == UNWRITTEN) {
1807 #ifdef DEBUG_LFS
1808 off_t doff;
1809 int32_t ioff;
1810
1811 ioff =
1812 daddrp - (int32_t *)(newbp->b_data);
1813 doff =
1814 (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1815 printf("ino %d lbn %" PRId64
1816 " entry %d off %" PRIx64 "\n",
1817 VTOI(bp->b_vp)->i_number,
1818 bp->b_lblkno, ioff, doff);
1819 if (bp->b_vp->v_type == VREG) {
1820 /*
1821 * What is up with this page?
1822 */
1823 struct vm_page *pg;
1824 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff);
1825 doff += PAGE_SIZE) {
1826 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1827 if (pg == NULL)
1828 printf(" page at %" PRIx64 " is NULL\n", doff);
1829 else
1830 printf(" page at %" PRIx64
1831 " flags 0x%x pqflags 0x%x\n",
1832 doff, pg->flags, pg->pqflags);
1833 }
1834 }
1835 #endif /* DEBUG_LFS */
1836 ++changed;
1837 *daddrp = 0;
1838 }
1839 }
1840 /*
1841 * Get rid of the old buffer. Don't mark it clean,
1842 * though, if it still has dirty data on it.
1843 */
1844 if (changed) {
1845 #ifdef DEBUG_LFS
1846 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1847 " bp = %p newbp = %p\n", changed, bp,
1848 newbp);
1849 #endif
1850 *bpp = newbp;
1851 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1852 if (bp->b_flags & B_CALL) {
1853 printf("lfs_writeseg: "
1854 "indir bp should not be B_CALL\n");
1855 s = splbio();
1856 biodone(bp);
1857 splx(s);
1858 bp = NULL;
1859 } else {
1860 /* Still on free list, leave it there */
1861 s = splbio();
1862 bp->b_flags &= ~B_BUSY;
1863 if (bp->b_flags & B_WANTED)
1864 wakeup(bp);
1865 splx(s);
1866 /*
1867 * We have to re-decrement lfs_avail
1868 * since this block is going to come
1869 * back around to us in the next
1870 * segment.
1871 */
1872 fs->lfs_avail -=
1873 btofsb(fs, bp->b_bcount);
1874 }
1875 } else {
1876 lfs_freebuf(fs, newbp);
1877 }
1878 }
1879 }
1880 /*
1881 * Compute checksum across data and then across summary; the first
1882 * block (the summary block) is skipped. Set the create time here
1883 * so that it's guaranteed to be later than the inode mod times.
1884 *
1885 * XXX
1886 * Fix this to do it inline, instead of malloc/copy.
1887 */
1888 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1889 if (fs->lfs_version == 1)
1890 el_size = sizeof(u_long);
1891 else
1892 el_size = sizeof(u_int32_t);
1893 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1894 ++bpp;
1895 /* Loop through gop_write cluster blocks */
1896 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1897 byteoffset += fs->lfs_bsize) {
1898 #ifdef LFS_USE_B_INVAL
1899 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1900 (B_CALL | B_INVAL)) {
1901 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1902 byteoffset, dp, el_size)) {
1903 panic("lfs_writeseg: copyin failed [1]:"
1904 " ino %d blk %" PRId64,
1905 VTOI((*bpp)->b_vp)->i_number,
1906 (*bpp)->b_lblkno);
1907 }
1908 } else
1909 #endif /* LFS_USE_B_INVAL */
1910 {
1911 memcpy(dp, (*bpp)->b_data + byteoffset,
1912 el_size);
1913 }
1914 dp += el_size;
1915 }
1916 }
1917 if (fs->lfs_version == 1)
1918 ssp->ss_ocreate = time.tv_sec;
1919 else {
1920 ssp->ss_create = time.tv_sec;
1921 ssp->ss_serial = ++fs->lfs_serial;
1922 ssp->ss_ident = fs->lfs_ident;
1923 }
1924 ssp->ss_datasum = cksum(datap, dp - datap);
1925 ssp->ss_sumsum =
1926 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1927 pool_put(&fs->lfs_bpppool, datap);
1928 datap = dp = NULL;
1929 #ifdef DIAGNOSTIC
1930 if (fs->lfs_bfree <
1931 btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1932 panic("lfs_writeseg: No diskspace for summary");
1933 #endif
1934 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1935 btofsb(fs, fs->lfs_sumsize));
1936
1937 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1938
1939 /*
1940 * When we simply write the blocks we lose a rotation for every block
1941 * written. To avoid this problem, we cluster the buffers into a
1942 * chunk and write the chunk. MAXPHYS is the largest size I/O
1943 * devices can handle, use that for the size of the chunks.
