lfs_segment.c revision 1.131 1 /* $NetBSD: lfs_segment.c,v 1.131 2003/08/07 16:34:37 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.131 2003/08/07 16:34:37 agc Exp $");
71
72 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
73
74 #if defined(_KERNEL_OPT)
75 #include "opt_ddb.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/namei.h>
81 #include <sys/kernel.h>
82 #include <sys/resourcevar.h>
83 #include <sys/file.h>
84 #include <sys/stat.h>
85 #include <sys/buf.h>
86 #include <sys/proc.h>
87 #include <sys/vnode.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
105
106 extern int count_lock_queue(void);
107 extern struct simplelock vnode_free_list_slock; /* XXX */
108
109 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
110 static void lfs_super_aiodone(struct buf *);
111 static void lfs_cluster_aiodone(struct buf *);
112 static void lfs_cluster_callback(struct buf *);
113
114 /*
115 * Determine if it's OK to start a partial in this segment, or if we need
116 * to go on to a new segment.
117 */
118 #define LFS_PARTIAL_FITS(fs) \
119 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
120 fragstofsb((fs), (fs)->lfs_frag))
121
122 void lfs_callback(struct buf *);
123 int lfs_gather(struct lfs *, struct segment *,
124 struct vnode *, int (*)(struct lfs *, struct buf *));
125 int lfs_gatherblock(struct segment *, struct buf *, int *);
126 void lfs_iset(struct inode *, daddr_t, time_t);
127 int lfs_match_fake(struct lfs *, struct buf *);
128 int lfs_match_data(struct lfs *, struct buf *);
129 int lfs_match_dindir(struct lfs *, struct buf *);
130 int lfs_match_indir(struct lfs *, struct buf *);
131 int lfs_match_tindir(struct lfs *, struct buf *);
132 void lfs_newseg(struct lfs *);
133 /* XXX ondisk32 */
134 void lfs_shellsort(struct buf **, int32_t *, int, int);
135 void lfs_supercallback(struct buf *);
136 void lfs_updatemeta(struct segment *);
137 int lfs_vref(struct vnode *);
138 void lfs_vunref(struct vnode *);
139 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
140 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
141 int lfs_writeseg(struct lfs *, struct segment *);
142 void lfs_writesuper(struct lfs *, daddr_t);
143 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
144 struct segment *sp, int dirops);
145
146 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
147 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
148 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
149 int lfs_dirvcount = 0; /* # active dirops */
150
151 /* Statistics Counters */
152 int lfs_dostats = 1;
153 struct lfs_stats lfs_stats;
154
155 /* op values to lfs_writevnodes */
156 #define VN_REG 0
157 #define VN_DIROP 1
158 #define VN_EMPTY 2
159 #define VN_CLEAN 3
160
161 #define LFS_MAX_ACTIVE 10
162
163 /*
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
168 */
169 void
170 lfs_imtime(struct lfs *fs)
171 {
172 struct timespec ts;
173 struct inode *ip;
174
175 TIMEVAL_TO_TIMESPEC(&time, &ts);
176 ip = VTOI(fs->lfs_ivnode);
177 ip->i_ffs1_mtime = ts.tv_sec;
178 ip->i_ffs1_mtimensec = ts.tv_nsec;
179 }
180
181 /*
182 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
183 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
184 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
185 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
186 */
187
188 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
190 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
191
192 int
193 lfs_vflush(struct vnode *vp)
194 {
195 struct inode *ip;
196 struct lfs *fs;
197 struct segment *sp;
198 struct buf *bp, *nbp, *tbp, *tnbp;
199 int error, s;
200 int flushed;
201 #if 0
202 int redo;
203 #endif
204
205 ip = VTOI(vp);
206 fs = VFSTOUFS(vp->v_mount)->um_lfs;
207
208 if (ip->i_flag & IN_CLEANING) {
209 #ifdef DEBUG_LFS
210 ivndebug(vp,"vflush/in_cleaning");
211 #endif
212 LFS_CLR_UINO(ip, IN_CLEANING);
213 LFS_SET_UINO(ip, IN_MODIFIED);
214
215 /*
216 * Toss any cleaning buffers that have real counterparts
217 * to avoid losing new data.
218 */
219 s = splbio();
220 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
221 nbp = LIST_NEXT(bp, b_vnbufs);
222 if (!LFS_IS_MALLOC_BUF(bp))
223 continue;
224 /*
225 * Look for pages matching the range covered
226 * by cleaning blocks. It's okay if more dirty
227 * pages appear, so long as none disappear out
228 * from under us.
229 */
230 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
231 vp != fs->lfs_ivnode) {
232 struct vm_page *pg;
233 voff_t off;
234
235 simple_lock(&vp->v_interlock);
236 for (off = lblktosize(fs, bp->b_lblkno);
237 off < lblktosize(fs, bp->b_lblkno + 1);
238 off += PAGE_SIZE) {
239 pg = uvm_pagelookup(&vp->v_uobj, off);
240 if (pg == NULL)
241 continue;
242 if ((pg->flags & PG_CLEAN) == 0 ||
243 pmap_is_modified(pg)) {
244 fs->lfs_avail += btofsb(fs,
245 bp->b_bcount);
246 wakeup(&fs->lfs_avail);
247 lfs_freebuf(fs, bp);
248 bp = NULL;
249 goto nextbp;
250 }
251 }
252 simple_unlock(&vp->v_interlock);
253 }
254 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
255 tbp = tnbp)
256 {
257 tnbp = LIST_NEXT(tbp, b_vnbufs);
258 if (tbp->b_vp == bp->b_vp
259 && tbp->b_lblkno == bp->b_lblkno
260 && tbp != bp)
261 {
262 fs->lfs_avail += btofsb(fs,
263 bp->b_bcount);
264 wakeup(&fs->lfs_avail);
265 lfs_freebuf(fs, bp);
266 bp = NULL;
267 break;
268 }
269 }
270 nextbp:
271 ;
272 }
273 splx(s);
274 }
275
276 /* If the node is being written, wait until that is done */
277 s = splbio();
278 if (WRITEINPROG(vp)) {
279 #ifdef DEBUG_LFS
280 ivndebug(vp,"vflush/writeinprog");
281 #endif
282 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
283 }
284 splx(s);
285
286 /* Protect against VXLOCK deadlock in vinvalbuf() */
287 lfs_seglock(fs, SEGM_SYNC);
288
289 /* If we're supposed to flush a freed inode, just toss it */
290 /* XXX - seglock, so these buffers can't be gathered, right? */
291 if (ip->i_mode == 0) {
292 printf("lfs_vflush: ino %d is freed, not flushing\n",
293 ip->i_number);
294 s = splbio();
295 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
296 nbp = LIST_NEXT(bp, b_vnbufs);
297 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
298 fs->lfs_avail += btofsb(fs, bp->b_bcount);
299 wakeup(&fs->lfs_avail);
300 }
301 /* Copied from lfs_writeseg */
302 if (bp->b_flags & B_CALL) {
303 biodone(bp);
304 } else {
305 bremfree(bp);
306 LFS_UNLOCK_BUF(bp);
307 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
308 B_GATHERED);
309 bp->b_flags |= B_DONE;
310 reassignbuf(bp, vp);
311 brelse(bp);
312 }
313 }
314 splx(s);
315 LFS_CLR_UINO(ip, IN_CLEANING);
316 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
317 ip->i_flag &= ~IN_ALLMOD;
318 printf("lfs_vflush: done not flushing ino %d\n",
319 ip->i_number);
320 lfs_segunlock(fs);
321 return 0;
322 }
323
324 SET_FLUSHING(fs,vp);
325 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
326 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
327 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
328 CLR_FLUSHING(fs,vp);
329 lfs_segunlock(fs);
330 return error;
331 }
332 sp = fs->lfs_sp;
333
334 flushed = 0;
335 if (VPISEMPTY(vp)) {
336 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
337 ++flushed;
338 } else if ((ip->i_flag & IN_CLEANING) &&
339 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
340 #ifdef DEBUG_LFS
341 ivndebug(vp,"vflush/clean");
342 #endif
343 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
344 ++flushed;
345 } else if (lfs_dostats) {
346 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
347 ++lfs_stats.vflush_invoked;
348 #ifdef DEBUG_LFS
349 ivndebug(vp,"vflush");
350 #endif
351 }
352
353 #ifdef DIAGNOSTIC
354 /* XXX KS This actually can happen right now, though it shouldn't(?) */
355 if (vp->v_flag & VDIROP) {
356 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
357 /* panic("VDIROP being flushed...this can\'t happen"); */
358 }
359 if (vp->v_usecount < 0) {
360 printf("usecount=%ld\n", (long)vp->v_usecount);
361 panic("lfs_vflush: usecount<0");
362 }
363 #endif
364
365 #if 1
366 do {
367 do {
368 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
369 lfs_writefile(fs, sp, vp);
370 } while (lfs_writeinode(fs, sp, ip));
371 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
372 #else
373 if (flushed && vp != fs->lfs_ivnode)
374 lfs_writeseg(fs, sp);
375 else do {
376 fs->lfs_flags &= ~LFS_IFDIRTY;
377 lfs_writefile(fs, sp, vp);
378 redo = lfs_writeinode(fs, sp, ip);
379 redo += lfs_writeseg(fs, sp);
380 redo += (fs->lfs_flags & LFS_IFDIRTY);
381 } while (redo && vp == fs->lfs_ivnode);
382 #endif
383 if (lfs_dostats) {
384 ++lfs_stats.nwrites;
385 if (sp->seg_flags & SEGM_SYNC)
386 ++lfs_stats.nsync_writes;
387 if (sp->seg_flags & SEGM_CKP)
388 ++lfs_stats.ncheckpoints;
389 }
390 /*
391 * If we were called from somewhere that has already held the seglock
392 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
393 * the write to complete because we are still locked.
