lfs_segment.c revision 1.15 1 /* $NetBSD: lfs_segment.c,v 1.15 1999/03/10 00:20:00 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/namei.h>
76 #include <sys/kernel.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/stat.h>
80 #include <sys/buf.h>
81 #include <sys/proc.h>
82 #include <sys/conf.h>
83 #include <sys/vnode.h>
84 #include <sys/malloc.h>
85 #include <sys/mount.h>
86
87 #include <miscfs/specfs/specdev.h>
88 #include <miscfs/fifofs/fifo.h>
89
90 #include <ufs/ufs/quota.h>
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <ufs/lfs/lfs.h>
97 #include <ufs/lfs/lfs_extern.h>
98
99 extern int count_lock_queue __P((void));
100 extern struct simplelock vnode_free_list_slock; /* XXX */
101 extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
102
103 /*
104 * Determine if it's OK to start a partial in this segment, or if we need
105 * to go on to a new segment.
106 */
107 #define LFS_PARTIAL_FITS(fs) \
108 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
109 1 << (fs)->lfs_fsbtodb)
110
111 void lfs_callback __P((struct buf *));
112 int lfs_gather __P((struct lfs *, struct segment *,
113 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
114 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
115 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
116 int lfs_match_fake __P((struct lfs *, struct buf *));
117 int lfs_match_data __P((struct lfs *, struct buf *));
118 int lfs_match_dindir __P((struct lfs *, struct buf *));
119 int lfs_match_indir __P((struct lfs *, struct buf *));
120 int lfs_match_tindir __P((struct lfs *, struct buf *));
121 void lfs_newseg __P((struct lfs *));
122 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
123 void lfs_supercallback __P((struct buf *));
124 void lfs_updatemeta __P((struct segment *));
125 int lfs_vref __P((struct vnode *));
126 void lfs_vunref __P((struct vnode *));
127 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
128 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
129 int lfs_writeseg __P((struct lfs *, struct segment *));
130 void lfs_writesuper __P((struct lfs *, daddr_t));
131 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
132 struct segment *sp, int dirops));
133
134 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
135 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
136
137 /* Statistics Counters */
138 int lfs_dostats = 1;
139 struct lfs_stats lfs_stats;
140
141 /* op values to lfs_writevnodes */
142 #define VN_REG 0
143 #define VN_DIROP 1
144 #define VN_EMPTY 2
145 #define VN_CLEAN 3
146
147 #define LFS_MAX_ACTIVE 10
148
149 /*
150 * XXX KS - Set modification time on the Ifile, so the cleaner can
151 * read the fs mod time off of it. We don't set IN_UPDATE here,
152 * since we don't really need this to be flushed to disk (and in any
153 * case that wouldn't happen to the Ifile until we checkpoint).
154 */
155 void
156 lfs_imtime(fs)
157 struct lfs *fs;
158 {
159 struct timespec ts;
160 struct inode *ip;
161
162 TIMEVAL_TO_TIMESPEC(&time, &ts);
163 ip = VTOI(fs->lfs_ivnode);
164 ip->i_ffs_mtime = ts.tv_sec;
165 ip->i_ffs_mtimensec = ts.tv_nsec;
166 }
167
168 /*
169 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
170 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
171 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
172 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
173 */
174
175 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
176 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
177 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
178
179 int
180 lfs_vflush(vp)
181 struct vnode *vp;
182 {
183 struct inode *ip;
184 struct lfs *fs;
185 struct segment *sp;
186 int error;
187 struct buf *bp;
188
189 /* Protect against VXLOCK deadlock in vinvalbuf() */
190 fs = VFSTOUFS(vp->v_mount)->um_lfs;
191 lfs_seglock(fs, SEGM_SYNC);
192 SET_FLUSHING(fs,vp);
193 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
194 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
195 CLR_FLUSHING(fs,vp);
196 lfs_segunlock(fs);
197 return error;
198 }
199 sp = fs->lfs_sp;
200
201 ip = VTOI(vp);
202 if (vp->v_dirtyblkhd.lh_first == NULL) {
203 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
204 }
205 else if(lfs_dostats) {
206 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
207 ++lfs_stats.vflush_invoked;
208 #ifdef DEBUG_LFS
209 printf("V");
210 #endif
211 }
212
213 /* XXX KS - can this ever happen? I think so.... */
214 if(ip->i_flag & IN_CLEANING) {
215 #ifdef DEBUG_LFS
216 printf("C");
217 #endif
218 ip->i_flag &= ~IN_CLEANING;
219 /*
220 * XXX Copyin all of the fake buffers *now* to avoid
221 * a later panic; and take off B_INVAL.
222 */
223 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=bp->b_vnbufs.le_next) {
224 if((bp->b_flags & (B_CALL|B_INVAL))==(B_CALL|B_INVAL)) {
225 bp->b_data = malloc(bp->b_bufsize, M_SEGMENT, M_WAITOK);
226 copyin(bp->b_saveaddr, bp->b_data, bp->b_bcount);
227 bp->b_flags &= ~B_INVAL;
228 }
229 }
230
231 if(ip->i_flag & IN_MODIFIED) {
232 fs->lfs_uinodes--;
233 #ifdef DEBUG_LFS
234 if((int32_t)fs->lfs_uinodes<0) {
235 printf("U4");
236 fs->lfs_uinodes=0;
237 }
238 #endif
239 } else
240 ip->i_flag |= IN_MODIFIED;
241 }
242
243 do {
244 do {
245 if (vp->v_dirtyblkhd.lh_first != NULL)
246 lfs_writefile(fs, sp, vp);
247 } while (lfs_writeinode(fs, sp, ip));
248 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
249
250 if(lfs_dostats) {
251 ++lfs_stats.nwrites;
252 if (sp->seg_flags & SEGM_SYNC)
253 ++lfs_stats.nsync_writes;
254 if (sp->seg_flags & SEGM_CKP)
255 ++lfs_stats.ncheckpoints;
256 }
257 lfs_segunlock(fs);
258
259 CLR_FLUSHING(fs,vp);
260 return (0);
261 }
262
263 #define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s\n",VTOI(vp)->i_number,(str))
264
265 /* XXX KS - This is ugly */
266 #define BYTE_BORROW(FS,SP,SZ) do { \
267 SEGUSE *_sup; \
268 struct buf *_bp; \
269 \
270 LFS_SEGENTRY(_sup, (FS), (SP)->seg_number, _bp); \
271 _sup->su_nbytes += (SZ); \
272 (FS)->lfs_loaned_bytes += (SZ); \
273 VOP_BWRITE(_bp); \
274 } while(0)
275
276 int
277 lfs_writevnodes(fs, mp, sp, op)
278 struct lfs *fs;
279 struct mount *mp;
280 struct segment *sp;
281 int op;
282 {
283 struct inode *ip;
284 struct vnode *vp;
285 int inodes_written=0;
286
287 #ifndef LFS_NO_BACKVP_HACK
288 /* BEGIN HACK */
289 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
290 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
291 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
292
293 /* Find last vnode. */
294 loop: for (vp = mp->mnt_vnodelist.lh_first;
295 vp && vp->v_mntvnodes.le_next != NULL;
296 vp = vp->v_mntvnodes.le_next);
297 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
298 #else
299 loop:
300 for (vp = mp->mnt_vnodelist.lh_first;
301 vp != NULL;
302 vp = vp->v_mntvnodes.le_next) {
303 #endif
304 /*
305 * If the vnode that we are about to sync is no longer
306 * associated with this mount point, start over.
