lfs_segment.c revision 1.132 1 /* $NetBSD: lfs_segment.c,v 1.132 2003/09/07 11:47:07 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.132 2003/09/07 11:47:07 yamt Exp $");
71
72 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
73
74 #if defined(_KERNEL_OPT)
75 #include "opt_ddb.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/namei.h>
81 #include <sys/kernel.h>
82 #include <sys/resourcevar.h>
83 #include <sys/file.h>
84 #include <sys/stat.h>
85 #include <sys/buf.h>
86 #include <sys/proc.h>
87 #include <sys/vnode.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
105
106 extern int count_lock_queue(void);
107 extern struct simplelock vnode_free_list_slock; /* XXX */
108 extern struct simplelock bqueue_slock; /* XXX */
109
110 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
111 static void lfs_super_aiodone(struct buf *);
112 static void lfs_cluster_aiodone(struct buf *);
113 static void lfs_cluster_callback(struct buf *);
114
115 /*
116 * Determine if it's OK to start a partial in this segment, or if we need
117 * to go on to a new segment.
118 */
119 #define LFS_PARTIAL_FITS(fs) \
120 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
121 fragstofsb((fs), (fs)->lfs_frag))
122
123 void lfs_callback(struct buf *);
124 int lfs_gather(struct lfs *, struct segment *,
125 struct vnode *, int (*)(struct lfs *, struct buf *));
126 int lfs_gatherblock(struct segment *, struct buf *, int *);
127 void lfs_iset(struct inode *, daddr_t, time_t);
128 int lfs_match_fake(struct lfs *, struct buf *);
129 int lfs_match_data(struct lfs *, struct buf *);
130 int lfs_match_dindir(struct lfs *, struct buf *);
131 int lfs_match_indir(struct lfs *, struct buf *);
132 int lfs_match_tindir(struct lfs *, struct buf *);
133 void lfs_newseg(struct lfs *);
134 /* XXX ondisk32 */
135 void lfs_shellsort(struct buf **, int32_t *, int, int);
136 void lfs_supercallback(struct buf *);
137 void lfs_updatemeta(struct segment *);
138 int lfs_vref(struct vnode *);
139 void lfs_vunref(struct vnode *);
140 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
141 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
142 int lfs_writeseg(struct lfs *, struct segment *);
143 void lfs_writesuper(struct lfs *, daddr_t);
144 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
145 struct segment *sp, int dirops);
146
147 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
148 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
149 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
150 int lfs_dirvcount = 0; /* # active dirops */
151
152 /* Statistics Counters */
153 int lfs_dostats = 1;
154 struct lfs_stats lfs_stats;
155
156 /* op values to lfs_writevnodes */
157 #define VN_REG 0
158 #define VN_DIROP 1
159 #define VN_EMPTY 2
160 #define VN_CLEAN 3
161
162 #define LFS_MAX_ACTIVE 10
163
164 /*
165 * XXX KS - Set modification time on the Ifile, so the cleaner can
166 * read the fs mod time off of it. We don't set IN_UPDATE here,
167 * since we don't really need this to be flushed to disk (and in any
168 * case that wouldn't happen to the Ifile until we checkpoint).
169 */
170 void
171 lfs_imtime(struct lfs *fs)
172 {
173 struct timespec ts;
174 struct inode *ip;
175
176 TIMEVAL_TO_TIMESPEC(&time, &ts);
177 ip = VTOI(fs->lfs_ivnode);
178 ip->i_ffs1_mtime = ts.tv_sec;
179 ip->i_ffs1_mtimensec = ts.tv_nsec;
180 }
181
182 /*
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
187 */
188
189 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
190 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
191 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
192
193 int
194 lfs_vflush(struct vnode *vp)
195 {
196 struct inode *ip;
197 struct lfs *fs;
198 struct segment *sp;
199 struct buf *bp, *nbp, *tbp, *tnbp;
200 int error, s;
201 int flushed;
202 #if 0
203 int redo;
204 #endif
205
206 ip = VTOI(vp);
207 fs = VFSTOUFS(vp->v_mount)->um_lfs;
208
209 if (ip->i_flag & IN_CLEANING) {
210 #ifdef DEBUG_LFS
211 ivndebug(vp,"vflush/in_cleaning");
212 #endif
213 LFS_CLR_UINO(ip, IN_CLEANING);
214 LFS_SET_UINO(ip, IN_MODIFIED);
215
216 /*
217 * Toss any cleaning buffers that have real counterparts
218 * to avoid losing new data.
219 */
220 s = splbio();
221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 nbp = LIST_NEXT(bp, b_vnbufs);
223 if (!LFS_IS_MALLOC_BUF(bp))
224 continue;
225 /*
226 * Look for pages matching the range covered
227 * by cleaning blocks. It's okay if more dirty
228 * pages appear, so long as none disappear out
229 * from under us.
230 */
231 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 vp != fs->lfs_ivnode) {
233 struct vm_page *pg;
234 voff_t off;
235
236 simple_lock(&vp->v_interlock);
237 for (off = lblktosize(fs, bp->b_lblkno);
238 off < lblktosize(fs, bp->b_lblkno + 1);
239 off += PAGE_SIZE) {
240 pg = uvm_pagelookup(&vp->v_uobj, off);
241 if (pg == NULL)
242 continue;
243 if ((pg->flags & PG_CLEAN) == 0 ||
244 pmap_is_modified(pg)) {
245 fs->lfs_avail += btofsb(fs,
246 bp->b_bcount);
247 wakeup(&fs->lfs_avail);
248 lfs_freebuf(fs, bp);
249 bp = NULL;
250 goto nextbp;
251 }
252 }
253 simple_unlock(&vp->v_interlock);
254 }
255 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
256 tbp = tnbp)
257 {
258 tnbp = LIST_NEXT(tbp, b_vnbufs);
259 if (tbp->b_vp == bp->b_vp
260 && tbp->b_lblkno == bp->b_lblkno
261 && tbp != bp)
262 {
263 fs->lfs_avail += btofsb(fs,
264 bp->b_bcount);
265 wakeup(&fs->lfs_avail);
266 lfs_freebuf(fs, bp);
267 bp = NULL;
268 break;
269 }
270 }
271 nextbp:
272 ;
273 }
274 splx(s);
275 }
276
277 /* If the node is being written, wait until that is done */
278 s = splbio();
279 if (WRITEINPROG(vp)) {
280 #ifdef DEBUG_LFS
281 ivndebug(vp,"vflush/writeinprog");
282 #endif
283 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
284 }
285 splx(s);
286
287 /* Protect against VXLOCK deadlock in vinvalbuf() */
288 lfs_seglock(fs, SEGM_SYNC);
289
290 /* If we're supposed to flush a freed inode, just toss it */
291 /* XXX - seglock, so these buffers can't be gathered, right? */
292 if (ip->i_mode == 0) {
293 printf("lfs_vflush: ino %d is freed, not flushing\n",
294 ip->i_number);
295 s = splbio();
296 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
297 nbp = LIST_NEXT(bp, b_vnbufs);
298 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
299 fs->lfs_avail += btofsb(fs, bp->b_bcount);
300 wakeup(&fs->lfs_avail);
301 }
302 /* Copied from lfs_writeseg */
303 if (bp->b_flags & B_CALL) {
304 biodone(bp);
305 } else {
306 bremfree(bp);
307 LFS_UNLOCK_BUF(bp);
308 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
309 B_GATHERED);
310 bp->b_flags |= B_DONE;
311 reassignbuf(bp, vp);
312 brelse(bp);
313 }
314 }
315 splx(s);
316 LFS_CLR_UINO(ip, IN_CLEANING);
317 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
318 ip->i_flag &= ~IN_ALLMOD;
319 printf("lfs_vflush: done not flushing ino %d\n",
320 ip->i_number);
321 lfs_segunlock(fs);
322 return 0;
323 }
324
325 SET_FLUSHING(fs,vp);
326 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
327 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
328 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
329 CLR_FLUSHING(fs,vp);
330 lfs_segunlock(fs);
331 return error;
332 }
333 sp = fs->lfs_sp;
334
335 flushed = 0;
336 if (VPISEMPTY(vp)) {
337 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
338 ++flushed;
339 } else if ((ip->i_flag & IN_CLEANING) &&
340 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
341 #ifdef DEBUG_LFS
342 ivndebug(vp,"vflush/clean");
343 #endif
344 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
345 ++flushed;
346 } else if (lfs_dostats) {
347 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
348 ++lfs_stats.vflush_invoked;
349 #ifdef DEBUG_LFS
350 ivndebug(vp,"vflush");
351 #endif
352 }
353
354 #ifdef DIAGNOSTIC
355 /* XXX KS This actually can happen right now, though it shouldn't(?) */
356 if (vp->v_flag & VDIROP) {
357 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
358 /* panic("VDIROP being flushed...this can\'t happen"); */
359 }
360 if (vp->v_usecount < 0) {
361 printf("usecount=%ld\n", (long)vp->v_usecount);
362 panic("lfs_vflush: usecount<0");
363 }
364 #endif
365
366 #if 1
367 do {
368 do {
369 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
370 lfs_writefile(fs, sp, vp);
371 } while (lfs_writeinode(fs, sp, ip));
372 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
373 #else
374 if (flushed && vp != fs->lfs_ivnode)
375 lfs_writeseg(fs, sp);
376 else do {
377 fs->lfs_flags &= ~LFS_IFDIRTY;
378 lfs_writefile(fs, sp, vp);
379 redo = lfs_writeinode(fs, sp, ip);
380 redo += lfs_writeseg(fs, sp);
381 redo += (fs->lfs_flags & LFS_IFDIRTY);
382 } while (redo && vp == fs->lfs_ivnode);
383 #endif
384 if (lfs_dostats) {
385 ++lfs_stats.nwrites;
386 if (sp->seg_flags & SEGM_SYNC)
387 ++lfs_stats.nsync_writes;
388 if (sp->seg_flags & SEGM_CKP)
389 ++lfs_stats.ncheckpoints;
390 }
391 /*
392 * If we were called from somewhere that has already held the seglock
393 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
394 * the write to complete because we are still locked.