394 * Since lfs_vflush() must return the vnode with no dirty buffers,
395 * we must explicitly wait, if that is the case.
396 *
397 * We compare the iocount against 1, not 0, because it is
398 * artificially incremented by lfs_seglock().
399 */
400 simple_lock(&fs->lfs_interlock);
401 if (fs->lfs_seglock > 1) {
402 simple_unlock(&fs->lfs_interlock);
403 while (fs->lfs_iocount > 1)
404 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
405 "lfs_vflush", 0);
406 } else
407 simple_unlock(&fs->lfs_interlock);
408
409 lfs_segunlock(fs);
410
411 /* Wait for these buffers to be recovered by aiodoned */
412 s = splbio();
413 simple_lock(&global_v_numoutput_slock);
414 while (vp->v_numoutput > 0) {
415 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
416 &global_v_numoutput_slock);
417 }
418 simple_unlock(&global_v_numoutput_slock);
419 splx(s);
420
421 CLR_FLUSHING(fs,vp);
422 return (0);
423 }
424
425 #ifdef DEBUG_LFS_VERBOSE
426 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
427 #else
428 # define vndebug(vp,str)
429 #endif
430
431 int
432 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
433 {
434 struct inode *ip;
435 struct vnode *vp, *nvp;
436 int inodes_written = 0, only_cleaning;
437
438 #ifndef LFS_NO_BACKVP_HACK
439 /* BEGIN HACK */
440 #define VN_OFFSET \
441 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
442 #define BACK_VP(VP) \
443 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
444 #define BEG_OF_VLIST \
445 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
446 - VN_OFFSET))
447
448 /* Find last vnode. */
449 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
450 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
451 vp = LIST_NEXT(vp, v_mntvnodes));
452 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
453 nvp = BACK_VP(vp);
454 #else
455 loop:
456 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
457 nvp = LIST_NEXT(vp, v_mntvnodes);
458 #endif
459 /*
460 * If the vnode that we are about to sync is no longer
461 * associated with this mount point, start over.
462 */
463 if (vp->v_mount != mp) {
464 printf("lfs_writevnodes: starting over\n");
465 /*
466 * After this, pages might be busy
467 * due to our own previous putpages.
468 * Start actual segment write here to avoid deadlock.
469 */
470 (void)lfs_writeseg(fs, sp);
471 goto loop;
472 }
473
474 if (vp->v_type == VNON) {
475 continue;
476 }
477
478 ip = VTOI(vp);
479 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
480 (op != VN_DIROP && op != VN_CLEAN &&
481 (vp->v_flag & VDIROP))) {
482 vndebug(vp,"dirop");
483 continue;
484 }
485
486 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
487 vndebug(vp,"empty");
488 continue;
489 }
490
491 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
492 && vp != fs->lfs_flushvp
493 && !(ip->i_flag & IN_CLEANING)) {
494 vndebug(vp,"cleaning");
495 continue;
496 }
497
498 if (lfs_vref(vp)) {
499 vndebug(vp,"vref");
500 continue;
501 }
502
503 only_cleaning = 0;
504 /*
505 * Write the inode/file if dirty and it's not the IFILE.
506 */
507 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
508 only_cleaning =
509 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
510
511 if (ip->i_number != LFS_IFILE_INUM)
512 lfs_writefile(fs, sp, vp);
513 if (!VPISEMPTY(vp)) {
514 if (WRITEINPROG(vp)) {
515 #ifdef DEBUG_LFS
516 ivndebug(vp,"writevnodes/write2");
517 #endif
518 } else if (!(ip->i_flag & IN_ALLMOD)) {
519 #ifdef DEBUG_LFS
520 printf("<%d>",ip->i_number);
521 #endif
522 LFS_SET_UINO(ip, IN_MODIFIED);
523 }
524 }
525 (void) lfs_writeinode(fs, sp, ip);
526 inodes_written++;
527 }
528
529 if (lfs_clean_vnhead && only_cleaning)
530 lfs_vunref_head(vp);
531 else
532 lfs_vunref(vp);
533 }
534 return inodes_written;
535 }
536
537 /*
538 * Do a checkpoint.
539 */
540 int
541 lfs_segwrite(struct mount *mp, int flags)
542 {
543 struct buf *bp;
544 struct inode *ip;
545 struct lfs *fs;
546 struct segment *sp;
547 struct vnode *vp;
548 SEGUSE *segusep;
549 int do_ckp, did_ckp, error, s;
550 unsigned n, segleft, maxseg, sn, i, curseg;
551 int writer_set = 0;
552 int dirty;
553 int redo;
554
555 fs = VFSTOUFS(mp)->um_lfs;
556
557 if (fs->lfs_ronly)
558 return EROFS;
559
560 lfs_imtime(fs);
561
562 /*
563 * Allocate a segment structure and enough space to hold pointers to
564 * the maximum possible number of buffers which can be described in a
565 * single summary block.
566 */
567 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
568 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
569 sp = fs->lfs_sp;
570
571 /*
572 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
573 * in which case we have to flush *all* buffers off of this vnode.
574 * We don't care about other nodes, but write any non-dirop nodes
575 * anyway in anticipation of another getnewvnode().
576 *
577 * If we're cleaning we only write cleaning and ifile blocks, and
578 * no dirops, since otherwise we'd risk corruption in a crash.
579 */
580 if (sp->seg_flags & SEGM_CLEAN)
581 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
582 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
583 lfs_writevnodes(fs, mp, sp, VN_REG);
584 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
585 error = lfs_writer_enter(fs, "lfs writer");
586 if (error) {
587 printf("segwrite mysterious error\n");
588 /* XXX why not segunlock? */
589 pool_put(&fs->lfs_bpppool, sp->bpp);
590 sp->bpp = NULL;
591 pool_put(&fs->lfs_segpool, sp);
592 sp = fs->lfs_sp = NULL;
593 return (error);
594 }
595 writer_set = 1;
596 lfs_writevnodes(fs, mp, sp, VN_DIROP);
597 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
598 }
599 }
600
601 /*
602 * If we are doing a checkpoint, mark everything since the
603 * last checkpoint as no longer ACTIVE.
604 */
605 if (do_ckp) {
606 segleft = fs->lfs_nseg;
607 curseg = 0;
608 for (n = 0; n < fs->lfs_segtabsz; n++) {
609 dirty = 0;
610 if (bread(fs->lfs_ivnode,
611 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
612 panic("lfs_segwrite: ifile read");
613 segusep = (SEGUSE *)bp->b_data;
614 maxseg = min(segleft, fs->lfs_sepb);
615 for (i = 0; i < maxseg; i++) {
616 sn = curseg + i;
617 if (sn != fs->lfs_curseg &&
618 segusep->su_flags & SEGUSE_ACTIVE) {
619 segusep->su_flags &= ~SEGUSE_ACTIVE;
620 --fs->lfs_nactive;
621 ++dirty;
622 }
623 fs->lfs_suflags[fs->lfs_activesb][sn] =
624 segusep->su_flags;
625 if (fs->lfs_version > 1)
626 ++segusep;
627 else
628 segusep = (SEGUSE *)
629 ((SEGUSE_V1 *)segusep + 1);
630 }
631
632 if (dirty)
633 error = LFS_BWRITE_LOG(bp); /* Ifile */
634 else
635 brelse(bp);
636 segleft -= fs->lfs_sepb;
637 curseg += fs->lfs_sepb;
638 }
639 }
640
641 did_ckp = 0;
642 if (do_ckp || fs->lfs_doifile) {
643 do {
644 vp = fs->lfs_ivnode;
645
646 #ifdef DEBUG
647 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
648 #endif
649 fs->lfs_flags &= ~LFS_IFDIRTY;
650
651 ip = VTOI(vp);
652
653 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
654 lfs_writefile(fs, sp, vp);
655
656 if (ip->i_flag & IN_ALLMOD)
657 ++did_ckp;
658 redo = lfs_writeinode(fs, sp, ip);
659 redo += lfs_writeseg(fs, sp);
660 redo += (fs->lfs_flags & LFS_IFDIRTY);
661 } while (redo && do_ckp);
662
663 /*
664 * Unless we are unmounting, the Ifile may continue to have
665 * dirty blocks even after a checkpoint, due to changes to
666 * inodes' atime. If we're checkpointing, it's "impossible"
667 * for other parts of the Ifile to be dirty after the loop
668 * above, since we hold the segment lock.
669 */
670 s = splbio();
671 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
672 LFS_CLR_UINO(ip, IN_ALLMOD);
673 }
674 #ifdef DIAGNOSTIC
675 else if (do_ckp) {
676 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
677 if (bp->b_lblkno < fs->lfs_cleansz +
678 fs->lfs_segtabsz &&
679 !(bp->b_flags & B_GATHERED)) {
680 panic("dirty blocks");
681 }
682 }
683 }
684 #endif
685 splx(s);
686 } else {
687 (void) lfs_writeseg(fs, sp);
688 }
689
690 /* Note Ifile no longer needs to be written */
691 fs->lfs_doifile = 0;
692 if (writer_set)
693 lfs_writer_leave(fs);
694
695 /*
696 * If we didn't write the Ifile, we didn't really do anything.
697 * That means that (1) there is a checkpoint on disk and (2)
698 * nothing has changed since it was written.
699 *
700 * Take the flags off of the segment so that lfs_segunlock
701 * doesn't have to write the superblock either.