1944 *
1945 * Blocks that are already clusters (from GOP_WRITE), however, we
1946 * don't bother to copy into other clusters.
1947 */
1948
1949 #define CHUNKSIZE MAXPHYS
1950
1951 if (devvp == NULL)
1952 panic("devvp is NULL");
1953 for (bpp = sp->bpp, i = nblocks; i;) {
1954 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1955 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1956
1957 cbp->b_dev = i_dev;
1958 cbp->b_flags |= B_ASYNC | B_BUSY;
1959 cbp->b_bcount = 0;
1960
1961 cl->olddata = cbp->b_data;
1962 #if defined(DEBUG) && defined(DIAGNOSTIC)
1963 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1964 / sizeof(int32_t)) {
1965 panic("lfs_writeseg: real bpp overwrite");
1966 }
1967 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1968 panic("lfs_writeseg: theoretical bpp overwrite");
1969 }
1970 #endif
1971
1972 /*
1973 * Construct the cluster.
1974 */
1975 ++fs->lfs_iocount;
1976 while (i && cbp->b_bcount < CHUNKSIZE) {
1977 bp = *bpp;
1978
1979 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1980 break;
1981 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1982 break;
1983
1984 /* Clusters from GOP_WRITE are expedited */
1985 if (bp->b_bcount > fs->lfs_bsize) {
1986 if (cbp->b_bcount > 0)
1987 /* Put in its own buffer */
1988 break;
1989 else {
1990 cbp->b_data = bp->b_data;
1991 }
1992 } else if (cbp->b_bcount == 0) {
1993 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1994 LFS_NB_CLUSTER);
1995 cl->flags |= LFS_CL_MALLOC;
1996 }
1997 #ifdef DIAGNOSTIC
1998 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1999 btodb(bp->b_bcount - 1))) !=
2000 sp->seg_number) {
2001 printf("blk size %ld daddr %" PRIx64
2002 " not in seg %d\n",
2003 bp->b_bcount, bp->b_blkno,
2004 sp->seg_number);
2005 panic("segment overwrite");
2006 }
2007 #endif
2008
2009 #ifdef LFS_USE_B_INVAL
2010 /*
2011 * Fake buffers from the cleaner are marked as B_INVAL.
2012 * We need to copy the data from user space rather than
2013 * from the buffer indicated.
2014 * XXX == what do I do on an error?
