lfs_segment.c revision 1.158.2.10 1 /* $NetBSD: lfs_segment.c,v 1.158.2.10 2006/05/20 22:38:57 riz Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.158.2.10 2006/05/20 22:38:57 riz Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 /*
134 * Figure out whether we should do a checkpoint write or go ahead with
135 * an ordinary write.
136 */
137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
138 (fs->lfs_nactive > LFS_MAX_ACTIVE || \
139 (flags & SEGM_CKP) || \
140 fs->lfs_nclean < LFS_MAX_ACTIVE)
141
142 int lfs_match_fake(struct lfs *, struct buf *);
143 void lfs_newseg(struct lfs *);
144 /* XXX ondisk32 */
145 void lfs_shellsort(struct buf **, int32_t *, int, int);
146 void lfs_supercallback(struct buf *);
147 void lfs_updatemeta(struct segment *);
148 void lfs_writesuper(struct lfs *, daddr_t);
149 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
150 struct segment *sp, int dirops);
151
152 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
153 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
154 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
155 int lfs_dirvcount = 0; /* # active dirops */
156
157 /* Statistics Counters */
158 int lfs_dostats = 1;
159 struct lfs_stats lfs_stats;
160
161 /* op values to lfs_writevnodes */
162 #define VN_REG 0
163 #define VN_DIROP 1
164 #define VN_EMPTY 2
165 #define VN_CLEAN 3
166
167 /*
168 * XXX KS - Set modification time on the Ifile, so the cleaner can
169 * read the fs mod time off of it. We don't set IN_UPDATE here,
170 * since we don't really need this to be flushed to disk (and in any
171 * case that wouldn't happen to the Ifile until we checkpoint).
172 */
173 void
174 lfs_imtime(struct lfs *fs)
175 {
176 struct timespec ts;
177 struct inode *ip;
178
179 ASSERT_MAYBE_SEGLOCK(fs);
180 TIMEVAL_TO_TIMESPEC(&time, &ts);
181 ip = VTOI(fs->lfs_ivnode);
182 ip->i_ffs1_mtime = ts.tv_sec;
183 ip->i_ffs1_mtimensec = ts.tv_nsec;
184 }
185
186 /*
187 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
188 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
189 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
190 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
191 */
192
193 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
194
195 int
196 lfs_vflush(struct vnode *vp)
197 {
198 struct inode *ip;
199 struct lfs *fs;
200 struct segment *sp;
201 struct buf *bp, *nbp, *tbp, *tnbp;
202 int error, s;
203 int flushed;
204 int relock;
205
206 ip = VTOI(vp);
207 fs = VFSTOUFS(vp->v_mount)->um_lfs;
208 relock = 0;
209
210 top:
211 ASSERT_NO_SEGLOCK(fs);
212 if (ip->i_flag & IN_CLEANING) {
213 ivndebug(vp,"vflush/in_cleaning");
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data.
220 */
221 s = splbio();
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (!LFS_IS_MALLOC_BUF(bp))
225 continue;
226 /*
227 * Look for pages matching the range covered
228 * by cleaning blocks. It's okay if more dirty
229 * pages appear, so long as none disappear out
230 * from under us.
231 */
232 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
233 vp != fs->lfs_ivnode) {
234 struct vm_page *pg;
235 voff_t off;
236
237 simple_lock(&vp->v_interlock);
238 for (off = lblktosize(fs, bp->b_lblkno);
239 off < lblktosize(fs, bp->b_lblkno + 1);
240 off += PAGE_SIZE) {
241 pg = uvm_pagelookup(&vp->v_uobj, off);
242 if (pg == NULL)
243 continue;
244 if ((pg->flags & PG_CLEAN) == 0 ||
245 pmap_is_modified(pg)) {
246 fs->lfs_avail += btofsb(fs,
247 bp->b_bcount);
248 wakeup(&fs->lfs_avail);
249 lfs_freebuf(fs, bp);
250 bp = NULL;
251 simple_unlock(&vp->v_interlock);
252 goto nextbp;
253 }
254 }
255 simple_unlock(&vp->v_interlock);
256 }
257 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
258 tbp = tnbp)
259 {
260 tnbp = LIST_NEXT(tbp, b_vnbufs);
261 if (tbp->b_vp == bp->b_vp
262 && tbp->b_lblkno == bp->b_lblkno
263 && tbp != bp)
264 {
265 fs->lfs_avail += btofsb(fs,
266 bp->b_bcount);
267 wakeup(&fs->lfs_avail);
268 lfs_freebuf(fs, bp);
269 bp = NULL;
270 break;
271 }
272 }
273 nextbp:
274 ;
275 }
276 splx(s);
277 }
278
279 /* If the node is being written, wait until that is done */
280 simple_lock(&vp->v_interlock);
281 s = splbio();
282 if (WRITEINPROG(vp)) {
283 ivndebug(vp,"vflush/writeinprog");
284 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
285 }
286 splx(s);
287 simple_unlock(&vp->v_interlock);
288
289 /* Protect against VXLOCK deadlock in vinvalbuf() */
290 lfs_seglock(fs, SEGM_SYNC);
291
292 /* If we're supposed to flush a freed inode, just toss it */
293 /* XXX - seglock, so these buffers can't be gathered, right? */
294 if (ip->i_mode == 0) {
295 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
296 ip->i_number));
297 s = splbio();
298 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
299 nbp = LIST_NEXT(bp, b_vnbufs);
300 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
301 fs->lfs_avail += btofsb(fs, bp->b_bcount);
302 wakeup(&fs->lfs_avail);
303 }
304 /* Copied from lfs_writeseg */
305 if (bp->b_flags & B_CALL) {
306 biodone(bp);
307 } else {
308 bremfree(bp);
309 LFS_UNLOCK_BUF(bp);
310 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
311 B_GATHERED);
312 bp->b_flags |= B_DONE;
313 reassignbuf(bp, vp);
314 brelse(bp);
315 }
316 }
317 splx(s);
318 LFS_CLR_UINO(ip, IN_CLEANING);
319 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
320 ip->i_flag &= ~IN_ALLMOD;
321 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
322 ip->i_number));
323 lfs_segunlock(fs);
324 return 0;
325 }
326
327 fs->lfs_flushvp = vp;
328 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
329 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
330 fs->lfs_flushvp = NULL;
331 KASSERT(fs->lfs_flushvp_fakevref == 0);
332 lfs_segunlock(fs);
333 return error;
334 }
335 sp = fs->lfs_sp;
336
337 flushed = 0;
338 if (VPISEMPTY(vp)) {
339 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
340 ++flushed;
341 } else if ((ip->i_flag & IN_CLEANING) &&
342 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
343 ivndebug(vp,"vflush/clean");
344 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
345 ++flushed;
346 } else if (lfs_dostats) {
347 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
348 ++lfs_stats.vflush_invoked;
349 ivndebug(vp,"vflush");
350 }
351
352 #ifdef DIAGNOSTIC
353 if (vp->v_flag & VDIROP) {
354 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
355 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
356 }
357 if (vp->v_usecount < 0) {
358 printf("usecount=%ld\n", (long)vp->v_usecount);
359 panic("lfs_vflush: usecount<0");
360 }
361 #endif
362
363 do {
364 do {
365 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
366 relock = lfs_writefile(fs, sp, vp);
367 if (relock) {
368 /*
369 * Might have to wait for the
370 * cleaner to run; but we're
371 * still not done with this vnode.
372 */
373 lfs_writeinode(fs, sp, ip);
374 LFS_SET_UINO(ip, IN_MODIFIED);
375 lfs_writeseg(fs, sp);
376 lfs_segunlock(fs);
377 lfs_segunlock_relock(fs);
378 goto top;
379 }
380 }
381 /*
382 * If we begin a new segment in the middle of writing
383 * the Ifile, it creates an inconsistent checkpoint,
384 * since the Ifile information for the new segment
385 * is not up-to-date. Take care of this here by
386 * sending the Ifile through again in case there
387 * are newly dirtied blocks. But wait, there's more!
388 * This second Ifile write could *also* cross a segment
389 * boundary, if the first one was large. The second
390 * one is guaranteed to be no more than 8 blocks,
391 * though (two segment blocks and supporting indirects)
392 * so the third write *will not* cross the boundary.
393 */
394 if (vp == fs->lfs_ivnode) {
395 lfs_writefile(fs, sp, vp);
396 lfs_writefile(fs, sp, vp);
397 }
398 } while (lfs_writeinode(fs, sp, ip));
399 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
400
401 if (lfs_dostats) {
402 ++lfs_stats.nwrites;
403 if (sp->seg_flags & SEGM_SYNC)
404 ++lfs_stats.nsync_writes;
405 if (sp->seg_flags & SEGM_CKP)
406 ++lfs_stats.ncheckpoints;
407 }
408 /*
409 * If we were called from somewhere that has already held the seglock
410 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
411 * the write to complete because we are still locked.
412 * Since lfs_vflush() must return the vnode with no dirty buffers,
413 * we must explicitly wait, if that is the case.
414 *
415 * We compare the iocount against 1, not 0, because it is
416 * artificially incremented by lfs_seglock().