702 */
703 if (do_ckp && !did_ckp) {
704 sp->seg_flags &= ~SEGM_CKP;
705 }
706
707 if (lfs_dostats) {
708 ++lfs_stats.nwrites;
709 if (sp->seg_flags & SEGM_SYNC)
710 ++lfs_stats.nsync_writes;
711 if (sp->seg_flags & SEGM_CKP)
712 ++lfs_stats.ncheckpoints;
713 }
714 lfs_segunlock(fs);
715 return (0);
716 }
717
718 /*
719 * Write the dirty blocks associated with a vnode.
720 */
721 void
722 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
723 {
724 struct buf *bp;
725 struct finfo *fip;
726 struct inode *ip;
727 IFILE *ifp;
728 int i, frag;
729
730 ip = VTOI(vp);
731
732 if (sp->seg_bytes_left < fs->lfs_bsize ||
733 sp->sum_bytes_left < sizeof(struct finfo))
734 (void) lfs_writeseg(fs, sp);
735
736 sp->sum_bytes_left -= FINFOSIZE;
737 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
738
739 if (vp->v_flag & VDIROP)
740 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
741
742 fip = sp->fip;
743 fip->fi_nblocks = 0;
744 fip->fi_ino = ip->i_number;
745 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
746 fip->fi_version = ifp->if_version;
747 brelse(bp);
748
749 if (sp->seg_flags & SEGM_CLEAN) {
750 lfs_gather(fs, sp, vp, lfs_match_fake);
751 /*
752 * For a file being flushed, we need to write *all* blocks.
753 * This means writing the cleaning blocks first, and then
754 * immediately following with any non-cleaning blocks.
755 * The same is true of the Ifile since checkpoints assume
756 * that all valid Ifile blocks are written.
757 */
758 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
759 lfs_gather(fs, sp, vp, lfs_match_data);
760 /*
761 * Don't call VOP_PUTPAGES: if we're flushing,
762 * we've already done it, and the Ifile doesn't
763 * use the page cache.
764 */
765 }
766 } else {
767 lfs_gather(fs, sp, vp, lfs_match_data);
768 /*
769 * If we're flushing, we've already called VOP_PUTPAGES
770 * so don't do it again. Otherwise, we want to write
771 * everything we've got.
772 */
773 if (!IS_FLUSHING(fs, vp)) {
774 simple_lock(&vp->v_interlock);
775 VOP_PUTPAGES(vp, 0, 0,
776 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
777 }
778 }
779
780 /*
781 * It may not be necessary to write the meta-data blocks at this point,
782 * as the roll-forward recovery code should be able to reconstruct the
783 * list.
784 *
785 * We have to write them anyway, though, under two conditions: (1) the
786 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
787 * checkpointing.
788 *
789 * BUT if we are cleaning, we might have indirect blocks that refer to
790 * new blocks not being written yet, in addition to fragments being
791 * moved out of a cleaned segment. If that is the case, don't
792 * write the indirect blocks, or the finfo will have a small block
793 * in the middle of it!
794 * XXX in this case isn't the inode size wrong too?
795 */
796 frag = 0;
797 if (sp->seg_flags & SEGM_CLEAN) {
798 for (i = 0; i < NDADDR; i++)
799 if (ip->i_lfs_fragsize[i] > 0 &&
800 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
801 ++frag;
802 }
803 #ifdef DIAGNOSTIC
804 if (frag > 1)
805 panic("lfs_writefile: more than one fragment!");
806 #endif
807 if (IS_FLUSHING(fs, vp) ||
808 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
809 lfs_gather(fs, sp, vp, lfs_match_indir);
810 lfs_gather(fs, sp, vp, lfs_match_dindir);
811 lfs_gather(fs, sp, vp, lfs_match_tindir);
812 }
813 fip = sp->fip;
814 if (fip->fi_nblocks != 0) {
815 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
816 sizeof(int32_t) * (fip->fi_nblocks));
817 sp->start_lbp = &sp->fip->fi_blocks[0];
818 } else {
819 sp->sum_bytes_left += FINFOSIZE;
820 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
821 }
822 }
823
824 int
825 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
826 {
827 struct buf *bp, *ibp;
828 struct ufs1_dinode *cdp;
829 IFILE *ifp;
830 SEGUSE *sup;
831 daddr_t daddr;
832 int32_t *daddrp; /* XXX ondisk32 */
833 ino_t ino;
834 int error, i, ndx, fsb = 0;
835 int redo_ifile = 0;
836 struct timespec ts;
837 int gotblk = 0;
838
839 if (!(ip->i_flag & IN_ALLMOD))
840 return (0);
841
842 /* Allocate a new inode block if necessary. */
843 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
844 sp->ibp == NULL) {
845 /* Allocate a new segment if necessary. */
846 if (sp->seg_bytes_left < fs->lfs_ibsize ||
847 sp->sum_bytes_left < sizeof(int32_t))
848 (void) lfs_writeseg(fs, sp);
849
850 /* Get next inode block. */
851 daddr = fs->lfs_offset;
852 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
853 sp->ibp = *sp->cbpp++ =
854 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
855 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
856 gotblk++;
857
858 /* Zero out inode numbers */
859 for (i = 0; i < INOPB(fs); ++i)
860 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
861 0;
862
863 ++sp->start_bpp;
864 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
865 /* Set remaining space counters. */
866 sp->seg_bytes_left -= fs->lfs_ibsize;
867 sp->sum_bytes_left -= sizeof(int32_t);
868 ndx = fs->lfs_sumsize / sizeof(int32_t) -
869 sp->ninodes / INOPB(fs) - 1;
870 ((int32_t *)(sp->segsum))[ndx] = daddr;
871 }
872
873 /* Update the inode times and copy the inode onto the inode page. */
874 TIMEVAL_TO_TIMESPEC(&time, &ts);
875 /* XXX kludge --- don't redirty the ifile just to put times on it */
876 if (ip->i_number != LFS_IFILE_INUM)
877 LFS_ITIMES(ip, &ts, &ts, &ts);
878
879 /*
880 * If this is the Ifile, and we've already written the Ifile in this
881 * partial segment, just overwrite it (it's not on disk yet) and
882 * continue.
883 *
884 * XXX we know that the bp that we get the second time around has
885 * already been gathered.
886 */
887 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
888 *(sp->idp) = *ip->i_din.ffs1_din;
889 ip->i_lfs_osize = ip->i_size;
890 return 0;
891 }
892
893 bp = sp->ibp;
894 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
895 *cdp = *ip->i_din.ffs1_din;
896 #ifdef LFS_IFILE_FRAG_ADDRESSING
897 if (fs->lfs_version > 1)
898 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
899 #endif
900
901 /*
902 * If we are cleaning, ensure that we don't write UNWRITTEN disk
903 * addresses to disk; possibly revert the inode size.
904 * XXX By not writing these blocks, we are making the lfs_avail
905 * XXX count on disk wrong by the same amount. We should be
906 * XXX able to "borrow" from lfs_avail and return it after the
907 * XXX Ifile is written. See also in lfs_writeseg.
908 */
909 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
910 cdp->di_size = ip->i_lfs_osize;
911 #ifdef DEBUG_LFS
912 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
913 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks);
914 #endif
915 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
916 daddrp++) {
917 if (*daddrp == UNWRITTEN) {
918 #ifdef DEBUG_LFS
919 printf("lfs_writeinode: wiping UNWRITTEN\n");
920 #endif
921 *daddrp = 0;
922 }
923 }
924 } else {
925 /* If all blocks are goig to disk, update the "size on disk" */
926 ip->i_lfs_osize = ip->i_size;
927 }
928
929 if (ip->i_flag & IN_CLEANING)
930 LFS_CLR_UINO(ip, IN_CLEANING);
931 else {
932 /* XXX IN_ALLMOD */
933 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
934 IN_UPDATE);
935 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
936 LFS_CLR_UINO(ip, IN_MODIFIED);
937 #ifdef DEBUG_LFS
938 else
939 printf("lfs_writeinode: ino %d: real blks=%d, "
940 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
941 ip->i_lfs_effnblks);
942 #endif
943 }
944
945 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
946 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
947 (sp->ninodes % INOPB(fs));
948 if (gotblk) {
949 LFS_LOCK_BUF(bp);
950 brelse(bp);
951 }
952
953 /* Increment inode count in segment summary block. */
954 ++((SEGSUM *)(sp->segsum))->ss_ninos;
955
956 /* If this page is full, set flag to allocate a new page. */
957 if (++sp->ninodes % INOPB(fs) == 0)
958 sp->ibp = NULL;
959
960 /*
961 * If updating the ifile, update the super-block. Update the disk
962 * address and access times for this inode in the ifile.
963 */
964 ino = ip->i_number;
965 if (ino == LFS_IFILE_INUM) {
966 daddr = fs->lfs_idaddr;
967 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
968 } else {
969 LFS_IENTRY(ifp, fs, ino, ibp);
970 daddr = ifp->if_daddr;
971 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
972 #ifdef LFS_DEBUG_NEXTFREE
973 if (ino > 3 && ifp->if_nextfree) {
974 vprint("lfs_writeinode",ITOV(ip));
975 printf("lfs_writeinode: updating free ino %d\n",
976 ip->i_number);
977 }
978 #endif
979 error = LFS_BWRITE_LOG(ibp); /* Ifile */
980 }
981
982 /*
983 * The inode's last address should not be in the current partial
984 * segment, except under exceptional circumstances (lfs_writevnodes
985 * had to start over, and in the meantime more blocks were written
986 * to a vnode). Both inodes will be accounted to this segment
987 * in lfs_writeseg so we need to subtract the earlier version
988 * here anyway. The segment count can temporarily dip below
989 * zero here; keep track of how many duplicates we have in
990 * "dupino" so we don't panic below.
