lfs_segment.c revision 1.140 1 /* $NetBSD: lfs_segment.c,v 1.140 2003/10/18 04:03:22 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.140 2003/10/18 04:03:22 simonb Exp $");
71
72 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
73
74 #if defined(_KERNEL_OPT)
75 #include "opt_ddb.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/namei.h>
81 #include <sys/kernel.h>
82 #include <sys/resourcevar.h>
83 #include <sys/file.h>
84 #include <sys/stat.h>
85 #include <sys/buf.h>
86 #include <sys/proc.h>
87 #include <sys/vnode.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
105
106 extern int count_lock_queue(void);
107 extern struct simplelock vnode_free_list_slock; /* XXX */
108 extern struct simplelock bqueue_slock; /* XXX */
109
110 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
111 static void lfs_super_aiodone(struct buf *);
112 static void lfs_cluster_aiodone(struct buf *);
113 static void lfs_cluster_callback(struct buf *);
114
115 /*
116 * Determine if it's OK to start a partial in this segment, or if we need
117 * to go on to a new segment.
118 */
119 #define LFS_PARTIAL_FITS(fs) \
120 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
121 fragstofsb((fs), (fs)->lfs_frag))
122
123 int lfs_match_fake(struct lfs *, struct buf *);
124 void lfs_newseg(struct lfs *);
125 /* XXX ondisk32 */
126 void lfs_shellsort(struct buf **, int32_t *, int, int);
127 void lfs_supercallback(struct buf *);
128 void lfs_updatemeta(struct segment *);
129 void lfs_writesuper(struct lfs *, daddr_t);
130 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
131 struct segment *sp, int dirops);
132
133 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
134 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
135 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
136 int lfs_dirvcount = 0; /* # active dirops */
137
138 /* Statistics Counters */
139 int lfs_dostats = 1;
140 struct lfs_stats lfs_stats;
141
142 /* op values to lfs_writevnodes */
143 #define VN_REG 0
144 #define VN_DIROP 1
145 #define VN_EMPTY 2
146 #define VN_CLEAN 3
147
148 /*
149 * XXX KS - Set modification time on the Ifile, so the cleaner can
150 * read the fs mod time off of it. We don't set IN_UPDATE here,
151 * since we don't really need this to be flushed to disk (and in any
152 * case that wouldn't happen to the Ifile until we checkpoint).
153 */
154 void
155 lfs_imtime(struct lfs *fs)
156 {
157 struct timespec ts;
158 struct inode *ip;
159
160 TIMEVAL_TO_TIMESPEC(&time, &ts);
161 ip = VTOI(fs->lfs_ivnode);
162 ip->i_ffs1_mtime = ts.tv_sec;
163 ip->i_ffs1_mtimensec = ts.tv_nsec;
164 }
165
166 /*
167 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
168 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
169 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
170 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
171 */
172
173 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
174 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
175 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
176
177 int
178 lfs_vflush(struct vnode *vp)
179 {
180 struct inode *ip;
181 struct lfs *fs;
182 struct segment *sp;
183 struct buf *bp, *nbp, *tbp, *tnbp;
184 int error, s;
185 int flushed;
186 #if 0
187 int redo;
188 #endif
189
190 ip = VTOI(vp);
191 fs = VFSTOUFS(vp->v_mount)->um_lfs;
192
193 if (ip->i_flag & IN_CLEANING) {
194 #ifdef DEBUG_LFS
195 ivndebug(vp,"vflush/in_cleaning");
196 #endif
197 LFS_CLR_UINO(ip, IN_CLEANING);
198 LFS_SET_UINO(ip, IN_MODIFIED);
199
200 /*
201 * Toss any cleaning buffers that have real counterparts
202 * to avoid losing new data.
203 */
204 s = splbio();
205 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
206 nbp = LIST_NEXT(bp, b_vnbufs);
207 if (!LFS_IS_MALLOC_BUF(bp))
208 continue;
209 /*
210 * Look for pages matching the range covered
211 * by cleaning blocks. It's okay if more dirty
212 * pages appear, so long as none disappear out
213 * from under us.
214 */
215 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
216 vp != fs->lfs_ivnode) {
217 struct vm_page *pg;
218 voff_t off;
219
220 simple_lock(&vp->v_interlock);
221 for (off = lblktosize(fs, bp->b_lblkno);
222 off < lblktosize(fs, bp->b_lblkno + 1);
223 off += PAGE_SIZE) {
224 pg = uvm_pagelookup(&vp->v_uobj, off);
225 if (pg == NULL)
226 continue;
227 if ((pg->flags & PG_CLEAN) == 0 ||
228 pmap_is_modified(pg)) {
229 fs->lfs_avail += btofsb(fs,
230 bp->b_bcount);
231 wakeup(&fs->lfs_avail);
232 lfs_freebuf(fs, bp);
233 bp = NULL;
234 goto nextbp;
235 }
236 }
237 simple_unlock(&vp->v_interlock);
238 }
239 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
240 tbp = tnbp)
241 {
242 tnbp = LIST_NEXT(tbp, b_vnbufs);
243 if (tbp->b_vp == bp->b_vp
244 && tbp->b_lblkno == bp->b_lblkno
245 && tbp != bp)
246 {
247 fs->lfs_avail += btofsb(fs,
248 bp->b_bcount);
249 wakeup(&fs->lfs_avail);
250 lfs_freebuf(fs, bp);
251 bp = NULL;
252 break;
253 }
254 }
255 nextbp:
256 ;
257 }
258 splx(s);
259 }
260
261 /* If the node is being written, wait until that is done */
262 s = splbio();
263 if (WRITEINPROG(vp)) {
264 #ifdef DEBUG_LFS
265 ivndebug(vp,"vflush/writeinprog");
266 #endif
267 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
268 }
269 splx(s);
270
271 /* Protect against VXLOCK deadlock in vinvalbuf() */
272 lfs_seglock(fs, SEGM_SYNC);
273
274 /* If we're supposed to flush a freed inode, just toss it */
275 /* XXX - seglock, so these buffers can't be gathered, right? */
276 if (ip->i_mode == 0) {
277 printf("lfs_vflush: ino %d is freed, not flushing\n",
278 ip->i_number);
279 s = splbio();
280 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
281 nbp = LIST_NEXT(bp, b_vnbufs);
282 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
283 fs->lfs_avail += btofsb(fs, bp->b_bcount);
284 wakeup(&fs->lfs_avail);
285 }
286 /* Copied from lfs_writeseg */
287 if (bp->b_flags & B_CALL) {
288 biodone(bp);
289 } else {
290 bremfree(bp);
291 LFS_UNLOCK_BUF(bp);
292 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
293 B_GATHERED);
294 bp->b_flags |= B_DONE;
295 reassignbuf(bp, vp);
296 brelse(bp);
297 }
298 }
299 splx(s);
300 LFS_CLR_UINO(ip, IN_CLEANING);
301 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
302 ip->i_flag &= ~IN_ALLMOD;
303 printf("lfs_vflush: done not flushing ino %d\n",
304 ip->i_number);
305 lfs_segunlock(fs);
306 return 0;
307 }
308
309 SET_FLUSHING(fs,vp);
310 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
311 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
312 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
313 CLR_FLUSHING(fs,vp);
314 lfs_segunlock(fs);
315 return error;
316 }
317 sp = fs->lfs_sp;
318
319 flushed = 0;
320 if (VPISEMPTY(vp)) {
321 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
322 ++flushed;
323 } else if ((ip->i_flag & IN_CLEANING) &&
324 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
325 #ifdef DEBUG_LFS
326 ivndebug(vp,"vflush/clean");
327 #endif
328 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
329 ++flushed;
330 } else if (lfs_dostats) {
331 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
332 ++lfs_stats.vflush_invoked;
333 #ifdef DEBUG_LFS
334 ivndebug(vp,"vflush");
335 #endif
336 }
337
338 #ifdef DIAGNOSTIC
339 /* XXX KS This actually can happen right now, though it shouldn't(?) */
340 if (vp->v_flag & VDIROP) {
341 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
342 /* panic("VDIROP being flushed...this can\'t happen"); */
343 }
344 if (vp->v_usecount < 0) {
345 printf("usecount=%ld\n", (long)vp->v_usecount);
346 panic("lfs_vflush: usecount<0");
347 }
348 #endif
349
350 #if 1
351 do {
352 do {
353 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
354 lfs_writefile(fs, sp, vp);
355 } while (lfs_writeinode(fs, sp, ip));
356 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
357 #else
358 if (flushed && vp != fs->lfs_ivnode)
359 lfs_writeseg(fs, sp);
360 else do {
361 fs->lfs_flags &= ~LFS_IFDIRTY;
362 lfs_writefile(fs, sp, vp);
363 redo = lfs_writeinode(fs, sp, ip);
364 redo += lfs_writeseg(fs, sp);
365 redo += (fs->lfs_flags & LFS_IFDIRTY);
366 } while (redo && vp == fs->lfs_ivnode);
367 #endif
368 if (lfs_dostats) {
369 ++lfs_stats.nwrites;
370 if (sp->seg_flags & SEGM_SYNC)
371 ++lfs_stats.nsync_writes;
372 if (sp->seg_flags & SEGM_CKP)
373 ++lfs_stats.ncheckpoints;
374 }
375 /*
376 * If we were called from somewhere that has already held the seglock
377 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
378 * the write to complete because we are still locked.
379 * Since lfs_vflush() must return the vnode with no dirty buffers,
380 * we must explicitly wait, if that is the case.
381 *
382 * We compare the iocount against 1, not 0, because it is
383 * artificially incremented by lfs_seglock().
