lfs_segment.c revision 1.158.2.11 1 /* $NetBSD: lfs_segment.c,v 1.158.2.11 2006/05/20 22:41:31 riz Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.158.2.11 2006/05/20 22:41:31 riz Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 /*
134 * Figure out whether we should do a checkpoint write or go ahead with
135 * an ordinary write.
136 */
137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
138 (fs->lfs_nactive > LFS_MAX_ACTIVE || \
139 (flags & SEGM_CKP) || \
140 fs->lfs_nclean < LFS_MAX_ACTIVE)
141
142 int lfs_match_fake(struct lfs *, struct buf *);
143 void lfs_newseg(struct lfs *);
144 /* XXX ondisk32 */
145 void lfs_shellsort(struct buf **, int32_t *, int, int);
146 void lfs_supercallback(struct buf *);
147 void lfs_updatemeta(struct segment *);
148 void lfs_writesuper(struct lfs *, daddr_t);
149 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
150 struct segment *sp, int dirops);
151
152 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
153 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
154 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
155 int lfs_dirvcount = 0; /* # active dirops */
156
157 /* Statistics Counters */
158 int lfs_dostats = 1;
159 struct lfs_stats lfs_stats;
160
161 /* op values to lfs_writevnodes */
162 #define VN_REG 0
163 #define VN_DIROP 1
164 #define VN_EMPTY 2
165 #define VN_CLEAN 3
166
167 /*
168 * XXX KS - Set modification time on the Ifile, so the cleaner can
169 * read the fs mod time off of it. We don't set IN_UPDATE here,
170 * since we don't really need this to be flushed to disk (and in any
171 * case that wouldn't happen to the Ifile until we checkpoint).
172 */
173 void
174 lfs_imtime(struct lfs *fs)
175 {
176 struct timespec ts;
177 struct inode *ip;
178
179 ASSERT_MAYBE_SEGLOCK(fs);
180 TIMEVAL_TO_TIMESPEC(&time, &ts);
181 ip = VTOI(fs->lfs_ivnode);
182 ip->i_ffs1_mtime = ts.tv_sec;
183 ip->i_ffs1_mtimensec = ts.tv_nsec;
184 }
185
186 /*
187 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
188 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
189 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
190 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
191 */
192
193 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
194
195 int
196 lfs_vflush(struct vnode *vp)
197 {
198 struct inode *ip;
199 struct lfs *fs;
200 struct segment *sp;
201 struct buf *bp, *nbp, *tbp, *tnbp;
202 int error, s;
203 int flushed;
204 int relock;
205
206 ip = VTOI(vp);
207 fs = VFSTOUFS(vp->v_mount)->um_lfs;
208 relock = 0;
209
210 top:
211 ASSERT_NO_SEGLOCK(fs);
212 if (ip->i_flag & IN_CLEANING) {
213 ivndebug(vp,"vflush/in_cleaning");
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data.
220 */
221 s = splbio();
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (!LFS_IS_MALLOC_BUF(bp))
225 continue;
226 /*
227 * Look for pages matching the range covered
228 * by cleaning blocks. It's okay if more dirty
229 * pages appear, so long as none disappear out
230 * from under us.