991 */
992 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
993 ++sp->ndupino;
994 printf("lfs_writeinode: last inode addr in current pseg "
995 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
996 (long long)daddr, sp->ndupino);
997 }
998 /*
999 * Account the inode: it no longer belongs to its former segment,
1000 * though it will not belong to the new segment until that segment
1001 * is actually written.
1002 */
1003 if (daddr != LFS_UNUSED_DADDR) {
1004 u_int32_t oldsn = dtosn(fs, daddr);
1005 #ifdef DIAGNOSTIC
1006 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1007 #endif
1008 LFS_SEGENTRY(sup, fs, oldsn, bp);
1009 #ifdef DIAGNOSTIC
1010 if (sup->su_nbytes +
1011 sizeof (struct ufs1_dinode) * ndupino
1012 < sizeof (struct ufs1_dinode)) {
1013 printf("lfs_writeinode: negative bytes "
1014 "(segment %" PRIu32 " short by %d, "
1015 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1016 ", daddr=%" PRId64 ", su_nbytes=%u, "
1017 "ndupino=%d)\n",
1018 dtosn(fs, daddr),
1019 (int)sizeof (struct ufs1_dinode) *
1020 (1 - sp->ndupino) - sup->su_nbytes,
1021 oldsn, sp->seg_number, daddr,
1022 (unsigned int)sup->su_nbytes,
1023 sp->ndupino);
1024 panic("lfs_writeinode: negative bytes");
1025 sup->su_nbytes = sizeof (struct ufs1_dinode);
1026 }
1027 #endif
1028 #ifdef DEBUG_SU_NBYTES
1029 printf("seg %d -= %d for ino %d inode\n",
1030 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino);
1031 #endif
1032 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1033 redo_ifile =
1034 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1035 if (redo_ifile)
1036 fs->lfs_flags |= LFS_IFDIRTY;
1037 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1038 }
1039 return (redo_ifile);
1040 }
1041
1042 int
1043 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1044 {
1045 struct lfs *fs;
1046 int version;
1047 int j, blksinblk;
1048
1049 /*
1050 * If full, finish this segment. We may be doing I/O, so
1051 * release and reacquire the splbio().
1052 */
1053 #ifdef DIAGNOSTIC
1054 if (sp->vp == NULL)
1055 panic ("lfs_gatherblock: Null vp in segment");
1056 #endif
1057 fs = sp->fs;
1058 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1059 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1060 sp->seg_bytes_left < bp->b_bcount) {
1061 if (sptr)
1062 splx(*sptr);
1063 lfs_updatemeta(sp);
1064
1065 version = sp->fip->fi_version;
1066 (void) lfs_writeseg(fs, sp);
1067
1068 sp->fip->fi_version = version;
1069 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1070 /* Add the current file to the segment summary. */
1071 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1072 sp->sum_bytes_left -= FINFOSIZE;
1073
1074 if (sptr)
1075 *sptr = splbio();
1076 return (1);
1077 }
1078
1079 #ifdef DEBUG
1080 if (bp->b_flags & B_GATHERED) {
1081 printf("lfs_gatherblock: already gathered! Ino %d,"
1082 " lbn %" PRId64 "\n",
1083 sp->fip->fi_ino, bp->b_lblkno);
1084 return (0);
1085 }
1086 #endif
1087 /* Insert into the buffer list, update the FINFO block. */
1088 bp->b_flags |= B_GATHERED;
1089
1090 *sp->cbpp++ = bp;
1091 for (j = 0; j < blksinblk; j++)
1092 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1093
1094 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1095 sp->seg_bytes_left -= bp->b_bcount;
1096 return (0);
1097 }
1098
1099 int
1100 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1101 int (*match)(struct lfs *, struct buf *))
1102 {
1103 struct buf *bp, *nbp;
1104 int s, count = 0;
1105
1106 sp->vp = vp;
1107 s = splbio();
1108
1109 #ifndef LFS_NO_BACKBUF_HACK
1110 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1111 # define BUF_OFFSET \
1112 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1113 # define BACK_BUF(BP) \
1114 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1115 # define BEG_OF_LIST \
1116 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1117
1118 loop:
1119 /* Find last buffer. */
1120 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1121 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1122 bp = LIST_NEXT(bp, b_vnbufs))
1123 /* nothing */;
1124 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1125 nbp = BACK_BUF(bp);
1126 #else /* LFS_NO_BACKBUF_HACK */
1127 loop:
1128 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1129 nbp = LIST_NEXT(bp, b_vnbufs);
1130 #endif /* LFS_NO_BACKBUF_HACK */
1131 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1132 #ifdef DEBUG_LFS
1133 if (vp == fs->lfs_ivnode &&
1134 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1135 printf("(%" PRId64 ":%lx)",
1136 bp->b_lblkno, bp->b_flags);
1137 #endif
1138 continue;
1139 }
1140 if (vp->v_type == VBLK) {
1141 /* For block devices, just write the blocks. */
1142 /* XXX Do we really need to even do this? */
1143 #ifdef DEBUG_LFS
1144 if (count == 0)
1145 printf("BLK(");
1146 printf(".");
1147 #endif
1148 /*
1149 * Get the block before bwrite,
1150 * so we don't corrupt the free list
1151 */
1152 bp->b_flags |= B_BUSY;
1153 bremfree(bp);
1154 bwrite(bp);
1155 } else {
1156 #ifdef DIAGNOSTIC
1157 # ifdef LFS_USE_B_INVAL
1158 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1159 printf("lfs_gather: lbn %" PRId64 " is "
1160 "B_INVAL\n", bp->b_lblkno);
1161 VOP_PRINT(bp->b_vp);
1162 }
1163 # endif /* LFS_USE_B_INVAL */
1164 if (!(bp->b_flags & B_DELWRI))
1165 panic("lfs_gather: bp not B_DELWRI");
1166 if (!(bp->b_flags & B_LOCKED)) {
1167 printf("lfs_gather: lbn %" PRId64 " blk "
1168 "%" PRId64 " not B_LOCKED\n",
1169 bp->b_lblkno,
1170 dbtofsb(fs, bp->b_blkno));
1171 VOP_PRINT(bp->b_vp);
1172 panic("lfs_gather: bp not B_LOCKED");
1173 }
1174 #endif
1175 if (lfs_gatherblock(sp, bp, &s)) {
1176 goto loop;
1177 }
1178 }
1179 count++;
1180 }
1181 splx(s);
1182 #ifdef DEBUG_LFS
1183 if (vp->v_type == VBLK && count)
1184 printf(")\n");
1185 #endif
1186 lfs_updatemeta(sp);
1187 sp->vp = NULL;
1188 return count;
1189 }
1190
1191 #if DEBUG
1192 # define DEBUG_OOFF(n) do { \
1193 if (ooff == 0) { \
1194 printf("lfs_updatemeta[%d]: warning: writing " \
1195 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1196 ", was 0x0 (or %" PRId64 ")\n", \
1197 (n), ip->i_number, lbn, ndaddr, daddr); \
1198 } \
1199 } while (0)
1200 #else
1201 # define DEBUG_OOFF(n)
1202 #endif
1203
1204 /*
1205 * Change the given block's address to ndaddr, finding its previous
1206 * location using ufs_bmaparray().
1207 *
1208 * Account for this change in the segment table.
1209 */
1210 void
1211 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1212 int32_t ndaddr, int size)
1213 {
1214 SEGUSE *sup;
1215 struct buf *bp;
1216 struct indir a[NIADDR + 2], *ap;
1217 struct inode *ip;
1218 struct vnode *vp;
1219 daddr_t daddr, ooff;
1220 int num, error;
1221 int bb, osize, obb;
1222
1223 vp = sp->vp;
1224 ip = VTOI(vp);
1225
1226 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1227 if (error)
1228 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1229
1230 KASSERT(daddr <= LFS_MAX_DADDR);
1231 if (daddr > 0)
1232 daddr = dbtofsb(fs, daddr);
1233
1234 bb = fragstofsb(fs, numfrags(fs, size));
1235 switch (num) {
1236 case 0:
1237 ooff = ip->i_ffs1_db[lbn];
1238 DEBUG_OOFF(0);
1239 if (ooff == UNWRITTEN)
1240 ip->i_ffs1_blocks += bb;
1241 else {
1242 /* possible fragment truncation or extension */
1243 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1244 ip->i_ffs1_blocks += (bb - obb);
1245 }
1246 ip->i_ffs1_db[lbn] = ndaddr;
1247 break;
1248 case 1:
1249 ooff = ip->i_ffs1_ib[a[0].in_off];
1250 DEBUG_OOFF(1);
1251 if (ooff == UNWRITTEN)
1252 ip->i_ffs1_blocks += bb;
1253 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1254 break;
1255 default:
1256 ap = &a[num - 1];
1257 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1258 panic("lfs_updatemeta: bread bno %" PRId64,
1259 ap->in_lbn);
1260
1261 /* XXX ondisk32 */
1262 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1263 DEBUG_OOFF(num);
1264 if (ooff == UNWRITTEN)
1265 ip->i_ffs1_blocks += bb;
1266 /* XXX ondisk32 */
1267 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1268 (void) VOP_BWRITE(bp);
1269 }
1270
1271 /*
1272 * Though we'd rather it couldn't, this *can* happen right now
1273 * if cleaning blocks and regular blocks coexist.
1274 */
1275 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1276
1277 /*
1278 * Update segment usage information, based on old size
1279 * and location.