384 */
385 simple_lock(&fs->lfs_interlock);
386 if (fs->lfs_seglock > 1) {
387 simple_unlock(&fs->lfs_interlock);
388 while (fs->lfs_iocount > 1)
389 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
390 "lfs_vflush", 0);
391 } else
392 simple_unlock(&fs->lfs_interlock);
393
394 lfs_segunlock(fs);
395
396 /* Wait for these buffers to be recovered by aiodoned */
397 s = splbio();
398 simple_lock(&global_v_numoutput_slock);
399 while (vp->v_numoutput > 0) {
400 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
401 &global_v_numoutput_slock);
402 }
403 simple_unlock(&global_v_numoutput_slock);
404 splx(s);
405
406 CLR_FLUSHING(fs,vp);
407 return (0);
408 }
409
410 #ifdef DEBUG_LFS_VERBOSE
411 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
412 #else
413 # define vndebug(vp,str)
414 #endif
415
416 int
417 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
418 {
419 struct inode *ip;
420 struct vnode *vp, *nvp;
421 int inodes_written = 0, only_cleaning;
422
423 #ifndef LFS_NO_BACKVP_HACK
424 /* BEGIN HACK */
425 #define VN_OFFSET \
426 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
427 #define BACK_VP(VP) \
428 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
429 #define BEG_OF_VLIST \
430 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
431 - VN_OFFSET))
432
433 /* Find last vnode. */
434 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
435 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
436 vp = LIST_NEXT(vp, v_mntvnodes));
437 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
438 nvp = BACK_VP(vp);
439 #else
440 loop:
441 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
442 nvp = LIST_NEXT(vp, v_mntvnodes);
443 #endif
444 /*
445 * If the vnode that we are about to sync is no longer
446 * associated with this mount point, start over.
447 */
448 if (vp->v_mount != mp) {
449 printf("lfs_writevnodes: starting over\n");
450 /*
451 * After this, pages might be busy
452 * due to our own previous putpages.
453 * Start actual segment write here to avoid deadlock.
454 */
455 (void)lfs_writeseg(fs, sp);
456 goto loop;
457 }
458
459 if (vp->v_type == VNON) {
460 continue;
461 }
462
463 ip = VTOI(vp);
464 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
465 (op != VN_DIROP && op != VN_CLEAN &&
466 (vp->v_flag & VDIROP))) {
467 vndebug(vp,"dirop");
468 continue;
469 }
470
471 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
472 vndebug(vp,"empty");
473 continue;
474 }
475
476 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
477 && vp != fs->lfs_flushvp
478 && !(ip->i_flag & IN_CLEANING)) {
479 vndebug(vp,"cleaning");
480 continue;
481 }
482
483 if (lfs_vref(vp)) {
484 vndebug(vp,"vref");
485 continue;
486 }
487
488 only_cleaning = 0;
489 /*
490 * Write the inode/file if dirty and it's not the IFILE.
491 */
492 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
493 only_cleaning =
494 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
495
496 if (ip->i_number != LFS_IFILE_INUM)
497 lfs_writefile(fs, sp, vp);
498 if (!VPISEMPTY(vp)) {
499 if (WRITEINPROG(vp)) {
500 #ifdef DEBUG_LFS
501 ivndebug(vp,"writevnodes/write2");
502 #endif
503 } else if (!(ip->i_flag & IN_ALLMOD)) {
504 #ifdef DEBUG_LFS
505 printf("<%d>",ip->i_number);
506 #endif
507 LFS_SET_UINO(ip, IN_MODIFIED);
508 }
509 }
510 (void) lfs_writeinode(fs, sp, ip);
511 inodes_written++;
512 }
513
514 if (lfs_clean_vnhead && only_cleaning)
515 lfs_vunref_head(vp);
516 else
517 lfs_vunref(vp);
518 }
519 return inodes_written;
520 }
521
522 /*
523 * Do a checkpoint.
524 */
525 int
526 lfs_segwrite(struct mount *mp, int flags)
527 {
528 struct buf *bp;
529 struct inode *ip;
530 struct lfs *fs;
531 struct segment *sp;
532 struct vnode *vp;
533 SEGUSE *segusep;
534 int do_ckp, did_ckp, error, s;
535 unsigned n, segleft, maxseg, sn, i, curseg;
536 int writer_set = 0;
537 int dirty;
538 int redo;
539
540 fs = VFSTOUFS(mp)->um_lfs;
541
542 if (fs->lfs_ronly)
543 return EROFS;
544
545 lfs_imtime(fs);
546
547 /*
548 * Allocate a segment structure and enough space to hold pointers to
549 * the maximum possible number of buffers which can be described in a
550 * single summary block.
551 */
552 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
553 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
554 sp = fs->lfs_sp;
555
556 /*
557 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
558 * in which case we have to flush *all* buffers off of this vnode.
559 * We don't care about other nodes, but write any non-dirop nodes
560 * anyway in anticipation of another getnewvnode().
561 *
562 * If we're cleaning we only write cleaning and ifile blocks, and
563 * no dirops, since otherwise we'd risk corruption in a crash.
564 */
565 if (sp->seg_flags & SEGM_CLEAN)
566 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
567 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
568 lfs_writevnodes(fs, mp, sp, VN_REG);
569 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
570 error = lfs_writer_enter(fs, "lfs writer");
571 if (error) {
572 printf("segwrite mysterious error\n");
573 /* XXX why not segunlock? */
574 pool_put(&fs->lfs_bpppool, sp->bpp);
575 sp->bpp = NULL;
576 pool_put(&fs->lfs_segpool, sp);
577 sp = fs->lfs_sp = NULL;
578 return (error);
579 }
580 writer_set = 1;
581 lfs_writevnodes(fs, mp, sp, VN_DIROP);
582 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
583 }
584 }
585
586 /*
587 * If we are doing a checkpoint, mark everything since the
588 * last checkpoint as no longer ACTIVE.
589 */
590 if (do_ckp) {
591 segleft = fs->lfs_nseg;
592 curseg = 0;
593 for (n = 0; n < fs->lfs_segtabsz; n++) {
594 dirty = 0;
595 if (bread(fs->lfs_ivnode,
596 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
597 panic("lfs_segwrite: ifile read");
598 segusep = (SEGUSE *)bp->b_data;
599 maxseg = min(segleft, fs->lfs_sepb);
600 for (i = 0; i < maxseg; i++) {
601 sn = curseg + i;
602 if (sn != dtosn(fs, fs->lfs_curseg) &&
603 segusep->su_flags & SEGUSE_ACTIVE) {
604 segusep->su_flags &= ~SEGUSE_ACTIVE;
605 --fs->lfs_nactive;
606 ++dirty;
607 }
608 fs->lfs_suflags[fs->lfs_activesb][sn] =
609 segusep->su_flags;
610 if (fs->lfs_version > 1)
611 ++segusep;
612 else
613 segusep = (SEGUSE *)
614 ((SEGUSE_V1 *)segusep + 1);
615 }
616
617 if (dirty)
618 error = LFS_BWRITE_LOG(bp); /* Ifile */
619 else
620 brelse(bp);
621 segleft -= fs->lfs_sepb;
622 curseg += fs->lfs_sepb;
623 }
624 }
625
626 did_ckp = 0;
627 if (do_ckp || fs->lfs_doifile) {
628 do {
629 vp = fs->lfs_ivnode;
630
631 #ifdef DEBUG
632 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
633 #endif
634 fs->lfs_flags &= ~LFS_IFDIRTY;
635
636 ip = VTOI(vp);
637
638 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
639 lfs_writefile(fs, sp, vp);
640
641 if (ip->i_flag & IN_ALLMOD)
642 ++did_ckp;
643 redo = lfs_writeinode(fs, sp, ip);
644 redo += lfs_writeseg(fs, sp);
645 redo += (fs->lfs_flags & LFS_IFDIRTY);
646 } while (redo && do_ckp);
647
648 /*
649 * Unless we are unmounting, the Ifile may continue to have
650 * dirty blocks even after a checkpoint, due to changes to
651 * inodes' atime. If we're checkpointing, it's "impossible"
652 * for other parts of the Ifile to be dirty after the loop
653 * above, since we hold the segment lock.
654 */
655 s = splbio();
656 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
657 LFS_CLR_UINO(ip, IN_ALLMOD);
658 }
659 #ifdef DIAGNOSTIC
660 else if (do_ckp) {
661 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
662 if (bp->b_lblkno < fs->lfs_cleansz +
663 fs->lfs_segtabsz &&
664 !(bp->b_flags & B_GATHERED)) {
665 panic("dirty blocks");
666 }
667 }
668 }
669 #endif
670 splx(s);
671 } else {
672 (void) lfs_writeseg(fs, sp);
673 }
674
675 /* Note Ifile no longer needs to be written */
676 fs->lfs_doifile = 0;
677 if (writer_set)
678 lfs_writer_leave(fs);
679
680 /*
681 * If we didn't write the Ifile, we didn't really do anything.
682 * That means that (1) there is a checkpoint on disk and (2)
683 * nothing has changed since it was written.
684 *
685 * Take the flags off of the segment so that lfs_segunlock
686 * doesn't have to write the superblock either.
687 */
688 if (do_ckp && !did_ckp) {
689 sp->seg_flags &= ~SEGM_CKP;
690 }
691
692 if (lfs_dostats) {
693 ++lfs_stats.nwrites;
694 if (sp->seg_flags & SEGM_SYNC)
695 ++lfs_stats.nsync_writes;
696 if (sp->seg_flags & SEGM_CKP)
697 ++lfs_stats.ncheckpoints;
698 }
699 lfs_segunlock(fs);
700 return (0);
701 }
702
703 /*
704 * Write the dirty blocks associated with a vnode.