395 * Since lfs_vflush() must return the vnode with no dirty buffers,
396 * we must explicitly wait, if that is the case.
397 *
398 * We compare the iocount against 1, not 0, because it is
399 * artificially incremented by lfs_seglock().
400 */
401 simple_lock(&fs->lfs_interlock);
402 if (fs->lfs_seglock > 1) {
403 simple_unlock(&fs->lfs_interlock);
404 while (fs->lfs_iocount > 1)
405 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
406 "lfs_vflush", 0);
407 } else
408 simple_unlock(&fs->lfs_interlock);
409
410 lfs_segunlock(fs);
411
412 /* Wait for these buffers to be recovered by aiodoned */
413 s = splbio();
414 simple_lock(&global_v_numoutput_slock);
415 while (vp->v_numoutput > 0) {
416 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
417 &global_v_numoutput_slock);
418 }
419 simple_unlock(&global_v_numoutput_slock);
420 splx(s);
421
422 CLR_FLUSHING(fs,vp);
423 return (0);
424 }
425
426 #ifdef DEBUG_LFS_VERBOSE
427 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
428 #else
429 # define vndebug(vp,str)
430 #endif
431
432 int
433 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
434 {
435 struct inode *ip;
436 struct vnode *vp, *nvp;
437 int inodes_written = 0, only_cleaning;
438
439 #ifndef LFS_NO_BACKVP_HACK
440 /* BEGIN HACK */
441 #define VN_OFFSET \
442 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
443 #define BACK_VP(VP) \
444 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
445 #define BEG_OF_VLIST \
446 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
447 - VN_OFFSET))
448
449 /* Find last vnode. */
450 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
451 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
452 vp = LIST_NEXT(vp, v_mntvnodes));
453 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
454 nvp = BACK_VP(vp);
455 #else
456 loop:
457 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
458 nvp = LIST_NEXT(vp, v_mntvnodes);
459 #endif
460 /*
461 * If the vnode that we are about to sync is no longer
462 * associated with this mount point, start over.
463 */
464 if (vp->v_mount != mp) {
465 printf("lfs_writevnodes: starting over\n");
466 /*
467 * After this, pages might be busy
468 * due to our own previous putpages.
469 * Start actual segment write here to avoid deadlock.
470 */
471 (void)lfs_writeseg(fs, sp);
472 goto loop;
473 }
474
475 if (vp->v_type == VNON) {
476 continue;
477 }
478
479 ip = VTOI(vp);
480 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
481 (op != VN_DIROP && op != VN_CLEAN &&
482 (vp->v_flag & VDIROP))) {
483 vndebug(vp,"dirop");
484 continue;
485 }
486
487 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
488 vndebug(vp,"empty");
489 continue;
490 }
491
492 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
493 && vp != fs->lfs_flushvp
494 && !(ip->i_flag & IN_CLEANING)) {
495 vndebug(vp,"cleaning");
496 continue;
497 }
498
499 if (lfs_vref(vp)) {
500 vndebug(vp,"vref");
501 continue;
502 }
503
504 only_cleaning = 0;
505 /*
506 * Write the inode/file if dirty and it's not the IFILE.
507 */
508 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
509 only_cleaning =
510 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
511
512 if (ip->i_number != LFS_IFILE_INUM)
513 lfs_writefile(fs, sp, vp);
514 if (!VPISEMPTY(vp)) {
515 if (WRITEINPROG(vp)) {
516 #ifdef DEBUG_LFS
517 ivndebug(vp,"writevnodes/write2");
518 #endif
519 } else if (!(ip->i_flag & IN_ALLMOD)) {
520 #ifdef DEBUG_LFS
521 printf("<%d>",ip->i_number);
522 #endif
523 LFS_SET_UINO(ip, IN_MODIFIED);
524 }
525 }
526 (void) lfs_writeinode(fs, sp, ip);
527 inodes_written++;
528 }
529
530 if (lfs_clean_vnhead && only_cleaning)
531 lfs_vunref_head(vp);
532 else
533 lfs_vunref(vp);
534 }
535 return inodes_written;
536 }
537
538 /*
539 * Do a checkpoint.
540 */
541 int
542 lfs_segwrite(struct mount *mp, int flags)
543 {
544 struct buf *bp;
545 struct inode *ip;
546 struct lfs *fs;
547 struct segment *sp;
548 struct vnode *vp;
549 SEGUSE *segusep;
550 int do_ckp, did_ckp, error, s;
551 unsigned n, segleft, maxseg, sn, i, curseg;
552 int writer_set = 0;
553 int dirty;
554 int redo;
555
556 fs = VFSTOUFS(mp)->um_lfs;
557
558 if (fs->lfs_ronly)
559 return EROFS;
560
561 lfs_imtime(fs);
562
563 /*
564 * Allocate a segment structure and enough space to hold pointers to
565 * the maximum possible number of buffers which can be described in a
566 * single summary block.
567 */
568 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
569 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
570 sp = fs->lfs_sp;
571
572 /*
573 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
574 * in which case we have to flush *all* buffers off of this vnode.
575 * We don't care about other nodes, but write any non-dirop nodes
576 * anyway in anticipation of another getnewvnode().
577 *
578 * If we're cleaning we only write cleaning and ifile blocks, and
579 * no dirops, since otherwise we'd risk corruption in a crash.
580 */
581 if (sp->seg_flags & SEGM_CLEAN)
582 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
583 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
584 lfs_writevnodes(fs, mp, sp, VN_REG);
585 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
586 error = lfs_writer_enter(fs, "lfs writer");
587 if (error) {
588 printf("segwrite mysterious error\n");
589 /* XXX why not segunlock? */
590 pool_put(&fs->lfs_bpppool, sp->bpp);
591 sp->bpp = NULL;
592 pool_put(&fs->lfs_segpool, sp);
593 sp = fs->lfs_sp = NULL;
594 return (error);
595 }
596 writer_set = 1;
597 lfs_writevnodes(fs, mp, sp, VN_DIROP);
598 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
599 }
600 }
601
602 /*
603 * If we are doing a checkpoint, mark everything since the
604 * last checkpoint as no longer ACTIVE.
605 */
606 if (do_ckp) {
607 segleft = fs->lfs_nseg;
608 curseg = 0;
609 for (n = 0; n < fs->lfs_segtabsz; n++) {
610 dirty = 0;
611 if (bread(fs->lfs_ivnode,
612 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
613 panic("lfs_segwrite: ifile read");
614 segusep = (SEGUSE *)bp->b_data;
615 maxseg = min(segleft, fs->lfs_sepb);
616 for (i = 0; i < maxseg; i++) {
617 sn = curseg + i;
618 if (sn != fs->lfs_curseg &&
619 segusep->su_flags & SEGUSE_ACTIVE) {
620 segusep->su_flags &= ~SEGUSE_ACTIVE;
621 --fs->lfs_nactive;
622 ++dirty;
623 }
624 fs->lfs_suflags[fs->lfs_activesb][sn] =
625 segusep->su_flags;
626 if (fs->lfs_version > 1)
627 ++segusep;
628 else
629 segusep = (SEGUSE *)
630 ((SEGUSE_V1 *)segusep + 1);
631 }
632
633 if (dirty)
634 error = LFS_BWRITE_LOG(bp); /* Ifile */
635 else
636 brelse(bp);
637 segleft -= fs->lfs_sepb;
638 curseg += fs->lfs_sepb;
639 }
640 }
641
642 did_ckp = 0;
643 if (do_ckp || fs->lfs_doifile) {
644 do {
645 vp = fs->lfs_ivnode;
646
647 #ifdef DEBUG
648 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
649 #endif
650 fs->lfs_flags &= ~LFS_IFDIRTY;
651
652 ip = VTOI(vp);
653
654 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
655 lfs_writefile(fs, sp, vp);
656
657 if (ip->i_flag & IN_ALLMOD)
658 ++did_ckp;
659 redo = lfs_writeinode(fs, sp, ip);
660 redo += lfs_writeseg(fs, sp);
661 redo += (fs->lfs_flags & LFS_IFDIRTY);
662 } while (redo && do_ckp);
663
664 /*
665 * Unless we are unmounting, the Ifile may continue to have
666 * dirty blocks even after a checkpoint, due to changes to
667 * inodes' atime. If we're checkpointing, it's "impossible"
668 * for other parts of the Ifile to be dirty after the loop
669 * above, since we hold the segment lock.
670 */
671 s = splbio();
672 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
673 LFS_CLR_UINO(ip, IN_ALLMOD);
674 }
675 #ifdef DIAGNOSTIC
676 else if (do_ckp) {
677 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
678 if (bp->b_lblkno < fs->lfs_cleansz +
679 fs->lfs_segtabsz &&
680 !(bp->b_flags & B_GATHERED)) {
681 panic("dirty blocks");
682 }
683 }
684 }
685 #endif
686 splx(s);
687 } else {
688 (void) lfs_writeseg(fs, sp);
689 }
690
691 /* Note Ifile no longer needs to be written */
692 fs->lfs_doifile = 0;
693 if (writer_set)
694 lfs_writer_leave(fs);
695
696 /*
697 * If we didn't write the Ifile, we didn't really do anything.