417 */
418 simple_lock(&fs->lfs_interlock);
419 if (fs->lfs_seglock > 1) {
420 while (fs->lfs_iocount > 1)
421 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
422 "lfs_vflush", 0, &fs->lfs_interlock);
423 }
424 simple_unlock(&fs->lfs_interlock);
425
426 lfs_segunlock(fs);
427
428 /* Wait for these buffers to be recovered by aiodoned */
429 s = splbio();
430 simple_lock(&global_v_numoutput_slock);
431 while (vp->v_numoutput > 0) {
432 vp->v_flag |= VBWAIT;
433 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
434 &global_v_numoutput_slock);
435 }
436 simple_unlock(&global_v_numoutput_slock);
437 splx(s);
438
439 fs->lfs_flushvp = NULL;
440 KASSERT(fs->lfs_flushvp_fakevref == 0);
441
442 return (0);
443 }
444
445 int
446 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
447 {
448 struct inode *ip;
449 struct vnode *vp, *nvp;
450 int inodes_written = 0, only_cleaning;
451 int error = 0;
452
453 ASSERT_SEGLOCK(fs);
454 #ifndef LFS_NO_BACKVP_HACK
455 /* BEGIN HACK */
456 #define VN_OFFSET \
457 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
458 #define BACK_VP(VP) \
459 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
460 #define BEG_OF_VLIST \
461 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
462 - VN_OFFSET))
463
464 /* Find last vnode. */
465 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
466 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
467 vp = LIST_NEXT(vp, v_mntvnodes));
468 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
469 nvp = BACK_VP(vp);
470 #else
471 loop:
472 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
473 nvp = LIST_NEXT(vp, v_mntvnodes);
474 #endif
475 /*
476 * If the vnode that we are about to sync is no longer
477 * associated with this mount point, start over.
478 */
479 if (vp->v_mount != mp) {
480 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
481 /*
482 * After this, pages might be busy
483 * due to our own previous putpages.
484 * Start actual segment write here to avoid deadlock.
485 */
486 (void)lfs_writeseg(fs, sp);
487 goto loop;
488 }
489
490 if (vp->v_type == VNON) {
491 continue;
492 }
493
494 ip = VTOI(vp);
495 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
496 (op != VN_DIROP && op != VN_CLEAN &&
497 (vp->v_flag & VDIROP))) {
498 vndebug(vp,"dirop");
499 continue;
500 }
501
502 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
503 vndebug(vp,"empty");
504 continue;
505 }
506
507 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
508 && vp != fs->lfs_flushvp
509 && !(ip->i_flag & IN_CLEANING)) {
510 vndebug(vp,"cleaning");
511 continue;
512 }
513
514 if (lfs_vref(vp)) {
515 vndebug(vp,"vref");
516 continue;
517 }
518
519 only_cleaning = 0;
520 /*
521 * Write the inode/file if dirty and it's not the IFILE.
522 */
523 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
524 only_cleaning =
525 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
526
527 if (ip->i_number != LFS_IFILE_INUM) {
528 error = lfs_writefile(fs, sp, vp);
529 if (error) {
530 lfs_vunref(vp);
531 if (error == EAGAIN) {
532 /*
533 * This error from lfs_putpages
534 * indicates we need to drop
535 * the segment lock and start
536 * over after the cleaner has
537 * had a chance to run.
538 */
539 lfs_writeinode(fs, sp, ip);
540 lfs_writeseg(fs, sp);
541 if (!VPISEMPTY(vp) &&
542 !WRITEINPROG(vp) &&
543 !(ip->i_flag & IN_ALLMOD))
544 LFS_SET_UINO(ip, IN_MODIFIED);
545 break;
546 }
547 error = 0; /* XXX not quite right */
548 continue;
549 }
550
551 if (!VPISEMPTY(vp)) {
552 if (WRITEINPROG(vp)) {
553 ivndebug(vp,"writevnodes/write2");
554 } else if (!(ip->i_flag & IN_ALLMOD)) {
555 LFS_SET_UINO(ip, IN_MODIFIED);
556 }
557 }
558 (void) lfs_writeinode(fs, sp, ip);
559 inodes_written++;
560 }
561 }
562
563 if (lfs_clean_vnhead && only_cleaning)
564 lfs_vunref_head(vp);
565 else
566 lfs_vunref(vp);
567 }
568 return error;
569 }
570
571 /*
572 * Do a checkpoint.
573 */
574 int
575 lfs_segwrite(struct mount *mp, int flags)
576 {
577 struct buf *bp;
578 struct inode *ip;
579 struct lfs *fs;
580 struct segment *sp;
581 struct vnode *vp;
582 SEGUSE *segusep;
583 int do_ckp, did_ckp, error, s;
584 unsigned n, segleft, maxseg, sn, i, curseg;
585 int writer_set = 0;
586 int dirty;
587 int redo;
588 int um_error;
589
590 fs = VFSTOUFS(mp)->um_lfs;
591 ASSERT_MAYBE_SEGLOCK(fs);
592
593 if (fs->lfs_ronly)
594 return EROFS;
595
596 lfs_imtime(fs);
597
598 /*
599 * Allocate a segment structure and enough space to hold pointers to
600 * the maximum possible number of buffers which can be described in a
601 * single summary block.
602 */
603 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
604
605 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
606 sp = fs->lfs_sp;
607
608 /*
609 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
610 * in which case we have to flush *all* buffers off of this vnode.
611 * We don't care about other nodes, but write any non-dirop nodes
612 * anyway in anticipation of another getnewvnode().
613 *
614 * If we're cleaning we only write cleaning and ifile blocks, and
615 * no dirops, since otherwise we'd risk corruption in a crash.
616 */
617 if (sp->seg_flags & SEGM_CLEAN)
618 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
619 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
620 do {
621 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
622 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
623 if (!writer_set) {
624 lfs_writer_enter(fs, "lfs writer");
625 writer_set = 1;
626 }
627 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
628 if (um_error == 0)
629 um_error = error;
630 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
631 lfs_finalize_fs_seguse(fs);
632 }
633 if (do_ckp && um_error) {
634 lfs_segunlock_relock(fs);
635 sp = fs->lfs_sp;
636 }
637 } while (do_ckp && um_error != 0);
638 }
639
640 /*
641 * If we are doing a checkpoint, mark everything since the
642 * last checkpoint as no longer ACTIVE.
643 */
644 if (do_ckp) {
645 segleft = fs->lfs_nseg;
646 curseg = 0;
647 for (n = 0; n < fs->lfs_segtabsz; n++) {
648 dirty = 0;
649 if (bread(fs->lfs_ivnode,
650 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
651 panic("lfs_segwrite: ifile read");
652 segusep = (SEGUSE *)bp->b_data;
653 maxseg = min(segleft, fs->lfs_sepb);
654 for (i = 0; i < maxseg; i++) {
655 sn = curseg + i;
656 if (sn != dtosn(fs, fs->lfs_curseg) &&
657 segusep->su_flags & SEGUSE_ACTIVE) {
658 segusep->su_flags &= ~SEGUSE_ACTIVE;
659 --fs->lfs_nactive;
660 ++dirty;
661 }
662 fs->lfs_suflags[fs->lfs_activesb][sn] =
663 segusep->su_flags;
664 if (fs->lfs_version > 1)
665 ++segusep;
666 else
667 segusep = (SEGUSE *)
668 ((SEGUSE_V1 *)segusep + 1);
669 }
670
671 if (dirty)
672 error = LFS_BWRITE_LOG(bp); /* Ifile */
673 else
674 brelse(bp);
675 segleft -= fs->lfs_sepb;
676 curseg += fs->lfs_sepb;
677 }
678 }
679
680 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
681
682 did_ckp = 0;
683 if (do_ckp || fs->lfs_doifile) {
684 vp = fs->lfs_ivnode;
685 vn_lock(vp, LK_EXCLUSIVE);
686 do {
687 #ifdef DEBUG
688 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
689 #endif
690 simple_lock(&fs->lfs_interlock);
691 fs->lfs_flags &= ~LFS_IFDIRTY;
692 simple_unlock(&fs->lfs_interlock);
693
694 ip = VTOI(vp);
695
696 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
697 /*
698 * Ifile has no pages, so we don't need
699 * to check error return here.
700 */
701 lfs_writefile(fs, sp, vp);
702 /*
703 * Ensure the Ifile takes the current segment
704 * into account. See comment in lfs_vflush.
705 */
706 lfs_writefile(fs, sp, vp);
707 lfs_writefile(fs, sp, vp);
708 }
709
710 if (ip->i_flag & IN_ALLMOD)
711 ++did_ckp;
712 redo = lfs_writeinode(fs, sp, ip);
713 redo += lfs_writeseg(fs, sp);
714 simple_lock(&fs->lfs_interlock);
715 redo += (fs->lfs_flags & LFS_IFDIRTY);
716 simple_unlock(&fs->lfs_interlock);
717 } while (redo && do_ckp);
718
719 /*
720 * Unless we are unmounting, the Ifile may continue to have
721 * dirty blocks even after a checkpoint, due to changes to
722 * inodes' atime. If we're checkpointing, it's "impossible"
723 * for other parts of the Ifile to be dirty after the loop
724 * above, since we hold the segment lock.
725 */
726 s = splbio();
727 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
728 LFS_CLR_UINO(ip, IN_ALLMOD);
729 }
730 #ifdef DIAGNOSTIC
731 else if (do_ckp) {
732 int do_panic = 0;
733 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
734 if (bp->b_lblkno < fs->lfs_cleansz +
735 fs->lfs_segtabsz &&
736 !(bp->b_flags & B_GATHERED)) {
737 printf("ifile lbn %ld still dirty (flags %lx)\n",
738 (long)bp->b_lblkno,
739 (long)bp->b_flags);
740 ++do_panic;
741 }
742 }
743 if (do_panic)
744 panic("dirty blocks");
745 }
746 #endif
747 splx(s);
748 VOP_UNLOCK(vp, 0);
749 } else {
750 (void) lfs_writeseg(fs, sp);
751 }
752
753 /* Note Ifile no longer needs to be written */
754 fs->lfs_doifile = 0;
755 if (writer_set)
756 lfs_writer_leave(fs);
757
758 /*
759 * If we didn't write the Ifile, we didn't really do anything.
760 * That means that (1) there is a checkpoint on disk and (2)
761 * nothing has changed since it was written.
762 *
763 * Take the flags off of the segment so that lfs_segunlock
764 * doesn't have to write the superblock either.
765 */
766 if (do_ckp && !did_ckp) {
767 sp->seg_flags &= ~SEGM_CKP;
768 }
769
770 if (lfs_dostats) {
771 ++lfs_stats.nwrites;
772 if (sp->seg_flags & SEGM_SYNC)
773 ++lfs_stats.nsync_writes;
774 if (sp->seg_flags & SEGM_CKP)
775 ++lfs_stats.ncheckpoints;
776 }
777 lfs_segunlock(fs);
778 return (0);
779 }
780
781 /*
782 * Write the dirty blocks associated with a vnode.