705 */
706 void
707 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
708 {
709 struct buf *bp;
710 struct finfo *fip;
711 struct inode *ip;
712 IFILE *ifp;
713 int i, frag;
714
715 ip = VTOI(vp);
716
717 if (sp->seg_bytes_left < fs->lfs_bsize ||
718 sp->sum_bytes_left < sizeof(struct finfo))
719 (void) lfs_writeseg(fs, sp);
720
721 sp->sum_bytes_left -= FINFOSIZE;
722 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
723
724 if (vp->v_flag & VDIROP)
725 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
726
727 fip = sp->fip;
728 fip->fi_nblocks = 0;
729 fip->fi_ino = ip->i_number;
730 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
731 fip->fi_version = ifp->if_version;
732 brelse(bp);
733
734 if (sp->seg_flags & SEGM_CLEAN) {
735 lfs_gather(fs, sp, vp, lfs_match_fake);
736 /*
737 * For a file being flushed, we need to write *all* blocks.
738 * This means writing the cleaning blocks first, and then
739 * immediately following with any non-cleaning blocks.
740 * The same is true of the Ifile since checkpoints assume
741 * that all valid Ifile blocks are written.
742 */
743 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
744 lfs_gather(fs, sp, vp, lfs_match_data);
745 /*
746 * Don't call VOP_PUTPAGES: if we're flushing,
747 * we've already done it, and the Ifile doesn't
748 * use the page cache.
749 */
750 }
751 } else {
752 lfs_gather(fs, sp, vp, lfs_match_data);
753 /*
754 * If we're flushing, we've already called VOP_PUTPAGES
755 * so don't do it again. Otherwise, we want to write
756 * everything we've got.
757 */
758 if (!IS_FLUSHING(fs, vp)) {
759 simple_lock(&vp->v_interlock);
760 VOP_PUTPAGES(vp, 0, 0,
761 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
762 }
763 }
764
765 /*
766 * It may not be necessary to write the meta-data blocks at this point,
767 * as the roll-forward recovery code should be able to reconstruct the
768 * list.
769 *
770 * We have to write them anyway, though, under two conditions: (1) the
771 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
772 * checkpointing.
773 *
774 * BUT if we are cleaning, we might have indirect blocks that refer to
775 * new blocks not being written yet, in addition to fragments being
776 * moved out of a cleaned segment. If that is the case, don't
777 * write the indirect blocks, or the finfo will have a small block
778 * in the middle of it!
779 * XXX in this case isn't the inode size wrong too?
780 */
781 frag = 0;
782 if (sp->seg_flags & SEGM_CLEAN) {
783 for (i = 0; i < NDADDR; i++)
784 if (ip->i_lfs_fragsize[i] > 0 &&
785 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
786 ++frag;
787 }
788 #ifdef DIAGNOSTIC
789 if (frag > 1)
790 panic("lfs_writefile: more than one fragment!");
791 #endif
792 if (IS_FLUSHING(fs, vp) ||
793 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
794 lfs_gather(fs, sp, vp, lfs_match_indir);
795 lfs_gather(fs, sp, vp, lfs_match_dindir);
796 lfs_gather(fs, sp, vp, lfs_match_tindir);
797 }
798 fip = sp->fip;
799 if (fip->fi_nblocks != 0) {
800 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
801 sizeof(int32_t) * (fip->fi_nblocks));
802 sp->start_lbp = &sp->fip->fi_blocks[0];
803 } else {
804 sp->sum_bytes_left += FINFOSIZE;
805 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
806 }
807 }
808
809 int
810 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
811 {
812 struct buf *bp, *ibp;
813 struct ufs1_dinode *cdp;
814 IFILE *ifp;
815 SEGUSE *sup;
816 daddr_t daddr;
817 int32_t *daddrp; /* XXX ondisk32 */
818 ino_t ino;
819 int error, i, ndx, fsb = 0;
820 int redo_ifile = 0;
821 struct timespec ts;
822 int gotblk = 0;
823
824 if (!(ip->i_flag & IN_ALLMOD))
825 return (0);
826
827 /* Allocate a new inode block if necessary. */
828 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
829 sp->ibp == NULL) {
830 /* Allocate a new segment if necessary. */
831 if (sp->seg_bytes_left < fs->lfs_ibsize ||
832 sp->sum_bytes_left < sizeof(int32_t))
833 (void) lfs_writeseg(fs, sp);
834
835 /* Get next inode block. */
836 daddr = fs->lfs_offset;
837 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
838 sp->ibp = *sp->cbpp++ =
839 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
840 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
841 gotblk++;
842
843 /* Zero out inode numbers */
844 for (i = 0; i < INOPB(fs); ++i)
845 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
846 0;
847
848 ++sp->start_bpp;
849 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
850 /* Set remaining space counters. */
851 sp->seg_bytes_left -= fs->lfs_ibsize;
852 sp->sum_bytes_left -= sizeof(int32_t);
853 ndx = fs->lfs_sumsize / sizeof(int32_t) -
854 sp->ninodes / INOPB(fs) - 1;
855 ((int32_t *)(sp->segsum))[ndx] = daddr;
856 }
857
858 /* Update the inode times and copy the inode onto the inode page. */
859 TIMEVAL_TO_TIMESPEC(&time, &ts);
860 /* XXX kludge --- don't redirty the ifile just to put times on it */
861 if (ip->i_number != LFS_IFILE_INUM)
862 LFS_ITIMES(ip, &ts, &ts, &ts);
863
864 /*
865 * If this is the Ifile, and we've already written the Ifile in this
866 * partial segment, just overwrite it (it's not on disk yet) and
867 * continue.
868 *
869 * XXX we know that the bp that we get the second time around has
870 * already been gathered.
871 */
872 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
873 *(sp->idp) = *ip->i_din.ffs1_din;
874 ip->i_lfs_osize = ip->i_size;
875 return 0;
876 }
877
878 bp = sp->ibp;
879 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
880 *cdp = *ip->i_din.ffs1_din;
881 #ifdef LFS_IFILE_FRAG_ADDRESSING
882 if (fs->lfs_version > 1)
883 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
884 #endif
885
886 /*
887 * If we are cleaning, ensure that we don't write UNWRITTEN disk
888 * addresses to disk; possibly revert the inode size.
889 * XXX By not writing these blocks, we are making the lfs_avail
890 * XXX count on disk wrong by the same amount. We should be
891 * XXX able to "borrow" from lfs_avail and return it after the
892 * XXX Ifile is written. See also in lfs_writeseg.
893 */
894 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
895 cdp->di_size = ip->i_lfs_osize;
896 #ifdef DEBUG_LFS
897 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
898 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks);
899 #endif
900 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
901 daddrp++) {
902 if (*daddrp == UNWRITTEN) {
903 #ifdef DEBUG_LFS
904 printf("lfs_writeinode: wiping UNWRITTEN\n");
905 #endif
906 *daddrp = 0;
907 }
908 }
909 } else {
910 /* If all blocks are goig to disk, update the "size on disk" */
911 ip->i_lfs_osize = ip->i_size;
912 }
913
914 if (ip->i_flag & IN_CLEANING)
915 LFS_CLR_UINO(ip, IN_CLEANING);
916 else {
917 /* XXX IN_ALLMOD */
918 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
919 IN_UPDATE);
920 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
921 LFS_CLR_UINO(ip, IN_MODIFIED);
922 #ifdef DEBUG_LFS
923 else
924 printf("lfs_writeinode: ino %d: real blks=%d, "
925 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
926 ip->i_lfs_effnblks);
927 #endif
928 }
929
930 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
931 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
932 (sp->ninodes % INOPB(fs));
933 if (gotblk) {
934 LFS_LOCK_BUF(bp);
935 brelse(bp);
936 }
937
938 /* Increment inode count in segment summary block. */
939 ++((SEGSUM *)(sp->segsum))->ss_ninos;
940
941 /* If this page is full, set flag to allocate a new page. */
942 if (++sp->ninodes % INOPB(fs) == 0)
943 sp->ibp = NULL;
944
945 /*
946 * If updating the ifile, update the super-block. Update the disk
947 * address and access times for this inode in the ifile.
948 */
949 ino = ip->i_number;
950 if (ino == LFS_IFILE_INUM) {
951 daddr = fs->lfs_idaddr;
952 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
953 } else {
954 LFS_IENTRY(ifp, fs, ino, ibp);
955 daddr = ifp->if_daddr;
956 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
957 #ifdef LFS_DEBUG_NEXTFREE
958 if (ino > 3 && ifp->if_nextfree) {
959 vprint("lfs_writeinode",ITOV(ip));
960 printf("lfs_writeinode: updating free ino %d\n",
961 ip->i_number);
962 }
963 #endif
964 error = LFS_BWRITE_LOG(ibp); /* Ifile */
965 }
966
967 /*
968 * The inode's last address should not be in the current partial
969 * segment, except under exceptional circumstances (lfs_writevnodes
970 * had to start over, and in the meantime more blocks were written
971 * to a vnode). Both inodes will be accounted to this segment
972 * in lfs_writeseg so we need to subtract the earlier version
973 * here anyway. The segment count can temporarily dip below
974 * zero here; keep track of how many duplicates we have in
975 * "dupino" so we don't panic below.
976 */
977 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
978 ++sp->ndupino;
979 printf("lfs_writeinode: last inode addr in current pseg "
980 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
981 (long long)daddr, sp->ndupino);
982 }
983 /*
984 * Account the inode: it no longer belongs to its former segment,
985 * though it will not belong to the new segment until that segment
986 * is actually written.