698 * That means that (1) there is a checkpoint on disk and (2)
699 * nothing has changed since it was written.
700 *
701 * Take the flags off of the segment so that lfs_segunlock
702 * doesn't have to write the superblock either.
703 */
704 if (do_ckp && !did_ckp) {
705 sp->seg_flags &= ~SEGM_CKP;
706 }
707
708 if (lfs_dostats) {
709 ++lfs_stats.nwrites;
710 if (sp->seg_flags & SEGM_SYNC)
711 ++lfs_stats.nsync_writes;
712 if (sp->seg_flags & SEGM_CKP)
713 ++lfs_stats.ncheckpoints;
714 }
715 lfs_segunlock(fs);
716 return (0);
717 }
718
719 /*
720 * Write the dirty blocks associated with a vnode.
721 */
722 void
723 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
724 {
725 struct buf *bp;
726 struct finfo *fip;
727 struct inode *ip;
728 IFILE *ifp;
729 int i, frag;
730
731 ip = VTOI(vp);
732
733 if (sp->seg_bytes_left < fs->lfs_bsize ||
734 sp->sum_bytes_left < sizeof(struct finfo))
735 (void) lfs_writeseg(fs, sp);
736
737 sp->sum_bytes_left -= FINFOSIZE;
738 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
739
740 if (vp->v_flag & VDIROP)
741 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
742
743 fip = sp->fip;
744 fip->fi_nblocks = 0;
745 fip->fi_ino = ip->i_number;
746 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
747 fip->fi_version = ifp->if_version;
748 brelse(bp);
749
750 if (sp->seg_flags & SEGM_CLEAN) {
751 lfs_gather(fs, sp, vp, lfs_match_fake);
752 /*
753 * For a file being flushed, we need to write *all* blocks.
754 * This means writing the cleaning blocks first, and then
755 * immediately following with any non-cleaning blocks.
756 * The same is true of the Ifile since checkpoints assume
757 * that all valid Ifile blocks are written.
758 */
759 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
760 lfs_gather(fs, sp, vp, lfs_match_data);
761 /*
762 * Don't call VOP_PUTPAGES: if we're flushing,
763 * we've already done it, and the Ifile doesn't
764 * use the page cache.
765 */
766 }
767 } else {
768 lfs_gather(fs, sp, vp, lfs_match_data);
769 /*
770 * If we're flushing, we've already called VOP_PUTPAGES
771 * so don't do it again. Otherwise, we want to write
772 * everything we've got.
773 */
774 if (!IS_FLUSHING(fs, vp)) {
775 simple_lock(&vp->v_interlock);
776 VOP_PUTPAGES(vp, 0, 0,
777 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
778 }
779 }
780
781 /*
782 * It may not be necessary to write the meta-data blocks at this point,
783 * as the roll-forward recovery code should be able to reconstruct the
784 * list.
785 *
786 * We have to write them anyway, though, under two conditions: (1) the
787 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
788 * checkpointing.
789 *
790 * BUT if we are cleaning, we might have indirect blocks that refer to
791 * new blocks not being written yet, in addition to fragments being
792 * moved out of a cleaned segment. If that is the case, don't
793 * write the indirect blocks, or the finfo will have a small block
794 * in the middle of it!
795 * XXX in this case isn't the inode size wrong too?
796 */
797 frag = 0;
798 if (sp->seg_flags & SEGM_CLEAN) {
799 for (i = 0; i < NDADDR; i++)
800 if (ip->i_lfs_fragsize[i] > 0 &&
801 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
802 ++frag;
803 }
804 #ifdef DIAGNOSTIC
805 if (frag > 1)
806 panic("lfs_writefile: more than one fragment!");
807 #endif
808 if (IS_FLUSHING(fs, vp) ||
809 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
810 lfs_gather(fs, sp, vp, lfs_match_indir);
811 lfs_gather(fs, sp, vp, lfs_match_dindir);
812 lfs_gather(fs, sp, vp, lfs_match_tindir);
813 }
814 fip = sp->fip;
815 if (fip->fi_nblocks != 0) {
816 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
817 sizeof(int32_t) * (fip->fi_nblocks));
818 sp->start_lbp = &sp->fip->fi_blocks[0];
819 } else {
820 sp->sum_bytes_left += FINFOSIZE;
821 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
822 }
823 }
824
825 int
826 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
827 {
828 struct buf *bp, *ibp;
829 struct ufs1_dinode *cdp;
830 IFILE *ifp;
831 SEGUSE *sup;
832 daddr_t daddr;
833 int32_t *daddrp; /* XXX ondisk32 */
834 ino_t ino;
835 int error, i, ndx, fsb = 0;
836 int redo_ifile = 0;
837 struct timespec ts;
838 int gotblk = 0;
839
840 if (!(ip->i_flag & IN_ALLMOD))
841 return (0);
842
843 /* Allocate a new inode block if necessary. */
844 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
845 sp->ibp == NULL) {
846 /* Allocate a new segment if necessary. */
847 if (sp->seg_bytes_left < fs->lfs_ibsize ||
848 sp->sum_bytes_left < sizeof(int32_t))
849 (void) lfs_writeseg(fs, sp);
850
851 /* Get next inode block. */
852 daddr = fs->lfs_offset;
853 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
854 sp->ibp = *sp->cbpp++ =
855 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
856 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
857 gotblk++;
858
859 /* Zero out inode numbers */
860 for (i = 0; i < INOPB(fs); ++i)
861 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
862 0;
863
864 ++sp->start_bpp;
865 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
866 /* Set remaining space counters. */
867 sp->seg_bytes_left -= fs->lfs_ibsize;
868 sp->sum_bytes_left -= sizeof(int32_t);
869 ndx = fs->lfs_sumsize / sizeof(int32_t) -
870 sp->ninodes / INOPB(fs) - 1;
871 ((int32_t *)(sp->segsum))[ndx] = daddr;
872 }
873
874 /* Update the inode times and copy the inode onto the inode page. */
875 TIMEVAL_TO_TIMESPEC(&time, &ts);
876 /* XXX kludge --- don't redirty the ifile just to put times on it */
877 if (ip->i_number != LFS_IFILE_INUM)
878 LFS_ITIMES(ip, &ts, &ts, &ts);
879
880 /*
881 * If this is the Ifile, and we've already written the Ifile in this
882 * partial segment, just overwrite it (it's not on disk yet) and
883 * continue.
884 *
885 * XXX we know that the bp that we get the second time around has
886 * already been gathered.
887 */
888 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
889 *(sp->idp) = *ip->i_din.ffs1_din;
890 ip->i_lfs_osize = ip->i_size;
891 return 0;
892 }
893
894 bp = sp->ibp;
895 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
896 *cdp = *ip->i_din.ffs1_din;
897 #ifdef LFS_IFILE_FRAG_ADDRESSING
898 if (fs->lfs_version > 1)
899 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
900 #endif
901
902 /*
903 * If we are cleaning, ensure that we don't write UNWRITTEN disk
904 * addresses to disk; possibly revert the inode size.
905 * XXX By not writing these blocks, we are making the lfs_avail
906 * XXX count on disk wrong by the same amount. We should be
907 * XXX able to "borrow" from lfs_avail and return it after the
908 * XXX Ifile is written. See also in lfs_writeseg.
909 */
910 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
911 cdp->di_size = ip->i_lfs_osize;
912 #ifdef DEBUG_LFS
913 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
914 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks);
915 #endif
916 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
917 daddrp++) {
918 if (*daddrp == UNWRITTEN) {
919 #ifdef DEBUG_LFS
920 printf("lfs_writeinode: wiping UNWRITTEN\n");
921 #endif
922 *daddrp = 0;
923 }
924 }
925 } else {
926 /* If all blocks are goig to disk, update the "size on disk" */
927 ip->i_lfs_osize = ip->i_size;
928 }
929
930 if (ip->i_flag & IN_CLEANING)
931 LFS_CLR_UINO(ip, IN_CLEANING);
932 else {
933 /* XXX IN_ALLMOD */
934 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
935 IN_UPDATE);
936 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
937 LFS_CLR_UINO(ip, IN_MODIFIED);
938 #ifdef DEBUG_LFS
939 else
940 printf("lfs_writeinode: ino %d: real blks=%d, "
941 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
942 ip->i_lfs_effnblks);
943 #endif
944 }
945
946 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
947 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
948 (sp->ninodes % INOPB(fs));
949 if (gotblk) {
950 LFS_LOCK_BUF(bp);
951 brelse(bp);
952 }
953
954 /* Increment inode count in segment summary block. */
955 ++((SEGSUM *)(sp->segsum))->ss_ninos;
956
957 /* If this page is full, set flag to allocate a new page. */
958 if (++sp->ninodes % INOPB(fs) == 0)
959 sp->ibp = NULL;
960
961 /*
962 * If updating the ifile, update the super-block. Update the disk
963 * address and access times for this inode in the ifile.
964 */
965 ino = ip->i_number;
966 if (ino == LFS_IFILE_INUM) {
967 daddr = fs->lfs_idaddr;
968 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
969 } else {
970 LFS_IENTRY(ifp, fs, ino, ibp);
971 daddr = ifp->if_daddr;
972 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
973 #ifdef LFS_DEBUG_NEXTFREE
974 if (ino > 3 && ifp->if_nextfree) {
975 vprint("lfs_writeinode",ITOV(ip));
976 printf("lfs_writeinode: updating free ino %d\n",
977 ip->i_number);
978 }
979 #endif
980 error = LFS_BWRITE_LOG(ibp); /* Ifile */
981 }
982
983 /*
984 * The inode's last address should not be in the current partial
985 * segment, except under exceptional circumstances (lfs_writevnodes
986 * had to start over, and in the meantime more blocks were written
987 * to a vnode). Both inodes will be accounted to this segment
988 * in lfs_writeseg so we need to subtract the earlier version
989 * here anyway. The segment count can temporarily dip below
990 * zero here; keep track of how many duplicates we have in
991 * "dupino" so we don't panic below.