307 */
308 if (vp->v_mount != mp)
309 goto loop;
310
311 ip = VTOI(vp);
312 #ifdef LFS_USEDIROP
313 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
314 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
315 vndebug(vp,"dirop");
316 continue;
317 }
318 #endif /* LFS_USEDIROP */
319
320 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
321 vndebug(vp,"empty");
322 continue;
323 }
324
325 if (vp->v_type == VNON) {
326 continue;
327 }
328
329 #ifdef LFS_STINGY_CLEAN
330 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
331 && !(ip->i_flag & IN_CLEANING)) {
332 vndebug(vp,"cleaning");
333 continue;
334 }
335 #endif /* LFS_STINGY_CLEAN */
336
337 if (lfs_vref(vp)) {
338 vndebug(vp,"vref");
339 continue;
340 }
341
342 #ifdef LFS_USEDIROP
343 /*
344 * A removed Inode from a dirop we're writing
345 */
346 if((vp->v_flag & VDIROP)
347 && !WRITEINPROG(vp)
348 && vp->v_usecount<3
349 && ip->i_ffs_nlink == 0
350 && !VOP_ISLOCKED(vp))
351 {
352 vndebug(vp,"vinactive");
353 --fs->lfs_dirvcount;
354 vp->v_flag &= ~VDIROP;
355 wakeup(&fs->lfs_dirvcount);
356 /*
357 * vrele() will call VOP_INACTIVE for us, if
358 * there are no active references to this vnode
359 * (i.e. it was really removed).
360 */
361 if(vp->v_usecount==2)
362 lfs_vunref(vp);
363 VOP_LOCK(vp,LK_EXCLUSIVE);
364 vput(vp);
365 continue; /* Don't lfs_vunref again */
366 }
367 #endif /* LFS_USEDIROP */
368
369 /*
370 * Write the inode/file if dirty and it's not the
371 * the IFILE.
372 */
373 if ((ip->i_flag &
374 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
375 vp->v_dirtyblkhd.lh_first != NULL))
376 {
377 if(ip->i_number != LFS_IFILE_INUM
378 && vp->v_dirtyblkhd.lh_first != NULL)
379 {
380 lfs_writefile(fs, sp, vp);
381 }
382 if(vp->v_dirtyblkhd.lh_first != NULL) {
383 if(WRITEINPROG(vp)) {
384 #ifdef DEBUG_LFS
385 printf("W");
386 #endif
387 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
388 #ifdef DEBUG_LFS
389 printf("<%d>",ip->i_number);
390 #endif
391 ip->i_flag |= IN_MODIFIED;
392 ++fs->lfs_uinodes;
393 }
394 }
395 (void) lfs_writeinode(fs, sp, ip);
396 inodes_written++;
397 }
398
399 #ifdef LFS_USEDIROP
400 if(vp->v_flag & VDIROP) {
401 --fs->lfs_dirvcount;
402 vp->v_flag &= ~VDIROP;
403 wakeup(&fs->lfs_dirvcount);
404 lfs_vunref(vp);
405 }
406 #endif /* LFS_USEDIROP */
407
408 lfs_vunref(vp);
409 }
410 return inodes_written;
411 }
412
413 /*
414 * There is a distinct difference in the interpretation of SEGM_CLEAN,
415 * depending on whether it is passed *directly* to lfs_segwrite (i.e., we
416 * were called from lfs_markv), or whether it was just in the segment flags
417 * (we were called indirectly through getnewvnode/lfs_vflush). In the former
418 * case, we only want to write vnodes where cleaning is in progress; but
419 * in the latter case, we might want to write all empty vnodes, or possibly
420 * all vnodes.
421 */
422 int
423 lfs_segwrite(mp, flags)
424 struct mount *mp;
425 int flags; /* Do a checkpoint. */
426 {
427 struct buf *bp;
428 struct inode *ip;
429 struct lfs *fs;
430 struct segment *sp;
431 struct vnode *vp;
432 SEGUSE *segusep;
433 ufs_daddr_t ibno;
434 int do_ckp, error, i;
435 int writer_set = 0;
436 #ifdef LFS_CONSERVATIVE_LOCK
437 int need_unlock = 0;
438 #endif /* LFS_CONSERVATIVE_LOCK */
439
440 fs = VFSTOUFS(mp)->um_lfs;
441
442 lfs_imtime(fs);
443
444 /*
445 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
446 * clean segments, wait until cleaner writes.
447 */
448 if(!(flags & SEGM_CLEAN)
449 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
450 {
451 do {
452 if (fs->lfs_nclean <= MIN_FREE_SEGS
453 || fs->lfs_avail <= 0)
454 {
455 wakeup(&lfs_allclean_wakeup);
456 wakeup(&fs->lfs_nextseg);
457 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
458 "lfs_avail", 0);
459 if (error) {
460 return (error);
461 }
462 }
463 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
464 }
465
466 /*
467 * Allocate a segment structure and enough space to hold pointers to
468 * the maximum possible number of buffers which can be described in a
469 * single summary block.