1280 */
1281 if (daddr > 0) {
1282 u_int32_t oldsn = dtosn(fs, daddr);
1283 #ifdef DIAGNOSTIC
1284 int ndupino = (sp->seg_number == oldsn) ?
1285 sp->ndupino : 0;
1286 #endif
1287 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1288 if (lbn >= 0 && lbn < NDADDR)
1289 osize = ip->i_lfs_fragsize[lbn];
1290 else
1291 osize = fs->lfs_bsize;
1292 LFS_SEGENTRY(sup, fs, oldsn, bp);
1293 #ifdef DIAGNOSTIC
1294 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1295 < osize) {
1296 printf("lfs_updatemeta: negative bytes "
1297 "(segment %" PRIu32 " short by %" PRId64
1298 ")\n", dtosn(fs, daddr),
1299 (int64_t)osize -
1300 (sizeof (struct ufs1_dinode) * sp->ndupino +
1301 sup->su_nbytes));
1302 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1303 ", addr = 0x%" PRIx64 "\n",
1304 VTOI(sp->vp)->i_number, lbn, daddr);
1305 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1306 panic("lfs_updatemeta: negative bytes");
1307 sup->su_nbytes = osize -
1308 sizeof (struct ufs1_dinode) * sp->ndupino;
1309 }
1310 #endif
1311 #ifdef DEBUG_SU_NBYTES
1312 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1313 " db 0x%" PRIx64 "\n",
1314 dtosn(fs, daddr), osize,
1315 VTOI(sp->vp)->i_number, lbn, daddr);
1316 #endif
1317 sup->su_nbytes -= osize;
1318 if (!(bp->b_flags & B_GATHERED))
1319 fs->lfs_flags |= LFS_IFDIRTY;
1320 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1321 }
1322 /*
1323 * Now that this block has a new address, and its old
1324 * segment no longer owns it, we can forget about its
1325 * old size.
1326 */
1327 if (lbn >= 0 && lbn < NDADDR)
1328 ip->i_lfs_fragsize[lbn] = size;
1329 }
1330
1331 /*
1332 * Update the metadata that points to the blocks listed in the FINFO
1333 * array.
1334 */
1335 void
1336 lfs_updatemeta(struct segment *sp)
1337 {
1338 struct buf *sbp;
1339 struct lfs *fs;
1340 struct vnode *vp;
1341 daddr_t lbn;
1342 int i, nblocks, num;
1343 int bb;
1344 int bytesleft, size;
1345
1346 vp = sp->vp;
1347 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1348 KASSERT(nblocks >= 0);
1349 if (vp == NULL || nblocks == 0)
1350 return;
1351
1352 /*
1353 * This count may be high due to oversize blocks from lfs_gop_write.
1354 * Correct for this. (XXX we should be able to keep track of these.)
1355 */
1356 fs = sp->fs;
1357 for (i = 0; i < nblocks; i++) {
1358 if (sp->start_bpp[i] == NULL) {
1359 printf("nblocks = %d, not %d\n", i, nblocks);
1360 nblocks = i;
1361 break;
1362 }
1363 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1364 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1365 nblocks -= num - 1;
1366 }
1367
1368 KASSERT(vp->v_type == VREG ||
1369 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1370 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1371
1372 /*
1373 * Sort the blocks.
1374 *
1375 * We have to sort even if the blocks come from the
1376 * cleaner, because there might be other pending blocks on the
1377 * same inode...and if we don't sort, and there are fragments
1378 * present, blocks may be written in the wrong place.
1379 */
1380 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1381
1382 /*
1383 * Record the length of the last block in case it's a fragment.
1384 * If there are indirect blocks present, they sort last. An
1385 * indirect block will be lfs_bsize and its presence indicates
1386 * that you cannot have fragments.
1387 *
1388 * XXX This last is a lie. A cleaned fragment can coexist with
1389 * XXX a later indirect block. This will continue to be
1390 * XXX true until lfs_markv is fixed to do everything with
1391 * XXX fake blocks (including fake inodes and fake indirect blocks).
1392 */
1393 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1394 fs->lfs_bmask) + 1;
1395
1396 /*
1397 * Assign disk addresses, and update references to the logical
1398 * block and the segment usage information.
1399 */
1400 for (i = nblocks; i--; ++sp->start_bpp) {
1401 sbp = *sp->start_bpp;
1402 lbn = *sp->start_lbp;
1403 KASSERT(sbp->b_lblkno == lbn);
1404
1405 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1406
1407 /*
1408 * If we write a frag in the wrong place, the cleaner won't
1409 * be able to correctly identify its size later, and the
1410 * segment will be uncleanable. (Even worse, it will assume
1411 * that the indirect block that actually ends the list
1412 * is of a smaller size!)
1413 */
1414 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1415 panic("lfs_updatemeta: fragment is not last block");
1416
1417 /*
1418 * For each subblock in this possibly oversized block,
1419 * update its address on disk.
1420 */
1421 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1422 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1423 bytesleft -= fs->lfs_bsize) {
1424 size = MIN(bytesleft, fs->lfs_bsize);
1425 bb = fragstofsb(fs, numfrags(fs, size));
1426 lbn = *sp->start_lbp++;
1427 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1428 fs->lfs_offset += bb;
1429 }
1430
1431 }
1432 }
1433
1434 /*
1435 * Start a new segment.
1436 */
1437 int
1438 lfs_initseg(struct lfs *fs)
1439 {
1440 struct segment *sp;
1441 SEGUSE *sup;
1442 SEGSUM *ssp;
1443 struct buf *bp, *sbp;
1444 int repeat;
1445
1446 sp = fs->lfs_sp;
1447
1448 repeat = 0;
1449
1450 /* Advance to the next segment. */
1451 if (!LFS_PARTIAL_FITS(fs)) {
1452 /* lfs_avail eats the remaining space */
1453 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1454 fs->lfs_curseg);
1455 /* Wake up any cleaning procs waiting on this file system. */
1456 wakeup(&lfs_allclean_wakeup);
1457 wakeup(&fs->lfs_nextseg);
1458 lfs_newseg(fs);
1459 repeat = 1;
1460 fs->lfs_offset = fs->lfs_curseg;
1461
1462 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1463 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1464
1465 /*
1466 * If the segment contains a superblock, update the offset
1467 * and summary address to skip over it.
1468 */
1469 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1470 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1471 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1472 sp->seg_bytes_left -= LFS_SBPAD;
1473 }
1474 brelse(bp);
1475 /* Segment zero could also contain the labelpad */
1476 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1477 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1478 fs->lfs_offset +=
1479 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1480 sp->seg_bytes_left -=
1481 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1482 }
1483 } else {
1484 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1485 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1486 (fs->lfs_offset - fs->lfs_curseg));
1487 }
1488 fs->lfs_lastpseg = fs->lfs_offset;
1489
1490 /* Record first address of this partial segment */
1491 if (sp->seg_flags & SEGM_CLEAN) {
1492 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1493 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1494 /* "1" is the artificial inc in lfs_seglock */
1495 while (fs->lfs_iocount > 1) {
1496 tsleep(&fs->lfs_iocount, PRIBIO + 1,
1497 "lfs_initseg", 0);
1498 }
1499 fs->lfs_cleanind = 0;
1500 }
1501 }
1502
1503 sp->fs = fs;
1504 sp->ibp = NULL;
1505 sp->idp = NULL;
1506 sp->ninodes = 0;
1507 sp->ndupino = 0;
1508
1509 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1510 sp->cbpp = sp->bpp;
1511 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1512 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1513 sp->segsum = (*sp->cbpp)->b_data;
1514 memset(sp->segsum, 0, fs->lfs_sumsize);
1515 sp->start_bpp = ++sp->cbpp;
1516 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1517
1518 /* Set point to SEGSUM, initialize it. */
1519 ssp = sp->segsum;
1520 ssp->ss_next = fs->lfs_nextseg;
1521 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1522 ssp->ss_magic = SS_MAGIC;
1523
1524 /* Set pointer to first FINFO, initialize it. */
1525 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1526 sp->fip->fi_nblocks = 0;
1527 sp->start_lbp = &sp->fip->fi_blocks[0];
1528 sp->fip->fi_lastlength = 0;
1529
1530 sp->seg_bytes_left -= fs->lfs_sumsize;
1531 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1532
1533 return (repeat);
1534 }
1535
1536 /*
1537 * Return the next segment to write.