992 */
993 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
994 ++sp->ndupino;
995 printf("lfs_writeinode: last inode addr in current pseg "
996 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
997 (long long)daddr, sp->ndupino);
998 }
999 /*
1000 * Account the inode: it no longer belongs to its former segment,
1001 * though it will not belong to the new segment until that segment
1002 * is actually written.
1003 */
1004 if (daddr != LFS_UNUSED_DADDR) {
1005 u_int32_t oldsn = dtosn(fs, daddr);
1006 #ifdef DIAGNOSTIC
1007 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1008 #endif
1009 LFS_SEGENTRY(sup, fs, oldsn, bp);
1010 #ifdef DIAGNOSTIC
1011 if (sup->su_nbytes +
1012 sizeof (struct ufs1_dinode) * ndupino
1013 < sizeof (struct ufs1_dinode)) {
1014 printf("lfs_writeinode: negative bytes "
1015 "(segment %" PRIu32 " short by %d, "
1016 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1017 ", daddr=%" PRId64 ", su_nbytes=%u, "
1018 "ndupino=%d)\n",
1019 dtosn(fs, daddr),
1020 (int)sizeof (struct ufs1_dinode) *
1021 (1 - sp->ndupino) - sup->su_nbytes,
1022 oldsn, sp->seg_number, daddr,
1023 (unsigned int)sup->su_nbytes,
1024 sp->ndupino);
1025 panic("lfs_writeinode: negative bytes");
1026 sup->su_nbytes = sizeof (struct ufs1_dinode);
1027 }
1028 #endif
1029 #ifdef DEBUG_SU_NBYTES
1030 printf("seg %d -= %d for ino %d inode\n",
1031 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino);
1032 #endif
1033 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1034 redo_ifile =
1035 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1036 if (redo_ifile)
1037 fs->lfs_flags |= LFS_IFDIRTY;
1038 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1039 }
1040 return (redo_ifile);
1041 }
1042
1043 int
1044 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1045 {
1046 struct lfs *fs;
1047 int version;
1048 int j, blksinblk;
1049
1050 /*
1051 * If full, finish this segment. We may be doing I/O, so
1052 * release and reacquire the splbio().
1053 */
1054 #ifdef DIAGNOSTIC
1055 if (sp->vp == NULL)
1056 panic ("lfs_gatherblock: Null vp in segment");
1057 #endif
1058 fs = sp->fs;
1059 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1060 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1061 sp->seg_bytes_left < bp->b_bcount) {
1062 if (sptr)
1063 splx(*sptr);
1064 lfs_updatemeta(sp);
1065
1066 version = sp->fip->fi_version;
1067 (void) lfs_writeseg(fs, sp);
1068
1069 sp->fip->fi_version = version;
1070 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1071 /* Add the current file to the segment summary. */
1072 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1073 sp->sum_bytes_left -= FINFOSIZE;
1074
1075 if (sptr)
1076 *sptr = splbio();
1077 return (1);
1078 }
1079
1080 #ifdef DEBUG
1081 if (bp->b_flags & B_GATHERED) {
1082 printf("lfs_gatherblock: already gathered! Ino %d,"
1083 " lbn %" PRId64 "\n",
1084 sp->fip->fi_ino, bp->b_lblkno);
1085 return (0);
1086 }
1087 #endif
1088 /* Insert into the buffer list, update the FINFO block. */
1089 bp->b_flags |= B_GATHERED;
1090
1091 *sp->cbpp++ = bp;
1092 for (j = 0; j < blksinblk; j++)
1093 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1094
1095 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1096 sp->seg_bytes_left -= bp->b_bcount;
1097 return (0);
1098 }
1099
1100 int
1101 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1102 int (*match)(struct lfs *, struct buf *))
1103 {
1104 struct buf *bp, *nbp;
1105 int s, count = 0;
1106
1107 sp->vp = vp;
1108 s = splbio();
1109
1110 #ifndef LFS_NO_BACKBUF_HACK
1111 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1112 # define BUF_OFFSET \
1113 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1114 # define BACK_BUF(BP) \
1115 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1116 # define BEG_OF_LIST \
1117 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1118
1119 loop:
1120 /* Find last buffer. */
1121 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1122 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1123 bp = LIST_NEXT(bp, b_vnbufs))
1124 /* nothing */;
1125 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1126 nbp = BACK_BUF(bp);
1127 #else /* LFS_NO_BACKBUF_HACK */
1128 loop:
1129 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1130 nbp = LIST_NEXT(bp, b_vnbufs);
1131 #endif /* LFS_NO_BACKBUF_HACK */
1132 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1133 #ifdef DEBUG_LFS
1134 if (vp == fs->lfs_ivnode &&
1135 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1136 printf("(%" PRId64 ":%lx)",
1137 bp->b_lblkno, bp->b_flags);
1138 #endif
1139 continue;
1140 }
1141 if (vp->v_type == VBLK) {
1142 /* For block devices, just write the blocks. */
1143 /* XXX Do we really need to even do this? */
1144 #ifdef DEBUG_LFS
1145 if (count == 0)
1146 printf("BLK(");
1147 printf(".");
1148 #endif
1149 /*
1150 * Get the block before bwrite,
1151 * so we don't corrupt the free list
1152 */
1153 bp->b_flags |= B_BUSY;
1154 bremfree(bp);
1155 bwrite(bp);
1156 } else {
1157 #ifdef DIAGNOSTIC
1158 # ifdef LFS_USE_B_INVAL
1159 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1160 printf("lfs_gather: lbn %" PRId64 " is "
1161 "B_INVAL\n", bp->b_lblkno);
1162 VOP_PRINT(bp->b_vp);
1163 }
1164 # endif /* LFS_USE_B_INVAL */
1165 if (!(bp->b_flags & B_DELWRI))
1166 panic("lfs_gather: bp not B_DELWRI");
1167 if (!(bp->b_flags & B_LOCKED)) {
1168 printf("lfs_gather: lbn %" PRId64 " blk "
1169 "%" PRId64 " not B_LOCKED\n",
1170 bp->b_lblkno,
1171 dbtofsb(fs, bp->b_blkno));
1172 VOP_PRINT(bp->b_vp);
1173 panic("lfs_gather: bp not B_LOCKED");
1174 }
1175 #endif
1176 if (lfs_gatherblock(sp, bp, &s)) {
1177 goto loop;
1178 }
1179 }
1180 count++;
1181 }
1182 splx(s);
1183 #ifdef DEBUG_LFS
1184 if (vp->v_type == VBLK && count)
1185 printf(")\n");
1186 #endif
1187 lfs_updatemeta(sp);
1188 sp->vp = NULL;
1189 return count;
1190 }
1191
1192 #if DEBUG
1193 # define DEBUG_OOFF(n) do { \
1194 if (ooff == 0) { \
1195 printf("lfs_updatemeta[%d]: warning: writing " \
1196 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1197 ", was 0x0 (or %" PRId64 ")\n", \
1198 (n), ip->i_number, lbn, ndaddr, daddr); \
1199 } \
1200 } while (0)
1201 #else
1202 # define DEBUG_OOFF(n)
1203 #endif
1204
1205 /*
1206 * Change the given block's address to ndaddr, finding its previous
1207 * location using ufs_bmaparray().
1208 *
1209 * Account for this change in the segment table.
1210 */
1211 void
1212 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1213 int32_t ndaddr, int size)
1214 {
1215 SEGUSE *sup;
1216 struct buf *bp;
1217 struct indir a[NIADDR + 2], *ap;
1218 struct inode *ip;
1219 struct vnode *vp;
1220 daddr_t daddr, ooff;
1221 int num, error;
1222 int bb, osize, obb;
1223
1224 vp = sp->vp;
1225 ip = VTOI(vp);
1226
1227 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1228 if (error)
1229 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1230
1231 KASSERT(daddr <= LFS_MAX_DADDR);
1232 if (daddr > 0)
1233 daddr = dbtofsb(fs, daddr);
1234
1235 bb = fragstofsb(fs, numfrags(fs, size));
1236 switch (num) {
1237 case 0:
1238 ooff = ip->i_ffs1_db[lbn];
1239 DEBUG_OOFF(0);
1240 if (ooff == UNWRITTEN)
1241 ip->i_ffs1_blocks += bb;
1242 else {
1243 /* possible fragment truncation or extension */
1244 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1245 ip->i_ffs1_blocks += (bb - obb);
1246 }
1247 ip->i_ffs1_db[lbn] = ndaddr;
1248 break;
1249 case 1:
1250 ooff = ip->i_ffs1_ib[a[0].in_off];
1251 DEBUG_OOFF(1);
1252 if (ooff == UNWRITTEN)
1253 ip->i_ffs1_blocks += bb;
1254 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1255 break;
1256 default:
1257 ap = &a[num - 1];
1258 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1259 panic("lfs_updatemeta: bread bno %" PRId64,
1260 ap->in_lbn);
1261
1262 /* XXX ondisk32 */
1263 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1264 DEBUG_OOFF(num);
1265 if (ooff == UNWRITTEN)
1266 ip->i_ffs1_blocks += bb;
1267 /* XXX ondisk32 */
1268 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1269 (void) VOP_BWRITE(bp);
1270 }
1271
1272 /*
1273 * Though we'd rather it couldn't, this *can* happen right now
1274 * if cleaning blocks and regular blocks coexist.