470 */
471 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
472 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
473 sp = fs->lfs_sp;
474
475 /*
476 * XXX KS - If lfs_flushvp is non-NULL, we are called from
477 * lfs_vflush, in which case we have to flush *all* buffers
478 * off of this vnode.
479 */
480 #ifdef LFS_STINGY_CLEAN
481 if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
482 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
483 else {
484 #endif /* LFS_STINGY_CLEAN */
485 lfs_writevnodes(fs, mp, sp, VN_REG);
486 #ifdef LFS_USEDIROP
487 /*
488 * XXX KS - If we're cleaning, we can't wait for dirops,
489 * because they might be waiting on us. The downside of this
490 * is that, if we write anything besides cleaning blocks
491 * while cleaning, the checkpoint is not completely
492 * consistent.
493 */
494 if(!(sp->seg_flags & SEGM_CLEAN)) {
495 while(fs->lfs_dirops)
496 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
497 "lfs writer", 0)))
498 {
499 free(sp->bpp, M_SEGMENT);
500 free(sp, M_SEGMENT);
501 return (error);
502 }
503 fs->lfs_writer++;
504 writer_set=1;
505 lfs_writevnodes(fs, mp, sp, VN_DIROP);
506 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
507 }
508 #if defined(DEBUG_LFS) && !defined(LFS_STINGY_BLOCKS)
509 else if(fs->lfs_dirops) {
510 printf("ignoring active dirops in favor of the cleaner\n");
511 }
512 #endif /* DEBUG_LFS && !LFS_STINGY_BLOCKS */
513 #endif /* LFS_USEDIROP */
514 #ifdef LFS_STINGY_CLEAN
515 }
516 #endif /* LFS_STINGY_CLEAN */
517
518 /*
519 * If we are doing a checkpoint, mark everything since the
520 * last checkpoint as no longer ACTIVE.
521 */
522 if (do_ckp) {
523 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
524 --ibno >= fs->lfs_cleansz; ) {
525 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
526
527 panic("lfs_segwrite: ifile read");
528 segusep = (SEGUSE *)bp->b_data;
529 for (i = fs->lfs_sepb; i--; segusep++)
530 segusep->su_flags &= ~SEGUSE_ACTIVE;
531
532 /* But the current segment is still ACTIVE */
533 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
534 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
535 error = VOP_BWRITE(bp);
536 }
537 }
538
539 if (do_ckp || fs->lfs_doifile) {
540 redo:
541 vp = fs->lfs_ivnode;
542 #ifndef LFS_CONSERVATIVE_LOCK
543 while (vget(vp, LK_EXCLUSIVE))
544 continue;
545 #else /* LFS_CONSERVATIVE_LOCK */
546 /*
547 * Depending on the circumstances of our calling, the ifile
548 * inode might be locked. If it is, and if it is locked by
549 * us, we should VREF instead of vget here.
550 */
551 need_unlock = 0;
552 if(VOP_ISLOCKED(vp)
553 && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
554 VREF(vp);
555 } else {
556 while (vget(vp, LK_EXCLUSIVE))
557 continue;
558 need_unlock = 1;
559 }
560 #endif /* LFS_CONSERVATIVE_LOCK */
561 ip = VTOI(vp);
562 if (vp->v_dirtyblkhd.lh_first != NULL)
563 lfs_writefile(fs, sp, vp);
564 (void)lfs_writeinode(fs, sp, ip);
565
566 #ifndef LFS_CONSERVATIVE_LOCK
567 vput(vp);
568 #else /* LFS_CONSERVATIVE_LOCK */
569 /* Only vput if we used vget() above. */
570 if(need_unlock)
571 vput(vp);
572 else
573 vrele(vp);
574 #endif /* LFS_CONSERVATIVE_LOCK */
575
576 if (lfs_writeseg(fs, sp) && do_ckp)
577 goto redo;
578 } else {
579 (void) lfs_writeseg(fs, sp);
580 }
581
582 /*
583 * If the I/O count is non-zero, sleep until it reaches zero.
584 * At the moment, the user's process hangs around so we can
585 * sleep.
586 */
587 #ifdef LFS_USEDIROP
588 fs->lfs_doifile = 0;
589 if(writer_set && --fs->lfs_writer==0)
590 wakeup(&fs->lfs_dirops);
591 #endif /* LFS_USEDIROP */
592
593 if(lfs_dostats) {
594 ++lfs_stats.nwrites;
595 if (sp->seg_flags & SEGM_SYNC)
596 ++lfs_stats.nsync_writes;
597 if (sp->seg_flags & SEGM_CKP)
598 ++lfs_stats.ncheckpoints;
599 }
600 lfs_segunlock(fs);
601 return (0);
602 }
603
604 /*
605 * Write the dirty blocks associated with a vnode.
606 */
607 void
608 lfs_writefile(fs, sp, vp)
609 struct lfs *fs;
610 struct segment *sp;
611 struct vnode *vp;
612 {
613 struct buf *bp;
614 struct finfo *fip;
615 IFILE *ifp;
616
617
618 if (sp->seg_bytes_left < fs->lfs_bsize ||
619 sp->sum_bytes_left < sizeof(struct finfo))
620 (void) lfs_writeseg(fs, sp);
621
622 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
623 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
624
625 #ifdef LFS_USEDIROP
626 if(vp->v_flag & VDIROP)
627 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
628 #endif
629
630 fip = sp->fip;
631 fip->fi_nblocks = 0;
632 fip->fi_ino = VTOI(vp)->i_number;
633 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
634 fip->fi_version = ifp->if_version;
635 brelse(bp);
636
637 /*
638 * It may not be necessary to write the meta-data blocks at this point,
639 * as the roll-forward recovery code should be able to reconstruct the
640 * list.
641 *
642 * We have to write them anyway, though, under two conditions: (1) the
643 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
644 * checkpointing.