1538 */
1539 void
1540 lfs_newseg(struct lfs *fs)
1541 {
1542 CLEANERINFO *cip;
1543 SEGUSE *sup;
1544 struct buf *bp;
1545 int curseg, isdirty, sn;
1546
1547 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1548 #ifdef DEBUG_SU_NBYTES
1549 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1550 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1551 #endif
1552 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1553 sup->su_nbytes = 0;
1554 sup->su_nsums = 0;
1555 sup->su_ninos = 0;
1556 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1557
1558 LFS_CLEANERINFO(cip, fs, bp);
1559 --cip->clean;
1560 ++cip->dirty;
1561 fs->lfs_nclean = cip->clean;
1562 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1563
1564 fs->lfs_lastseg = fs->lfs_curseg;
1565 fs->lfs_curseg = fs->lfs_nextseg;
1566 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1567 sn = (sn + 1) % fs->lfs_nseg;
1568 if (sn == curseg)
1569 panic("lfs_nextseg: no clean segments");
1570 LFS_SEGENTRY(sup, fs, sn, bp);
1571 isdirty = sup->su_flags & SEGUSE_DIRTY;
1572 /* Check SEGUSE_EMPTY as we go along */
1573 if (isdirty && sup->su_nbytes == 0 &&
1574 !(sup->su_flags & SEGUSE_EMPTY))
1575 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1576 else
1577 brelse(bp);
1578
1579 if (!isdirty)
1580 break;
1581 }
1582
1583 ++fs->lfs_nactive;
1584 fs->lfs_nextseg = sntod(fs, sn);
1585 if (lfs_dostats) {
1586 ++lfs_stats.segsused;
1587 }
1588 }
1589
1590 static struct buf *
1591 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1592 {
1593 struct lfs_cluster *cl;
1594 struct buf **bpp, *bp;
1595 int s;
1596
1597 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1598 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1599 memset(cl, 0, sizeof(*cl));
1600 cl->fs = fs;
1601 cl->bpp = bpp;
1602 cl->bufcount = 0;
1603 cl->bufsize = 0;
1604
1605 /* If this segment is being written synchronously, note that */
1606 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1607 cl->flags |= LFS_CL_SYNC;
1608 cl->seg = fs->lfs_sp;
1609 ++cl->seg->seg_iocount;
1610 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1611 }
1612
1613 /* Get an empty buffer header, or maybe one with something on it */
1614 s = splbio();
1615 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1616 splx(s);
1617 memset(bp, 0, sizeof(*bp));
1618 BUF_INIT(bp);
1619
1620 bp->b_flags = B_BUSY | B_CALL;
1621 bp->b_dev = NODEV;
1622 bp->b_blkno = bp->b_lblkno = addr;
1623 bp->b_iodone = lfs_cluster_callback;
1624 bp->b_saveaddr = (caddr_t)cl;
1625 bp->b_vp = vp;
1626
1627 return bp;
1628 }
1629
1630 int
1631 lfs_writeseg(struct lfs *fs, struct segment *sp)
1632 {
1633 struct buf **bpp, *bp, *cbp, *newbp;
1634 SEGUSE *sup;
1635 SEGSUM *ssp;
1636 dev_t i_dev;
1637 char *datap, *dp;
1638 int i, s;
1639 int do_again, nblocks, byteoffset;
1640 size_t el_size;
1641 struct lfs_cluster *cl;
1642 int (*strategy)(void *);
1643 struct vop_strategy_args vop_strategy_a;
1644 u_short ninos;
1645 struct vnode *devvp;
1646 char *p;
1647 struct vnode *vp;
1648 int32_t *daddrp; /* XXX ondisk32 */
1649 int changed;
1650 #if defined(DEBUG) && defined(LFS_PROPELLER)
1651 static int propeller;
1652 char propstring[4] = "-\\|/";
1653
1654 printf("%c\b",propstring[propeller++]);
1655 if (propeller == 4)
1656 propeller = 0;
1657 #endif
1658
1659 /*
1660 * If there are no buffers other than the segment summary to write
1661 * and it is not a checkpoint, don't do anything. On a checkpoint,
1662 * even if there aren't any buffers, you need to write the superblock.
1663 */
1664 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1665 return (0);
1666
1667 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1668 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1669
1670 /* Update the segment usage information. */
1671 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1672
1673 /* Loop through all blocks, except the segment summary. */
1674 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1675 if ((*bpp)->b_vp != devvp) {
1676 sup->su_nbytes += (*bpp)->b_bcount;
1677 #ifdef DEBUG_SU_NBYTES
1678 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1679 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1680 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1681 (*bpp)->b_blkno);
1682 #endif
1683 }
1684 }
1685
1686 ssp = (SEGSUM *)sp->segsum;
1687
1688 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1689 #ifdef DEBUG_SU_NBYTES
1690 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1691 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1692 ssp->ss_ninos);
1693 #endif
1694 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1695 /* sup->su_nbytes += fs->lfs_sumsize; */
1696 if (fs->lfs_version == 1)
1697 sup->su_olastmod = time.tv_sec;
1698 else
1699 sup->su_lastmod = time.tv_sec;
1700 sup->su_ninos += ninos;
1701 ++sup->su_nsums;
1702 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1703 fs->lfs_ibsize));
1704 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1705
1706 do_again = !(bp->b_flags & B_GATHERED);
1707 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1708
1709 /*
1710 * Mark blocks B_BUSY, to prevent then from being changed between
1711 * the checksum computation and the actual write.
1712 *
1713 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1714 * there are any, replace them with copies that have UNASSIGNED
1715 * instead.
1716 */
1717 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1718 ++bpp;
1719 bp = *bpp;
1720 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1721 bp->b_flags |= B_BUSY;
1722 continue;
1723 }
1724 again:
1725 s = splbio();
1726 if (bp->b_flags & B_BUSY) {
1727 #ifdef DEBUG
1728 printf("lfs_writeseg: avoiding potential data summary "
1729 "corruption for ino %d, lbn %" PRId64 "\n",
1730 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1731 #endif
1732 bp->b_flags |= B_WANTED;
1733 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1734 splx(s);
1735 goto again;
1736 }
1737 bp->b_flags |= B_BUSY;
1738 splx(s);
1739 /*
1740 * Check and replace indirect block UNWRITTEN bogosity.
1741 * XXX See comment in lfs_writefile.
1742 */
1743 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1744 VTOI(bp->b_vp)->i_ffs1_blocks !=
1745 VTOI(bp->b_vp)->i_lfs_effnblks) {
1746 #ifdef DEBUG_LFS
1747 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1748 VTOI(bp->b_vp)->i_number,
1749 VTOI(bp->b_vp)->i_lfs_effnblks,
1750 VTOI(bp->b_vp)->i_ffs1_blocks);
1751 #endif
1752 /* Make a copy we'll make changes to */
1753 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1754 bp->b_bcount, LFS_NB_IBLOCK);
1755 newbp->b_blkno = bp->b_blkno;
1756 memcpy(newbp->b_data, bp->b_data,
1757 newbp->b_bcount);
1758
1759 changed = 0;
1760 /* XXX ondisk32 */
1761 for (daddrp = (int32_t *)(newbp->b_data);
1762 daddrp < (int32_t *)(newbp->b_data +
1763 newbp->b_bcount); daddrp++) {
1764 if (*daddrp == UNWRITTEN) {
1765 #ifdef DEBUG_LFS
1766 off_t doff;
1767 int32_t ioff;
1768
1769 ioff =
1770 daddrp - (int32_t *)(newbp->b_data);
1771 doff =
1772 (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1773 printf("ino %d lbn %" PRId64
1774 " entry %d off %" PRIx64 "\n",
1775 VTOI(bp->b_vp)->i_number,
1776 bp->b_lblkno, ioff, doff);
1777 if (bp->b_vp->v_type == VREG) {
1778 /*
1779 * What is up with this page?
1780 */
1781 struct vm_page *pg;
1782 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff);
1783 doff += PAGE_SIZE) {
1784 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1785 if (pg == NULL)
1786 printf(" page at %" PRIx64 " is NULL\n", doff);
1787 else
1788 printf(" page at %" PRIx64
1789 " flags 0x%x pqflags 0x%x\n",
1790 doff, pg->flags, pg->pqflags);
1791 }
1792 }
1793 #endif /* DEBUG_LFS */
1794 ++changed;
1795 *daddrp = 0;
1796 }
1797 }
1798 /*
1799 * Get rid of the old buffer. Don't mark it clean,
1800 * though, if it still has dirty data on it.
1801 */
1802 if (changed) {
1803 #ifdef DEBUG_LFS
1804 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1805 " bp = %p newbp = %p\n", changed, bp,
1806 newbp);
1807 #endif
1808 *bpp = newbp;
1809 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1810 if (bp->b_flags & B_CALL) {
1811 printf("lfs_writeseg: "
1812 "indir bp should not be B_CALL\n");
1813 s = splbio();
1814 biodone(bp);
1815 splx(s);
1816 bp = NULL;
1817 } else {
1818 /* Still on free list, leave it there */
1819 s = splbio();
1820 bp->b_flags &= ~B_BUSY;
1821 if (bp->b_flags & B_WANTED)
1822 wakeup(bp);
1823 splx(s);
1824 /*
1825 * We have to re-decrement lfs_avail
1826 * since this block is going to come
1827 * back around to us in the next
1828 * segment.
1829 */
1830 fs->lfs_avail -=
1831 btofsb(fs, bp->b_bcount);
1832 }
1833 } else {
1834 lfs_freebuf(fs, newbp);
1835 }
1836 }
1837 }
1838 /*
1839 * Compute checksum across data and then across summary; the first
1840 * block (the summary block) is skipped. Set the create time here
1841 * so that it's guaranteed to be later than the inode mod times.
1842 *
1843 * XXX
1844 * Fix this to do it inline, instead of malloc/copy.