987 */
988 if (daddr != LFS_UNUSED_DADDR) {
989 u_int32_t oldsn = dtosn(fs, daddr);
990 #ifdef DIAGNOSTIC
991 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
992 #endif
993 LFS_SEGENTRY(sup, fs, oldsn, bp);
994 #ifdef DIAGNOSTIC
995 if (sup->su_nbytes +
996 sizeof (struct ufs1_dinode) * ndupino
997 < sizeof (struct ufs1_dinode)) {
998 printf("lfs_writeinode: negative bytes "
999 "(segment %" PRIu32 " short by %d, "
1000 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1001 ", daddr=%" PRId64 ", su_nbytes=%u, "
1002 "ndupino=%d)\n",
1003 dtosn(fs, daddr),
1004 (int)sizeof (struct ufs1_dinode) *
1005 (1 - sp->ndupino) - sup->su_nbytes,
1006 oldsn, sp->seg_number, daddr,
1007 (unsigned int)sup->su_nbytes,
1008 sp->ndupino);
1009 panic("lfs_writeinode: negative bytes");
1010 sup->su_nbytes = sizeof (struct ufs1_dinode);
1011 }
1012 #endif
1013 #ifdef DEBUG_SU_NBYTES
1014 printf("seg %d -= %d for ino %d inode\n",
1015 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino);
1016 #endif
1017 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1018 redo_ifile =
1019 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1020 if (redo_ifile)
1021 fs->lfs_flags |= LFS_IFDIRTY;
1022 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1023 }
1024 return (redo_ifile);
1025 }
1026
1027 int
1028 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1029 {
1030 struct lfs *fs;
1031 int version;
1032 int j, blksinblk;
1033
1034 /*
1035 * If full, finish this segment. We may be doing I/O, so
1036 * release and reacquire the splbio().
1037 */
1038 #ifdef DIAGNOSTIC
1039 if (sp->vp == NULL)
1040 panic ("lfs_gatherblock: Null vp in segment");
1041 #endif
1042 fs = sp->fs;
1043 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1044 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1045 sp->seg_bytes_left < bp->b_bcount) {
1046 if (sptr)
1047 splx(*sptr);
1048 lfs_updatemeta(sp);
1049
1050 version = sp->fip->fi_version;
1051 (void) lfs_writeseg(fs, sp);
1052
1053 sp->fip->fi_version = version;
1054 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1055 /* Add the current file to the segment summary. */
1056 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1057 sp->sum_bytes_left -= FINFOSIZE;
1058
1059 if (sptr)
1060 *sptr = splbio();
1061 return (1);
1062 }
1063
1064 #ifdef DEBUG
1065 if (bp->b_flags & B_GATHERED) {
1066 printf("lfs_gatherblock: already gathered! Ino %d,"
1067 " lbn %" PRId64 "\n",
1068 sp->fip->fi_ino, bp->b_lblkno);
1069 return (0);
1070 }
1071 #endif
1072 /* Insert into the buffer list, update the FINFO block. */
1073 bp->b_flags |= B_GATHERED;
1074
1075 *sp->cbpp++ = bp;
1076 for (j = 0; j < blksinblk; j++)
1077 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1078
1079 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1080 sp->seg_bytes_left -= bp->b_bcount;
1081 return (0);
1082 }
1083
1084 int
1085 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1086 int (*match)(struct lfs *, struct buf *))
1087 {
1088 struct buf *bp, *nbp;
1089 int s, count = 0;
1090
1091 sp->vp = vp;
1092 s = splbio();
1093
1094 #ifndef LFS_NO_BACKBUF_HACK
1095 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1096 # define BUF_OFFSET \
1097 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1098 # define BACK_BUF(BP) \
1099 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1100 # define BEG_OF_LIST \
1101 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1102
1103 loop:
1104 /* Find last buffer. */
1105 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1106 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1107 bp = LIST_NEXT(bp, b_vnbufs))
1108 /* nothing */;
1109 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1110 nbp = BACK_BUF(bp);
1111 #else /* LFS_NO_BACKBUF_HACK */
1112 loop:
1113 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1114 nbp = LIST_NEXT(bp, b_vnbufs);
1115 #endif /* LFS_NO_BACKBUF_HACK */
1116 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1117 #ifdef DEBUG_LFS
1118 if (vp == fs->lfs_ivnode &&
1119 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1120 printf("(%" PRId64 ":%lx)",
1121 bp->b_lblkno, bp->b_flags);
1122 #endif
1123 continue;
1124 }
1125 if (vp->v_type == VBLK) {
1126 /* For block devices, just write the blocks. */
1127 /* XXX Do we really need to even do this? */
1128 #ifdef DEBUG_LFS
1129 if (count == 0)
1130 printf("BLK(");
1131 printf(".");
1132 #endif
1133 /*
1134 * Get the block before bwrite,
1135 * so we don't corrupt the free list
1136 */
1137 bp->b_flags |= B_BUSY;
1138 bremfree(bp);
1139 bwrite(bp);
1140 } else {
1141 #ifdef DIAGNOSTIC
1142 # ifdef LFS_USE_B_INVAL
1143 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1144 printf("lfs_gather: lbn %" PRId64 " is "
1145 "B_INVAL\n", bp->b_lblkno);
1146 VOP_PRINT(bp->b_vp);
1147 }
1148 # endif /* LFS_USE_B_INVAL */
1149 if (!(bp->b_flags & B_DELWRI))
1150 panic("lfs_gather: bp not B_DELWRI");
1151 if (!(bp->b_flags & B_LOCKED)) {
1152 printf("lfs_gather: lbn %" PRId64 " blk "
1153 "%" PRId64 " not B_LOCKED\n",
1154 bp->b_lblkno,
1155 dbtofsb(fs, bp->b_blkno));
1156 VOP_PRINT(bp->b_vp);
1157 panic("lfs_gather: bp not B_LOCKED");
1158 }
1159 #endif
1160 if (lfs_gatherblock(sp, bp, &s)) {
1161 goto loop;
1162 }
1163 }
1164 count++;
1165 }
1166 splx(s);
1167 #ifdef DEBUG_LFS
1168 if (vp->v_type == VBLK && count)
1169 printf(")\n");
1170 #endif
1171 lfs_updatemeta(sp);
1172 sp->vp = NULL;
1173 return count;
1174 }
1175
1176 #if DEBUG
1177 # define DEBUG_OOFF(n) do { \
1178 if (ooff == 0) { \
1179 printf("lfs_updatemeta[%d]: warning: writing " \
1180 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1181 ", was 0x0 (or %" PRId64 ")\n", \
1182 (n), ip->i_number, lbn, ndaddr, daddr); \
1183 } \
1184 } while (0)
1185 #else
1186 # define DEBUG_OOFF(n)
1187 #endif
1188
1189 /*
1190 * Change the given block's address to ndaddr, finding its previous
1191 * location using ufs_bmaparray().
1192 *
1193 * Account for this change in the segment table.
1194 */
1195 void
1196 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn,
1197 int32_t ndaddr, int size)
1198 {
1199 SEGUSE *sup;
1200 struct buf *bp;
1201 struct indir a[NIADDR + 2], *ap;
1202 struct inode *ip;
1203 struct vnode *vp;
1204 daddr_t daddr, ooff;
1205 int num, error;
1206 int bb, osize, obb;
1207
1208 vp = sp->vp;
1209 ip = VTOI(vp);
1210
1211 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1212 if (error)
1213 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1214
1215 KASSERT(daddr <= LFS_MAX_DADDR);
1216 if (daddr > 0)
1217 daddr = dbtofsb(fs, daddr);
1218
1219 bb = fragstofsb(fs, numfrags(fs, size));
1220 switch (num) {
1221 case 0:
1222 ooff = ip->i_ffs1_db[lbn];
1223 DEBUG_OOFF(0);
1224 if (ooff == UNWRITTEN)
1225 ip->i_ffs1_blocks += bb;
1226 else {
1227 /* possible fragment truncation or extension */
1228 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1229 ip->i_ffs1_blocks += (bb - obb);
1230 }
1231 ip->i_ffs1_db[lbn] = ndaddr;
1232 break;
1233 case 1:
1234 ooff = ip->i_ffs1_ib[a[0].in_off];
1235 DEBUG_OOFF(1);
1236 if (ooff == UNWRITTEN)
1237 ip->i_ffs1_blocks += bb;
1238 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1239 break;
1240 default:
1241 ap = &a[num - 1];
1242 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1243 panic("lfs_updatemeta: bread bno %" PRId64,
1244 ap->in_lbn);
1245
1246 /* XXX ondisk32 */
1247 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1248 DEBUG_OOFF(num);
1249 if (ooff == UNWRITTEN)
1250 ip->i_ffs1_blocks += bb;
1251 /* XXX ondisk32 */
1252 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1253 (void) VOP_BWRITE(bp);
1254 }
1255
1256 /*
1257 * Though we'd rather it couldn't, this *can* happen right now
1258 * if cleaning blocks and regular blocks coexist.
1259 */
1260 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1261
1262 /*
1263 * Update segment usage information, based on old size
1264 * and location.
1265 */
1266 if (daddr > 0) {
1267 u_int32_t oldsn = dtosn(fs, daddr);
1268 #ifdef DIAGNOSTIC
1269 int ndupino = (sp->seg_number == oldsn) ?