645 */
646 #ifdef LFS_STINGY_BLOCKS
647 if((sp->seg_flags & SEGM_CLEAN)
648 && VTOI(vp)->i_number != LFS_IFILE_INUM
649 && !IS_FLUSHING(fs,vp))
650 {
651 lfs_gather(fs, sp, vp, lfs_match_fake);
652 } else
653 #endif /* LFS_STINGY_BLOCKS */
654 lfs_gather(fs, sp, vp, lfs_match_data);
655 if(lfs_writeindir
656 || IS_FLUSHING(fs,vp)
657 || (sp->seg_flags & SEGM_CKP))
658 {
659 lfs_gather(fs, sp, vp, lfs_match_indir);
660 lfs_gather(fs, sp, vp, lfs_match_dindir);
661 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
662 lfs_gather(fs, sp, vp, lfs_match_tindir);
663 /* #endif */
664 }
665 fip = sp->fip;
666 if (fip->fi_nblocks != 0) {
667 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
668 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
669 sp->start_lbp = &sp->fip->fi_blocks[0];
670 } else {
671 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
672 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
673 }
674 }
675
676 int
677 lfs_writeinode(fs, sp, ip)
678 struct lfs *fs;
679 struct segment *sp;
680 struct inode *ip;
681 {
682 struct buf *bp, *ibp;
683 IFILE *ifp;
684 SEGUSE *sup;
685 ufs_daddr_t daddr;
686 ino_t ino;
687 int error, i, ndx;
688 int redo_ifile = 0;
689 struct timespec ts;
690
691 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
692 return(0);
693
694 /* Allocate a new inode block if necessary. */
695 if (sp->ibp == NULL) {
696 /* Allocate a new segment if necessary. */
697 if (sp->seg_bytes_left < fs->lfs_bsize ||
698 sp->sum_bytes_left < sizeof(ufs_daddr_t))
699 (void) lfs_writeseg(fs, sp);
700
701 /* Get next inode block. */
702 daddr = fs->lfs_offset;
703 fs->lfs_offset += fsbtodb(fs, 1);
704 sp->ibp = *sp->cbpp++ =
705 lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
706 fs->lfs_bsize);
707 /* Zero out inode numbers */
708 for (i = 0; i < INOPB(fs); ++i)
709 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
710
711 ++sp->start_bpp;
712 fs->lfs_avail -= fsbtodb(fs, 1);
713 /* Set remaining space counters. */
714 sp->seg_bytes_left -= fs->lfs_bsize;
715 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
716 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
717 sp->ninodes / INOPB(fs) - 1;
718 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
719 }
720
721 /* Update the inode times and copy the inode onto the inode page. */
722 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
723 --fs->lfs_uinodes;
724 #ifdef DEBUG_LFS
725 if((int32_t)fs->lfs_uinodes < 0) {
726 printf("U2");
727 fs->lfs_uinodes=0;
728 }
729 #endif
730 TIMEVAL_TO_TIMESPEC(&time, &ts);
731 LFS_ITIMES(ip, &ts, &ts, &ts);
732
733 #ifdef LFS_STINGY_CLEAN
734 if(ip->i_flag & IN_CLEANING)
735 ip->i_flag &= ~IN_CLEANING;
736 else
737 #endif
738 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
739
740 bp = sp->ibp;
741 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
742 ip->i_din.ffs_din;
743
744 /* Increment inode count in segment summary block. */
745 ++((SEGSUM *)(sp->segsum))->ss_ninos;
746
747 /* If this page is full, set flag to allocate a new page. */
748 if (++sp->ninodes % INOPB(fs) == 0)
749 sp->ibp = NULL;
750
751 /*
752 * If updating the ifile, update the super-block. Update the disk
753 * address and access times for this inode in the ifile.
754 */
755 ino = ip->i_number;
756 if (ino == LFS_IFILE_INUM) {
757 daddr = fs->lfs_idaddr;
758 fs->lfs_idaddr = bp->b_blkno;
759 } else {
760 LFS_IENTRY(ifp, fs, ino, ibp);
761 daddr = ifp->if_daddr;
762 ifp->if_daddr = bp->b_blkno;
763 error = VOP_BWRITE(ibp);
764 }
765
766 /*
767 * No need to update segment usage if there was no former inode address
768 * or if the last inode address is in the current partial segment.
769 */
770 if (daddr != LFS_UNUSED_DADDR &&
771 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
772 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
773 #ifdef DIAGNOSTIC
774 if (sup->su_nbytes < DINODE_SIZE) {
775 /* XXX -- Change to a panic. */
776 printf("lfs_writeinode: negative bytes (segment %d)\n",
777 datosn(fs, daddr));
778 panic("negative bytes");
779 }
780 #endif
781 sup->su_nbytes -= DINODE_SIZE;
782 redo_ifile =
783 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
784 error = VOP_BWRITE(bp);
785 }
786 return (redo_ifile);
787 }
788
789 int
790 lfs_gatherblock(sp, bp, sptr)
791 struct segment *sp;
792 struct buf *bp;
793 int *sptr;
794 {
795 struct lfs *fs;
796 int version;
797
798 /*
799 * If full, finish this segment. We may be doing I/O, so
800 * release and reacquire the splbio().