231 */
232 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
233 vp != fs->lfs_ivnode) {
234 struct vm_page *pg;
235 voff_t off;
236
237 simple_lock(&vp->v_interlock);
238 for (off = lblktosize(fs, bp->b_lblkno);
239 off < lblktosize(fs, bp->b_lblkno + 1);
240 off += PAGE_SIZE) {
241 pg = uvm_pagelookup(&vp->v_uobj, off);
242 if (pg == NULL)
243 continue;
244 if ((pg->flags & PG_CLEAN) == 0 ||
245 pmap_is_modified(pg)) {
246 fs->lfs_avail += btofsb(fs,
247 bp->b_bcount);
248 wakeup(&fs->lfs_avail);
249 lfs_freebuf(fs, bp);
250 bp = NULL;
251 simple_unlock(&vp->v_interlock);
252 goto nextbp;
253 }
254 }
255 simple_unlock(&vp->v_interlock);
256 }
257 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
258 tbp = tnbp)
259 {
260 tnbp = LIST_NEXT(tbp, b_vnbufs);
261 if (tbp->b_vp == bp->b_vp
262 && tbp->b_lblkno == bp->b_lblkno
263 && tbp != bp)
264 {
265 fs->lfs_avail += btofsb(fs,
266 bp->b_bcount);
267 wakeup(&fs->lfs_avail);
268 lfs_freebuf(fs, bp);
269 bp = NULL;
270 break;
271 }
272 }
273 nextbp:
274 ;
275 }
276 splx(s);
277 }
278
279 /* If the node is being written, wait until that is done */
280 simple_lock(&vp->v_interlock);
281 s = splbio();
282 if (WRITEINPROG(vp)) {
283 ivndebug(vp,"vflush/writeinprog");
284 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
285 }
286 splx(s);
287 simple_unlock(&vp->v_interlock);
288
289 /* Protect against VXLOCK deadlock in vinvalbuf() */
290 lfs_seglock(fs, SEGM_SYNC);
291
292 /* If we're supposed to flush a freed inode, just toss it */
293 /* XXX - seglock, so these buffers can't be gathered, right? */
294 if (ip->i_mode == 0) {
295 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
296 ip->i_number));
297 s = splbio();
298 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
299 nbp = LIST_NEXT(bp, b_vnbufs);
300 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
301 fs->lfs_avail += btofsb(fs, bp->b_bcount);
302 wakeup(&fs->lfs_avail);
303 }
304 /* Copied from lfs_writeseg */
305 if (bp->b_flags & B_CALL) {
306 biodone(bp);
307 } else {
308 bremfree(bp);
309 LFS_UNLOCK_BUF(bp);
310 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
311 B_GATHERED);
312 bp->b_flags |= B_DONE;
313 reassignbuf(bp, vp);
314 brelse(bp);
315 }
316 }
317 splx(s);
318 LFS_CLR_UINO(ip, IN_CLEANING);
319 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
320 ip->i_flag &= ~IN_ALLMOD;
321 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
322 ip->i_number));
323 lfs_segunlock(fs);
324 return 0;
325 }
326
327 fs->lfs_flushvp = vp;
328 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
329 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
330 fs->lfs_flushvp = NULL;
331 KASSERT(fs->lfs_flushvp_fakevref == 0);
332 lfs_segunlock(fs);
333 return error;
334 }
335 sp = fs->lfs_sp;
336
337 flushed = 0;
338 if (VPISEMPTY(vp)) {
339 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
340 ++flushed;
341 } else if ((ip->i_flag & IN_CLEANING) &&
342 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
343 ivndebug(vp,"vflush/clean");
344 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
345 ++flushed;
346 } else if (lfs_dostats) {
347 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
348 ++lfs_stats.vflush_invoked;
349 ivndebug(vp,"vflush");
350 }
351
352 #ifdef DIAGNOSTIC
353 if (vp->v_flag & VDIROP) {
354 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
355 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
356 }
357 if (vp->v_usecount < 0) {
358 printf("usecount=%ld\n", (long)vp->v_usecount);
359 panic("lfs_vflush: usecount<0");
360 }
361 #endif
362
363 do {
364 do {
365 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
366 relock = lfs_writefile(fs, sp, vp);
367 if (relock) {
368 /*
369 * Might have to wait for the
370 * cleaner to run; but we're
371 * still not done with this vnode.
372 */
373 lfs_writeinode(fs, sp, ip);
374 LFS_SET_UINO(ip, IN_MODIFIED);
375 lfs_writeseg(fs, sp);
376 lfs_segunlock(fs);
377 lfs_segunlock_relock(fs);
378 goto top;
379 }
380 }
381 /*
382 * If we begin a new segment in the middle of writing
383 * the Ifile, it creates an inconsistent checkpoint,
384 * since the Ifile information for the new segment
385 * is not up-to-date. Take care of this here by
386 * sending the Ifile through again in case there
387 * are newly dirtied blocks. But wait, there's more!