1275 */
1276 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1277
1278 /*
1279 * Update segment usage information, based on old size
1280 * and location.
1281 */
1282 if (daddr > 0) {
1283 u_int32_t oldsn = dtosn(fs, daddr);
1284 #ifdef DIAGNOSTIC
1285 int ndupino = (sp->seg_number == oldsn) ?
1286 sp->ndupino : 0;
1287 #endif
1288 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1289 if (lbn >= 0 && lbn < NDADDR)
1290 osize = ip->i_lfs_fragsize[lbn];
1291 else
1292 osize = fs->lfs_bsize;
1293 LFS_SEGENTRY(sup, fs, oldsn, bp);
1294 #ifdef DIAGNOSTIC
1295 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1296 < osize) {
1297 printf("lfs_updatemeta: negative bytes "
1298 "(segment %" PRIu32 " short by %" PRId64
1299 ")\n", dtosn(fs, daddr),
1300 (int64_t)osize -
1301 (sizeof (struct ufs1_dinode) * sp->ndupino +
1302 sup->su_nbytes));
1303 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1304 ", addr = 0x%" PRIx64 "\n",
1305 VTOI(sp->vp)->i_number, lbn, daddr);
1306 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1307 panic("lfs_updatemeta: negative bytes");
1308 sup->su_nbytes = osize -
1309 sizeof (struct ufs1_dinode) * sp->ndupino;
1310 }
1311 #endif
1312 #ifdef DEBUG_SU_NBYTES
1313 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1314 " db 0x%" PRIx64 "\n",
1315 dtosn(fs, daddr), osize,
1316 VTOI(sp->vp)->i_number, lbn, daddr);
1317 #endif
1318 sup->su_nbytes -= osize;
1319 if (!(bp->b_flags & B_GATHERED))
1320 fs->lfs_flags |= LFS_IFDIRTY;
1321 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1322 }
1323 /*
1324 * Now that this block has a new address, and its old
1325 * segment no longer owns it, we can forget about its
1326 * old size.
1327 */
1328 if (lbn >= 0 && lbn < NDADDR)
1329 ip->i_lfs_fragsize[lbn] = size;
1330 }
1331
1332 /*
1333 * Update the metadata that points to the blocks listed in the FINFO
1334 * array.
1335 */
1336 void
1337 lfs_updatemeta(struct segment *sp)
1338 {
1339 struct buf *sbp;
1340 struct lfs *fs;
1341 struct vnode *vp;
1342 daddr_t lbn;
1343 int i, nblocks, num;
1344 int bb;
1345 int bytesleft, size;
1346
1347 vp = sp->vp;
1348 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1349 KASSERT(nblocks >= 0);
1350 if (vp == NULL || nblocks == 0)
1351 return;
1352
1353 /*
1354 * This count may be high due to oversize blocks from lfs_gop_write.
1355 * Correct for this. (XXX we should be able to keep track of these.)
1356 */
1357 fs = sp->fs;
1358 for (i = 0; i < nblocks; i++) {
1359 if (sp->start_bpp[i] == NULL) {
1360 printf("nblocks = %d, not %d\n", i, nblocks);
1361 nblocks = i;
1362 break;
1363 }
1364 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1365 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1366 nblocks -= num - 1;
1367 }
1368
1369 KASSERT(vp->v_type == VREG ||
1370 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1371 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1372
1373 /*
1374 * Sort the blocks.
1375 *
1376 * We have to sort even if the blocks come from the
1377 * cleaner, because there might be other pending blocks on the
1378 * same inode...and if we don't sort, and there are fragments
1379 * present, blocks may be written in the wrong place.
1380 */
1381 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1382
1383 /*
1384 * Record the length of the last block in case it's a fragment.
1385 * If there are indirect blocks present, they sort last. An
1386 * indirect block will be lfs_bsize and its presence indicates
1387 * that you cannot have fragments.
1388 *
1389 * XXX This last is a lie. A cleaned fragment can coexist with
1390 * XXX a later indirect block. This will continue to be
1391 * XXX true until lfs_markv is fixed to do everything with
1392 * XXX fake blocks (including fake inodes and fake indirect blocks).
1393 */
1394 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1395 fs->lfs_bmask) + 1;
1396
1397 /*
1398 * Assign disk addresses, and update references to the logical
1399 * block and the segment usage information.
1400 */
1401 for (i = nblocks; i--; ++sp->start_bpp) {
1402 sbp = *sp->start_bpp;
1403 lbn = *sp->start_lbp;
1404 KASSERT(sbp->b_lblkno == lbn);
1405
1406 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1407
1408 /*
1409 * If we write a frag in the wrong place, the cleaner won't
1410 * be able to correctly identify its size later, and the
1411 * segment will be uncleanable. (Even worse, it will assume
1412 * that the indirect block that actually ends the list
1413 * is of a smaller size!)
1414 */
1415 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1416 panic("lfs_updatemeta: fragment is not last block");
1417
1418 /*
1419 * For each subblock in this possibly oversized block,
1420 * update its address on disk.
1421 */
1422 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1423 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1424 bytesleft -= fs->lfs_bsize) {
1425 size = MIN(bytesleft, fs->lfs_bsize);
1426 bb = fragstofsb(fs, numfrags(fs, size));
1427 lbn = *sp->start_lbp++;
1428 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1429 fs->lfs_offset += bb;
1430 }
1431
1432 }
1433 }
1434
1435 /*
1436 * Start a new segment.
1437 */
1438 int
1439 lfs_initseg(struct lfs *fs)
1440 {
1441 struct segment *sp;
1442 SEGUSE *sup;
1443 SEGSUM *ssp;
1444 struct buf *bp, *sbp;
1445 int repeat;
1446
1447 sp = fs->lfs_sp;
1448
1449 repeat = 0;
1450
1451 /* Advance to the next segment. */
1452 if (!LFS_PARTIAL_FITS(fs)) {
1453 /* lfs_avail eats the remaining space */
1454 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1455 fs->lfs_curseg);
1456 /* Wake up any cleaning procs waiting on this file system. */
1457 wakeup(&lfs_allclean_wakeup);
1458 wakeup(&fs->lfs_nextseg);
1459 lfs_newseg(fs);
1460 repeat = 1;
1461 fs->lfs_offset = fs->lfs_curseg;
1462
1463 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1464 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1465
1466 /*
1467 * If the segment contains a superblock, update the offset
1468 * and summary address to skip over it.
1469 */
1470 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1471 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1472 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1473 sp->seg_bytes_left -= LFS_SBPAD;
1474 }
1475 brelse(bp);
1476 /* Segment zero could also contain the labelpad */
1477 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1478 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1479 fs->lfs_offset +=
1480 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1481 sp->seg_bytes_left -=
1482 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1483 }
1484 } else {
1485 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1486 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1487 (fs->lfs_offset - fs->lfs_curseg));
1488 }
1489 fs->lfs_lastpseg = fs->lfs_offset;
1490
1491 /* Record first address of this partial segment */
1492 if (sp->seg_flags & SEGM_CLEAN) {
1493 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1494 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1495 /* "1" is the artificial inc in lfs_seglock */
1496 while (fs->lfs_iocount > 1) {
1497 tsleep(&fs->lfs_iocount, PRIBIO + 1,
1498 "lfs_initseg", 0);
1499 }
1500 fs->lfs_cleanind = 0;
1501 }
1502 }
1503
1504 sp->fs = fs;
1505 sp->ibp = NULL;
1506 sp->idp = NULL;
1507 sp->ninodes = 0;
1508 sp->ndupino = 0;
1509
1510 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1511 sp->cbpp = sp->bpp;
1512 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1513 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1514 sp->segsum = (*sp->cbpp)->b_data;
1515 memset(sp->segsum, 0, fs->lfs_sumsize);
1516 sp->start_bpp = ++sp->cbpp;
1517 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1518
1519 /* Set point to SEGSUM, initialize it. */
1520 ssp = sp->segsum;
1521 ssp->ss_next = fs->lfs_nextseg;
1522 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1523 ssp->ss_magic = SS_MAGIC;
1524
1525 /* Set pointer to first FINFO, initialize it. */
1526 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1527 sp->fip->fi_nblocks = 0;
1528 sp->start_lbp = &sp->fip->fi_blocks[0];
1529 sp->fip->fi_lastlength = 0;
1530
1531 sp->seg_bytes_left -= fs->lfs_sumsize;
1532 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1533
1534 return (repeat);
1535 }
1536
1537 /*
1538 * Return the next segment to write.