783 */
784 int
785 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
786 {
787 struct buf *bp;
788 struct finfo *fip;
789 struct inode *ip;
790 IFILE *ifp;
791 int i, frag;
792 int error;
793
794 ASSERT_SEGLOCK(fs);
795 error = 0;
796 ip = VTOI(vp);
797
798 if (sp->seg_bytes_left < fs->lfs_bsize ||
799 sp->sum_bytes_left < sizeof(struct finfo))
800 (void) lfs_writeseg(fs, sp);
801
802 sp->sum_bytes_left -= FINFOSIZE;
803 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
804
805 if (vp->v_flag & VDIROP)
806 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
807
808 fip = sp->fip;
809 fip->fi_nblocks = 0;
810 fip->fi_ino = ip->i_number;
811 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
812 fip->fi_version = ifp->if_version;
813 brelse(bp);
814
815 if (sp->seg_flags & SEGM_CLEAN) {
816 lfs_gather(fs, sp, vp, lfs_match_fake);
817 /*
818 * For a file being flushed, we need to write *all* blocks.
819 * This means writing the cleaning blocks first, and then
820 * immediately following with any non-cleaning blocks.
821 * The same is true of the Ifile since checkpoints assume
822 * that all valid Ifile blocks are written.
823 */
824 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
825 lfs_gather(fs, sp, vp, lfs_match_data);
826 /*
827 * Don't call VOP_PUTPAGES: if we're flushing,
828 * we've already done it, and the Ifile doesn't
829 * use the page cache.
830 */
831 }
832 } else {
833 lfs_gather(fs, sp, vp, lfs_match_data);
834 /*
835 * If we're flushing, we've already called VOP_PUTPAGES
836 * so don't do it again. Otherwise, we want to write
837 * everything we've got.
838 */
839 if (!IS_FLUSHING(fs, vp)) {
840 simple_lock(&vp->v_interlock);
841 error = VOP_PUTPAGES(vp, 0, 0,
842 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
843 }
844 }
845
846 /*
847 * It may not be necessary to write the meta-data blocks at this point,
848 * as the roll-forward recovery code should be able to reconstruct the
849 * list.
850 *
851 * We have to write them anyway, though, under two conditions: (1) the
852 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
853 * checkpointing.
854 *
855 * BUT if we are cleaning, we might have indirect blocks that refer to
856 * new blocks not being written yet, in addition to fragments being
857 * moved out of a cleaned segment. If that is the case, don't
858 * write the indirect blocks, or the finfo will have a small block
859 * in the middle of it!
860 * XXX in this case isn't the inode size wrong too?
861 */
862 frag = 0;
863 if (sp->seg_flags & SEGM_CLEAN) {
864 for (i = 0; i < NDADDR; i++)
865 if (ip->i_lfs_fragsize[i] > 0 &&
866 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
867 ++frag;
868 }
869 #ifdef DIAGNOSTIC
870 if (frag > 1)
871 panic("lfs_writefile: more than one fragment!");
872 #endif
873 if (IS_FLUSHING(fs, vp) ||
874 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
875 lfs_gather(fs, sp, vp, lfs_match_indir);
876 lfs_gather(fs, sp, vp, lfs_match_dindir);
877 lfs_gather(fs, sp, vp, lfs_match_tindir);
878 }
879 fip = sp->fip;
880 if (fip->fi_nblocks != 0) {
881 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
882 sizeof(int32_t) * (fip->fi_nblocks));
883 sp->start_lbp = &sp->fip->fi_blocks[0];
884 } else {
885 sp->sum_bytes_left += FINFOSIZE;
886 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
887 }
888
889 return error;
890 }
891
892 int
893 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
894 {
895 struct buf *bp, *ibp;
896 struct ufs1_dinode *cdp;
897 IFILE *ifp;
898 SEGUSE *sup;
899 daddr_t daddr;
900 int32_t *daddrp; /* XXX ondisk32 */
901 ino_t ino;
902 int error, i, ndx, fsb = 0;
903 int redo_ifile = 0;
904 struct timespec ts;
905 int gotblk = 0;
906
907 ASSERT_SEGLOCK(fs);
908 if (!(ip->i_flag & IN_ALLMOD))
909 return (0);
910
911 /* Allocate a new inode block if necessary. */
912 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
913 sp->ibp == NULL) {
914 /* Allocate a new segment if necessary. */
915 if (sp->seg_bytes_left < fs->lfs_ibsize ||
916 sp->sum_bytes_left < sizeof(int32_t))
917 (void) lfs_writeseg(fs, sp);
918
919 /* Get next inode block. */
920 daddr = fs->lfs_offset;
921 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
922 sp->ibp = *sp->cbpp++ =
923 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
924 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
925 gotblk++;
926
927 /* Zero out inode numbers */
928 for (i = 0; i < INOPB(fs); ++i)
929 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
930 0;
931
932 ++sp->start_bpp;
933 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
934 /* Set remaining space counters. */
935 sp->seg_bytes_left -= fs->lfs_ibsize;
936 sp->sum_bytes_left -= sizeof(int32_t);
937 ndx = fs->lfs_sumsize / sizeof(int32_t) -
938 sp->ninodes / INOPB(fs) - 1;
939 ((int32_t *)(sp->segsum))[ndx] = daddr;
940 }
941
942 /* Update the inode times and copy the inode onto the inode page. */
943 TIMEVAL_TO_TIMESPEC(&time, &ts);
944 /* XXX kludge --- don't redirty the ifile just to put times on it */
945 if (ip->i_number != LFS_IFILE_INUM)
946 LFS_ITIMES(ip, &ts, &ts, &ts);
947
948 /*
949 * If this is the Ifile, and we've already written the Ifile in this
950 * partial segment, just overwrite it (it's not on disk yet) and
951 * continue.
952 *
953 * XXX we know that the bp that we get the second time around has
954 * already been gathered.
955 */
956 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
957 *(sp->idp) = *ip->i_din.ffs1_din;
958 ip->i_lfs_osize = ip->i_size;
959 return 0;
960 }
961
962 bp = sp->ibp;
963 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
964 *cdp = *ip->i_din.ffs1_din;
965
966 /* We can finish the segment accounting for truncations now */
967 lfs_finalize_ino_seguse(fs, ip);
968
969 /*
970 * If we are cleaning, ensure that we don't write UNWRITTEN disk
971 * addresses to disk; possibly change the on-disk record of
972 * the inode size, either by reverting to the previous size
973 * (in the case of cleaning) or by verifying the inode's block
974 * holdings (in the case of files being allocated as they are being
975 * written).
976 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
977 * XXX count on disk wrong by the same amount. We should be
978 * XXX able to "borrow" from lfs_avail and return it after the
979 * XXX Ifile is written. See also in lfs_writeseg.
980 */
981
982 /* Check file size based on highest allocated block */
983 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
984 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
985 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
986 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
987 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
988 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
989 }
990 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
991 if (ip->i_flags & IN_CLEANING)
992 cdp->di_size = ip->i_lfs_osize;
993 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
994 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
995 ip->i_ffs1_blocks, fs->lfs_offset));
996 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
997 daddrp++) {
998 if (*daddrp == UNWRITTEN) {
999 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1000 *daddrp = 0;
1001 }
1002 }
1003 } else {
1004 /* If all blocks are going to disk, update "size on disk" */
1005 ip->i_lfs_osize = ip->i_size;
1006 }
1007
1008 #ifdef DIAGNOSTIC
1009 /*
1010 * Check dinode held blocks against dinode size.
1011 * This should be identical to the check in lfs_vget().
1012 */
1013 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1014 i < NDADDR; i++) {
1015 KASSERT(i >= 0);
1016 if ((cdp->di_mode & IFMT) == IFLNK)
1017 continue;
1018 if (((cdp->di_mode & IFMT) == IFBLK ||
1019 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1020 continue;
1021 if (cdp->di_db[i] != 0) {
1022 # ifdef DEBUG
1023 lfs_dump_dinode(cdp);
1024 # endif
1025 panic("writing inconsistent inode");
1026 }
1027 }
1028 #endif /* DIAGNOSTIC */
1029
1030 if (ip->i_flag & IN_CLEANING)
1031 LFS_CLR_UINO(ip, IN_CLEANING);
1032 else {
1033 /* XXX IN_ALLMOD */
1034 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1035 IN_UPDATE | IN_MODIFY);
1036 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1037 LFS_CLR_UINO(ip, IN_MODIFIED);
1038 else
1039 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1040 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1041 ip->i_lfs_effnblks));
1042 }
1043
1044 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
1045 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1046 (sp->ninodes % INOPB(fs));
1047 if (gotblk) {
1048 LFS_LOCK_BUF(bp);
1049 brelse(bp);
1050 }
1051
1052 /* Increment inode count in segment summary block. */
1053 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1054
1055 /* If this page is full, set flag to allocate a new page. */
1056 if (++sp->ninodes % INOPB(fs) == 0)
1057 sp->ibp = NULL;
1058
1059 /*
1060 * If updating the ifile, update the super-block. Update the disk
1061 * address and access times for this inode in the ifile.
1062 */
1063 ino = ip->i_number;
1064 if (ino == LFS_IFILE_INUM) {
1065 daddr = fs->lfs_idaddr;
1066 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
1067 } else {
1068 LFS_IENTRY(ifp, fs, ino, ibp);
1069 daddr = ifp->if_daddr;
1070 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
1071 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1072 }
1073
1074 /*
1075 * The inode's last address should not be in the current partial
1076 * segment, except under exceptional circumstances (lfs_writevnodes
1077 * had to start over, and in the meantime more blocks were written
1078 * to a vnode). Both inodes will be accounted to this segment
1079 * in lfs_writeseg so we need to subtract the earlier version
1080 * here anyway. The segment count can temporarily dip below
1081 * zero here; keep track of how many duplicates we have in
1082 * "dupino" so we don't panic below.