1270 sp->ndupino : 0;
1271 #endif
1272 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1273 if (lbn >= 0 && lbn < NDADDR)
1274 osize = ip->i_lfs_fragsize[lbn];
1275 else
1276 osize = fs->lfs_bsize;
1277 LFS_SEGENTRY(sup, fs, oldsn, bp);
1278 #ifdef DIAGNOSTIC
1279 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1280 < osize) {
1281 printf("lfs_updatemeta: negative bytes "
1282 "(segment %" PRIu32 " short by %" PRId64
1283 ")\n", dtosn(fs, daddr),
1284 (int64_t)osize -
1285 (sizeof (struct ufs1_dinode) * sp->ndupino +
1286 sup->su_nbytes));
1287 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1288 ", addr = 0x%" PRIx64 "\n",
1289 VTOI(sp->vp)->i_number, lbn, daddr);
1290 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1291 panic("lfs_updatemeta: negative bytes");
1292 sup->su_nbytes = osize -
1293 sizeof (struct ufs1_dinode) * sp->ndupino;
1294 }
1295 #endif
1296 #ifdef DEBUG_SU_NBYTES
1297 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1298 " db 0x%" PRIx64 "\n",
1299 dtosn(fs, daddr), osize,
1300 VTOI(sp->vp)->i_number, lbn, daddr);
1301 #endif
1302 sup->su_nbytes -= osize;
1303 if (!(bp->b_flags & B_GATHERED))
1304 fs->lfs_flags |= LFS_IFDIRTY;
1305 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1306 }
1307 /*
1308 * Now that this block has a new address, and its old
1309 * segment no longer owns it, we can forget about its
1310 * old size.
1311 */
1312 if (lbn >= 0 && lbn < NDADDR)
1313 ip->i_lfs_fragsize[lbn] = size;
1314 }
1315
1316 /*
1317 * Update the metadata that points to the blocks listed in the FINFO
1318 * array.
1319 */
1320 void
1321 lfs_updatemeta(struct segment *sp)
1322 {
1323 struct buf *sbp;
1324 struct lfs *fs;
1325 struct vnode *vp;
1326 daddr_t lbn;
1327 int i, nblocks, num;
1328 int bb;
1329 int bytesleft, size;
1330
1331 vp = sp->vp;
1332 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1333 KASSERT(nblocks >= 0);
1334 if (vp == NULL || nblocks == 0)
1335 return;
1336
1337 /*
1338 * This count may be high due to oversize blocks from lfs_gop_write.
1339 * Correct for this. (XXX we should be able to keep track of these.)
1340 */
1341 fs = sp->fs;
1342 for (i = 0; i < nblocks; i++) {
1343 if (sp->start_bpp[i] == NULL) {
1344 printf("nblocks = %d, not %d\n", i, nblocks);
1345 nblocks = i;
1346 break;
1347 }
1348 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1349 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1350 nblocks -= num - 1;
1351 }
1352
1353 KASSERT(vp->v_type == VREG ||
1354 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1355 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1356
1357 /*
1358 * Sort the blocks.
1359 *
1360 * We have to sort even if the blocks come from the
1361 * cleaner, because there might be other pending blocks on the
1362 * same inode...and if we don't sort, and there are fragments
1363 * present, blocks may be written in the wrong place.
1364 */
1365 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1366
1367 /*
1368 * Record the length of the last block in case it's a fragment.
1369 * If there are indirect blocks present, they sort last. An
1370 * indirect block will be lfs_bsize and its presence indicates
1371 * that you cannot have fragments.
1372 *
1373 * XXX This last is a lie. A cleaned fragment can coexist with
1374 * XXX a later indirect block. This will continue to be
1375 * XXX true until lfs_markv is fixed to do everything with
1376 * XXX fake blocks (including fake inodes and fake indirect blocks).
1377 */
1378 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1379 fs->lfs_bmask) + 1;
1380
1381 /*
1382 * Assign disk addresses, and update references to the logical
1383 * block and the segment usage information.
1384 */
1385 for (i = nblocks; i--; ++sp->start_bpp) {
1386 sbp = *sp->start_bpp;
1387 lbn = *sp->start_lbp;
1388 KASSERT(sbp->b_lblkno == lbn);
1389
1390 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1391
1392 /*
1393 * If we write a frag in the wrong place, the cleaner won't
1394 * be able to correctly identify its size later, and the
1395 * segment will be uncleanable. (Even worse, it will assume
1396 * that the indirect block that actually ends the list
1397 * is of a smaller size!)
1398 */
1399 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1400 panic("lfs_updatemeta: fragment is not last block");
1401
1402 /*
1403 * For each subblock in this possibly oversized block,
1404 * update its address on disk.
1405 */
1406 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1407 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1408 bytesleft -= fs->lfs_bsize) {
1409 size = MIN(bytesleft, fs->lfs_bsize);
1410 bb = fragstofsb(fs, numfrags(fs, size));
1411 lbn = *sp->start_lbp++;
1412 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
1413 fs->lfs_offset += bb;
1414 }
1415
1416 }
1417 }
1418
1419 /*
1420 * Start a new partial segment.
1421 *
1422 * Return 1 when we entered to a new segment.
1423 * Otherwise, return 0.
1424 */
1425 int
1426 lfs_initseg(struct lfs *fs)
1427 {
1428 struct segment *sp = fs->lfs_sp;
1429 SEGSUM *ssp;
1430 struct buf *sbp; /* buffer for SEGSUM */
1431 int repeat = 0; /* return value */
1432
1433 /* Advance to the next segment. */
1434 if (!LFS_PARTIAL_FITS(fs)) {
1435 SEGUSE *sup;
1436 struct buf *bp;
1437
1438 /* lfs_avail eats the remaining space */
1439 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1440 fs->lfs_curseg);
1441 /* Wake up any cleaning procs waiting on this file system. */
1442 wakeup(&lfs_allclean_wakeup);
1443 wakeup(&fs->lfs_nextseg);
1444 lfs_newseg(fs);
1445 repeat = 1;
1446 fs->lfs_offset = fs->lfs_curseg;
1447
1448 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1449 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1450
1451 /*
1452 * If the segment contains a superblock, update the offset
1453 * and summary address to skip over it.
1454 */
1455 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1456 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1457 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1458 sp->seg_bytes_left -= LFS_SBPAD;
1459 }
1460 brelse(bp);
1461 /* Segment zero could also contain the labelpad */
1462 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1463 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1464 fs->lfs_offset +=
1465 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1466 sp->seg_bytes_left -=
1467 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1468 }
1469 } else {
1470 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1471 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1472 (fs->lfs_offset - fs->lfs_curseg));
1473 }
1474 fs->lfs_lastpseg = fs->lfs_offset;
1475
1476 /* Record first address of this partial segment */
1477 if (sp->seg_flags & SEGM_CLEAN) {
1478 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1479 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1480 /* "1" is the artificial inc in lfs_seglock */
1481 while (fs->lfs_iocount > 1) {
1482 tsleep(&fs->lfs_iocount, PRIBIO + 1,
1483 "lfs_initseg", 0);
1484 }
1485 fs->lfs_cleanind = 0;
1486 }
1487 }
1488
1489 sp->fs = fs;
1490 sp->ibp = NULL;
1491 sp->idp = NULL;
1492 sp->ninodes = 0;
1493 sp->ndupino = 0;
1494
1495 sp->cbpp = sp->bpp;
1496
1497 /* Get a new buffer for SEGSUM */
1498 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1499 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1500
1501 /* ... and enter it into the buffer list. */
1502 *sp->cbpp = sbp;
1503 sp->cbpp++;
1504 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1505
1506 sp->start_bpp = sp->cbpp;
1507
1508 /* Set point to SEGSUM, initialize it. */
1509 ssp = sp->segsum = sbp->b_data;
1510 memset(ssp, 0, fs->lfs_sumsize);
1511 ssp->ss_next = fs->lfs_nextseg;
1512 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1513 ssp->ss_magic = SS_MAGIC;
1514
1515 /* Set pointer to first FINFO, initialize it. */
1516 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1517 sp->fip->fi_nblocks = 0;
1518 sp->start_lbp = &sp->fip->fi_blocks[0];
1519 sp->fip->fi_lastlength = 0;
1520
1521 sp->seg_bytes_left -= fs->lfs_sumsize;
1522 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1523
1524 return (repeat);
1525 }
1526
1527 /*
1528 * Return the next segment to write.