1539 */
1540 void
1541 lfs_newseg(struct lfs *fs)
1542 {
1543 CLEANERINFO *cip;
1544 SEGUSE *sup;
1545 struct buf *bp;
1546 int curseg, isdirty, sn;
1547
1548 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1549 #ifdef DEBUG_SU_NBYTES
1550 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1551 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1552 #endif
1553 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1554 sup->su_nbytes = 0;
1555 sup->su_nsums = 0;
1556 sup->su_ninos = 0;
1557 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1558
1559 LFS_CLEANERINFO(cip, fs, bp);
1560 --cip->clean;
1561 ++cip->dirty;
1562 fs->lfs_nclean = cip->clean;
1563 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1564
1565 fs->lfs_lastseg = fs->lfs_curseg;
1566 fs->lfs_curseg = fs->lfs_nextseg;
1567 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1568 sn = (sn + 1) % fs->lfs_nseg;
1569 if (sn == curseg)
1570 panic("lfs_nextseg: no clean segments");
1571 LFS_SEGENTRY(sup, fs, sn, bp);
1572 isdirty = sup->su_flags & SEGUSE_DIRTY;
1573 /* Check SEGUSE_EMPTY as we go along */
1574 if (isdirty && sup->su_nbytes == 0 &&
1575 !(sup->su_flags & SEGUSE_EMPTY))
1576 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1577 else
1578 brelse(bp);
1579
1580 if (!isdirty)
1581 break;
1582 }
1583
1584 ++fs->lfs_nactive;
1585 fs->lfs_nextseg = sntod(fs, sn);
1586 if (lfs_dostats) {
1587 ++lfs_stats.segsused;
1588 }
1589 }
1590
1591 static struct buf *
1592 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1593 {
1594 struct lfs_cluster *cl;
1595 struct buf **bpp, *bp;
1596 int s;
1597
1598 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1599 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1600 memset(cl, 0, sizeof(*cl));
1601 cl->fs = fs;
1602 cl->bpp = bpp;
1603 cl->bufcount = 0;
1604 cl->bufsize = 0;
1605
1606 /* If this segment is being written synchronously, note that */
1607 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1608 cl->flags |= LFS_CL_SYNC;
1609 cl->seg = fs->lfs_sp;
1610 ++cl->seg->seg_iocount;
1611 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1612 }
1613
1614 /* Get an empty buffer header, or maybe one with something on it */
1615 s = splbio();
1616 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1617 splx(s);
1618 memset(bp, 0, sizeof(*bp));
1619 BUF_INIT(bp);
1620
1621 bp->b_flags = B_BUSY | B_CALL;
1622 bp->b_dev = NODEV;
1623 bp->b_blkno = bp->b_lblkno = addr;
1624 bp->b_iodone = lfs_cluster_callback;
1625 bp->b_saveaddr = (caddr_t)cl;
1626 bp->b_vp = vp;
1627
1628 return bp;
1629 }
1630
1631 int
1632 lfs_writeseg(struct lfs *fs, struct segment *sp)
1633 {
1634 struct buf **bpp, *bp, *cbp, *newbp;
1635 SEGUSE *sup;
1636 SEGSUM *ssp;
1637 dev_t i_dev;
1638 char *datap, *dp;
1639 int i, s;
1640 int do_again, nblocks, byteoffset;
1641 size_t el_size;
1642 struct lfs_cluster *cl;
1643 int (*strategy)(void *);
1644 struct vop_strategy_args vop_strategy_a;
1645 u_short ninos;
1646 struct vnode *devvp;
1647 char *p;
1648 struct vnode *vp;
1649 int32_t *daddrp; /* XXX ondisk32 */
1650 int changed;
1651 #if defined(DEBUG) && defined(LFS_PROPELLER)
1652 static int propeller;
1653 char propstring[4] = "-\\|/";
1654
1655 printf("%c\b",propstring[propeller++]);
1656 if (propeller == 4)
1657 propeller = 0;
1658 #endif
1659
1660 /*
1661 * If there are no buffers other than the segment summary to write
1662 * and it is not a checkpoint, don't do anything. On a checkpoint,
1663 * even if there aren't any buffers, you need to write the superblock.
1664 */
1665 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1666 return (0);
1667
1668 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1669 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1670
1671 /* Update the segment usage information. */
1672 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1673
1674 /* Loop through all blocks, except the segment summary. */
1675 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1676 if ((*bpp)->b_vp != devvp) {
1677 sup->su_nbytes += (*bpp)->b_bcount;
1678 #ifdef DEBUG_SU_NBYTES
1679 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1680 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1681 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1682 (*bpp)->b_blkno);
1683 #endif
1684 }
1685 }
1686
1687 ssp = (SEGSUM *)sp->segsum;
1688
1689 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1690 #ifdef DEBUG_SU_NBYTES
1691 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1692 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1693 ssp->ss_ninos);
1694 #endif
1695 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1696 /* sup->su_nbytes += fs->lfs_sumsize; */
1697 if (fs->lfs_version == 1)
1698 sup->su_olastmod = time.tv_sec;
1699 else
1700 sup->su_lastmod = time.tv_sec;
1701 sup->su_ninos += ninos;
1702 ++sup->su_nsums;
1703 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1704 fs->lfs_ibsize));
1705 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1706
1707 do_again = !(bp->b_flags & B_GATHERED);
1708 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1709
1710 /*
1711 * Mark blocks B_BUSY, to prevent then from being changed between
1712 * the checksum computation and the actual write.
1713 *
1714 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1715 * there are any, replace them with copies that have UNASSIGNED
1716 * instead.
1717 */
1718 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1719 ++bpp;
1720 bp = *bpp;
1721 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1722 bp->b_flags |= B_BUSY;
1723 continue;
1724 }
1725 again:
1726 s = splbio();
1727 if (bp->b_flags & B_BUSY) {
1728 #ifdef DEBUG
1729 printf("lfs_writeseg: avoiding potential data summary "
1730 "corruption for ino %d, lbn %" PRId64 "\n",
1731 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1732 #endif
1733 bp->b_flags |= B_WANTED;
1734 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1735 splx(s);
1736 goto again;
1737 }
1738 bp->b_flags |= B_BUSY;
1739 splx(s);
1740 /*
1741 * Check and replace indirect block UNWRITTEN bogosity.
1742 * XXX See comment in lfs_writefile.
1743 */
1744 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1745 VTOI(bp->b_vp)->i_ffs1_blocks !=
1746 VTOI(bp->b_vp)->i_lfs_effnblks) {
1747 #ifdef DEBUG_LFS
1748 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1749 VTOI(bp->b_vp)->i_number,
1750 VTOI(bp->b_vp)->i_lfs_effnblks,
1751 VTOI(bp->b_vp)->i_ffs1_blocks);
1752 #endif
1753 /* Make a copy we'll make changes to */
1754 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1755 bp->b_bcount, LFS_NB_IBLOCK);
1756 newbp->b_blkno = bp->b_blkno;
1757 memcpy(newbp->b_data, bp->b_data,
1758 newbp->b_bcount);
1759
1760 changed = 0;
1761 /* XXX ondisk32 */
1762 for (daddrp = (int32_t *)(newbp->b_data);
1763 daddrp < (int32_t *)(newbp->b_data +
1764 newbp->b_bcount); daddrp++) {
1765 if (*daddrp == UNWRITTEN) {
1766 #ifdef DEBUG_LFS
1767 off_t doff;
1768 int32_t ioff;
1769
1770 ioff =
1771 daddrp - (int32_t *)(newbp->b_data);
1772 doff =
1773 (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1774 printf("ino %d lbn %" PRId64
1775 " entry %d off %" PRIx64 "\n",
1776 VTOI(bp->b_vp)->i_number,
1777 bp->b_lblkno, ioff, doff);
1778 if (bp->b_vp->v_type == VREG) {
1779 /*
1780 * What is up with this page?
1781 */
1782 struct vm_page *pg;
1783 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff);
1784 doff += PAGE_SIZE) {
1785 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1786 if (pg == NULL)
1787 printf(" page at %" PRIx64 " is NULL\n", doff);
1788 else
1789 printf(" page at %" PRIx64
1790 " flags 0x%x pqflags 0x%x\n",
1791 doff, pg->flags, pg->pqflags);
1792 }
1793 }
1794 #endif /* DEBUG_LFS */
1795 ++changed;
1796 *daddrp = 0;
1797 }
1798 }
1799 /*
1800 * Get rid of the old buffer. Don't mark it clean,
1801 * though, if it still has dirty data on it.
1802 */
1803 if (changed) {
1804 #ifdef DEBUG_LFS
1805 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1806 " bp = %p newbp = %p\n", changed, bp,
1807 newbp);
1808 #endif
1809 *bpp = newbp;
1810 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1811 if (bp->b_flags & B_CALL) {
1812 printf("lfs_writeseg: "
1813 "indir bp should not be B_CALL\n");
1814 s = splbio();
1815 biodone(bp);
1816 splx(s);
1817 bp = NULL;
1818 } else {
1819 /* Still on free list, leave it there */
1820 s = splbio();
1821 bp->b_flags &= ~B_BUSY;
1822 if (bp->b_flags & B_WANTED)
1823 wakeup(bp);
1824 splx(s);
1825 /*
1826 * We have to re-decrement lfs_avail
1827 * since this block is going to come
1828 * back around to us in the next
1829 * segment.
1830 */
1831 fs->lfs_avail -=
1832 btofsb(fs, bp->b_bcount);
1833 }
1834 } else {
1835 lfs_freebuf(fs, newbp);
1836 }
1837 }
1838 }
1839 /*
1840 * Compute checksum across data and then across summary; the first
1841 * block (the summary block) is skipped. Set the create time here
1842 * so that it's guaranteed to be later than the inode mod times.
1843 *
1844 * XXX
1845 * Fix this to do it inline, instead of malloc/copy.