1083 */
1084 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1085 ++sp->ndupino;
1086 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1087 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1088 (long long)daddr, sp->ndupino));
1089 }
1090 /*
1091 * Account the inode: it no longer belongs to its former segment,
1092 * though it will not belong to the new segment until that segment
1093 * is actually written.
1094 */
1095 if (daddr != LFS_UNUSED_DADDR) {
1096 u_int32_t oldsn = dtosn(fs, daddr);
1097 #ifdef DIAGNOSTIC
1098 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1099 #endif
1100 LFS_SEGENTRY(sup, fs, oldsn, bp);
1101 #ifdef DIAGNOSTIC
1102 if (sup->su_nbytes +
1103 sizeof (struct ufs1_dinode) * ndupino
1104 < sizeof (struct ufs1_dinode)) {
1105 printf("lfs_writeinode: negative bytes "
1106 "(segment %" PRIu32 " short by %d, "
1107 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1108 ", daddr=%" PRId64 ", su_nbytes=%u, "
1109 "ndupino=%d)\n",
1110 dtosn(fs, daddr),
1111 (int)sizeof (struct ufs1_dinode) *
1112 (1 - sp->ndupino) - sup->su_nbytes,
1113 oldsn, sp->seg_number, daddr,
1114 (unsigned int)sup->su_nbytes,
1115 sp->ndupino);
1116 panic("lfs_writeinode: negative bytes");
1117 sup->su_nbytes = sizeof (struct ufs1_dinode);
1118 }
1119 #endif
1120 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1121 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1122 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1123 redo_ifile =
1124 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1125 if (redo_ifile) {
1126 simple_lock(&fs->lfs_interlock);
1127 fs->lfs_flags |= LFS_IFDIRTY;
1128 simple_unlock(&fs->lfs_interlock);
1129 }
1130 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1131 }
1132 return (redo_ifile);
1133 }
1134
1135 int
1136 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1137 {
1138 struct lfs *fs;
1139 int vers;
1140 int j, blksinblk;
1141
1142 ASSERT_SEGLOCK(sp->fs);
1143 /*
1144 * If full, finish this segment. We may be doing I/O, so
1145 * release and reacquire the splbio().
1146 */
1147 #ifdef DIAGNOSTIC
1148 if (sp->vp == NULL)
1149 panic ("lfs_gatherblock: Null vp in segment");
1150 #endif
1151 fs = sp->fs;
1152 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1153 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1154 sp->seg_bytes_left < bp->b_bcount) {
1155 if (sptr)
1156 splx(*sptr);
1157 lfs_updatemeta(sp);
1158
1159 vers = sp->fip->fi_version;
1160 (void) lfs_writeseg(fs, sp);
1161
1162 sp->fip->fi_version = vers;
1163 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1164 /* Add the current file to the segment summary. */
1165 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1166 sp->sum_bytes_left -= FINFOSIZE;
1167
1168 if (sptr)
1169 *sptr = splbio();
1170 return (1);
1171 }
1172
1173 if (bp->b_flags & B_GATHERED) {
1174 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1175 " lbn %" PRId64 "\n",
1176 sp->fip->fi_ino, bp->b_lblkno));
1177 return (0);
1178 }
1179
1180 /* Insert into the buffer list, update the FINFO block. */
1181 bp->b_flags |= B_GATHERED;
1182
1183 *sp->cbpp++ = bp;
1184 for (j = 0; j < blksinblk; j++) {
1185 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1186 /* This block's accounting moves from lfs_favail to lfs_avail */
1187 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1188 }
1189
1190 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1191 sp->seg_bytes_left -= bp->b_bcount;
1192 return (0);
1193 }
1194
1195 int
1196 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1197 int (*match)(struct lfs *, struct buf *))
1198 {
1199 struct buf *bp, *nbp;
1200 int s, count = 0;
1201
1202 ASSERT_SEGLOCK(fs);
1203 if (vp->v_type == VBLK)
1204 return 0;
1205 KASSERT(sp->vp == NULL);
1206 sp->vp = vp;
1207 s = splbio();
1208
1209 #ifndef LFS_NO_BACKBUF_HACK
1210 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1211 # define BUF_OFFSET \
1212 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1213 # define BACK_BUF(BP) \
1214 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1215 # define BEG_OF_LIST \
1216 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1217
1218 loop:
1219 /* Find last buffer. */
1220 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1221 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1222 bp = LIST_NEXT(bp, b_vnbufs))
1223 /* nothing */;
1224 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1225 nbp = BACK_BUF(bp);
1226 #else /* LFS_NO_BACKBUF_HACK */
1227 loop:
1228 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1229 nbp = LIST_NEXT(bp, b_vnbufs);
1230 #endif /* LFS_NO_BACKBUF_HACK */
1231 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1232 #ifdef DEBUG
1233 if (vp == fs->lfs_ivnode &&
1234 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1235 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1236 PRId64 " busy (%x)",
1237 bp->b_lblkno, bp->b_flags));
1238 #endif
1239 continue;
1240 }
1241 #ifdef DIAGNOSTIC
1242 # ifdef LFS_USE_B_INVAL
1243 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1244 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1245 " is B_INVAL\n", bp->b_lblkno));
1246 VOP_PRINT(bp->b_vp);
1247 }
1248 # endif /* LFS_USE_B_INVAL */
1249 if (!(bp->b_flags & B_DELWRI))
1250 panic("lfs_gather: bp not B_DELWRI");
1251 if (!(bp->b_flags & B_LOCKED)) {
1252 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1253 " blk %" PRId64 " not B_LOCKED\n",
1254 bp->b_lblkno,
1255 dbtofsb(fs, bp->b_blkno)));
1256 VOP_PRINT(bp->b_vp);
1257 panic("lfs_gather: bp not B_LOCKED");
1258 }
1259 #endif
1260 if (lfs_gatherblock(sp, bp, &s)) {
1261 goto loop;
1262 }
1263 count++;
1264 }
1265 splx(s);
1266 lfs_updatemeta(sp);
1267 KASSERT(sp->vp == vp);
1268 sp->vp = NULL;
1269 return count;
1270 }
1271
1272 #if DEBUG
1273 # define DEBUG_OOFF(n) do { \
1274 if (ooff == 0) { \
1275 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1276 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1277 ", was 0x0 (or %" PRId64 ")\n", \
1278 (n), ip->i_number, lbn, ndaddr, daddr)); \
1279 } \
1280 } while (0)
1281 #else
1282 # define DEBUG_OOFF(n)
1283 #endif
1284
1285 /*
1286 * Change the given block's address to ndaddr, finding its previous
1287 * location using ufs_bmaparray().
1288 *
1289 * Account for this change in the segment table.
1290 *
1291 * called with sp == NULL by roll-forwarding code.
1292 */
1293 void
1294 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1295 daddr_t lbn, int32_t ndaddr, int size)
1296 {
1297 SEGUSE *sup;
1298 struct buf *bp;
1299 struct indir a[NIADDR + 2], *ap;
1300 struct inode *ip;
1301 daddr_t daddr, ooff;
1302 int num, error;
1303 int bb, osize, obb;
1304
1305 ASSERT_SEGLOCK(fs);
1306 KASSERT(sp == NULL || sp->vp == vp);
1307 ip = VTOI(vp);
1308
1309 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1310 if (error)
1311 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1312
1313 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1314 KASSERT(daddr <= LFS_MAX_DADDR);
1315 if (daddr > 0)
1316 daddr = dbtofsb(fs, daddr);
1317
1318 bb = fragstofsb(fs, numfrags(fs, size));
1319 switch (num) {
1320 case 0:
1321 ooff = ip->i_ffs1_db[lbn];
1322 DEBUG_OOFF(0);
1323 if (ooff == UNWRITTEN)
1324 ip->i_ffs1_blocks += bb;
1325 else {
1326 /* possible fragment truncation or extension */
1327 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1328 ip->i_ffs1_blocks += (bb - obb);
1329 }
1330 ip->i_ffs1_db[lbn] = ndaddr;
1331 break;
1332 case 1:
1333 ooff = ip->i_ffs1_ib[a[0].in_off];
1334 DEBUG_OOFF(1);
1335 if (ooff == UNWRITTEN)
1336 ip->i_ffs1_blocks += bb;
1337 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1338 break;
1339 default:
1340 ap = &a[num - 1];
1341 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1342 panic("lfs_updatemeta: bread bno %" PRId64,
1343 ap->in_lbn);
1344
1345 /* XXX ondisk32 */
1346 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1347 DEBUG_OOFF(num);
1348 if (ooff == UNWRITTEN)
1349 ip->i_ffs1_blocks += bb;
1350 /* XXX ondisk32 */
1351 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1352 (void) VOP_BWRITE(bp);
1353 }
1354
1355 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1356
1357 /* Update hiblk when extending the file */
1358 if (lbn > ip->i_lfs_hiblk)
1359 ip->i_lfs_hiblk = lbn;
1360
1361 /*
1362 * Though we'd rather it couldn't, this *can* happen right now
1363 * if cleaning blocks and regular blocks coexist.
1364 */
1365 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1366
1367 /*
1368 * Update segment usage information, based on old size
1369 * and location.