801 */
802 #ifdef DIAGNOSTIC
803 if (sp->vp == NULL)
804 panic ("lfs_gatherblock: Null vp in segment");
805 #endif
806 fs = sp->fs;
807 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
808 sp->seg_bytes_left < bp->b_bcount) {
809 if (sptr)
810 splx(*sptr);
811 lfs_updatemeta(sp);
812
813 version = sp->fip->fi_version;
814 (void) lfs_writeseg(fs, sp);
815
816 sp->fip->fi_version = version;
817 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
818 /* Add the current file to the segment summary. */
819 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
820 sp->sum_bytes_left -=
821 sizeof(struct finfo) - sizeof(ufs_daddr_t);
822
823 if (sptr)
824 *sptr = splbio();
825 return(1);
826 }
827
828 #ifdef DEBUG
829 if(bp->b_flags & B_GATHERED) {
830 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
831 sp->fip->fi_ino, bp->b_lblkno);
832 return(0);
833 }
834 #endif
835 /* Insert into the buffer list, update the FINFO block. */
836 bp->b_flags |= B_GATHERED;
837 *sp->cbpp++ = bp;
838 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
839
840 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
841 sp->seg_bytes_left -= bp->b_bcount;
842 return(0);
843 }
844
845 int
846 lfs_gather(fs, sp, vp, match)
847 struct lfs *fs;
848 struct segment *sp;
849 struct vnode *vp;
850 int (*match) __P((struct lfs *, struct buf *));
851 {
852 struct buf *bp;
853 int s, count=0;
854
855 sp->vp = vp;
856 s = splbio();
857
858 #ifndef LFS_NO_BACKBUF_HACK
859 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
860 #else /* LFS_NO_BACKBUF_HACK */
861 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
862 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
863 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
864 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
865 /* Find last buffer. */
866 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
867 bp = bp->b_vnbufs.le_next);
868 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
869 #endif /* LFS_NO_BACKBUF_HACK */
870 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
871 continue;
872 #ifdef DIAGNOSTIC
873 if (!(bp->b_flags & B_DELWRI))
874 panic("lfs_gather: bp not B_DELWRI");
875 if (!(bp->b_flags & B_LOCKED))
876 panic("lfs_gather: bp not B_LOCKED");
877 #endif
878 count++;
879 if (lfs_gatherblock(sp, bp, &s)) {
880 goto loop;
881 }
882 }
883 splx(s);
884 lfs_updatemeta(sp);
885 sp->vp = NULL;
886 return count;
887 }
888
889 /*
890 * Update the metadata that points to the blocks listed in the FINFO
891 * array.
892 */
893 void
894 lfs_updatemeta(sp)
895 struct segment *sp;
896 {
897 SEGUSE *sup;
898 struct buf *bp;
899 struct lfs *fs;
900 struct vnode *vp;
901 struct indir a[NIADDR + 2], *ap;
902 struct inode *ip;
903 ufs_daddr_t daddr, lbn, off;
904 int error, i, nblocks, num;
905
906 vp = sp->vp;
907 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
908 if (nblocks < 0)
909 panic("This is a bad thing\n");
910 if (vp == NULL || nblocks == 0)
911 return;
912
913 /* Sort the blocks. */
914 /*
915 * XXX KS - We have to sort even if the blocks come from the
916 * cleaner, because there might be other pending blocks on the
917 * same inode...and if we don't sort, and there are fragments
918 * present, blocks may be written in the wrong place.
919 */
920 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
921 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
922
923 /*
924 * Record the length of the last block in case it's a fragment.
925 * If there are indirect blocks present, they sort last. An
926 * indirect block will be lfs_bsize and its presence indicates
927 * that you cannot have fragments.
928 */
929 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
930
931 /*
932 * Assign disk addresses, and update references to the logical
933 * block and the segment usage information.
934 */
935 fs = sp->fs;
936 for (i = nblocks; i--; ++sp->start_bpp) {
937 lbn = *sp->start_lbp++;
938
939 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
940 fs->lfs_offset +=
941 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
942
943 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
944 if (error)
945 panic("lfs_updatemeta: ufs_bmaparray %d", error);
946 ip = VTOI(vp);
947 switch (num) {
948 case 0:
949 ip->i_ffs_db[lbn] = off;
950 break;
951 case 1:
952 ip->i_ffs_ib[a[0].in_off] = off;
953 break;
954 default:
955 ap = &a[num - 1];
956 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
957 panic("lfs_updatemeta: bread bno %d",
958 ap->in_lbn);
959 /*
960 * Bread may create a new (indirect) block which needs
961 * to get counted for the inode.
962 */
963 if (/* bp->b_blkno == -1 && */
964 !(bp->b_flags & (B_DELWRI|B_DONE))) {
965 ip->i_ffs_blocks += fsbtodb(fs, 1);
966 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
967 }
968 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
969 VOP_BWRITE(bp);
970 }
971 /* Update segment usage information. */
972 if (daddr != UNASSIGNED &&
973 !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
974 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
975 #ifdef DIAGNOSTIC
976 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
977 /* XXX -- Change to a panic. */
978 printf("lfs_updatemeta: negative bytes (segment %d)\n",
979 datosn(fs, daddr));
980 printf("lfs_updatemeta: bp = 0x%p, addr = 0x%p\n",
981 bp, bp->b_un.b_addr);
982 /* panic ("Negative Bytes"); */
983 }
984 #endif
985 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
986 error = VOP_BWRITE(bp);
987 }
988 }
989 }
990
991 /*
992 * Start a new segment.
993 */
994 int
995 lfs_initseg(fs)
996 struct lfs *fs;
997 {
998 struct segment *sp;
999 SEGUSE *sup;
1000 SEGSUM *ssp;
1001 struct buf *bp;
1002 int repeat;
1003
1004 sp = fs->lfs_sp;
1005
1006 repeat = 0;
1007 /* Advance to the next segment. */
1008 if (!LFS_PARTIAL_FITS(fs)) {
1009 /* Wake up any cleaning procs waiting on this file system. */
1010 wakeup(&lfs_allclean_wakeup);
1011 wakeup(&fs->lfs_nextseg);
1012 lfs_newseg(fs);
1013 repeat = 1;
1014 fs->lfs_offset = fs->lfs_curseg;
1015 sp->seg_number = datosn(fs, fs->lfs_curseg);
1016 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1017 /*
1018 * If the segment contains a superblock, update the offset
1019 * and summary address to skip over it.
1020 */
1021 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1022 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1023 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1024 sp->seg_bytes_left -= LFS_SBPAD;
1025 }
1026 brelse(bp);
1027 } else {
1028 sp->seg_number = datosn(fs, fs->lfs_curseg);
1029 sp->seg_bytes_left = (fs->lfs_dbpseg -
1030 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1031 }
1032 fs->lfs_lastpseg = fs->lfs_offset;
1033
1034 sp->fs = fs;
1035 sp->ibp = NULL;
1036 sp->ninodes = 0;
1037
1038 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1039 sp->cbpp = sp->bpp;
1040 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1041 fs->lfs_offset, LFS_SUMMARY_SIZE);
1042 sp->segsum = (*sp->cbpp)->b_data;
1043 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1044 sp->start_bpp = ++sp->cbpp;
1045 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1046
1047 /* Set point to SEGSUM, initialize it. */
1048 ssp = sp->segsum;
1049 ssp->ss_next = fs->lfs_nextseg;
1050 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1051 ssp->ss_magic = SS_MAGIC;
1052
1053 /* Set pointer to first FINFO, initialize it. */
1054 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1055 sp->fip->fi_nblocks = 0;
1056 sp->start_lbp = &sp->fip->fi_blocks[0];
1057 sp->fip->fi_lastlength = 0;
1058
1059 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1060 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1061
1062 return(repeat);
1063 }
1064
1065 /*
1066 * Return the next segment to write.