2015 */
2016 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2017 (B_CALL|B_INVAL)) {
2018 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2019 panic("lfs_writeseg: "
2020 "copyin failed [2]");
2021 } else
2022 #endif /* LFS_USE_B_INVAL */
2023 if (cl->flags & LFS_CL_MALLOC) {
2024 bcopy(bp->b_data, p, bp->b_bcount);
2025 }
2026
2027 p += bp->b_bcount;
2028 cbp->b_bcount += bp->b_bcount;
2029 cl->bufsize += bp->b_bcount;
2030
2031 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2032 cl->bpp[cl->bufcount++] = bp;
2033 vp = bp->b_vp;
2034 s = splbio();
2035 V_INCR_NUMOUTPUT(vp);
2036 splx(s);
2037
2038 bpp++;
2039 i--;
2040 }
2041 s = splbio();
2042 V_INCR_NUMOUTPUT(devvp);
2043 splx(s);
2044 vop_strategy_a.a_desc = VDESC(vop_strategy);
2045 vop_strategy_a.a_bp = cbp;
2046 (strategy)(&vop_strategy_a);
2047 curproc->p_stats->p_ru.ru_oublock++;
2048 }
2049
2050 if (lfs_dostats) {
2051 ++lfs_stats.psegwrites;
2052 lfs_stats.blocktot += nblocks - 1;
2053 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2054 ++lfs_stats.psyncwrites;
2055 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2056 ++lfs_stats.pcleanwrites;
2057 lfs_stats.cleanblocks += nblocks - 1;
2058 }
2059 }
2060 return (lfs_initseg(fs) || do_again);
2061 }
2062
2063 void
2064 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2065 {
2066 struct buf *bp;
2067 dev_t i_dev;
2068 int (*strategy)(void *);
2069 int s;
2070 struct vop_strategy_args vop_strategy_a;
2071
2072 /*
2073 * If we can write one superblock while another is in
2074 * progress, we risk not having a complete checkpoint if we crash.
2075 * So, block here if a superblock write is in progress.
2076 */
2077 s = splbio();
2078 while (fs->lfs_sbactive) {
2079 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2080 }
2081 fs->lfs_sbactive = daddr;
2082 splx(s);
2083 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2084 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2085
2086 /* Set timestamp of this version of the superblock */
2087 if (fs->lfs_version == 1)
2088 fs->lfs_otstamp = time.tv_sec;
2089 fs->lfs_tstamp = time.tv_sec;
2090
2091 /* Checksum the superblock and copy it into a buffer. */
2092 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2093 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
2094 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2095 memset(bp->b_data + sizeof(struct dlfs), 0,
2096 LFS_SBPAD - sizeof(struct dlfs));
2097 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2098
2099 bp->b_dev = i_dev;
2100 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2101 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2102 bp->b_iodone = lfs_supercallback;
2103 /* XXX KS - same nasty hack as above */
2104 bp->b_saveaddr = (caddr_t)fs;
2105
2106 vop_strategy_a.a_desc = VDESC(vop_strategy);
2107 vop_strategy_a.a_bp = bp;
2108 curproc->p_stats->p_ru.ru_oublock++;
2109 s = splbio();
2110 V_INCR_NUMOUTPUT(bp->b_vp);
2111 splx(s);
2112 ++fs->lfs_iocount;
2113 (strategy)(&vop_strategy_a);
2114 }
2115
2116 /*
2117 * Logical block number match routines used when traversing the dirty block
2118 * chain.
2119 */
2120 int
2121 lfs_match_fake(struct lfs *fs, struct buf *bp)
2122 {
2123 return LFS_IS_MALLOC_BUF(bp);
2124 }
2125
2126 #if 0
2127 int
2128 lfs_match_real(struct lfs *fs, struct buf *bp)
2129 {
2130 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2131 }
2132 #endif
2133
2134 int
2135 lfs_match_data(struct lfs *fs, struct buf *bp)
2136 {
2137 return (bp->b_lblkno >= 0);
2138 }
2139
2140 int
2141 lfs_match_indir(struct lfs *fs, struct buf *bp)
2142 {
2143 daddr_t lbn;
2144
2145 lbn = bp->b_lblkno;
2146 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2147 }
2148
2149 int
2150 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2151 {
2152 daddr_t lbn;
2153
2154 lbn = bp->b_lblkno;
2155 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2156 }
2157
2158 int
2159 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2160 {
2161 daddr_t lbn;
2162
2163 lbn = bp->b_lblkno;
2164 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2165 }
2166
2167 /*
2168 * XXX - The only buffers that are going to hit these functions are the
2169 * segment write blocks, or the segment summaries, or the superblocks.
2170 *
2171 * All of the above are created by lfs_newbuf, and so do not need to be
2172 * released via brelse.