1370 */
1371 if (daddr > 0) {
1372 u_int32_t oldsn = dtosn(fs, daddr);
1373 #ifdef DIAGNOSTIC
1374 int ndupino;
1375
1376 if (sp && sp->seg_number == oldsn) {
1377 ndupino = sp->ndupino;
1378 } else {
1379 ndupino = 0;
1380 }
1381 #endif
1382 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1383 if (lbn >= 0 && lbn < NDADDR)
1384 osize = ip->i_lfs_fragsize[lbn];
1385 else
1386 osize = fs->lfs_bsize;
1387 LFS_SEGENTRY(sup, fs, oldsn, bp);
1388 #ifdef DIAGNOSTIC
1389 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1390 < osize) {
1391 printf("lfs_updatemeta: negative bytes "
1392 "(segment %" PRIu32 " short by %" PRId64
1393 ")\n", dtosn(fs, daddr),
1394 (int64_t)osize -
1395 (sizeof (struct ufs1_dinode) * ndupino +
1396 sup->su_nbytes));
1397 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1398 ", addr = 0x%" PRIx64 "\n",
1399 (unsigned long long)ip->i_number, lbn, daddr);
1400 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1401 panic("lfs_updatemeta: negative bytes");
1402 sup->su_nbytes = osize -
1403 sizeof (struct ufs1_dinode) * ndupino;
1404 }
1405 #endif
1406 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1407 " db 0x%" PRIx64 "\n",
1408 dtosn(fs, daddr), osize,
1409 ip->i_number, lbn, daddr));
1410 sup->su_nbytes -= osize;
1411 if (!(bp->b_flags & B_GATHERED)) {
1412 simple_lock(&fs->lfs_interlock);
1413 fs->lfs_flags |= LFS_IFDIRTY;
1414 simple_unlock(&fs->lfs_interlock);
1415 }
1416 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1417 }
1418 /*
1419 * Now that this block has a new address, and its old
1420 * segment no longer owns it, we can forget about its
1421 * old size.
1422 */
1423 if (lbn >= 0 && lbn < NDADDR)
1424 ip->i_lfs_fragsize[lbn] = size;
1425 }
1426
1427 /*
1428 * Update the metadata that points to the blocks listed in the FINFO
1429 * array.
1430 */
1431 void
1432 lfs_updatemeta(struct segment *sp)
1433 {
1434 struct buf *sbp;
1435 struct lfs *fs;
1436 struct vnode *vp;
1437 daddr_t lbn;
1438 int i, nblocks, num;
1439 int bb;
1440 int bytesleft, size;
1441
1442 ASSERT_SEGLOCK(sp->fs);
1443 vp = sp->vp;
1444 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1445 KASSERT(nblocks >= 0);
1446 KASSERT(vp != NULL);
1447 if (nblocks == 0)
1448 return;
1449
1450 /*
1451 * This count may be high due to oversize blocks from lfs_gop_write.
1452 * Correct for this. (XXX we should be able to keep track of these.)
1453 */
1454 fs = sp->fs;
1455 for (i = 0; i < nblocks; i++) {
1456 if (sp->start_bpp[i] == NULL) {
1457 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1458 nblocks = i;
1459 break;
1460 }
1461 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1462 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1463 nblocks -= num - 1;
1464 }
1465
1466 KASSERT(vp->v_type == VREG ||
1467 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1468 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1469
1470 /*
1471 * Sort the blocks.
1472 *
1473 * We have to sort even if the blocks come from the
1474 * cleaner, because there might be other pending blocks on the
1475 * same inode...and if we don't sort, and there are fragments
1476 * present, blocks may be written in the wrong place.
1477 */
1478 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1479
1480 /*
1481 * Record the length of the last block in case it's a fragment.
1482 * If there are indirect blocks present, they sort last. An
1483 * indirect block will be lfs_bsize and its presence indicates
1484 * that you cannot have fragments.
1485 *
1486 * XXX This last is a lie. A cleaned fragment can coexist with
1487 * XXX a later indirect block. This will continue to be
1488 * XXX true until lfs_markv is fixed to do everything with
1489 * XXX fake blocks (including fake inodes and fake indirect blocks).
1490 */
1491 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1492 fs->lfs_bmask) + 1;
1493
1494 /*
1495 * Assign disk addresses, and update references to the logical
1496 * block and the segment usage information.
1497 */
1498 for (i = nblocks; i--; ++sp->start_bpp) {
1499 sbp = *sp->start_bpp;
1500 lbn = *sp->start_lbp;
1501 KASSERT(sbp->b_lblkno == lbn);
1502
1503 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1504
1505 /*
1506 * If we write a frag in the wrong place, the cleaner won't
1507 * be able to correctly identify its size later, and the
1508 * segment will be uncleanable. (Even worse, it will assume
1509 * that the indirect block that actually ends the list
1510 * is of a smaller size!)
1511 */
1512 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1513 panic("lfs_updatemeta: fragment is not last block");
1514
1515 /*
1516 * For each subblock in this possibly oversized block,
1517 * update its address on disk.
1518 */
1519 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1520 KASSERT(vp == sbp->b_vp);
1521 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1522 bytesleft -= fs->lfs_bsize) {
1523 size = MIN(bytesleft, fs->lfs_bsize);
1524 bb = fragstofsb(fs, numfrags(fs, size));
1525 lbn = *sp->start_lbp++;
1526 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1527 size);
1528 fs->lfs_offset += bb;
1529 }
1530
1531 }
1532 }
1533
1534 /*
1535 * Move lfs_offset to a segment earlier than sn.
1536 */
1537 int
1538 lfs_rewind(struct lfs *fs, int newsn)
1539 {
1540 int sn, osn, isdirty;
1541 struct buf *bp;
1542 SEGUSE *sup;
1543
1544 ASSERT_SEGLOCK(fs);
1545
1546 osn = dtosn(fs, fs->lfs_offset);
1547 if (osn < newsn)
1548 return 0;
1549
1550 /* lfs_avail eats the remaining space in this segment */
1551 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1552
1553 /* Find a low-numbered segment */
1554 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1555 LFS_SEGENTRY(sup, fs, sn, bp);
1556 isdirty = sup->su_flags & SEGUSE_DIRTY;
1557 brelse(bp);
1558
1559 if (!isdirty)
1560 break;
1561 }
1562 if (sn == fs->lfs_nseg)
1563 panic("lfs_rewind: no clean segments");
1564 if (sn >= newsn)
1565 return ENOENT;
1566 fs->lfs_nextseg = sn;
1567 lfs_newseg(fs);
1568 fs->lfs_offset = fs->lfs_curseg;
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * Start a new partial segment.
1575 *
1576 * Return 1 when we entered to a new segment.
1577 * Otherwise, return 0.
1578 */
1579 int
1580 lfs_initseg(struct lfs *fs)
1581 {
1582 struct segment *sp = fs->lfs_sp;
1583 SEGSUM *ssp;
1584 struct buf *sbp; /* buffer for SEGSUM */
1585 int repeat = 0; /* return value */
1586
1587 ASSERT_SEGLOCK(fs);
1588 /* Advance to the next segment. */
1589 if (!LFS_PARTIAL_FITS(fs)) {
1590 SEGUSE *sup;
1591 struct buf *bp;
1592
1593 /* lfs_avail eats the remaining space */
1594 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1595 fs->lfs_curseg);
1596 /* Wake up any cleaning procs waiting on this file system. */
1597 wakeup(&lfs_allclean_wakeup);
1598 wakeup(&fs->lfs_nextseg);
1599 lfs_newseg(fs);
1600 repeat = 1;
1601 fs->lfs_offset = fs->lfs_curseg;
1602
1603 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1604 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1605
1606 /*
1607 * If the segment contains a superblock, update the offset
1608 * and summary address to skip over it.
1609 */
1610 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1611 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1612 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1613 sp->seg_bytes_left -= LFS_SBPAD;
1614 }
1615 brelse(bp);
1616 /* Segment zero could also contain the labelpad */
1617 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1618 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1619 fs->lfs_offset +=
1620 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1621 sp->seg_bytes_left -=
1622 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1623 }
1624 } else {
1625 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1626 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1627 (fs->lfs_offset - fs->lfs_curseg));
1628 }
1629 fs->lfs_lastpseg = fs->lfs_offset;
1630
1631 /* Record first address of this partial segment */
1632 if (sp->seg_flags & SEGM_CLEAN) {
1633 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1634 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1635 /* "1" is the artificial inc in lfs_seglock */
1636 simple_lock(&fs->lfs_interlock);
1637 while (fs->lfs_iocount > 1) {
1638 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1639 "lfs_initseg", 0, &fs->lfs_interlock);
1640 }
1641 simple_unlock(&fs->lfs_interlock);
1642 fs->lfs_cleanind = 0;
1643 }
1644 }
1645
1646 sp->fs = fs;
1647 sp->ibp = NULL;
1648 sp->idp = NULL;
1649 sp->ninodes = 0;
1650 sp->ndupino = 0;
1651
1652 sp->cbpp = sp->bpp;
1653
1654 /* Get a new buffer for SEGSUM */
1655 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1656 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1657
1658 /* ... and enter it into the buffer list. */
1659 *sp->cbpp = sbp;
1660 sp->cbpp++;
1661 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1662
1663 sp->start_bpp = sp->cbpp;
1664
1665 /* Set point to SEGSUM, initialize it. */
1666 ssp = sp->segsum = sbp->b_data;
1667 memset(ssp, 0, fs->lfs_sumsize);
1668 ssp->ss_next = fs->lfs_nextseg;
1669 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1670 ssp->ss_magic = SS_MAGIC;
1671
1672 /* Set pointer to first FINFO, initialize it. */
1673 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1674 sp->fip->fi_nblocks = 0;
1675 sp->start_lbp = &sp->fip->fi_blocks[0];
1676 sp->fip->fi_lastlength = 0;
1677
1678 sp->seg_bytes_left -= fs->lfs_sumsize;
1679 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1680
1681 return (repeat);
1682 }
1683
1684 /*
1685 * Remove SEGUSE_INVAL from all segments.
1686 */
1687 void
1688 lfs_unset_inval_all(struct lfs *fs)
1689 {
1690 SEGUSE *sup;
1691 struct buf *bp;
1692 int i;
1693
1694 for (i = 0; i < fs->lfs_nseg; i++) {
1695 LFS_SEGENTRY(sup, fs, i, bp);
1696 if (sup->su_flags & SEGUSE_INVAL) {
1697 sup->su_flags &= ~SEGUSE_INVAL;
1698 VOP_BWRITE(bp);
1699 } else
1700 brelse(bp);
1701 }
1702 }
1703
1704 /*
1705 * Return the next segment to write.