1067 */
1068 void
1069 lfs_newseg(fs)
1070 struct lfs *fs;
1071 {
1072 CLEANERINFO *cip;
1073 SEGUSE *sup;
1074 struct buf *bp;
1075 int curseg, isdirty, sn;
1076
1077 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1078 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1079 sup->su_nbytes = 0;
1080 sup->su_nsums = 0;
1081 sup->su_ninos = 0;
1082 (void) VOP_BWRITE(bp);
1083
1084 LFS_CLEANERINFO(cip, fs, bp);
1085 --cip->clean;
1086 ++cip->dirty;
1087 fs->lfs_nclean = cip->clean;
1088 (void) VOP_BWRITE(bp);
1089
1090 fs->lfs_lastseg = fs->lfs_curseg;
1091 fs->lfs_curseg = fs->lfs_nextseg;
1092 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1093 sn = (sn + 1) % fs->lfs_nseg;
1094 if (sn == curseg)
1095 panic("lfs_nextseg: no clean segments");
1096 LFS_SEGENTRY(sup, fs, sn, bp);
1097 isdirty = sup->su_flags & SEGUSE_DIRTY;
1098 brelse(bp);
1099 if (!isdirty)
1100 break;
1101 }
1102
1103 ++fs->lfs_nactive;
1104 fs->lfs_nextseg = sntoda(fs, sn);
1105 if(lfs_dostats) {
1106 ++lfs_stats.segsused;
1107 }
1108 }
1109
1110 int
1111 lfs_writeseg(fs, sp)
1112 struct lfs *fs;
1113 struct segment *sp;
1114 {
1115 extern int locked_queue_count;
1116 extern long locked_queue_bytes;
1117 struct buf **bpp, *bp, *cbp;
1118 SEGUSE *sup;
1119 SEGSUM *ssp;
1120 dev_t i_dev;
1121 u_long *datap, *dp;
1122 int do_again, i, nblocks, s;
1123 #ifdef LFS_TRACK_IOS
1124 int j;
1125 #endif
1126 int (*strategy)__P((void *));
1127 struct vop_strategy_args vop_strategy_a;
1128 u_short ninos;
1129 struct vnode *devvp;
1130 char *p;
1131 struct vnode *vn;
1132 #if defined(DEBUG) && defined(LFS_PROPELLER)
1133 static int propeller;
1134 char propstring[4] = "-\\|/";
1135
1136 printf("%c\b",propstring[propeller++]);
1137 if(propeller==4)
1138 propeller = 0;
1139 #endif
1140
1141 /*
1142 * If there are no buffers other than the segment summary to write
1143 * and it is not a checkpoint, don't do anything. On a checkpoint,
1144 * even if there aren't any buffers, you need to write the superblock.
1145 */
1146 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1147 return (0);
1148
1149 #ifdef DEBUG_LFS
1150 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1151 #endif
1152
1153 /* Update the segment usage information. */
1154 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1155
1156 /* Loop through all blocks, except the segment summary. */
1157 for (bpp = sp->bpp; ++bpp < sp->cbpp; )
1158 sup->su_nbytes += (*bpp)->b_bcount;
1159
1160 ssp = (SEGSUM *)sp->segsum;
1161
1162 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1163 /* sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE; */
1164 sup->su_nbytes += LFS_SUMMARY_SIZE;
1165 sup->su_lastmod = time.tv_sec;
1166 sup->su_ninos += ninos;
1167 ++sup->su_nsums;
1168
1169 /* Now we can recover the bytes we lost to writevnodes */
1170 sup->su_nbytes -= fs->lfs_loanedbytes;
1171 fs->lfs_loanedbytes = 0;
1172
1173 do_again = !(bp->b_flags & B_GATHERED);
1174 (void)VOP_BWRITE(bp);
1175 /*
1176 * Compute checksum across data and then across summary; the first
1177 * block (the summary block) is skipped. Set the create time here
1178 * so that it's guaranteed to be later than the inode mod times.
1179 *
1180 * XXX
1181 * Fix this to do it inline, instead of malloc/copy.
1182 */
1183 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1184 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1185 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1186 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1187 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1188 } else
1189 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1190 }
1191 ssp->ss_create = time.tv_sec;
1192 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1193 ssp->ss_sumsum =
1194 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1195 free(datap, M_SEGMENT);
1196 #ifdef DIAGNOSTIC
1197 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1198 panic("lfs_writeseg: No diskspace for summary");
1199 #endif
1200 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1201
1202 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1203 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1204 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1205
1206 /*
1207 * When we simply write the blocks we lose a rotation for every block
1208 * written. To avoid this problem, we allocate memory in chunks, copy
1209 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1210 * largest size I/O devices can handle.
1211 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1212 * and brelse the buffer (which will move them to the LRU list). Add
1213 * the B_CALL flag to the buffer header so we can count I/O's for the
1214 * checkpoints and so we can release the allocated memory.
1215 *
1216 * XXX
1217 * This should be removed if the new virtual memory system allows us to
1218 * easily make the buffers contiguous in kernel memory and if that's
1219 * fast enough.