1529 */
1530 void
1531 lfs_newseg(struct lfs *fs)
1532 {
1533 CLEANERINFO *cip;
1534 SEGUSE *sup;
1535 struct buf *bp;
1536 int curseg, isdirty, sn;
1537
1538 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1539 #ifdef DEBUG_SU_NBYTES
1540 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1541 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1542 #endif
1543 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1544 sup->su_nbytes = 0;
1545 sup->su_nsums = 0;
1546 sup->su_ninos = 0;
1547 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1548
1549 LFS_CLEANERINFO(cip, fs, bp);
1550 --cip->clean;
1551 ++cip->dirty;
1552 fs->lfs_nclean = cip->clean;
1553 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1554
1555 fs->lfs_lastseg = fs->lfs_curseg;
1556 fs->lfs_curseg = fs->lfs_nextseg;
1557 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1558 sn = (sn + 1) % fs->lfs_nseg;
1559 if (sn == curseg)
1560 panic("lfs_nextseg: no clean segments");
1561 LFS_SEGENTRY(sup, fs, sn, bp);
1562 isdirty = sup->su_flags & SEGUSE_DIRTY;
1563 /* Check SEGUSE_EMPTY as we go along */
1564 if (isdirty && sup->su_nbytes == 0 &&
1565 !(sup->su_flags & SEGUSE_EMPTY))
1566 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1567 else
1568 brelse(bp);
1569
1570 if (!isdirty)
1571 break;
1572 }
1573
1574 ++fs->lfs_nactive;
1575 fs->lfs_nextseg = sntod(fs, sn);
1576 if (lfs_dostats) {
1577 ++lfs_stats.segsused;
1578 }
1579 }
1580
1581 static struct buf *
1582 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1583 {
1584 struct lfs_cluster *cl;
1585 struct buf **bpp, *bp;
1586 int s;
1587
1588 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1589 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1590 memset(cl, 0, sizeof(*cl));
1591 cl->fs = fs;
1592 cl->bpp = bpp;
1593 cl->bufcount = 0;
1594 cl->bufsize = 0;
1595
1596 /* If this segment is being written synchronously, note that */
1597 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1598 cl->flags |= LFS_CL_SYNC;
1599 cl->seg = fs->lfs_sp;
1600 ++cl->seg->seg_iocount;
1601 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1602 }
1603
1604 /* Get an empty buffer header, or maybe one with something on it */
1605 s = splbio();
1606 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1607 splx(s);
1608 memset(bp, 0, sizeof(*bp));
1609 BUF_INIT(bp);
1610
1611 bp->b_flags = B_BUSY | B_CALL;
1612 bp->b_dev = NODEV;
1613 bp->b_blkno = bp->b_lblkno = addr;
1614 bp->b_iodone = lfs_cluster_callback;
1615 bp->b_saveaddr = (caddr_t)cl;
1616 bp->b_vp = vp;
1617
1618 return bp;
1619 }
1620
1621 int
1622 lfs_writeseg(struct lfs *fs, struct segment *sp)
1623 {
1624 struct buf **bpp, *bp, *cbp, *newbp;
1625 SEGUSE *sup;
1626 SEGSUM *ssp;
1627 dev_t i_dev;
1628 char *datap, *dp;
1629 int i, s;
1630 int do_again, nblocks, byteoffset;
1631 size_t el_size;
1632 struct lfs_cluster *cl;
1633 int (*strategy)(void *);
1634 struct vop_strategy_args vop_strategy_a;
1635 u_short ninos;
1636 struct vnode *devvp;
1637 char *p;
1638 struct vnode *vp;
1639 int32_t *daddrp; /* XXX ondisk32 */
1640 int changed;
1641 #if defined(DEBUG) && defined(LFS_PROPELLER)
1642 static int propeller;
1643 char propstring[4] = "-\\|/";
1644
1645 printf("%c\b",propstring[propeller++]);
1646 if (propeller == 4)
1647 propeller = 0;
1648 #endif
1649
1650 /*
1651 * If there are no buffers other than the segment summary to write
1652 * and it is not a checkpoint, don't do anything. On a checkpoint,
1653 * even if there aren't any buffers, you need to write the superblock.
1654 */
1655 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1656 return (0);
1657
1658 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1659 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1660
1661 /* Update the segment usage information. */
1662 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1663
1664 /* Loop through all blocks, except the segment summary. */
1665 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1666 if ((*bpp)->b_vp != devvp) {
1667 sup->su_nbytes += (*bpp)->b_bcount;
1668 #ifdef DEBUG_SU_NBYTES
1669 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
1670 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
1671 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1672 (*bpp)->b_blkno);
1673 #endif
1674 }
1675 }
1676
1677 ssp = (SEGSUM *)sp->segsum;
1678
1679 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1680 #ifdef DEBUG_SU_NBYTES
1681 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1682 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1683 ssp->ss_ninos);
1684 #endif
1685 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1686 /* sup->su_nbytes += fs->lfs_sumsize; */
1687 if (fs->lfs_version == 1)
1688 sup->su_olastmod = time.tv_sec;
1689 else
1690 sup->su_lastmod = time.tv_sec;
1691 sup->su_ninos += ninos;
1692 ++sup->su_nsums;
1693 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1694 fs->lfs_ibsize));
1695 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1696
1697 do_again = !(bp->b_flags & B_GATHERED);
1698 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1699
1700 /*
1701 * Mark blocks B_BUSY, to prevent then from being changed between
1702 * the checksum computation and the actual write.
1703 *
1704 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1705 * there are any, replace them with copies that have UNASSIGNED
1706 * instead.
1707 */
1708 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1709 ++bpp;
1710 bp = *bpp;
1711 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1712 bp->b_flags |= B_BUSY;
1713 continue;
1714 }
1715 again:
1716 s = splbio();
1717 if (bp->b_flags & B_BUSY) {
1718 #ifdef DEBUG
1719 printf("lfs_writeseg: avoiding potential data summary "
1720 "corruption for ino %d, lbn %" PRId64 "\n",
1721 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1722 #endif
1723 bp->b_flags |= B_WANTED;
1724 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1725 splx(s);
1726 goto again;
1727 }
1728 bp->b_flags |= B_BUSY;
1729 splx(s);
1730 /*
1731 * Check and replace indirect block UNWRITTEN bogosity.
1732 * XXX See comment in lfs_writefile.
1733 */
1734 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1735 VTOI(bp->b_vp)->i_ffs1_blocks !=
1736 VTOI(bp->b_vp)->i_lfs_effnblks) {
1737 #ifdef DEBUG_LFS
1738 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1739 VTOI(bp->b_vp)->i_number,
1740 VTOI(bp->b_vp)->i_lfs_effnblks,
1741 VTOI(bp->b_vp)->i_ffs1_blocks);
1742 #endif
1743 /* Make a copy we'll make changes to */
1744 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1745 bp->b_bcount, LFS_NB_IBLOCK);
1746 newbp->b_blkno = bp->b_blkno;
1747 memcpy(newbp->b_data, bp->b_data,
1748 newbp->b_bcount);
1749
1750 changed = 0;
1751 /* XXX ondisk32 */
1752 for (daddrp = (int32_t *)(newbp->b_data);
1753 daddrp < (int32_t *)(newbp->b_data +
1754 newbp->b_bcount); daddrp++) {
1755 if (*daddrp == UNWRITTEN) {
1756 #ifdef DEBUG_LFS
1757 off_t doff;
1758 int32_t ioff;
1759
1760 ioff =
1761 daddrp - (int32_t *)(newbp->b_data);
1762 doff =
1763 (-bp->b_lblkno + ioff) * fs->lfs_bsize;
1764 printf("ino %d lbn %" PRId64
1765 " entry %d off %" PRIx64 "\n",
1766 VTOI(bp->b_vp)->i_number,
1767 bp->b_lblkno, ioff, doff);
1768 if (bp->b_vp->v_type == VREG) {
1769 /*
1770 * What is up with this page?
1771 */
1772 struct vm_page *pg;
1773 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff);
1774 doff += PAGE_SIZE) {
1775 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff);
1776 if (pg == NULL)
1777 printf(" page at %" PRIx64 " is NULL\n", doff);
1778 else
1779 printf(" page at %" PRIx64
1780 " flags 0x%x pqflags 0x%x\n",
1781 doff, pg->flags, pg->pqflags);
1782 }
1783 }
1784 #endif /* DEBUG_LFS */
1785 ++changed;
1786 *daddrp = 0;
1787 }
1788 }
1789 /*
1790 * Get rid of the old buffer. Don't mark it clean,
1791 * though, if it still has dirty data on it.
1792 */
1793 if (changed) {
1794 #ifdef DEBUG_LFS
1795 printf("lfs_writeseg: replacing UNWRITTEN(%d):"
1796 " bp = %p newbp = %p\n", changed, bp,
1797 newbp);
1798 #endif
1799 *bpp = newbp;
1800 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1801 if (bp->b_flags & B_CALL) {
1802 printf("lfs_writeseg: "
1803 "indir bp should not be B_CALL\n");
1804 s = splbio();
1805 biodone(bp);
1806 splx(s);
1807 bp = NULL;
1808 } else {
1809 /* Still on free list, leave it there */
1810 s = splbio();
1811 bp->b_flags &= ~B_BUSY;
1812 if (bp->b_flags & B_WANTED)
1813 wakeup(bp);
1814 splx(s);
1815 /*
1816 * We have to re-decrement lfs_avail
1817 * since this block is going to come
1818 * back around to us in the next
1819 * segment.
1820 */
1821 fs->lfs_avail -=
1822 btofsb(fs, bp->b_bcount);
1823 }
1824 } else {
1825 lfs_freebuf(fs, newbp);
1826 }
1827 }
1828 }
1829 /*
1830 * Compute checksum across data and then across summary; the first
1831 * block (the summary block) is skipped. Set the create time here
1832 * so that it's guaranteed to be later than the inode mod times.
1833 *
1834 * XXX
1835 * Fix this to do it inline, instead of malloc/copy.
1836 */
1837 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
1838 if (fs->lfs_version == 1)
1839 el_size = sizeof(u_long);
1840 else
1841 el_size = sizeof(u_int32_t);
1842 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1843 ++bpp;
1844 /* Loop through gop_write cluster blocks */
1845 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1846 byteoffset += fs->lfs_bsize) {
1847 #ifdef LFS_USE_B_INVAL
1848 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1849 (B_CALL | B_INVAL)) {
1850 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1851 byteoffset, dp, el_size)) {
1852 panic("lfs_writeseg: copyin failed [1]:"
1853 " ino %d blk %" PRId64,
1854 VTOI((*bpp)->b_vp)->i_number,
1855 (*bpp)->b_lblkno);
1856 }
1857 } else
1858 #endif /* LFS_USE_B_INVAL */
1859 {
1860 memcpy(dp, (*bpp)->b_data + byteoffset,
1861 el_size);
1862 }
1863 dp += el_size;
1864 }
1865 }
1866 if (fs->lfs_version == 1)
1867 ssp->ss_ocreate = time.tv_sec;
1868 else {
1869 ssp->ss_create = time.tv_sec;
1870 ssp->ss_serial = ++fs->lfs_serial;
1871 ssp->ss_ident = fs->lfs_ident;
1872 }
1873 ssp->ss_datasum = cksum(datap, dp - datap);
1874 ssp->ss_sumsum =
1875 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1876 pool_put(&fs->lfs_bpppool, datap);
1877 datap = dp = NULL;
1878 #ifdef DIAGNOSTIC
1879 if (fs->lfs_bfree <
1880 btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1881 panic("lfs_writeseg: No diskspace for summary");
1882 #endif
1883 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1884 btofsb(fs, fs->lfs_sumsize));
1885
1886 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1887
1888 /*
1889 * When we simply write the blocks we lose a rotation for every block
1890 * written. To avoid this problem, we cluster the buffers into a
1891 * chunk and write the chunk. MAXPHYS is the largest size I/O
1892 * devices can handle, use that for the size of the chunks.