1706 */
1707 void
1708 lfs_newseg(struct lfs *fs)
1709 {
1710 CLEANERINFO *cip;
1711 SEGUSE *sup;
1712 struct buf *bp;
1713 int curseg, isdirty, sn, skip_inval;
1714
1715 ASSERT_SEGLOCK(fs);
1716
1717 /* Honor LFCNWRAPSTOP */
1718 simple_lock(&fs->lfs_interlock);
1719 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1720 wakeup(&fs->lfs_nowrap);
1721 ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
1722 &fs->lfs_interlock);
1723 }
1724 simple_unlock(&fs->lfs_interlock);
1725
1726 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1727 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1728 dtosn(fs, fs->lfs_nextseg)));
1729 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1730 sup->su_nbytes = 0;
1731 sup->su_nsums = 0;
1732 sup->su_ninos = 0;
1733 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1734
1735 LFS_CLEANERINFO(cip, fs, bp);
1736 --cip->clean;
1737 ++cip->dirty;
1738 fs->lfs_nclean = cip->clean;
1739 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1740
1741 fs->lfs_lastseg = fs->lfs_curseg;
1742 fs->lfs_curseg = fs->lfs_nextseg;
1743 skip_inval = 1;
1744 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1745 sn = (sn + 1) % fs->lfs_nseg;
1746
1747 if (sn == curseg) {
1748 if (skip_inval)
1749 skip_inval = 0;
1750 else
1751 panic("lfs_nextseg: no clean segments");
1752 }
1753 LFS_SEGENTRY(sup, fs, sn, bp);
1754 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1755 /* Check SEGUSE_EMPTY as we go along */
1756 if (isdirty && sup->su_nbytes == 0 &&
1757 !(sup->su_flags & SEGUSE_EMPTY))
1758 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1759 else
1760 brelse(bp);
1761
1762 if (!isdirty)
1763 break;
1764 }
1765 if (skip_inval == 0)
1766 lfs_unset_inval_all(fs);
1767
1768 ++fs->lfs_nactive;
1769 fs->lfs_nextseg = sntod(fs, sn);
1770 if (lfs_dostats) {
1771 ++lfs_stats.segsused;
1772 }
1773 }
1774
1775 static struct buf *
1776 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1777 {
1778 struct lfs_cluster *cl;
1779 struct buf **bpp, *bp;
1780 int s;
1781
1782 ASSERT_SEGLOCK(fs);
1783 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1784 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1785 memset(cl, 0, sizeof(*cl));
1786 cl->fs = fs;
1787 cl->bpp = bpp;
1788 cl->bufcount = 0;
1789 cl->bufsize = 0;
1790
1791 /* If this segment is being written synchronously, note that */
1792 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1793 cl->flags |= LFS_CL_SYNC;
1794 cl->seg = fs->lfs_sp;
1795 ++cl->seg->seg_iocount;
1796 }
1797
1798 /* Get an empty buffer header, or maybe one with something on it */
1799 s = splbio();
1800 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1801 splx(s);
1802 memset(bp, 0, sizeof(*bp));
1803 BUF_INIT(bp);
1804
1805 bp->b_flags = B_BUSY | B_CALL;
1806 bp->b_dev = NODEV;
1807 bp->b_blkno = bp->b_lblkno = addr;
1808 bp->b_iodone = lfs_cluster_callback;
1809 bp->b_private = cl;
1810 bp->b_vp = vp;
1811
1812 return bp;
1813 }
1814
1815 int
1816 lfs_writeseg(struct lfs *fs, struct segment *sp)
1817 {
1818 struct buf **bpp, *bp, *cbp, *newbp;
1819 SEGUSE *sup;
1820 SEGSUM *ssp;
1821 int i, s;
1822 int do_again, nblocks, byteoffset;
1823 size_t el_size;
1824 struct lfs_cluster *cl;
1825 u_short ninos;
1826 struct vnode *devvp;
1827 char *p = NULL;
1828 struct vnode *vp;
1829 int32_t *daddrp; /* XXX ondisk32 */
1830 int changed;
1831 u_int32_t sum;
1832
1833 ASSERT_SEGLOCK(fs);
1834 /*
1835 * If there are no buffers other than the segment summary to write
1836 * and it is not a checkpoint, don't do anything. On a checkpoint,
1837 * even if there aren't any buffers, you need to write the superblock.
1838 */
1839 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1840 return (0);
1841
1842 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1843
1844 /* Update the segment usage information. */
1845 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1846
1847 /* Loop through all blocks, except the segment summary. */
1848 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1849 if ((*bpp)->b_vp != devvp) {
1850 sup->su_nbytes += (*bpp)->b_bcount;
1851 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1852 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1853 sp->seg_number, (*bpp)->b_bcount,
1854 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1855 (*bpp)->b_blkno));
1856 }
1857 }
1858
1859 ssp = (SEGSUM *)sp->segsum;
1860
1861 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1862 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1863 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1864 ssp->ss_ninos));
1865 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1866 /* sup->su_nbytes += fs->lfs_sumsize; */
1867 if (fs->lfs_version == 1)
1868 sup->su_olastmod = time.tv_sec;
1869 else
1870 sup->su_lastmod = time.tv_sec;
1871 sup->su_ninos += ninos;
1872 ++sup->su_nsums;
1873 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1874
1875 do_again = !(bp->b_flags & B_GATHERED);
1876 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1877
1878 /*
1879 * Mark blocks B_BUSY, to prevent then from being changed between
1880 * the checksum computation and the actual write.
1881 *
1882 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1883 * there are any, replace them with copies that have UNASSIGNED
1884 * instead.
1885 */
1886 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1887 ++bpp;
1888 bp = *bpp;
1889 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1890 bp->b_flags |= B_BUSY;
1891 continue;
1892 }
1893
1894 simple_lock(&bp->b_interlock);
1895 s = splbio();
1896 while (bp->b_flags & B_BUSY) {
1897 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1898 " data summary corruption for ino %d, lbn %"
1899 PRId64 "\n",
1900 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1901 bp->b_flags |= B_WANTED;
1902 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1903 &bp->b_interlock);
1904 splx(s);
1905 s = splbio();
1906 }
1907 bp->b_flags |= B_BUSY;
1908 splx(s);
1909 simple_unlock(&bp->b_interlock);
1910
1911 /*
1912 * Check and replace indirect block UNWRITTEN bogosity.
1913 * XXX See comment in lfs_writefile.
1914 */
1915 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1916 VTOI(bp->b_vp)->i_ffs1_blocks !=
1917 VTOI(bp->b_vp)->i_lfs_effnblks) {
1918 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1919 VTOI(bp->b_vp)->i_number,
1920 VTOI(bp->b_vp)->i_lfs_effnblks,
1921 VTOI(bp->b_vp)->i_ffs1_blocks));
1922 /* Make a copy we'll make changes to */
1923 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1924 bp->b_bcount, LFS_NB_IBLOCK);
1925 newbp->b_blkno = bp->b_blkno;
1926 memcpy(newbp->b_data, bp->b_data,
1927 newbp->b_bcount);
1928
1929 changed = 0;
1930 /* XXX ondisk32 */
1931 for (daddrp = (int32_t *)(newbp->b_data);
1932 daddrp < (int32_t *)(newbp->b_data +
1933 newbp->b_bcount); daddrp++) {
1934 if (*daddrp == UNWRITTEN) {
1935 ++changed;
1936 *daddrp = 0;
1937 }
1938 }
1939 /*
1940 * Get rid of the old buffer. Don't mark it clean,
1941 * though, if it still has dirty data on it.
1942 */
1943 if (changed) {
1944 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1945 " bp = %p newbp = %p\n", changed, bp,
1946 newbp));
1947 *bpp = newbp;
1948 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1949 if (bp->b_flags & B_CALL) {
1950 DLOG((DLOG_SEG, "lfs_writeseg: "
1951 "indir bp should not be B_CALL\n"));
1952 s = splbio();
1953 biodone(bp);
1954 splx(s);
1955 bp = NULL;
1956 } else {
1957 /* Still on free list, leave it there */
1958 s = splbio();
1959 bp->b_flags &= ~B_BUSY;
1960 if (bp->b_flags & B_WANTED)
1961 wakeup(bp);
1962 splx(s);
1963 /*
1964 * We have to re-decrement lfs_avail
1965 * since this block is going to come
1966 * back around to us in the next
1967 * segment.
1968 */
1969 fs->lfs_avail -=
1970 btofsb(fs, bp->b_bcount);
1971 }
1972 } else {
1973 lfs_freebuf(fs, newbp);
1974 }
1975 }
1976 }
1977 /*
1978 * Compute checksum across data and then across summary; the first
1979 * block (the summary block) is skipped. Set the create time here
1980 * so that it's guaranteed to be later than the inode mod times.
1981 */
1982 sum = 0;
1983 if (fs->lfs_version == 1)
1984 el_size = sizeof(u_long);
1985 else
1986 el_size = sizeof(u_int32_t);
1987 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1988 ++bpp;
1989 /* Loop through gop_write cluster blocks */
1990 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1991 byteoffset += fs->lfs_bsize) {
1992 #ifdef LFS_USE_B_INVAL
1993 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1994 (B_CALL | B_INVAL)) {
1995 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1996 byteoffset, dp, el_size)) {
1997 panic("lfs_writeseg: copyin failed [1]:"
1998 " ino %d blk %" PRId64,
1999 VTOI((*bpp)->b_vp)->i_number,
2000 (*bpp)->b_lblkno);
2001 }
2002 } else
2003 #endif /* LFS_USE_B_INVAL */
2004 {
2005 sum = lfs_cksum_part(
2006 (*bpp)->b_data + byteoffset, el_size, sum);
2007 }
2008 }
2009 }
2010 if (fs->lfs_version == 1)
2011 ssp->ss_ocreate = time.tv_sec;
2012 else {
2013 ssp->ss_create = time.tv_sec;
2014 ssp->ss_serial = ++fs->lfs_serial;
2015 ssp->ss_ident = fs->lfs_ident;
2016 }
2017 ssp->ss_datasum = lfs_cksum_fold(sum);
2018 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2019 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2020
2021 simple_lock(&fs->lfs_interlock);
2022 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2023 btofsb(fs, fs->lfs_sumsize));
2024 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2025 btofsb(fs, fs->lfs_sumsize));
2026 simple_unlock(&fs->lfs_interlock);
2027
2028 /*
2029 * When we simply write the blocks we lose a rotation for every block
2030 * written. To avoid this problem, we cluster the buffers into a
2031 * chunk and write the chunk. MAXPHYS is the largest size I/O
2032 * devices can handle, use that for the size of the chunks.