1220 */
1221
1222 #define CHUNKSIZE MAXPHYS
1223
1224 if(devvp==NULL)
1225 panic("devvp is NULL");
1226 for (bpp = sp->bpp,i = nblocks; i;) {
1227 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1228 cbp->b_dev = i_dev;
1229 cbp->b_flags |= B_ASYNC | B_BUSY;
1230 cbp->b_bcount = 0;
1231
1232 if(fs->lfs_iocount >= LFS_THROTTLE) {
1233 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1234 }
1235 s = splbio();
1236 ++fs->lfs_iocount;
1237 #ifdef LFS_TRACK_IOS
1238 for(j=0;j<LFS_THROTTLE;j++) {
1239 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1240 fs->lfs_pending[j] = cbp->b_blkno;
1241 break;
1242 }
1243 }
1244 #endif /* LFS_TRACK_IOS */
1245 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1246 bp = *bpp;
1247
1248 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1249 break;
1250
1251 /*
1252 * Fake buffers from the cleaner are marked as B_INVAL.
1253 * We need to copy the data from user space rather than
1254 * from the buffer indicated.
1255 * XXX == what do I do on an error?
1256 */
1257 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1258 #ifdef DEBUG
1259 if(incore(bp->b_vp, bp->b_lblkno)) {
1260 printf("lfs_writeseg: fake block (ino %d lbn %d) is also in core!\n", VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1261 }
1262 #endif
1263 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1264 panic("lfs_writeseg: copyin failed [2]");
1265 } else
1266 bcopy(bp->b_data, p, bp->b_bcount);
1267 p += bp->b_bcount;
1268 cbp->b_bcount += bp->b_bcount;
1269 if (bp->b_flags & B_LOCKED) {
1270 --locked_queue_count;
1271 locked_queue_bytes -= bp->b_bufsize;
1272 }
1273 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1274 B_LOCKED | B_GATHERED);
1275 vn = bp->b_vp;
1276 if (bp->b_flags & B_CALL) {
1277 /* if B_CALL, it was created with newbuf */
1278 lfs_freebuf(bp);
1279 } else {
1280 bremfree(bp);
1281 bp->b_flags |= B_DONE;
1282 if(vn)
1283 reassignbuf(bp, vn);
1284 brelse(bp);
1285 }
1286 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1287 bp->b_flags &= ~B_NEEDCOMMIT;
1288 wakeup(bp);
1289 }
1290 bpp++;
1291 }
1292 ++cbp->b_vp->v_numoutput;
1293 splx(s);
1294 /*
1295 * XXXX This is a gross and disgusting hack. Since these
1296 * buffers are physically addressed, they hang off the
1297 * device vnode (devvp). As a result, they have no way
1298 * of getting to the LFS superblock or lfs structure to
1299 * keep track of the number of I/O's pending. So, I am
1300 * going to stuff the fs into the saveaddr field of
1301 * the buffer (yuk).
1302 */
1303 cbp->b_saveaddr = (caddr_t)fs;
1304 vop_strategy_a.a_desc = VDESC(vop_strategy);
1305 vop_strategy_a.a_bp = cbp;
1306 (strategy)(&vop_strategy_a);
1307 }
1308 /*
1309 * XXX
1310 * Vinvalbuf can move locked buffers off the locked queue
1311 * and we have no way of knowing about this. So, after
1312 * doing a big write, we recalculate how many buffers are
1313 * really still left on the locked queue.
1314 */
1315 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1316 wakeup(&locked_queue_count);
1317 if(lfs_dostats) {
1318 ++lfs_stats.psegwrites;
1319 lfs_stats.blocktot += nblocks - 1;
1320 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1321 ++lfs_stats.psyncwrites;
1322 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1323 ++lfs_stats.pcleanwrites;
1324 lfs_stats.cleanblocks += nblocks - 1;
1325 }
1326 }
1327 return (lfs_initseg(fs) || do_again);
1328 }
1329
1330 void
1331 lfs_writesuper(fs, daddr)
1332 struct lfs *fs;
1333 daddr_t daddr;
1334 {
1335 struct buf *bp;
1336 dev_t i_dev;
1337 int (*strategy) __P((void *));
1338 int s;
1339 struct vop_strategy_args vop_strategy_a;
1340
1341 #ifdef LFS_CANNOT_ROLLFW
1342 /*
1343 * If we can write one superblock while another is in
1344 * progress, we risk not having a complete checkpoint if we crash.
1345 * So, block here if a superblock write is in progress.
1346 *
1347 * XXX - should be a proper lock, not this hack
1348 */
1349 while(fs->lfs_sbactive) {
1350 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1351 }
1352 fs->lfs_sbactive = daddr;
1353 #endif
1354 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1355 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1356
1357 /* Set timestamp of this version of the superblock */
1358 fs->lfs_tstamp = time.tv_sec;
1359
1360 /* Checksum the superblock and copy it into a buffer. */
1361 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1362 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1363 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1364
1365 bp->b_dev = i_dev;
1366 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1367 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1368 bp->b_iodone = lfs_supercallback;
1369 /* XXX KS - same nasty hack as above */
1370 bp->b_saveaddr = (caddr_t)fs;
1371
1372 vop_strategy_a.a_desc = VDESC(vop_strategy);
1373 vop_strategy_a.a_bp = bp;
1374 s = splbio();
1375 ++bp->b_vp->v_numoutput;
1376 splx(s);
1377 (strategy)(&vop_strategy_a);
1378 }
1379
1380 /*
1381 * Logical block number match routines used when traversing the dirty block
1382 * chain.
1383 */
1384 int
1385 lfs_match_fake(fs, bp)
1386 struct lfs *fs;
1387 struct buf *bp;
1388 {
1389 return (bp->b_flags & (B_CALL|B_INVAL))==(B_CALL|B_INVAL);
1390 }
1391
1392 int
1393 lfs_match_data(fs, bp)
1394 struct lfs *fs;
1395 struct buf *bp;
1396 {
1397 return (bp->b_lblkno >= 0);
1398 }
1399
1400 int
1401 lfs_match_indir(fs, bp)
1402 struct lfs *fs;
1403 struct buf *bp;
1404 {
1405 int lbn;
1406
1407 lbn = bp->b_lblkno;
1408 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1409 }
1410
1411 int
1412 lfs_match_dindir(fs, bp)
1413 struct lfs *fs;
1414 struct buf *bp;
1415 {
1416 int lbn;
1417
1418 lbn = bp->b_lblkno;
1419 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1420 }
1421
1422 int
1423 lfs_match_tindir(fs, bp)
1424 struct lfs *fs;
1425 struct buf *bp;
1426 {
1427 int lbn;
1428
1429 lbn = bp->b_lblkno;
1430 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1431 }
1432
1433 /*
1434 * XXX - The only buffers that are going to hit these functions are the
1435 * segment write blocks, or the segment summaries, or the superblocks.