2173 */
2174 void
2175 lfs_callback(struct buf *bp)
2176 {
2177 struct lfs *fs;
2178
2179 fs = (struct lfs *)bp->b_saveaddr;
2180 lfs_freebuf(fs, bp);
2181 }
2182
2183 static void
2184 lfs_super_aiodone(struct buf *bp)
2185 {
2186 struct lfs *fs;
2187
2188 fs = (struct lfs *)bp->b_saveaddr;
2189 fs->lfs_sbactive = 0;
2190 wakeup(&fs->lfs_sbactive);
2191 if (--fs->lfs_iocount <= 1)
2192 wakeup(&fs->lfs_iocount);
2193 lfs_freebuf(fs, bp);
2194 }
2195
2196 static void
2197 lfs_cluster_aiodone(struct buf *bp)
2198 {
2199 struct lfs_cluster *cl;
2200 struct lfs *fs;
2201 struct buf *tbp, *fbp;
2202 struct vnode *vp, *devvp;
2203 struct inode *ip;
2204 int s, error=0;
2205 char *cp;
2206
2207 if (bp->b_flags & B_ERROR)
2208 error = bp->b_error;
2209
2210 cl = (struct lfs_cluster *)bp->b_saveaddr;
2211 fs = cl->fs;
2212 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2213 bp->b_saveaddr = cl->saveaddr;
2214
2215 cp = (char *)bp->b_data + cl->bufsize;
2216 /* Put the pages back, and release the buffer */
2217 while (cl->bufcount--) {
2218 tbp = cl->bpp[cl->bufcount];
2219 if (error) {
2220 tbp->b_flags |= B_ERROR;
2221 tbp->b_error = error;
2222 }
2223
2224 /*
2225 * We're done with tbp. If it has not been re-dirtied since
2226 * the cluster was written, free it. Otherwise, keep it on
2227 * the locked list to be written again.
2228 */
2229 vp = tbp->b_vp;
2230
2231 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2232 LFS_UNLOCK_BUF(tbp);
2233
2234 tbp->b_flags &= ~B_GATHERED;
2235
2236 LFS_BCLEAN_LOG(fs, tbp);
2237
2238 if (!(tbp->b_flags & B_CALL)) {
2239 bremfree(tbp);
2240 s = splbio();
2241 if (vp)
2242 reassignbuf(tbp, vp);
2243 splx(s);
2244 tbp->b_flags |= B_ASYNC; /* for biodone */
2245 }
2246 #ifdef DIAGNOSTIC
2247 if (tbp->b_flags & B_DONE) {
2248 printf("blk %d biodone already (flags %lx)\n",
2249 cl->bufcount, (long)tbp->b_flags);
2250 }
2251 #endif
2252 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2253 if ((tbp->b_flags & B_CALL) &&
2254 !LFS_IS_MALLOC_BUF(tbp)) {
2255 /* printf("flags 0x%lx\n", tbp->b_flags); */
2256 /*
2257 * A buffer from the page daemon.
2258 * We use the same iodone as it does,
2259 * so we must manually disassociate its
2260 * buffers from the vp.
2261 */
2262 if (tbp->b_vp) {
2263 /* This is just silly */
2264 s = splbio();
2265 brelvp(tbp);
2266 tbp->b_vp = vp;
2267 splx(s);
2268 }
2269 /* Put it back the way it was */
2270 tbp->b_flags |= B_ASYNC;
2271 /* Master buffers have B_AGE */
2272 if (tbp->b_private == tbp)
2273 tbp->b_flags |= B_AGE;
2274 }
2275 s = splbio();
2276 biodone(tbp);
2277
2278 /*
2279 * If this is the last block for this vnode, but
2280 * there are other blocks on its dirty list,
2281 * set IN_MODIFIED/IN_CLEANING depending on what
2282 * sort of block. Only do this for our mount point,
2283 * not for, e.g., inode blocks that are attached to
2284 * the devvp.