2033 *
2034 * Blocks that are already clusters (from GOP_WRITE), however, we
2035 * don't bother to copy into other clusters.
2036 */
2037
2038 #define CHUNKSIZE MAXPHYS
2039
2040 if (devvp == NULL)
2041 panic("devvp is NULL");
2042 for (bpp = sp->bpp, i = nblocks; i;) {
2043 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2044 cl = cbp->b_private;
2045
2046 cbp->b_flags |= B_ASYNC | B_BUSY;
2047 cbp->b_bcount = 0;
2048
2049 #if defined(DEBUG) && defined(DIAGNOSTIC)
2050 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2051 / sizeof(int32_t)) {
2052 panic("lfs_writeseg: real bpp overwrite");
2053 }
2054 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2055 panic("lfs_writeseg: theoretical bpp overwrite");
2056 }
2057 #endif
2058
2059 /*
2060 * Construct the cluster.
2061 */
2062 simple_lock(&fs->lfs_interlock);
2063 ++fs->lfs_iocount;
2064 simple_unlock(&fs->lfs_interlock);
2065 while (i && cbp->b_bcount < CHUNKSIZE) {
2066 bp = *bpp;
2067
2068 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2069 break;
2070 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2071 break;
2072
2073 /* Clusters from GOP_WRITE are expedited */
2074 if (bp->b_bcount > fs->lfs_bsize) {
2075 if (cbp->b_bcount > 0)
2076 /* Put in its own buffer */
2077 break;
2078 else {
2079 cbp->b_data = bp->b_data;
2080 }
2081 } else if (cbp->b_bcount == 0) {
2082 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2083 LFS_NB_CLUSTER);
2084 cl->flags |= LFS_CL_MALLOC;
2085 }
2086 #ifdef DIAGNOSTIC
2087 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2088 btodb(bp->b_bcount - 1))) !=
2089 sp->seg_number) {
2090 printf("blk size %d daddr %" PRIx64
2091 " not in seg %d\n",
2092 bp->b_bcount, bp->b_blkno,
2093 sp->seg_number);
2094 panic("segment overwrite");
2095 }
2096 #endif
2097
2098 #ifdef LFS_USE_B_INVAL
2099 /*
2100 * Fake buffers from the cleaner are marked as B_INVAL.
2101 * We need to copy the data from user space rather than
2102 * from the buffer indicated.
2103 * XXX == what do I do on an error?
2104 */
2105 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2106 (B_CALL|B_INVAL)) {
2107 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2108 panic("lfs_writeseg: "
2109 "copyin failed [2]");
2110 } else
2111 #endif /* LFS_USE_B_INVAL */
2112 if (cl->flags & LFS_CL_MALLOC) {
2113 /* copy data into our cluster. */
2114 memcpy(p, bp->b_data, bp->b_bcount);
2115 p += bp->b_bcount;
2116 }
2117
2118 cbp->b_bcount += bp->b_bcount;
2119 cl->bufsize += bp->b_bcount;
2120
2121 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2122 cl->bpp[cl->bufcount++] = bp;
2123 vp = bp->b_vp;
2124 s = splbio();
2125 reassignbuf(bp, vp);
2126 V_INCR_NUMOUTPUT(vp);
2127 splx(s);
2128
2129 bpp++;
2130 i--;
2131 }
2132 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2133 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2134 else
2135 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2136 s = splbio();
2137 V_INCR_NUMOUTPUT(devvp);
2138 splx(s);
2139 VOP_STRATEGY(devvp, cbp);
2140 curproc->p_stats->p_ru.ru_oublock++;
2141 }
2142
2143 if (lfs_dostats) {
2144 ++lfs_stats.psegwrites;
2145 lfs_stats.blocktot += nblocks - 1;
2146 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2147 ++lfs_stats.psyncwrites;
2148 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2149 ++lfs_stats.pcleanwrites;
2150 lfs_stats.cleanblocks += nblocks - 1;
2151 }
2152 }
2153 return (lfs_initseg(fs) || do_again);
2154 }
2155
2156 void
2157 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2158 {
2159 struct buf *bp;
2160 int s;
2161 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2162
2163 ASSERT_MAYBE_SEGLOCK(fs);
2164 #ifdef DIAGNOSTIC
2165 KASSERT(fs->lfs_magic == LFS_MAGIC);
2166 #endif
2167 /*
2168 * If we can write one superblock while another is in
2169 * progress, we risk not having a complete checkpoint if we crash.
2170 * So, block here if a superblock write is in progress.
2171 */
2172 simple_lock(&fs->lfs_interlock);
2173 s = splbio();
2174 while (fs->lfs_sbactive) {
2175 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2176 &fs->lfs_interlock);
2177 }
2178 fs->lfs_sbactive = daddr;
2179 splx(s);
2180 simple_unlock(&fs->lfs_interlock);
2181
2182 /* Set timestamp of this version of the superblock */
2183 if (fs->lfs_version == 1)
2184 fs->lfs_otstamp = time.tv_sec;
2185 fs->lfs_tstamp = time.tv_sec;
2186
2187 /* Checksum the superblock and copy it into a buffer. */
2188 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2189 bp = lfs_newbuf(fs, devvp,
2190 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2191 memset(bp->b_data + sizeof(struct dlfs), 0,
2192 LFS_SBPAD - sizeof(struct dlfs));
2193 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2194
2195 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2196 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2197 bp->b_iodone = lfs_supercallback;
2198
2199 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2200 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2201 else
2202 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2203 curproc->p_stats->p_ru.ru_oublock++;
2204 s = splbio();
2205 V_INCR_NUMOUTPUT(bp->b_vp);
2206 splx(s);
2207 simple_lock(&fs->lfs_interlock);
2208 ++fs->lfs_iocount;
2209 simple_unlock(&fs->lfs_interlock);
2210 VOP_STRATEGY(devvp, bp);
2211 }
2212
2213 /*
2214 * Logical block number match routines used when traversing the dirty block
2215 * chain.
2216 */
2217 int
2218 lfs_match_fake(struct lfs *fs, struct buf *bp)
2219 {
2220
2221 ASSERT_SEGLOCK(fs);
2222 return LFS_IS_MALLOC_BUF(bp);
2223 }
2224
2225 #if 0
2226 int
2227 lfs_match_real(struct lfs *fs, struct buf *bp)
2228 {
2229
2230 ASSERT_SEGLOCK(fs);
2231 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2232 }
2233 #endif
2234
2235 int
2236 lfs_match_data(struct lfs *fs, struct buf *bp)
2237 {
2238
2239 ASSERT_SEGLOCK(fs);
2240 return (bp->b_lblkno >= 0);
2241 }
2242
2243 int
2244 lfs_match_indir(struct lfs *fs, struct buf *bp)
2245 {
2246 daddr_t lbn;
2247
2248 ASSERT_SEGLOCK(fs);
2249 lbn = bp->b_lblkno;
2250 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2251 }
2252
2253 int
2254 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2255 {
2256 daddr_t lbn;
2257
2258 ASSERT_SEGLOCK(fs);
2259 lbn = bp->b_lblkno;
2260 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2261 }
2262
2263 int
2264 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2265 {
2266 daddr_t lbn;
2267
2268 ASSERT_SEGLOCK(fs);
2269 lbn = bp->b_lblkno;
2270 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2271 }
2272
2273 /*
2274 * XXX - The only buffers that are going to hit these functions are the
2275 * segment write blocks, or the segment summaries, or the superblocks.
2276 *
2277 * All of the above are created by lfs_newbuf, and so do not need to be
2278 * released via brelse.
2279 */
2280 void
2281 lfs_callback(struct buf *bp)
2282 {
2283 struct lfs *fs;
2284
2285 fs = bp->b_private;
2286 ASSERT_NO_SEGLOCK(fs);
2287 lfs_freebuf(fs, bp);
2288 }
2289
2290 static void
2291 lfs_super_aiodone(struct buf *bp)
2292 {
2293 struct lfs *fs;
2294
2295 fs = bp->b_private;
2296 ASSERT_NO_SEGLOCK(fs);
2297 simple_lock(&fs->lfs_interlock);
2298 fs->lfs_sbactive = 0;
2299 if (--fs->lfs_iocount <= 1)
2300 wakeup(&fs->lfs_iocount);
2301 simple_unlock(&fs->lfs_interlock);
2302 wakeup(&fs->lfs_sbactive);
2303 lfs_freebuf(fs, bp);
2304 }
2305
2306 static void
2307 lfs_cluster_aiodone(struct buf *bp)
2308 {
2309 struct lfs_cluster *cl;
2310 struct lfs *fs;
2311 struct buf *tbp, *fbp;
2312 struct vnode *vp, *devvp;
2313 struct inode *ip;
2314 int s, error=0;
2315
2316 if (bp->b_flags & B_ERROR)
2317 error = bp->b_error;
2318
2319 cl = bp->b_private;
2320 fs = cl->fs;
2321 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2322 ASSERT_NO_SEGLOCK(fs);
2323
2324 /* Put the pages back, and release the buffer */
2325 while (cl->bufcount--) {
2326 tbp = cl->bpp[cl->bufcount];
2327 KASSERT(tbp->b_flags & B_BUSY);
2328 if (error) {
2329 tbp->b_flags |= B_ERROR;
2330 tbp->b_error = error;
2331 }
2332
2333 /*
2334 * We're done with tbp. If it has not been re-dirtied since
2335 * the cluster was written, free it. Otherwise, keep it on
2336 * the locked list to be written again.