388 * This second Ifile write could *also* cross a segment
389 * boundary, if the first one was large. The second
390 * one is guaranteed to be no more than 8 blocks,
391 * though (two segment blocks and supporting indirects)
392 * so the third write *will not* cross the boundary.
393 */
394 if (vp == fs->lfs_ivnode) {
395 lfs_writefile(fs, sp, vp);
396 lfs_writefile(fs, sp, vp);
397 }
398 } while (lfs_writeinode(fs, sp, ip));
399 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
400
401 if (lfs_dostats) {
402 ++lfs_stats.nwrites;
403 if (sp->seg_flags & SEGM_SYNC)
404 ++lfs_stats.nsync_writes;
405 if (sp->seg_flags & SEGM_CKP)
406 ++lfs_stats.ncheckpoints;
407 }
408 /*
409 * If we were called from somewhere that has already held the seglock
410 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
411 * the write to complete because we are still locked.
412 * Since lfs_vflush() must return the vnode with no dirty buffers,
413 * we must explicitly wait, if that is the case.
414 *
415 * We compare the iocount against 1, not 0, because it is
416 * artificially incremented by lfs_seglock().
417 */
418 simple_lock(&fs->lfs_interlock);
419 if (fs->lfs_seglock > 1) {
420 while (fs->lfs_iocount > 1)
421 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
422 "lfs_vflush", 0, &fs->lfs_interlock);
423 }
424 simple_unlock(&fs->lfs_interlock);
425
426 lfs_segunlock(fs);
427
428 /* Wait for these buffers to be recovered by aiodoned */
429 s = splbio();
430 simple_lock(&global_v_numoutput_slock);
431 while (vp->v_numoutput > 0) {
432 vp->v_flag |= VBWAIT;
433 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
434 &global_v_numoutput_slock);
435 }
436 simple_unlock(&global_v_numoutput_slock);
437 splx(s);
438
439 fs->lfs_flushvp = NULL;
440 KASSERT(fs->lfs_flushvp_fakevref == 0);
441
442 return (0);
443 }
444
445 int
446 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
447 {
448 struct inode *ip;
449 struct vnode *vp, *nvp;
450 int inodes_written = 0, only_cleaning;
451 int error = 0;
452
453 ASSERT_SEGLOCK(fs);
454 #ifndef LFS_NO_BACKVP_HACK
455 /* BEGIN HACK */
456 #define VN_OFFSET \
457 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
458 #define BACK_VP(VP) \
459 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
460 #define BEG_OF_VLIST \
461 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
462 - VN_OFFSET))
463
464 /* Find last vnode. */
465 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
466 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
467 vp = LIST_NEXT(vp, v_mntvnodes));
468 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
469 nvp = BACK_VP(vp);
470 #else
471 loop:
472 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
473 nvp = LIST_NEXT(vp, v_mntvnodes);
474 #endif
475 /*
476 * If the vnode that we are about to sync is no longer
477 * associated with this mount point, start over.
478 */
479 if (vp->v_mount != mp) {
480 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
481 /*
482 * After this, pages might be busy
483 * due to our own previous putpages.
484 * Start actual segment write here to avoid deadlock.
485 */
486 (void)lfs_writeseg(fs, sp);
487 goto loop;
488 }
489
490 if (vp->v_type == VNON) {
491 continue;
492 }
493
494 ip = VTOI(vp);
495 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
496 (op != VN_DIROP && op != VN_CLEAN &&
497 (vp->v_flag & VDIROP))) {
498 vndebug(vp,"dirop");
499 continue;
500 }
501
502 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
503 vndebug(vp,"empty");
504 continue;
505 }
506
507 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
508 && vp != fs->lfs_flushvp
509 && !(ip->i_flag & IN_CLEANING)) {
510 vndebug(vp,"cleaning");
511 continue;
512 }
513
514 if (lfs_vref(vp)) {
515 vndebug(vp,"vref");
516 continue;
517 }
518
519 only_cleaning = 0;
520 /*
521 * Write the inode/file if dirty and it's not the IFILE.