1846 */
1847 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1848 if (fs->lfs_version == 1)
1849 el_size = sizeof(u_long);
1850 else
1851 el_size = sizeof(u_int32_t);
1852 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1853 ++bpp;
1854 /* Loop through gop_write cluster blocks */
1855 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1856 byteoffset += fs->lfs_bsize) {
1857 #ifdef LFS_USE_B_INVAL
1858 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1859 (B_CALL | B_INVAL)) {
1860 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1861 byteoffset, dp, el_size)) {
1862 panic("lfs_writeseg: copyin failed [1]:"
1863 " ino %d blk %" PRId64,
1864 VTOI((*bpp)->b_vp)->i_number,
1865 (*bpp)->b_lblkno);
1866 }
1867 } else
1868 #endif /* LFS_USE_B_INVAL */
1869 {
1870 memcpy(dp, (*bpp)->b_data + byteoffset,
1871 el_size);
1872 }
1873 dp += el_size;
1874 }
1875 }
1876 if (fs->lfs_version == 1)
1877 ssp->ss_ocreate = time.tv_sec;
1878 else {
1879 ssp->ss_create = time.tv_sec;
1880 ssp->ss_serial = ++fs->lfs_serial;
1881 ssp->ss_ident = fs->lfs_ident;
1882 }
1883 ssp->ss_datasum = cksum(datap, dp - datap);
1884 ssp->ss_sumsum =
1885 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1886 pool_put(&fs->lfs_bpppool, datap);
1887 datap = dp = NULL;
1888 #ifdef DIAGNOSTIC
1889 if (fs->lfs_bfree <
1890 btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1891 panic("lfs_writeseg: No diskspace for summary");
1892 #endif
1893 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1894 btofsb(fs, fs->lfs_sumsize));
1895
1896 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1897
1898 /*
1899 * When we simply write the blocks we lose a rotation for every block
1900 * written. To avoid this problem, we cluster the buffers into a
1901 * chunk and write the chunk. MAXPHYS is the largest size I/O
1902 * devices can handle, use that for the size of the chunks.
1903 *
1904 * Blocks that are already clusters (from GOP_WRITE), however, we
1905 * don't bother to copy into other clusters.
1906 */
1907
1908 #define CHUNKSIZE MAXPHYS
1909
1910 if (devvp == NULL)
1911 panic("devvp is NULL");
1912 for (bpp = sp->bpp, i = nblocks; i;) {
1913 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1914 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1915
1916 cbp->b_dev = i_dev;
1917 cbp->b_flags |= B_ASYNC | B_BUSY;
1918 cbp->b_bcount = 0;
1919
1920 #if defined(DEBUG) && defined(DIAGNOSTIC)
1921 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1922 / sizeof(int32_t)) {
1923 panic("lfs_writeseg: real bpp overwrite");
1924 }
1925 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1926 panic("lfs_writeseg: theoretical bpp overwrite");
1927 }
1928 #endif
1929
1930 /*
1931 * Construct the cluster.
1932 */
1933 ++fs->lfs_iocount;
1934 while (i && cbp->b_bcount < CHUNKSIZE) {
1935 bp = *bpp;
1936
1937 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1938 break;
1939 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1940 break;
1941
1942 /* Clusters from GOP_WRITE are expedited */
1943 if (bp->b_bcount > fs->lfs_bsize) {
1944 if (cbp->b_bcount > 0)
1945 /* Put in its own buffer */
1946 break;
1947 else {
1948 cbp->b_data = bp->b_data;
1949 }
1950 } else if (cbp->b_bcount == 0) {
1951 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1952 LFS_NB_CLUSTER);
1953 cl->flags |= LFS_CL_MALLOC;
1954 }
1955 #ifdef DIAGNOSTIC
1956 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1957 btodb(bp->b_bcount - 1))) !=
1958 sp->seg_number) {
1959 printf("blk size %ld daddr %" PRIx64
1960 " not in seg %d\n",
1961 bp->b_bcount, bp->b_blkno,
1962 sp->seg_number);
1963 panic("segment overwrite");
1964 }
1965 #endif
1966
1967 #ifdef LFS_USE_B_INVAL
1968 /*
1969 * Fake buffers from the cleaner are marked as B_INVAL.
1970 * We need to copy the data from user space rather than
1971 * from the buffer indicated.
1972 * XXX == what do I do on an error?
1973 */
1974 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
1975 (B_CALL|B_INVAL)) {
1976 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1977 panic("lfs_writeseg: "
1978 "copyin failed [2]");
1979 } else
1980 #endif /* LFS_USE_B_INVAL */
1981 if (cl->flags & LFS_CL_MALLOC) {
1982 bcopy(bp->b_data, p, bp->b_bcount);
1983 }
1984
1985 p += bp->b_bcount;
1986 cbp->b_bcount += bp->b_bcount;
1987 cl->bufsize += bp->b_bcount;
1988
1989 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1990 cl->bpp[cl->bufcount++] = bp;
1991 vp = bp->b_vp;
1992 s = splbio();
1993 V_INCR_NUMOUTPUT(vp);
1994 splx(s);
1995
1996 bpp++;
1997 i--;
1998 }
1999 s = splbio();
2000 V_INCR_NUMOUTPUT(devvp);
2001 splx(s);
2002 vop_strategy_a.a_desc = VDESC(vop_strategy);
2003 vop_strategy_a.a_bp = cbp;
2004 (strategy)(&vop_strategy_a);
2005 curproc->p_stats->p_ru.ru_oublock++;
2006 }
2007
2008 if (lfs_dostats) {
2009 ++lfs_stats.psegwrites;
2010 lfs_stats.blocktot += nblocks - 1;
2011 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2012 ++lfs_stats.psyncwrites;
2013 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2014 ++lfs_stats.pcleanwrites;
2015 lfs_stats.cleanblocks += nblocks - 1;
2016 }
2017 }
2018 return (lfs_initseg(fs) || do_again);
2019 }
2020
2021 void
2022 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2023 {
2024 struct buf *bp;
2025 dev_t i_dev;
2026 int (*strategy)(void *);
2027 int s;
2028 struct vop_strategy_args vop_strategy_a;
2029
2030 /*
2031 * If we can write one superblock while another is in
2032 * progress, we risk not having a complete checkpoint if we crash.
2033 * So, block here if a superblock write is in progress.
2034 */
2035 s = splbio();
2036 while (fs->lfs_sbactive) {
2037 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2038 }
2039 fs->lfs_sbactive = daddr;
2040 splx(s);
2041 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2042 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2043
2044 /* Set timestamp of this version of the superblock */
2045 if (fs->lfs_version == 1)
2046 fs->lfs_otstamp = time.tv_sec;
2047 fs->lfs_tstamp = time.tv_sec;
2048
2049 /* Checksum the superblock and copy it into a buffer. */
2050 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2051 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
2052 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2053 memset(bp->b_data + sizeof(struct dlfs), 0,
2054 LFS_SBPAD - sizeof(struct dlfs));
2055 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2056
2057 bp->b_dev = i_dev;
2058 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2059 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2060 bp->b_iodone = lfs_supercallback;
2061 /* XXX KS - same nasty hack as above */
2062 bp->b_saveaddr = (caddr_t)fs;
2063
2064 vop_strategy_a.a_desc = VDESC(vop_strategy);
2065 vop_strategy_a.a_bp = bp;
2066 curproc->p_stats->p_ru.ru_oublock++;
2067 s = splbio();
2068 V_INCR_NUMOUTPUT(bp->b_vp);
2069 splx(s);
2070 ++fs->lfs_iocount;
2071 (strategy)(&vop_strategy_a);
2072 }
2073
2074 /*
2075 * Logical block number match routines used when traversing the dirty block
2076 * chain.
2077 */
2078 int
2079 lfs_match_fake(struct lfs *fs, struct buf *bp)
2080 {
2081
2082 return LFS_IS_MALLOC_BUF(bp);
2083 }
2084
2085 #if 0
2086 int
2087 lfs_match_real(struct lfs *fs, struct buf *bp)
2088 {
2089
2090 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2091 }
2092 #endif
2093
2094 int
2095 lfs_match_data(struct lfs *fs, struct buf *bp)
2096 {
2097
2098 return (bp->b_lblkno >= 0);
2099 }
2100
2101 int
2102 lfs_match_indir(struct lfs *fs, struct buf *bp)
2103 {
2104 daddr_t lbn;
2105
2106 lbn = bp->b_lblkno;
2107 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2108 }
2109
2110 int
2111 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2112 {
2113 daddr_t lbn;
2114
2115 lbn = bp->b_lblkno;
2116 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2117 }
2118
2119 int
2120 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2121 {
2122 daddr_t lbn;
2123
2124 lbn = bp->b_lblkno;
2125 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2126 }
2127
2128 /*
2129 * XXX - The only buffers that are going to hit these functions are the
2130 * segment write blocks, or the segment summaries, or the superblocks.
2131 *
2132 * All of the above are created by lfs_newbuf, and so do not need to be
2133 * released via brelse.
2134 */
2135 void
2136 lfs_callback(struct buf *bp)
2137 {
2138 struct lfs *fs;
2139
2140 fs = (struct lfs *)bp->b_saveaddr;
2141 lfs_freebuf(fs, bp);
2142 }
2143
2144 static void
2145 lfs_super_aiodone(struct buf *bp)
2146 {
2147 struct lfs *fs;
2148
2149 fs = (struct lfs *)bp->b_saveaddr;
2150 fs->lfs_sbactive = 0;
2151 wakeup(&fs->lfs_sbactive);
2152 if (--fs->lfs_iocount <= 1)
2153 wakeup(&fs->lfs_iocount);
2154 lfs_freebuf(fs, bp);
2155 }
2156
2157 static void
2158 lfs_cluster_aiodone(struct buf *bp)
2159 {
2160 struct lfs_cluster *cl;
2161 struct lfs *fs;
2162 struct buf *tbp, *fbp;
2163 struct vnode *vp, *devvp;
2164 struct inode *ip;
2165 int s, error=0;
2166 char *cp;
2167
2168 if (bp->b_flags & B_ERROR)
2169 error = bp->b_error;
2170
2171 cl = (struct lfs_cluster *)bp->b_saveaddr;
2172 fs = cl->fs;
2173 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2174
2175 cp = (char *)bp->b_data + cl->bufsize;
2176 /* Put the pages back, and release the buffer */
2177 while (cl->bufcount--) {
2178 tbp = cl->bpp[cl->bufcount];
2179 if (error) {
2180 tbp->b_flags |= B_ERROR;
2181 tbp->b_error = error;
2182 }
2183
2184 /*
2185 * We're done with tbp. If it has not been re-dirtied since
2186 * the cluster was written, free it. Otherwise, keep it on
2187 * the locked list to be written again.