1845 */
1846 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1847 if (fs->lfs_version == 1)
1848 el_size = sizeof(u_long);
1849 else
1850 el_size = sizeof(u_int32_t);
1851 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1852 ++bpp;
1853 /* Loop through gop_write cluster blocks */
1854 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1855 byteoffset += fs->lfs_bsize) {
1856 #ifdef LFS_USE_B_INVAL
1857 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1858 (B_CALL | B_INVAL)) {
1859 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1860 byteoffset, dp, el_size)) {
1861 panic("lfs_writeseg: copyin failed [1]:"
1862 " ino %d blk %" PRId64,
1863 VTOI((*bpp)->b_vp)->i_number,
1864 (*bpp)->b_lblkno);
1865 }
1866 } else
1867 #endif /* LFS_USE_B_INVAL */
1868 {
1869 memcpy(dp, (*bpp)->b_data + byteoffset,
1870 el_size);
1871 }
1872 dp += el_size;
1873 }
1874 }
1875 if (fs->lfs_version == 1)
1876 ssp->ss_ocreate = time.tv_sec;
1877 else {
1878 ssp->ss_create = time.tv_sec;
1879 ssp->ss_serial = ++fs->lfs_serial;
1880 ssp->ss_ident = fs->lfs_ident;
1881 }
1882 ssp->ss_datasum = cksum(datap, dp - datap);
1883 ssp->ss_sumsum =
1884 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1885 pool_put(&fs->lfs_bpppool, datap);
1886 datap = dp = NULL;
1887 #ifdef DIAGNOSTIC
1888 if (fs->lfs_bfree <
1889 btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1890 panic("lfs_writeseg: No diskspace for summary");
1891 #endif
1892 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1893 btofsb(fs, fs->lfs_sumsize));
1894
1895 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1896
1897 /*
1898 * When we simply write the blocks we lose a rotation for every block
1899 * written. To avoid this problem, we cluster the buffers into a
1900 * chunk and write the chunk. MAXPHYS is the largest size I/O
1901 * devices can handle, use that for the size of the chunks.
1902 *
1903 * Blocks that are already clusters (from GOP_WRITE), however, we
1904 * don't bother to copy into other clusters.
1905 */
1906
1907 #define CHUNKSIZE MAXPHYS
1908
1909 if (devvp == NULL)
1910 panic("devvp is NULL");
1911 for (bpp = sp->bpp, i = nblocks; i;) {
1912 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1913 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1914
1915 cbp->b_dev = i_dev;
1916 cbp->b_flags |= B_ASYNC | B_BUSY;
1917 cbp->b_bcount = 0;
1918
1919 #if defined(DEBUG) && defined(DIAGNOSTIC)
1920 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1921 / sizeof(int32_t)) {
1922 panic("lfs_writeseg: real bpp overwrite");
1923 }
1924 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1925 panic("lfs_writeseg: theoretical bpp overwrite");
1926 }
1927 #endif
1928
1929 /*
1930 * Construct the cluster.
1931 */
1932 ++fs->lfs_iocount;
1933 while (i && cbp->b_bcount < CHUNKSIZE) {
1934 bp = *bpp;
1935
1936 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1937 break;
1938 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1939 break;
1940
1941 /* Clusters from GOP_WRITE are expedited */
1942 if (bp->b_bcount > fs->lfs_bsize) {
1943 if (cbp->b_bcount > 0)
1944 /* Put in its own buffer */
1945 break;
1946 else {
1947 cbp->b_data = bp->b_data;
1948 }
1949 } else if (cbp->b_bcount == 0) {
1950 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1951 LFS_NB_CLUSTER);
1952 cl->flags |= LFS_CL_MALLOC;
1953 }
1954 #ifdef DIAGNOSTIC
1955 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1956 btodb(bp->b_bcount - 1))) !=
1957 sp->seg_number) {
1958 printf("blk size %ld daddr %" PRIx64
1959 " not in seg %d\n",
1960 bp->b_bcount, bp->b_blkno,
1961 sp->seg_number);
1962 panic("segment overwrite");
1963 }
1964 #endif
1965
1966 #ifdef LFS_USE_B_INVAL
1967 /*
1968 * Fake buffers from the cleaner are marked as B_INVAL.
1969 * We need to copy the data from user space rather than
1970 * from the buffer indicated.
1971 * XXX == what do I do on an error?
1972 */
1973 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
1974 (B_CALL|B_INVAL)) {
1975 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1976 panic("lfs_writeseg: "
1977 "copyin failed [2]");
1978 } else
1979 #endif /* LFS_USE_B_INVAL */
1980 if (cl->flags & LFS_CL_MALLOC) {
1981 bcopy(bp->b_data, p, bp->b_bcount);
1982 }
1983
1984 p += bp->b_bcount;
1985 cbp->b_bcount += bp->b_bcount;
1986 cl->bufsize += bp->b_bcount;
1987
1988 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1989 cl->bpp[cl->bufcount++] = bp;
1990 vp = bp->b_vp;
1991 s = splbio();
1992 V_INCR_NUMOUTPUT(vp);
1993 splx(s);
1994
1995 bpp++;
1996 i--;
1997 }
1998 s = splbio();
1999 V_INCR_NUMOUTPUT(devvp);
2000 splx(s);
2001 vop_strategy_a.a_desc = VDESC(vop_strategy);
2002 vop_strategy_a.a_bp = cbp;
2003 (strategy)(&vop_strategy_a);
2004 curproc->p_stats->p_ru.ru_oublock++;
2005 }
2006
2007 if (lfs_dostats) {
2008 ++lfs_stats.psegwrites;
2009 lfs_stats.blocktot += nblocks - 1;
2010 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2011 ++lfs_stats.psyncwrites;
2012 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2013 ++lfs_stats.pcleanwrites;
2014 lfs_stats.cleanblocks += nblocks - 1;
2015 }
2016 }
2017 return (lfs_initseg(fs) || do_again);
2018 }
2019
2020 void
2021 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2022 {
2023 struct buf *bp;
2024 dev_t i_dev;
2025 int (*strategy)(void *);
2026 int s;
2027 struct vop_strategy_args vop_strategy_a;
2028
2029 /*
2030 * If we can write one superblock while another is in
2031 * progress, we risk not having a complete checkpoint if we crash.
2032 * So, block here if a superblock write is in progress.
2033 */
2034 s = splbio();
2035 while (fs->lfs_sbactive) {
2036 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2037 }
2038 fs->lfs_sbactive = daddr;
2039 splx(s);
2040 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2041 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2042
2043 /* Set timestamp of this version of the superblock */
2044 if (fs->lfs_version == 1)
2045 fs->lfs_otstamp = time.tv_sec;
2046 fs->lfs_tstamp = time.tv_sec;
2047
2048 /* Checksum the superblock and copy it into a buffer. */
2049 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2050 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
2051 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2052 memset(bp->b_data + sizeof(struct dlfs), 0,
2053 LFS_SBPAD - sizeof(struct dlfs));
2054 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2055
2056 bp->b_dev = i_dev;
2057 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2058 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2059 bp->b_iodone = lfs_supercallback;
2060 /* XXX KS - same nasty hack as above */
2061 bp->b_saveaddr = (caddr_t)fs;
2062
2063 vop_strategy_a.a_desc = VDESC(vop_strategy);
2064 vop_strategy_a.a_bp = bp;
2065 curproc->p_stats->p_ru.ru_oublock++;
2066 s = splbio();
2067 V_INCR_NUMOUTPUT(bp->b_vp);
2068 splx(s);
2069 ++fs->lfs_iocount;
2070 (strategy)(&vop_strategy_a);
2071 }
2072
2073 /*
2074 * Logical block number match routines used when traversing the dirty block
2075 * chain.
2076 */
2077 int
2078 lfs_match_fake(struct lfs *fs, struct buf *bp)
2079 {
2080
2081 return LFS_IS_MALLOC_BUF(bp);
2082 }
2083
2084 #if 0
2085 int
2086 lfs_match_real(struct lfs *fs, struct buf *bp)
2087 {
2088
2089 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2090 }
2091 #endif
2092
2093 int
2094 lfs_match_data(struct lfs *fs, struct buf *bp)
2095 {
2096
2097 return (bp->b_lblkno >= 0);
2098 }
2099
2100 int
2101 lfs_match_indir(struct lfs *fs, struct buf *bp)
2102 {
2103 daddr_t lbn;
2104
2105 lbn = bp->b_lblkno;
2106 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2107 }
2108
2109 int
2110 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2111 {
2112 daddr_t lbn;
2113
2114 lbn = bp->b_lblkno;
2115 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2116 }
2117
2118 int
2119 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2120 {
2121 daddr_t lbn;
2122
2123 lbn = bp->b_lblkno;
2124 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2125 }
2126
2127 /*
2128 * XXX - The only buffers that are going to hit these functions are the
2129 * segment write blocks, or the segment summaries, or the superblocks.
2130 *
2131 * All of the above are created by lfs_newbuf, and so do not need to be
2132 * released via brelse.
2133 */
2134 void
2135 lfs_callback(struct buf *bp)
2136 {
2137 struct lfs *fs;
2138
2139 fs = (struct lfs *)bp->b_saveaddr;
2140 lfs_freebuf(fs, bp);
2141 }
2142
2143 static void
2144 lfs_super_aiodone(struct buf *bp)
2145 {
2146 struct lfs *fs;
2147
2148 fs = (struct lfs *)bp->b_saveaddr;
2149 fs->lfs_sbactive = 0;
2150 wakeup(&fs->lfs_sbactive);
2151 if (--fs->lfs_iocount <= 1)
2152 wakeup(&fs->lfs_iocount);
2153 lfs_freebuf(fs, bp);
2154 }
2155
2156 static void
2157 lfs_cluster_aiodone(struct buf *bp)
2158 {
2159 struct lfs_cluster *cl;
2160 struct lfs *fs;
2161 struct buf *tbp, *fbp;
2162 struct vnode *vp, *devvp;
2163 struct inode *ip;
2164 int s, error=0;
2165 char *cp;
2166
2167 if (bp->b_flags & B_ERROR)
2168 error = bp->b_error;
2169
2170 cl = (struct lfs_cluster *)bp->b_saveaddr;
2171 fs = cl->fs;
2172 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2173
2174 cp = (char *)bp->b_data + cl->bufsize;
2175 /* Put the pages back, and release the buffer */
2176 while (cl->bufcount--) {
2177 tbp = cl->bpp[cl->bufcount];
2178 if (error) {
2179 tbp->b_flags |= B_ERROR;
2180 tbp->b_error = error;
2181 }
2182
2183 /*
2184 * We're done with tbp. If it has not been re-dirtied since
2185 * the cluster was written, free it. Otherwise, keep it on
2186 * the locked list to be written again.