522 */
523 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
524 only_cleaning =
525 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
526
527 if (ip->i_number != LFS_IFILE_INUM) {
528 error = lfs_writefile(fs, sp, vp);
529 if (error) {
530 lfs_vunref(vp);
531 if (error == EAGAIN) {
532 /*
533 * This error from lfs_putpages
534 * indicates we need to drop
535 * the segment lock and start
536 * over after the cleaner has
537 * had a chance to run.
538 */
539 lfs_writeinode(fs, sp, ip);
540 lfs_writeseg(fs, sp);
541 if (!VPISEMPTY(vp) &&
542 !WRITEINPROG(vp) &&
543 !(ip->i_flag & IN_ALLMOD))
544 LFS_SET_UINO(ip, IN_MODIFIED);
545 break;
546 }
547 error = 0; /* XXX not quite right */
548 continue;
549 }
550
551 if (!VPISEMPTY(vp)) {
552 if (WRITEINPROG(vp)) {
553 ivndebug(vp,"writevnodes/write2");
554 } else if (!(ip->i_flag & IN_ALLMOD)) {
555 LFS_SET_UINO(ip, IN_MODIFIED);
556 }
557 }
558 (void) lfs_writeinode(fs, sp, ip);
559 inodes_written++;
560 }
561 }
562
563 if (lfs_clean_vnhead && only_cleaning)
564 lfs_vunref_head(vp);
565 else
566 lfs_vunref(vp);
567 }
568 return error;
569 }
570
571 /*
572 * Do a checkpoint.
573 */
574 int
575 lfs_segwrite(struct mount *mp, int flags)
576 {
577 struct buf *bp;
578 struct inode *ip;
579 struct lfs *fs;
580 struct segment *sp;
581 struct vnode *vp;
582 SEGUSE *segusep;
583 int do_ckp, did_ckp, error, s;
584 unsigned n, segleft, maxseg, sn, i, curseg;
585 int writer_set = 0;
586 int dirty;
587 int redo;
588 int um_error;
589
590 fs = VFSTOUFS(mp)->um_lfs;
591 ASSERT_MAYBE_SEGLOCK(fs);
592
593 if (fs->lfs_ronly)
594 return EROFS;
595
596 lfs_imtime(fs);
597
598 /*
599 * Allocate a segment structure and enough space to hold pointers to
600 * the maximum possible number of buffers which can be described in a
601 * single summary block.
602 */
603 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
604
605 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
606 sp = fs->lfs_sp;
607
608 /*
609 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
610 * in which case we have to flush *all* buffers off of this vnode.
611 * We don't care about other nodes, but write any non-dirop nodes
612 * anyway in anticipation of another getnewvnode().
613 *
614 * If we're cleaning we only write cleaning and ifile blocks, and
615 * no dirops, since otherwise we'd risk corruption in a crash.
616 */
617 if (sp->seg_flags & SEGM_CLEAN)
618 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
619 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
620 do {
621 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
622 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
623 if (!writer_set) {
624 lfs_writer_enter(fs, "lfs writer");
625 writer_set = 1;
626 }
627 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
628 if (um_error == 0)
629 um_error = error;
630 /* In case writevnodes errored out */
631 lfs_flush_dirops(fs);
632 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
633 lfs_finalize_fs_seguse(fs);
634 }
635 if (do_ckp && um_error) {
636 lfs_segunlock_relock(fs);
637 sp = fs->lfs_sp;
638 }
639 } while (do_ckp && um_error != 0);
640 }
641
642 /*
643 * If we are doing a checkpoint, mark everything since the
644 * last checkpoint as no longer ACTIVE.