1893 *
1894 * Blocks that are already clusters (from GOP_WRITE), however, we
1895 * don't bother to copy into other clusters.
1896 */
1897
1898 #define CHUNKSIZE MAXPHYS
1899
1900 if (devvp == NULL)
1901 panic("devvp is NULL");
1902 for (bpp = sp->bpp, i = nblocks; i;) {
1903 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1904 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1905
1906 cbp->b_dev = i_dev;
1907 cbp->b_flags |= B_ASYNC | B_BUSY;
1908 cbp->b_bcount = 0;
1909
1910 #if defined(DEBUG) && defined(DIAGNOSTIC)
1911 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1912 / sizeof(int32_t)) {
1913 panic("lfs_writeseg: real bpp overwrite");
1914 }
1915 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) {
1916 panic("lfs_writeseg: theoretical bpp overwrite");
1917 }
1918 #endif
1919
1920 /*
1921 * Construct the cluster.
1922 */
1923 ++fs->lfs_iocount;
1924 while (i && cbp->b_bcount < CHUNKSIZE) {
1925 bp = *bpp;
1926
1927 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1928 break;
1929 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1930 break;
1931
1932 /* Clusters from GOP_WRITE are expedited */
1933 if (bp->b_bcount > fs->lfs_bsize) {
1934 if (cbp->b_bcount > 0)
1935 /* Put in its own buffer */
1936 break;
1937 else {
1938 cbp->b_data = bp->b_data;
1939 }
1940 } else if (cbp->b_bcount == 0) {
1941 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1942 LFS_NB_CLUSTER);
1943 cl->flags |= LFS_CL_MALLOC;
1944 }
1945 #ifdef DIAGNOSTIC
1946 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1947 btodb(bp->b_bcount - 1))) !=
1948 sp->seg_number) {
1949 printf("blk size %ld daddr %" PRIx64
1950 " not in seg %d\n",
1951 bp->b_bcount, bp->b_blkno,
1952 sp->seg_number);
1953 panic("segment overwrite");
1954 }
1955 #endif
1956
1957 #ifdef LFS_USE_B_INVAL
1958 /*
1959 * Fake buffers from the cleaner are marked as B_INVAL.
1960 * We need to copy the data from user space rather than
1961 * from the buffer indicated.
1962 * XXX == what do I do on an error?
1963 */
1964 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
1965 (B_CALL|B_INVAL)) {
1966 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1967 panic("lfs_writeseg: "
1968 "copyin failed [2]");
1969 } else
1970 #endif /* LFS_USE_B_INVAL */
1971 if (cl->flags & LFS_CL_MALLOC) {
1972 /* copy data into our cluster. */
1973 memcpy(p, bp->b_data, bp->b_bcount);
1974 p += bp->b_bcount;
1975 }
1976
1977 cbp->b_bcount += bp->b_bcount;
1978 cl->bufsize += bp->b_bcount;
1979
1980 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1981 cl->bpp[cl->bufcount++] = bp;
1982 vp = bp->b_vp;
1983 s = splbio();
1984 reassignbuf(bp, vp);
1985 V_INCR_NUMOUTPUT(vp);
1986 splx(s);
1987
1988 bpp++;
1989 i--;
1990 }
1991 s = splbio();
1992 V_INCR_NUMOUTPUT(devvp);
1993 splx(s);
1994 vop_strategy_a.a_desc = VDESC(vop_strategy);
1995 vop_strategy_a.a_bp = cbp;
1996 (strategy)(&vop_strategy_a);
1997 curproc->p_stats->p_ru.ru_oublock++;
1998 }
1999
2000 if (lfs_dostats) {
2001 ++lfs_stats.psegwrites;
2002 lfs_stats.blocktot += nblocks - 1;
2003 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2004 ++lfs_stats.psyncwrites;
2005 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2006 ++lfs_stats.pcleanwrites;
2007 lfs_stats.cleanblocks += nblocks - 1;
2008 }
2009 }
2010 return (lfs_initseg(fs) || do_again);
2011 }
2012
2013 void
2014 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2015 {
2016 struct buf *bp;
2017 dev_t i_dev;
2018 int (*strategy)(void *);
2019 int s;
2020 struct vop_strategy_args vop_strategy_a;
2021
2022 /*
2023 * If we can write one superblock while another is in
2024 * progress, we risk not having a complete checkpoint if we crash.
2025 * So, block here if a superblock write is in progress.
2026 */
2027 s = splbio();
2028 while (fs->lfs_sbactive) {
2029 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2030 }
2031 fs->lfs_sbactive = daddr;
2032 splx(s);
2033 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2034 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2035
2036 /* Set timestamp of this version of the superblock */
2037 if (fs->lfs_version == 1)
2038 fs->lfs_otstamp = time.tv_sec;
2039 fs->lfs_tstamp = time.tv_sec;
2040
2041 /* Checksum the superblock and copy it into a buffer. */
2042 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2043 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
2044 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2045 memset(bp->b_data + sizeof(struct dlfs), 0,
2046 LFS_SBPAD - sizeof(struct dlfs));
2047 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2048
2049 bp->b_dev = i_dev;
2050 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2051 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2052 bp->b_iodone = lfs_supercallback;
2053 /* XXX KS - same nasty hack as above */
2054 bp->b_saveaddr = (caddr_t)fs;
2055
2056 vop_strategy_a.a_desc = VDESC(vop_strategy);
2057 vop_strategy_a.a_bp = bp;
2058 curproc->p_stats->p_ru.ru_oublock++;
2059 s = splbio();
2060 V_INCR_NUMOUTPUT(bp->b_vp);
2061 splx(s);
2062 ++fs->lfs_iocount;
2063 (strategy)(&vop_strategy_a);
2064 }
2065
2066 /*
2067 * Logical block number match routines used when traversing the dirty block
2068 * chain.
2069 */
2070 int
2071 lfs_match_fake(struct lfs *fs, struct buf *bp)
2072 {
2073
2074 return LFS_IS_MALLOC_BUF(bp);
2075 }
2076
2077 #if 0
2078 int
2079 lfs_match_real(struct lfs *fs, struct buf *bp)
2080 {
2081
2082 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2083 }
2084 #endif
2085
2086 int
2087 lfs_match_data(struct lfs *fs, struct buf *bp)
2088 {
2089
2090 return (bp->b_lblkno >= 0);
2091 }
2092
2093 int
2094 lfs_match_indir(struct lfs *fs, struct buf *bp)
2095 {
2096 daddr_t lbn;
2097
2098 lbn = bp->b_lblkno;
2099 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2100 }
2101
2102 int
2103 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2104 {
2105 daddr_t lbn;
2106
2107 lbn = bp->b_lblkno;
2108 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2109 }
2110
2111 int
2112 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2113 {
2114 daddr_t lbn;
2115
2116 lbn = bp->b_lblkno;
2117 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2118 }
2119
2120 /*
2121 * XXX - The only buffers that are going to hit these functions are the
2122 * segment write blocks, or the segment summaries, or the superblocks.
2123 *
2124 * All of the above are created by lfs_newbuf, and so do not need to be
2125 * released via brelse.
2126 */
2127 void
2128 lfs_callback(struct buf *bp)
2129 {
2130 struct lfs *fs;
2131
2132 fs = (struct lfs *)bp->b_saveaddr;
2133 lfs_freebuf(fs, bp);
2134 }
2135
2136 static void
2137 lfs_super_aiodone(struct buf *bp)
2138 {
2139 struct lfs *fs;
2140
2141 fs = (struct lfs *)bp->b_saveaddr;
2142 fs->lfs_sbactive = 0;
2143 wakeup(&fs->lfs_sbactive);
2144 if (--fs->lfs_iocount <= 1)
2145 wakeup(&fs->lfs_iocount);
2146 lfs_freebuf(fs, bp);
2147 }
2148
2149 static void
2150 lfs_cluster_aiodone(struct buf *bp)
2151 {
2152 struct lfs_cluster *cl;
2153 struct lfs *fs;
2154 struct buf *tbp, *fbp;
2155 struct vnode *vp, *devvp;
2156 struct inode *ip;
2157 int s, error=0;
2158
2159 if (bp->b_flags & B_ERROR)
2160 error = bp->b_error;
2161
2162 cl = (struct lfs_cluster *)bp->b_saveaddr;
2163 fs = cl->fs;
2164 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2165
2166 /* Put the pages back, and release the buffer */
2167 while (cl->bufcount--) {
2168 tbp = cl->bpp[cl->bufcount];
2169 if (error) {
2170 tbp->b_flags |= B_ERROR;
2171 tbp->b_error = error;
2172 }
2173
2174 /*
2175 * We're done with tbp. If it has not been re-dirtied since
2176 * the cluster was written, free it. Otherwise, keep it on
2177 * the locked list to be written again.