2188 */
2189 vp = tbp->b_vp;
2190
2191 tbp->b_flags &= ~B_GATHERED;
2192
2193 LFS_BCLEAN_LOG(fs, tbp);
2194
2195 if (!(tbp->b_flags & B_CALL)) {
2196 s = splbio();
2197 simple_lock(&bqueue_slock);
2198 bremfree(tbp);
2199 simple_unlock(&bqueue_slock);
2200 if (vp)
2201 reassignbuf(tbp, vp);
2202 splx(s);
2203 tbp->b_flags |= B_ASYNC; /* for biodone */
2204 }
2205
2206 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2207 LFS_UNLOCK_BUF(tbp);
2208
2209 #ifdef DIAGNOSTIC
2210 if (tbp->b_flags & B_DONE) {
2211 printf("blk %d biodone already (flags %lx)\n",
2212 cl->bufcount, (long)tbp->b_flags);
2213 }
2214 #endif
2215 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2216 if ((tbp->b_flags & B_CALL) &&
2217 !LFS_IS_MALLOC_BUF(tbp)) {
2218 /* printf("flags 0x%lx\n", tbp->b_flags); */
2219 /*
2220 * A buffer from the page daemon.
2221 * We use the same iodone as it does,
2222 * so we must manually disassociate its
2223 * buffers from the vp.
2224 */
2225 if (tbp->b_vp) {
2226 /* This is just silly */
2227 s = splbio();
2228 brelvp(tbp);
2229 tbp->b_vp = vp;
2230 splx(s);
2231 }
2232 /* Put it back the way it was */
2233 tbp->b_flags |= B_ASYNC;
2234 /* Master buffers have B_AGE */
2235 if (tbp->b_private == tbp)
2236 tbp->b_flags |= B_AGE;
2237 }
2238 s = splbio();
2239 biodone(tbp);
2240
2241 /*
2242 * If this is the last block for this vnode, but
2243 * there are other blocks on its dirty list,
2244 * set IN_MODIFIED/IN_CLEANING depending on what
2245 * sort of block. Only do this for our mount point,
2246 * not for, e.g., inode blocks that are attached to
2247 * the devvp.
2248 * XXX KS - Shouldn't we set *both* if both types
2249 * of blocks are present (traverse the dirty list?)
2250 */
2251 simple_lock(&global_v_numoutput_slock);
2252 if (vp != devvp && vp->v_numoutput == 0 &&
2253 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2254 ip = VTOI(vp);
2255 #ifdef DEBUG_LFS
2256 printf("lfs_cluster_aiodone: marking ino %d\n",
2257 ip->i_number);
2258 #endif
2259 if (LFS_IS_MALLOC_BUF(fbp))
2260 LFS_SET_UINO(ip, IN_CLEANING);
2261 else
2262 LFS_SET_UINO(ip, IN_MODIFIED);
2263 }
2264 simple_unlock(&global_v_numoutput_slock);
2265 splx(s);
2266 wakeup(vp);
2267 }
2268 }
2269
2270 /* Fix up the cluster buffer, and release it */
2271 if (cl->flags & LFS_CL_MALLOC)
2272 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2273 s = splbio();
2274 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2275 splx(s);
2276
2277 /* Note i/o done */
2278 if (cl->flags & LFS_CL_SYNC) {
2279 if (--cl->seg->seg_iocount == 0)
2280 wakeup(&cl->seg->seg_iocount);
2281 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2282 }
2283 #ifdef DIAGNOSTIC
2284 if (fs->lfs_iocount == 0)
2285 panic("lfs_cluster_aiodone: zero iocount");
2286 #endif
2287 if (--fs->lfs_iocount <= 1)
2288 wakeup(&fs->lfs_iocount);
2289
2290 pool_put(&fs->lfs_bpppool, cl->bpp);
2291 cl->bpp = NULL;
2292 pool_put(&fs->lfs_clpool, cl);
2293 }
2294
2295 static void
2296 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2297 {
2298 /* reset b_iodone for when this is a single-buf i/o. */
2299 bp->b_iodone = aiodone;
2300
2301 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2302 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2303 wakeup(&uvm.aiodoned);
2304 simple_unlock(&uvm.aiodoned_lock);
2305 }
2306
2307 static void
2308 lfs_cluster_callback(struct buf *bp)
2309 {
2310
2311 lfs_generic_callback(bp, lfs_cluster_aiodone);
2312 }
2313
2314 void
2315 lfs_supercallback(struct buf *bp)
2316 {
2317
2318 lfs_generic_callback(bp, lfs_super_aiodone);
2319 }
2320
2321 /*
2322 * Shellsort (diminishing increment sort) from Data Structures and
2323 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2324 * see also Knuth Vol. 3, page 84. The increments are selected from
2325 * formula (8), page 95. Roughly O(N^3/2).
2326 */
2327 /*
2328 * This is our own private copy of shellsort because we want to sort
2329 * two parallel arrays (the array of buffer pointers and the array of
2330 * logical block numbers) simultaneously. Note that we cast the array
2331 * of logical block numbers to a unsigned in this routine so that the
2332 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2333 */
2334
2335 void
2336 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2337 {
2338 static int __rsshell_increments[] = { 4, 1, 0 };
2339 int incr, *incrp, t1, t2;
2340 struct buf *bp_temp;
2341
2342 #ifdef DEBUG
2343 incr = 0;
2344 for (t1 = 0; t1 < nmemb; t1++) {
2345 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2346 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2347 /* dump before panic */
2348 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2349 nmemb, size);
2350 incr = 0;
2351 for (t1 = 0; t1 < nmemb; t1++) {
2352 const struct buf *bp = bp_array[t1];
2353
2354 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2355 PRIu64 "\n", t1,
2356 (uint64_t)bp->b_bcount,
2357 (uint64_t)bp->b_lblkno);
2358 printf("lbns:");
2359 for (t2 = 0; t2 * size < bp->b_bcount;
2360 t2++) {
2361 printf(" %" PRId32,
2362 lb_array[incr++]);
2363 }
2364 printf("\n");
2365 }
2366 panic("lfs_shellsort: inconsistent input");
2367 }
2368 }
2369 }
2370 #endif
2371
2372 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2373 for (t1 = incr; t1 < nmemb; ++t1)
2374 for (t2 = t1 - incr; t2 >= 0;)
2375 if ((u_int32_t)bp_array[t2]->b_lblkno >
2376 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2377 bp_temp = bp_array[t2];
2378 bp_array[t2] = bp_array[t2 + incr];
2379 bp_array[t2 + incr] = bp_temp;
2380 t2 -= incr;
2381 } else
2382 break;
2383
2384 /* Reform the list of logical blocks */
2385 incr = 0;
2386 for (t1 = 0; t1 < nmemb; t1++) {
2387 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2388 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2389 }
2390 }
2391 }
2392
2393 /*
2394 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2395 */
2396 int
2397 lfs_vref(struct vnode *vp)
2398 {
2399 /*
2400 * If we return 1 here during a flush, we risk vinvalbuf() not
2401 * being able to flush all of the pages from this vnode, which
2402 * will cause it to panic. So, return 0 if a flush is in progress.
2403 */
2404 if (vp->v_flag & VXLOCK) {
2405 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2406 return 0;
2407 }
2408 return (1);
2409 }
2410 return (vget(vp, 0));
2411 }
2412
2413 /*
2414 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2415 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2416 */
2417 void
2418 lfs_vunref(struct vnode *vp)
2419 {
2420 /*
2421 * Analogous to lfs_vref, if the node is flushing, fake it.
2422 */
2423 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2424 return;
2425 }
2426
2427 simple_lock(&vp->v_interlock);
2428 #ifdef DIAGNOSTIC
2429 if (vp->v_usecount <= 0) {
2430 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2431 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2432 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2433 panic("lfs_vunref: v_usecount<0");
2434 }
2435 #endif
2436 vp->v_usecount--;
2437 if (vp->v_usecount > 0) {
2438 simple_unlock(&vp->v_interlock);
2439 return;
2440 }
2441 /*
2442 * insert at tail of LRU list
2443 */
2444 simple_lock(&vnode_free_list_slock);
2445 if (vp->v_holdcnt > 0)
2446 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2447 else
2448 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2449 simple_unlock(&vnode_free_list_slock);
2450 simple_unlock(&vp->v_interlock);
2451 }
2452
2453 /*
2454 * We use this when we have vnodes that were loaded in solely for cleaning.
2455 * There is no reason to believe that these vnodes will be referenced again
2456 * soon, since the cleaning process is unrelated to normal filesystem
2457 * activity. Putting cleaned vnodes at the tail of the list has the effect
2458 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2459 * cleaning at the head of the list, instead.
2460 */
2461 void
2462 lfs_vunref_head(struct vnode *vp)
2463 {
2464
2465 simple_lock(&vp->v_interlock);
2466 #ifdef DIAGNOSTIC
2467 if (vp->v_usecount == 0) {
2468 panic("lfs_vunref: v_usecount<0");
2469 }
2470 #endif
2471 vp->v_usecount--;
2472 if (vp->v_usecount > 0) {
2473 simple_unlock(&vp->v_interlock);
2474 return;
2475 }
2476 /*
2477 * insert at head of LRU list
2478 */
2479 simple_lock(&vnode_free_list_slock);
2480 if (vp->v_holdcnt > 0)
2481 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2482 else
2483 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2484 simple_unlock(&vnode_free_list_slock);
2485 simple_unlock(&vp->v_interlock);
2486 }
2487
2488