645 */
646 if (do_ckp) {
647 segleft = fs->lfs_nseg;
648 curseg = 0;
649 for (n = 0; n < fs->lfs_segtabsz; n++) {
650 dirty = 0;
651 if (bread(fs->lfs_ivnode,
652 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
653 panic("lfs_segwrite: ifile read");
654 segusep = (SEGUSE *)bp->b_data;
655 maxseg = min(segleft, fs->lfs_sepb);
656 for (i = 0; i < maxseg; i++) {
657 sn = curseg + i;
658 if (sn != dtosn(fs, fs->lfs_curseg) &&
659 segusep->su_flags & SEGUSE_ACTIVE) {
660 segusep->su_flags &= ~SEGUSE_ACTIVE;
661 --fs->lfs_nactive;
662 ++dirty;
663 }
664 fs->lfs_suflags[fs->lfs_activesb][sn] =
665 segusep->su_flags;
666 if (fs->lfs_version > 1)
667 ++segusep;
668 else
669 segusep = (SEGUSE *)
670 ((SEGUSE_V1 *)segusep + 1);
671 }
672
673 if (dirty)
674 error = LFS_BWRITE_LOG(bp); /* Ifile */
675 else
676 brelse(bp);
677 segleft -= fs->lfs_sepb;
678 curseg += fs->lfs_sepb;
679 }
680 }
681
682 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
683
684 did_ckp = 0;
685 if (do_ckp || fs->lfs_doifile) {
686 vp = fs->lfs_ivnode;
687 vn_lock(vp, LK_EXCLUSIVE);
688 do {
689 #ifdef DEBUG
690 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
691 #endif
692 simple_lock(&fs->lfs_interlock);
693 fs->lfs_flags &= ~LFS_IFDIRTY;
694 simple_unlock(&fs->lfs_interlock);
695
696 ip = VTOI(vp);
697
698 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
699 /*
700 * Ifile has no pages, so we don't need
701 * to check error return here.
702 */
703 lfs_writefile(fs, sp, vp);
704 /*
705 * Ensure the Ifile takes the current segment
706 * into account. See comment in lfs_vflush.
707 */
708 lfs_writefile(fs, sp, vp);
709 lfs_writefile(fs, sp, vp);
710 }
711
712 if (ip->i_flag & IN_ALLMOD)
713 ++did_ckp;
714 redo = lfs_writeinode(fs, sp, ip);
715 redo += lfs_writeseg(fs, sp);
716 simple_lock(&fs->lfs_interlock);
717 redo += (fs->lfs_flags & LFS_IFDIRTY);
718 simple_unlock(&fs->lfs_interlock);
719 } while (redo && do_ckp);
720
721 /*
722 * Unless we are unmounting, the Ifile may continue to have
723 * dirty blocks even after a checkpoint, due to changes to
724 * inodes' atime. If we're checkpointing, it's "impossible"
725 * for other parts of the Ifile to be dirty after the loop
726 * above, since we hold the segment lock.
727 */
728 s = splbio();
729 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
730 LFS_CLR_UINO(ip, IN_ALLMOD);
731 }
732 #ifdef DIAGNOSTIC
733 else if (do_ckp) {
734 int do_panic = 0;
735 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
736 if (bp->b_lblkno < fs->lfs_cleansz +
737 fs->lfs_segtabsz &&
738 !(bp->b_flags & B_GATHERED)) {
739 printf("ifile lbn %ld still dirty (flags %lx)\n",
740 (long)bp->b_lblkno,
741 (long)bp->b_flags);
742 ++do_panic;
743 }
744 }
745 if (do_panic)
746 panic("dirty blocks");
747 }
748 #endif
749 splx(s);
750 VOP_UNLOCK(vp, 0);
751 } else {
752 (void) lfs_writeseg(fs, sp);
753 }
754
755 /* Note Ifile no longer needs to be written */
756 fs->lfs_doifile = 0;
757 if (writer_set)
758 lfs_writer_leave(fs);
759
760 /*
761 * If we didn't write the Ifile, we didn't really do anything.