2285 * XXX KS - Shouldn't we set *both* if both types
2286 * of blocks are present (traverse the dirty list?)
2287 */
2288 simple_lock(&global_v_numoutput_slock);
2289 if (vp != devvp && vp->v_numoutput == 0 &&
2290 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2291 ip = VTOI(vp);
2292 #ifdef DEBUG_LFS
2293 printf("lfs_cluster_aiodone: marking ino %d\n",
2294 ip->i_number);
2295 #endif
2296 if (LFS_IS_MALLOC_BUF(fbp))
2297 LFS_SET_UINO(ip, IN_CLEANING);
2298 else
2299 LFS_SET_UINO(ip, IN_MODIFIED);
2300 }
2301 simple_unlock(&global_v_numoutput_slock);
2302 splx(s);
2303 wakeup(vp);
2304 }
2305 }
2306
2307 /* Fix up the cluster buffer, and release it */
2308 if (cl->flags & LFS_CL_MALLOC)
2309 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2310 bp->b_data = cl->olddata;
2311 bp->b_bcount = 0;
2312 bp->b_iodone = NULL;
2313 bp->b_flags &= ~B_DELWRI;
2314 bp->b_flags |= B_DONE;
2315 s = splbio();
2316 reassignbuf(bp, bp->b_vp);
2317 splx(s);
2318 brelse(bp);
2319
2320 /* Note i/o done */
2321 if (cl->flags & LFS_CL_SYNC) {
2322 if (--cl->seg->seg_iocount == 0)
2323 wakeup(&cl->seg->seg_iocount);
2324 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2325 }
2326 #ifdef DIAGNOSTIC
2327 if (fs->lfs_iocount == 0)
2328 panic("lfs_cluster_aiodone: zero iocount");
2329 #endif
2330 if (--fs->lfs_iocount <= 1)
2331 wakeup(&fs->lfs_iocount);
2332
2333 pool_put(&fs->lfs_bpppool, cl->bpp);
2334 cl->bpp = NULL;
2335 pool_put(&fs->lfs_clpool, cl);
2336 }
2337
2338 static void
2339 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2340 {
2341 /* reset b_iodone for when this is a single-buf i/o. */
2342 bp->b_iodone = aiodone;
2343
2344 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2345 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2346 wakeup(&uvm.aiodoned);
2347 simple_unlock(&uvm.aiodoned_lock);
2348 }
2349
2350 static void
2351 lfs_cluster_callback(struct buf *bp)
2352 {
2353 lfs_generic_callback(bp, lfs_cluster_aiodone);
2354 }
2355
2356 void
2357 lfs_supercallback(struct buf *bp)
2358 {
2359 lfs_generic_callback(bp, lfs_super_aiodone);
2360 }
2361
2362 /*
2363 * Shellsort (diminishing increment sort) from Data Structures and
2364 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2365 * see also Knuth Vol. 3, page 84. The increments are selected from
2366 * formula (8), page 95. Roughly O(N^3/2).