2187 */
2188 vp = tbp->b_vp;
2189
2190 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2191 LFS_UNLOCK_BUF(tbp);
2192
2193 tbp->b_flags &= ~B_GATHERED;
2194
2195 LFS_BCLEAN_LOG(fs, tbp);
2196
2197 if (!(tbp->b_flags & B_CALL)) {
2198 bremfree(tbp);
2199 s = splbio();
2200 if (vp)
2201 reassignbuf(tbp, vp);
2202 splx(s);
2203 tbp->b_flags |= B_ASYNC; /* for biodone */
2204 }
2205 #ifdef DIAGNOSTIC
2206 if (tbp->b_flags & B_DONE) {
2207 printf("blk %d biodone already (flags %lx)\n",
2208 cl->bufcount, (long)tbp->b_flags);
2209 }
2210 #endif
2211 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2212 if ((tbp->b_flags & B_CALL) &&
2213 !LFS_IS_MALLOC_BUF(tbp)) {
2214 /* printf("flags 0x%lx\n", tbp->b_flags); */
2215 /*
2216 * A buffer from the page daemon.
2217 * We use the same iodone as it does,
2218 * so we must manually disassociate its
2219 * buffers from the vp.
2220 */
2221 if (tbp->b_vp) {
2222 /* This is just silly */
2223 s = splbio();
2224 brelvp(tbp);
2225 tbp->b_vp = vp;
2226 splx(s);
2227 }
2228 /* Put it back the way it was */
2229 tbp->b_flags |= B_ASYNC;
2230 /* Master buffers have B_AGE */
2231 if (tbp->b_private == tbp)
2232 tbp->b_flags |= B_AGE;
2233 }
2234 s = splbio();
2235 biodone(tbp);
2236
2237 /*
2238 * If this is the last block for this vnode, but
2239 * there are other blocks on its dirty list,
2240 * set IN_MODIFIED/IN_CLEANING depending on what
2241 * sort of block. Only do this for our mount point,
2242 * not for, e.g., inode blocks that are attached to
2243 * the devvp.
2244 * XXX KS - Shouldn't we set *both* if both types
2245 * of blocks are present (traverse the dirty list?)
2246 */
2247 simple_lock(&global_v_numoutput_slock);
2248 if (vp != devvp && vp->v_numoutput == 0 &&
2249 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2250 ip = VTOI(vp);
2251 #ifdef DEBUG_LFS
2252 printf("lfs_cluster_aiodone: marking ino %d\n",
2253 ip->i_number);
2254 #endif
2255 if (LFS_IS_MALLOC_BUF(fbp))
2256 LFS_SET_UINO(ip, IN_CLEANING);
2257 else
2258 LFS_SET_UINO(ip, IN_MODIFIED);
2259 }
2260 simple_unlock(&global_v_numoutput_slock);
2261 splx(s);
2262 wakeup(vp);
2263 }
2264 }
2265
2266 /* Fix up the cluster buffer, and release it */
2267 if (cl->flags & LFS_CL_MALLOC)
2268 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2269 s = splbio();
2270 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2271 splx(s);
2272
2273 /* Note i/o done */
2274 if (cl->flags & LFS_CL_SYNC) {
2275 if (--cl->seg->seg_iocount == 0)
2276 wakeup(&cl->seg->seg_iocount);
2277 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2278 }
2279 #ifdef DIAGNOSTIC
2280 if (fs->lfs_iocount == 0)
2281 panic("lfs_cluster_aiodone: zero iocount");
2282 #endif
2283 if (--fs->lfs_iocount <= 1)
2284 wakeup(&fs->lfs_iocount);
2285
2286 pool_put(&fs->lfs_bpppool, cl->bpp);
2287 cl->bpp = NULL;
2288 pool_put(&fs->lfs_clpool, cl);
2289 }
2290
2291 static void
2292 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2293 {
2294 /* reset b_iodone for when this is a single-buf i/o. */
2295 bp->b_iodone = aiodone;
2296
2297 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2298 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2299 wakeup(&uvm.aiodoned);
2300 simple_unlock(&uvm.aiodoned_lock);
2301 }
2302
2303 static void
2304 lfs_cluster_callback(struct buf *bp)
2305 {
2306
2307 lfs_generic_callback(bp, lfs_cluster_aiodone);
2308 }
2309
2310 void
2311 lfs_supercallback(struct buf *bp)
2312 {
2313
2314 lfs_generic_callback(bp, lfs_super_aiodone);
2315 }
2316
2317 /*
2318 * Shellsort (diminishing increment sort) from Data Structures and
2319 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2320 * see also Knuth Vol. 3, page 84. The increments are selected from
2321 * formula (8), page 95. Roughly O(N^3/2).
2322 */
2323 /*
2324 * This is our own private copy of shellsort because we want to sort
2325 * two parallel arrays (the array of buffer pointers and the array of
2326 * logical block numbers) simultaneously. Note that we cast the array
2327 * of logical block numbers to a unsigned in this routine so that the
2328 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2329 */
2330
2331 void
2332 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2333 {
2334 static int __rsshell_increments[] = { 4, 1, 0 };
2335 int incr, *incrp, t1, t2;
2336 struct buf *bp_temp;
2337
2338 #ifdef DEBUG
2339 incr = 0;
2340 for (t1 = 0; t1 < nmemb; t1++) {
2341 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2342 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2343 /* dump before panic */
2344 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2345 nmemb, size);
2346 incr = 0;
2347 for (t1 = 0; t1 < nmemb; t1++) {
2348 const struct buf *bp = bp_array[t1];
2349
2350 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2351 PRIu64 "\n", t1,
2352 (uint64_t)bp->b_bcount,
2353 (uint64_t)bp->b_lblkno);
2354 printf("lbns:");
2355 for (t2 = 0; t2 * size < bp->b_bcount;
2356 t2++) {
2357 printf(" %" PRId32,
2358 lb_array[incr++]);
2359 }
2360 printf("\n");
2361 }
2362 panic("lfs_shellsort: inconsistent input");
2363 }
2364 }
2365 }
2366 #endif
2367
2368 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2369 for (t1 = incr; t1 < nmemb; ++t1)
2370 for (t2 = t1 - incr; t2 >= 0;)
2371 if ((u_int32_t)bp_array[t2]->b_lblkno >
2372 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2373 bp_temp = bp_array[t2];
2374 bp_array[t2] = bp_array[t2 + incr];
2375 bp_array[t2 + incr] = bp_temp;
2376 t2 -= incr;
2377 } else
2378 break;
2379
2380 /* Reform the list of logical blocks */
2381 incr = 0;
2382 for (t1 = 0; t1 < nmemb; t1++) {
2383 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2384 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2385 }
2386 }
2387 }
2388
2389 /*
2390 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2391 */
2392 int
2393 lfs_vref(struct vnode *vp)
2394 {
2395 /*
2396 * If we return 1 here during a flush, we risk vinvalbuf() not
2397 * being able to flush all of the pages from this vnode, which
2398 * will cause it to panic. So, return 0 if a flush is in progress.
2399 */
2400 if (vp->v_flag & VXLOCK) {
2401 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2402 return 0;
2403 }
2404 return (1);
2405 }
2406 return (vget(vp, 0));
2407 }
2408
2409 /*
2410 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2411 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2412 */
2413 void
2414 lfs_vunref(struct vnode *vp)
2415 {
2416 /*
2417 * Analogous to lfs_vref, if the node is flushing, fake it.
2418 */
2419 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2420 return;
2421 }
2422
2423 simple_lock(&vp->v_interlock);
2424 #ifdef DIAGNOSTIC
2425 if (vp->v_usecount <= 0) {
2426 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2427 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2428 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2429 panic("lfs_vunref: v_usecount<0");
2430 }
2431 #endif
2432 vp->v_usecount--;
2433 if (vp->v_usecount > 0) {
2434 simple_unlock(&vp->v_interlock);
2435 return;
2436 }
2437 /*
2438 * insert at tail of LRU list
2439 */
2440 simple_lock(&vnode_free_list_slock);
2441 if (vp->v_holdcnt > 0)
2442 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2443 else
2444 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2445 simple_unlock(&vnode_free_list_slock);
2446 simple_unlock(&vp->v_interlock);
2447 }
2448
2449 /*
2450 * We use this when we have vnodes that were loaded in solely for cleaning.
2451 * There is no reason to believe that these vnodes will be referenced again
2452 * soon, since the cleaning process is unrelated to normal filesystem
2453 * activity. Putting cleaned vnodes at the tail of the list has the effect
2454 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2455 * cleaning at the head of the list, instead.
2456 */
2457 void
2458 lfs_vunref_head(struct vnode *vp)
2459 {
2460
2461 simple_lock(&vp->v_interlock);
2462 #ifdef DIAGNOSTIC
2463 if (vp->v_usecount == 0) {
2464 panic("lfs_vunref: v_usecount<0");
2465 }
2466 #endif
2467 vp->v_usecount--;
2468 if (vp->v_usecount > 0) {
2469 simple_unlock(&vp->v_interlock);
2470 return;
2471 }
2472 /*
2473 * insert at head of LRU list
2474 */
2475 simple_lock(&vnode_free_list_slock);
2476 if (vp->v_holdcnt > 0)
2477 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2478 else
2479 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2480 simple_unlock(&vnode_free_list_slock);
2481 simple_unlock(&vp->v_interlock);
2482 }
2483
2484