2337 */
2338 vp = tbp->b_vp;
2339
2340 tbp->b_flags &= ~B_GATHERED;
2341
2342 LFS_BCLEAN_LOG(fs, tbp);
2343
2344 if (!(tbp->b_flags & B_CALL)) {
2345 KASSERT(tbp->b_flags & B_LOCKED);
2346 s = splbio();
2347 simple_lock(&bqueue_slock);
2348 bremfree(tbp);
2349 simple_unlock(&bqueue_slock);
2350 if (vp)
2351 reassignbuf(tbp, vp);
2352 splx(s);
2353 tbp->b_flags |= B_ASYNC; /* for biodone */
2354 }
2355
2356 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2357 LFS_UNLOCK_BUF(tbp);
2358
2359 if (tbp->b_flags & B_DONE) {
2360 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2361 cl->bufcount, (long)tbp->b_flags));
2362 }
2363
2364 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2365 /*
2366 * A buffer from the page daemon.
2367 * We use the same iodone as it does,
2368 * so we must manually disassociate its
2369 * buffers from the vp.
2370 */
2371 if (tbp->b_vp) {
2372 /* This is just silly */
2373 s = splbio();
2374 brelvp(tbp);
2375 tbp->b_vp = vp;
2376 splx(s);
2377 }
2378 /* Put it back the way it was */
2379 tbp->b_flags |= B_ASYNC;
2380 /* Master buffers have B_AGE */
2381 if (tbp->b_private == tbp)
2382 tbp->b_flags |= B_AGE;
2383 }
2384 s = splbio();
2385 biodone(tbp);
2386
2387 /*
2388 * If this is the last block for this vnode, but
2389 * there are other blocks on its dirty list,
2390 * set IN_MODIFIED/IN_CLEANING depending on what
2391 * sort of block. Only do this for our mount point,
2392 * not for, e.g., inode blocks that are attached to
2393 * the devvp.
2394 * XXX KS - Shouldn't we set *both* if both types
2395 * of blocks are present (traverse the dirty list?)
2396 */
2397 simple_lock(&global_v_numoutput_slock);
2398 if (vp != devvp && vp->v_numoutput == 0 &&
2399 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2400 ip = VTOI(vp);
2401 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2402 ip->i_number));
2403 if (LFS_IS_MALLOC_BUF(fbp))
2404 LFS_SET_UINO(ip, IN_CLEANING);
2405 else
2406 LFS_SET_UINO(ip, IN_MODIFIED);
2407 }
2408 simple_unlock(&global_v_numoutput_slock);
2409 splx(s);
2410 wakeup(vp);
2411 }
2412
2413 /* Fix up the cluster buffer, and release it */
2414 if (cl->flags & LFS_CL_MALLOC)
2415 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2416 s = splbio();
2417 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2418 splx(s);
2419
2420 /* Note i/o done */
2421 if (cl->flags & LFS_CL_SYNC) {
2422 if (--cl->seg->seg_iocount == 0)
2423 wakeup(&cl->seg->seg_iocount);
2424 }
2425 simple_lock(&fs->lfs_interlock);
2426 #ifdef DIAGNOSTIC
2427 if (fs->lfs_iocount == 0)
2428 panic("lfs_cluster_aiodone: zero iocount");
2429 #endif
2430 if (--fs->lfs_iocount <= 1)
2431 wakeup(&fs->lfs_iocount);
2432 simple_unlock(&fs->lfs_interlock);
2433
2434 pool_put(&fs->lfs_bpppool, cl->bpp);
2435 cl->bpp = NULL;
2436 pool_put(&fs->lfs_clpool, cl);
2437 }
2438
2439 static void
2440 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2441 {
2442 /* reset b_iodone for when this is a single-buf i/o. */
2443 bp->b_iodone = aiodone;
2444
2445 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2446 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2447 wakeup(&uvm.aiodoned);
2448 simple_unlock(&uvm.aiodoned_lock);
2449 }
2450
2451 static void
2452 lfs_cluster_callback(struct buf *bp)
2453 {
2454
2455 lfs_generic_callback(bp, lfs_cluster_aiodone);
2456 }
2457
2458 void
2459 lfs_supercallback(struct buf *bp)
2460 {
2461
2462 lfs_generic_callback(bp, lfs_super_aiodone);
2463 }
2464
2465 /*
2466 * Shellsort (diminishing increment sort) from Data Structures and
2467 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2468 * see also Knuth Vol. 3, page 84. The increments are selected from
2469 * formula (8), page 95. Roughly O(N^3/2).
2470 */
2471 /*
2472 * This is our own private copy of shellsort because we want to sort
2473 * two parallel arrays (the array of buffer pointers and the array of
2474 * logical block numbers) simultaneously. Note that we cast the array
2475 * of logical block numbers to a unsigned in this routine so that the
2476 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2477 */
2478
2479 void
2480 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2481 {
2482 static int __rsshell_increments[] = { 4, 1, 0 };
2483 int incr, *incrp, t1, t2;
2484 struct buf *bp_temp;
2485
2486 #ifdef DEBUG
2487 incr = 0;
2488 for (t1 = 0; t1 < nmemb; t1++) {
2489 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2490 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2491 /* dump before panic */
2492 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2493 nmemb, size);
2494 incr = 0;
2495 for (t1 = 0; t1 < nmemb; t1++) {
2496 const struct buf *bp = bp_array[t1];
2497
2498 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2499 PRIu64 "\n", t1,
2500 (uint64_t)bp->b_bcount,
2501 (uint64_t)bp->b_lblkno);
2502 printf("lbns:");
2503 for (t2 = 0; t2 * size < bp->b_bcount;
2504 t2++) {
2505 printf(" %" PRId32,
2506 lb_array[incr++]);
2507 }
2508 printf("\n");
2509 }
2510 panic("lfs_shellsort: inconsistent input");
2511 }
2512 }
2513 }
2514 #endif
2515
2516 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2517 for (t1 = incr; t1 < nmemb; ++t1)
2518 for (t2 = t1 - incr; t2 >= 0;)
2519 if ((u_int32_t)bp_array[t2]->b_lblkno >
2520 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2521 bp_temp = bp_array[t2];
2522 bp_array[t2] = bp_array[t2 + incr];
2523 bp_array[t2 + incr] = bp_temp;
2524 t2 -= incr;
2525 } else
2526 break;
2527
2528 /* Reform the list of logical blocks */
2529 incr = 0;
2530 for (t1 = 0; t1 < nmemb; t1++) {
2531 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2532 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2533 }
2534 }
2535 }
2536
2537 /*
2538 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2539 * however, we must press on. Just fake success in that case.
2540 */
2541 int
2542 lfs_vref(struct vnode *vp)
2543 {
2544 int error;
2545 struct lfs *fs;
2546
2547 fs = VTOI(vp)->i_lfs;
2548
2549 ASSERT_MAYBE_SEGLOCK(fs);
2550
2551 /*
2552 * If we return 1 here during a flush, we risk vinvalbuf() not
2553 * being able to flush all of the pages from this vnode, which
2554 * will cause it to panic. So, return 0 if a flush is in progress.
2555 */
2556 error = vget(vp, LK_NOWAIT);
2557 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2558 ++fs->lfs_flushvp_fakevref;
2559 return 0;
2560 }
2561 return error;
2562 }
2563
2564 /*
2565 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2566 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2567 */
2568 void
2569 lfs_vunref(struct vnode *vp)
2570 {
2571 struct lfs *fs;
2572
2573 fs = VTOI(vp)->i_lfs;
2574 ASSERT_MAYBE_SEGLOCK(fs);
2575
2576 /*
2577 * Analogous to lfs_vref, if the node is flushing, fake it.
2578 */
2579 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2580 --fs->lfs_flushvp_fakevref;
2581 return;
2582 }
2583
2584 simple_lock(&vp->v_interlock);
2585 #ifdef DIAGNOSTIC
2586 if (vp->v_usecount <= 0) {
2587 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2588 VTOI(vp)->i_number);
2589 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2590 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2591 panic("lfs_vunref: v_usecount < 0");
2592 }
2593 #endif
2594 vp->v_usecount--;
2595 if (vp->v_usecount > 0) {
2596 simple_unlock(&vp->v_interlock);
2597 return;
2598 }
2599 /*
2600 * insert at tail of LRU list
2601 */
2602 simple_lock(&vnode_free_list_slock);
2603 if (vp->v_holdcnt > 0)
2604 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2605 else
2606 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2607 simple_unlock(&vnode_free_list_slock);
2608 simple_unlock(&vp->v_interlock);
2609 }
2610
2611 /*
2612 * We use this when we have vnodes that were loaded in solely for cleaning.
2613 * There is no reason to believe that these vnodes will be referenced again
2614 * soon, since the cleaning process is unrelated to normal filesystem
2615 * activity. Putting cleaned vnodes at the tail of the list has the effect
2616 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2617 * cleaning at the head of the list, instead.
2618 */
2619 void
2620 lfs_vunref_head(struct vnode *vp)
2621 {
2622
2623 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2624 simple_lock(&vp->v_interlock);
2625 #ifdef DIAGNOSTIC
2626 if (vp->v_usecount == 0) {
2627 panic("lfs_vunref: v_usecount<0");
2628 }
2629 #endif
2630 vp->v_usecount--;
2631 if (vp->v_usecount > 0) {
2632 simple_unlock(&vp->v_interlock);
2633 return;
2634 }
2635 /*
2636 * insert at head of LRU list
2637 */
2638 simple_lock(&vnode_free_list_slock);
2639 if (vp->v_holdcnt > 0)
2640 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2641 else
2642 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2643 simple_unlock(&vnode_free_list_slock);
2644 simple_unlock(&vp->v_interlock);
2645 }
2646
2647