2367 */
2368 /*
2369 * This is our own private copy of shellsort because we want to sort
2370 * two parallel arrays (the array of buffer pointers and the array of
2371 * logical block numbers) simultaneously. Note that we cast the array
2372 * of logical block numbers to a unsigned in this routine so that the
2373 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2374 */
2375
2376 void
2377 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2378 {
2379 static int __rsshell_increments[] = { 4, 1, 0 };
2380 int incr, *incrp, t1, t2;
2381 struct buf *bp_temp;
2382
2383 #ifdef DEBUG
2384 incr = 0;
2385 for (t1 = 0; t1 < nmemb; t1++) {
2386 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2387 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2388 /* dump before panic */
2389 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2390 nmemb, size);
2391 incr = 0;
2392 for (t1 = 0; t1 < nmemb; t1++) {
2393 const struct buf *bp = bp_array[t1];
2394
2395 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2396 PRIu64 "\n", t1,
2397 (uint64_t)bp->b_bcount,
2398 (uint64_t)bp->b_lblkno);
2399 printf("lbns:");
2400 for (t2 = 0; t2 * size < bp->b_bcount;
2401 t2++) {
2402 printf(" %" PRId32,
2403 lb_array[incr++]);
2404 }
2405 printf("\n");
2406 }
2407 panic("lfs_shellsort: inconsistent input");
2408 }
2409 }
2410 }
2411 #endif
2412
2413 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2414 for (t1 = incr; t1 < nmemb; ++t1)
2415 for (t2 = t1 - incr; t2 >= 0;)
2416 if ((u_int32_t)bp_array[t2]->b_lblkno >
2417 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2418 bp_temp = bp_array[t2];
2419 bp_array[t2] = bp_array[t2 + incr];
2420 bp_array[t2 + incr] = bp_temp;
2421 t2 -= incr;
2422 } else
2423 break;
2424
2425 /* Reform the list of logical blocks */
2426 incr = 0;
2427 for (t1 = 0; t1 < nmemb; t1++) {
2428 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2429 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2430 }
2431 }
2432 }
2433
2434 /*
2435 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2436 */
2437 int
2438 lfs_vref(struct vnode *vp)
2439 {
2440 /*
2441 * If we return 1 here during a flush, we risk vinvalbuf() not
2442 * being able to flush all of the pages from this vnode, which
2443 * will cause it to panic. So, return 0 if a flush is in progress.
2444 */
2445 if (vp->v_flag & VXLOCK) {
2446 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2447 return 0;
2448 }
2449 return (1);
2450 }
2451 return (vget(vp, 0));
2452 }
2453
2454 /*
2455 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2456 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2457 */
2458 void
2459 lfs_vunref(struct vnode *vp)
2460 {
2461 /*
2462 * Analogous to lfs_vref, if the node is flushing, fake it.
2463 */
2464 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2465 return;
2466 }
2467
2468 simple_lock(&vp->v_interlock);
2469 #ifdef DIAGNOSTIC
2470 if (vp->v_usecount <= 0) {
2471 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2472 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2473 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2474 panic("lfs_vunref: v_usecount<0");
2475 }
2476 #endif
2477 vp->v_usecount--;
2478 if (vp->v_usecount > 0) {
2479 simple_unlock(&vp->v_interlock);
2480 return;
2481 }
2482 /*
2483 * insert at tail of LRU list
2484 */
2485 simple_lock(&vnode_free_list_slock);
2486 if (vp->v_holdcnt > 0)
2487 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2488 else
2489 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2490 simple_unlock(&vnode_free_list_slock);
2491 simple_unlock(&vp->v_interlock);
2492 }
2493
2494 /*
2495 * We use this when we have vnodes that were loaded in solely for cleaning.
2496 * There is no reason to believe that these vnodes will be referenced again
2497 * soon, since the cleaning process is unrelated to normal filesystem
2498 * activity. Putting cleaned vnodes at the tail of the list has the effect
2499 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2500 * cleaning at the head of the list, instead.
2501 */
2502 void
2503 lfs_vunref_head(struct vnode *vp)
2504 {
2505 simple_lock(&vp->v_interlock);
2506 #ifdef DIAGNOSTIC
2507 if (vp->v_usecount == 0) {
2508 panic("lfs_vunref: v_usecount<0");
2509 }
2510 #endif
2511 vp->v_usecount--;
2512 if (vp->v_usecount > 0) {
2513 simple_unlock(&vp->v_interlock);
2514 return;
2515 }
2516 /*
2517 * insert at head of LRU list
2518 */
2519 simple_lock(&vnode_free_list_slock);
2520 if (vp->v_holdcnt > 0)
2521 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2522 else
2523 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2524 simple_unlock(&vnode_free_list_slock);
2525 simple_unlock(&vp->v_interlock);
2526 }
2527
2528