2178 */
2179 vp = tbp->b_vp;
2180
2181 tbp->b_flags &= ~B_GATHERED;
2182
2183 LFS_BCLEAN_LOG(fs, tbp);
2184
2185 if (!(tbp->b_flags & B_CALL)) {
2186 KASSERT(tbp->b_flags & B_LOCKED);
2187 s = splbio();
2188 simple_lock(&bqueue_slock);
2189 bremfree(tbp);
2190 simple_unlock(&bqueue_slock);
2191 if (vp)
2192 reassignbuf(tbp, vp);
2193 splx(s);
2194 tbp->b_flags |= B_ASYNC; /* for biodone */
2195 }
2196
2197 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2198 LFS_UNLOCK_BUF(tbp);
2199
2200 #ifdef DIAGNOSTIC
2201 if (tbp->b_flags & B_DONE) {
2202 printf("blk %d biodone already (flags %lx)\n",
2203 cl->bufcount, (long)tbp->b_flags);
2204 }
2205 #endif
2206 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2207 if ((tbp->b_flags & B_CALL) &&
2208 !LFS_IS_MALLOC_BUF(tbp)) {
2209 /* printf("flags 0x%lx\n", tbp->b_flags); */
2210 /*
2211 * A buffer from the page daemon.
2212 * We use the same iodone as it does,
2213 * so we must manually disassociate its
2214 * buffers from the vp.
2215 */
2216 if (tbp->b_vp) {
2217 /* This is just silly */
2218 s = splbio();
2219 brelvp(tbp);
2220 tbp->b_vp = vp;
2221 splx(s);
2222 }
2223 /* Put it back the way it was */
2224 tbp->b_flags |= B_ASYNC;
2225 /* Master buffers have B_AGE */
2226 if (tbp->b_private == tbp)
2227 tbp->b_flags |= B_AGE;
2228 }
2229 s = splbio();
2230 biodone(tbp);
2231
2232 /*
2233 * If this is the last block for this vnode, but
2234 * there are other blocks on its dirty list,
2235 * set IN_MODIFIED/IN_CLEANING depending on what
2236 * sort of block. Only do this for our mount point,
2237 * not for, e.g., inode blocks that are attached to
2238 * the devvp.
2239 * XXX KS - Shouldn't we set *both* if both types
2240 * of blocks are present (traverse the dirty list?)
2241 */
2242 simple_lock(&global_v_numoutput_slock);
2243 if (vp != devvp && vp->v_numoutput == 0 &&
2244 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2245 ip = VTOI(vp);
2246 #ifdef DEBUG_LFS
2247 printf("lfs_cluster_aiodone: marking ino %d\n",
2248 ip->i_number);
2249 #endif
2250 if (LFS_IS_MALLOC_BUF(fbp))
2251 LFS_SET_UINO(ip, IN_CLEANING);
2252 else
2253 LFS_SET_UINO(ip, IN_MODIFIED);
2254 }
2255 simple_unlock(&global_v_numoutput_slock);
2256 splx(s);
2257 wakeup(vp);
2258 }
2259 }
2260
2261 /* Fix up the cluster buffer, and release it */
2262 if (cl->flags & LFS_CL_MALLOC)
2263 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2264 s = splbio();
2265 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2266 splx(s);
2267
2268 /* Note i/o done */
2269 if (cl->flags & LFS_CL_SYNC) {
2270 if (--cl->seg->seg_iocount == 0)
2271 wakeup(&cl->seg->seg_iocount);
2272 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2273 }
2274 #ifdef DIAGNOSTIC
2275 if (fs->lfs_iocount == 0)
2276 panic("lfs_cluster_aiodone: zero iocount");
2277 #endif
2278 if (--fs->lfs_iocount <= 1)
2279 wakeup(&fs->lfs_iocount);
2280
2281 pool_put(&fs->lfs_bpppool, cl->bpp);
2282 cl->bpp = NULL;
2283 pool_put(&fs->lfs_clpool, cl);
2284 }
2285
2286 static void
2287 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2288 {
2289 /* reset b_iodone for when this is a single-buf i/o. */
2290 bp->b_iodone = aiodone;
2291
2292 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2293 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2294 wakeup(&uvm.aiodoned);
2295 simple_unlock(&uvm.aiodoned_lock);
2296 }
2297
2298 static void
2299 lfs_cluster_callback(struct buf *bp)
2300 {
2301
2302 lfs_generic_callback(bp, lfs_cluster_aiodone);
2303 }
2304
2305 void
2306 lfs_supercallback(struct buf *bp)
2307 {
2308
2309 lfs_generic_callback(bp, lfs_super_aiodone);
2310 }
2311
2312 /*
2313 * Shellsort (diminishing increment sort) from Data Structures and
2314 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2315 * see also Knuth Vol. 3, page 84. The increments are selected from
2316 * formula (8), page 95. Roughly O(N^3/2).
2317 */
2318 /*
2319 * This is our own private copy of shellsort because we want to sort
2320 * two parallel arrays (the array of buffer pointers and the array of
2321 * logical block numbers) simultaneously. Note that we cast the array
2322 * of logical block numbers to a unsigned in this routine so that the
2323 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2324 */
2325
2326 void
2327 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2328 {
2329 static int __rsshell_increments[] = { 4, 1, 0 };
2330 int incr, *incrp, t1, t2;
2331 struct buf *bp_temp;
2332
2333 #ifdef DEBUG
2334 incr = 0;
2335 for (t1 = 0; t1 < nmemb; t1++) {
2336 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2337 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2338 /* dump before panic */
2339 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2340 nmemb, size);
2341 incr = 0;
2342 for (t1 = 0; t1 < nmemb; t1++) {
2343 const struct buf *bp = bp_array[t1];
2344
2345 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2346 PRIu64 "\n", t1,
2347 (uint64_t)bp->b_bcount,
2348 (uint64_t)bp->b_lblkno);
2349 printf("lbns:");
2350 for (t2 = 0; t2 * size < bp->b_bcount;
2351 t2++) {
2352 printf(" %" PRId32,
2353 lb_array[incr++]);
2354 }
2355 printf("\n");
2356 }
2357 panic("lfs_shellsort: inconsistent input");
2358 }
2359 }
2360 }
2361 #endif
2362
2363 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2364 for (t1 = incr; t1 < nmemb; ++t1)
2365 for (t2 = t1 - incr; t2 >= 0;)
2366 if ((u_int32_t)bp_array[t2]->b_lblkno >
2367 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2368 bp_temp = bp_array[t2];
2369 bp_array[t2] = bp_array[t2 + incr];
2370 bp_array[t2 + incr] = bp_temp;
2371 t2 -= incr;
2372 } else
2373 break;
2374
2375 /* Reform the list of logical blocks */
2376 incr = 0;
2377 for (t1 = 0; t1 < nmemb; t1++) {
2378 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2379 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2380 }
2381 }
2382 }
2383
2384 /*
2385 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2386 */
2387 int
2388 lfs_vref(struct vnode *vp)
2389 {
2390 /*
2391 * If we return 1 here during a flush, we risk vinvalbuf() not
2392 * being able to flush all of the pages from this vnode, which
2393 * will cause it to panic. So, return 0 if a flush is in progress.
2394 */
2395 if (vp->v_flag & VXLOCK) {
2396 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2397 return 0;
2398 }
2399 return (1);
2400 }
2401 return (vget(vp, 0));
2402 }
2403
2404 /*
2405 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2406 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2407 */
2408 void
2409 lfs_vunref(struct vnode *vp)
2410 {
2411 /*
2412 * Analogous to lfs_vref, if the node is flushing, fake it.
2413 */
2414 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2415 return;
2416 }
2417
2418 simple_lock(&vp->v_interlock);
2419 #ifdef DIAGNOSTIC
2420 if (vp->v_usecount <= 0) {
2421 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2422 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2423 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2424 panic("lfs_vunref: v_usecount<0");
2425 }
2426 #endif
2427 vp->v_usecount--;
2428 if (vp->v_usecount > 0) {
2429 simple_unlock(&vp->v_interlock);
2430 return;
2431 }
2432 /*
2433 * insert at tail of LRU list
2434 */
2435 simple_lock(&vnode_free_list_slock);
2436 if (vp->v_holdcnt > 0)
2437 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2438 else
2439 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2440 simple_unlock(&vnode_free_list_slock);
2441 simple_unlock(&vp->v_interlock);
2442 }
2443
2444 /*
2445 * We use this when we have vnodes that were loaded in solely for cleaning.
2446 * There is no reason to believe that these vnodes will be referenced again
2447 * soon, since the cleaning process is unrelated to normal filesystem
2448 * activity. Putting cleaned vnodes at the tail of the list has the effect
2449 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2450 * cleaning at the head of the list, instead.
2451 */
2452 void
2453 lfs_vunref_head(struct vnode *vp)
2454 {
2455
2456 simple_lock(&vp->v_interlock);
2457 #ifdef DIAGNOSTIC
2458 if (vp->v_usecount == 0) {
2459 panic("lfs_vunref: v_usecount<0");
2460 }
2461 #endif
2462 vp->v_usecount--;
2463 if (vp->v_usecount > 0) {
2464 simple_unlock(&vp->v_interlock);
2465 return;
2466 }
2467 /*
2468 * insert at head of LRU list
2469 */
2470 simple_lock(&vnode_free_list_slock);
2471 if (vp->v_holdcnt > 0)
2472 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2473 else
2474 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2475 simple_unlock(&vnode_free_list_slock);
2476 simple_unlock(&vp->v_interlock);
2477 }
2478
2479