1436 *
1437 * All of the above are created by lfs_newbuf, and so do not need to be
1438 * released via brelse.
1439 */
1440 void
1441 lfs_callback(bp)
1442 struct buf *bp;
1443 {
1444 struct lfs *fs;
1445 #ifdef LFS_TRACK_IOS
1446 int j;
1447 #endif
1448
1449 fs = (struct lfs *)bp->b_saveaddr;
1450 #ifdef DIAGNOSTIC
1451 if (fs->lfs_iocount == 0)
1452 panic("lfs_callback: zero iocount\n");
1453 #endif
1454 if (--fs->lfs_iocount < LFS_THROTTLE)
1455 wakeup(&fs->lfs_iocount);
1456 #ifdef LFS_TRACK_IOS
1457 for(j=0;j<LFS_THROTTLE;j++) {
1458 if(fs->lfs_pending[j]==bp->b_blkno) {
1459 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1460 wakeup(&(fs->lfs_pending[j]));
1461 break;
1462 }
1463 }
1464 #endif /* LFS_TRACK_IOS */
1465
1466 lfs_freebuf(bp);
1467 }
1468
1469 void
1470 lfs_supercallback(bp)
1471 struct buf *bp;
1472 {
1473 #ifdef LFS_CANNOT_ROLLFW
1474 struct lfs *fs;
1475
1476 fs = (struct lfs *)bp->b_saveaddr;
1477 fs->lfs_sbactive=NULL;
1478 wakeup(&fs->lfs_sbactive);
1479 #endif
1480 lfs_freebuf(bp);
1481 }
1482
1483 /*
1484 * Shellsort (diminishing increment sort) from Data Structures and
1485 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1486 * see also Knuth Vol. 3, page 84. The increments are selected from
1487 * formula (8), page 95. Roughly O(N^3/2).
1488 */
1489 /*
1490 * This is our own private copy of shellsort because we want to sort
1491 * two parallel arrays (the array of buffer pointers and the array of
1492 * logical block numbers) simultaneously. Note that we cast the array
1493 * of logical block numbers to a unsigned in this routine so that the
1494 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1495 */
1496
1497 void
1498 lfs_shellsort(bp_array, lb_array, nmemb)
1499 struct buf **bp_array;
1500 ufs_daddr_t *lb_array;
1501 register int nmemb;
1502 {
1503 static int __rsshell_increments[] = { 4, 1, 0 };
1504 register int incr, *incrp, t1, t2;
1505 struct buf *bp_temp;
1506 u_long lb_temp;
1507
1508 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1509 for (t1 = incr; t1 < nmemb; ++t1)
1510 for (t2 = t1 - incr; t2 >= 0;)
1511 if (lb_array[t2] > lb_array[t2 + incr]) {
1512 lb_temp = lb_array[t2];
1513 lb_array[t2] = lb_array[t2 + incr];
1514 lb_array[t2 + incr] = lb_temp;
1515 bp_temp = bp_array[t2];
1516 bp_array[t2] = bp_array[t2 + incr];
1517 bp_array[t2 + incr] = bp_temp;
1518 t2 -= incr;
1519 } else
1520 break;
1521 }
1522
1523 /*
1524 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1525 */
1526 int
1527 lfs_vref(vp)
1528 register struct vnode *vp;
1529 {
1530 /*
1531 * If we return 1 here during a flush, we risk vinvalbuf() not
1532 * being able to flush all of the pages from this vnode, which
1533 * will cause it to panic. So, return 0 if a flush is in progress.
1534 */
1535 if (vp->v_flag & VXLOCK) {
1536 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1537 vp->v_usecount++;
1538 return 0;
1539 }
1540 return(1);
1541 }
1542 return (vget(vp, 0));
1543 }
1544
1545 /*
1546 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1547 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1548 */
1549 void
1550 lfs_vunref(vp)
1551 register struct vnode *vp;
1552 {
1553 simple_lock(&vp->v_interlock);
1554 #ifdef DIAGNOSTIC
1555 if(vp->v_usecount==0) {
1556 panic("lfs_vunref: v_usecount<0");
1557 }
1558 #endif
1559 vp->v_usecount--;
1560 if (vp->v_usecount > 0) {
1561 simple_unlock(&vp->v_interlock);
1562 return;
1563 }
1564 /*
1565 * We also don't want to vrele() here during a flush, since
1566 * that will be done again later, causing us serious problems.
1567 */
1568 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1569 simple_unlock(&vp->v_interlock);
1570 return;
1571 }
1572
1573 /*
1574 * insert at tail of LRU list
1575 */
1576 simple_lock(&vnode_free_list_slock);
1577 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1578 simple_unlock(&vnode_free_list_slock);
1579 simple_unlock(&vp->v_interlock);
1580 }
1581
1582 /*
1583 * We use this when we have vnodes that were loaded in solely for cleaning.
1584 * There is no reason to believe that these vnodes will be referenced again
1585 * soon, since the cleaning process is unrelated to normal filesystem
1586 * activity. Putting cleaned vnodes at the tail of the list has the effect
1587 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1588 * cleaning at the head of the list, instead.
1589 */
1590 void
1591 lfs_vunref_head(vp)
1592 register struct vnode *vp;
1593 {
1594 simple_lock(&vp->v_interlock);
1595 #ifdef DIAGNOSTIC
1596 if(vp->v_usecount==0) {
1597 panic("lfs_vunref: v_usecount<0");
1598 }
1599 #endif
1600 vp->v_usecount--;
1601 if (vp->v_usecount > 0) {
1602 simple_unlock(&vp->v_interlock);
1603 return;
1604 }
1605 /*
1606 * insert at head of LRU list
1607 */
1608 simple_lock(&vnode_free_list_slock);
1609 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1610 simple_unlock(&vnode_free_list_slock);
1611 simple_unlock(&vp->v_interlock);
1612 }
1613
1614