762 * That means that (1) there is a checkpoint on disk and (2)
763 * nothing has changed since it was written.
764 *
765 * Take the flags off of the segment so that lfs_segunlock
766 * doesn't have to write the superblock either.
767 */
768 if (do_ckp && !did_ckp) {
769 sp->seg_flags &= ~SEGM_CKP;
770 }
771
772 if (lfs_dostats) {
773 ++lfs_stats.nwrites;
774 if (sp->seg_flags & SEGM_SYNC)
775 ++lfs_stats.nsync_writes;
776 if (sp->seg_flags & SEGM_CKP)
777 ++lfs_stats.ncheckpoints;
778 }
779 lfs_segunlock(fs);
780 return (0);
781 }
782
783 /*
784 * Write the dirty blocks associated with a vnode.
785 */
786 int
787 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
788 {
789 struct buf *bp;
790 struct finfo *fip;
791 struct inode *ip;
792 IFILE *ifp;
793 int i, frag;
794 int error;
795
796 ASSERT_SEGLOCK(fs);
797 error = 0;
798 ip = VTOI(vp);
799
800 if (sp->seg_bytes_left < fs->lfs_bsize ||
801 sp->sum_bytes_left < sizeof(struct finfo))
802 (void) lfs_writeseg(fs, sp);
803
804 sp->sum_bytes_left -= FINFOSIZE;
805 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
806
807 if (vp->v_flag & VDIROP)
808 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
809
810 fip = sp->fip;
811 fip->fi_nblocks = 0;
812 fip->fi_ino = ip->i_number;
813 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
814 fip->fi_version = ifp->if_version;
815 brelse(bp);
816
817 if (sp->seg_flags & SEGM_CLEAN) {
818 lfs_gather(fs, sp, vp, lfs_match_fake);
819 /*
820 * For a file being flushed, we need to write *all* blocks.
821 * This means writing the cleaning blocks first, and then
822 * immediately following with any non-cleaning blocks.
823 * The same is true of the Ifile since checkpoints assume
824 * that all valid Ifile blocks are written.
825 */
826 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
827 lfs_gather(fs, sp, vp, lfs_match_data);
828 /*
829 * Don't call VOP_PUTPAGES: if we're flushing,
830 * we've already done it, and the Ifile doesn't
831 * use the page cache.
832 */
833 }
834 } else {
835 lfs_gather(fs, sp, vp, lfs_match_data);
836 /*
837 * If we're flushing, we've already called VOP_PUTPAGES
838 * so don't do it again. Otherwise, we want to write
839 * everything we've got.
840 */
841 if (!IS_FLUSHING(fs, vp)) {
842 simple_lock(&vp->v_interlock);
843 error = VOP_PUTPAGES(vp, 0, 0,
844 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
845 }
846 }
847
848 /*
849 * It may not be necessary to write the meta-data blocks at this point,
850 * as the roll-forward recovery code should be able to reconstruct the
851 * list.
852 *
853 * We have to write them anyway, though, under two conditions: (1) the
854 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
855 * checkpointing.
856 *
857 * BUT if we are cleaning, we might have indirect blocks that refer to
858 * new blocks not being written yet, in addition to fragments being
859 * moved out of a cleaned segment. If that is the case, don't
860 * write the indirect blocks, or the finfo will have a small block
861 * in the middle of it!
862 * XXX in this case isn't the inode size wrong too?
863 */
864 frag = 0;
865 if (sp->seg_flags & SEGM_CLEAN) {
866 for (i = 0; i < NDADDR; i++)
867 if (ip->i_lfs_fragsize[i] > 0 &&
868 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
869 ++frag;
870 }
871 #ifdef DIAGNOSTIC
872 if (frag > 1)
873 panic("lfs_writefile: more than one fragment!");
874 #endif
875 if (IS_FLUSHING(fs, vp) ||
876 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
877 lfs_gather(fs, sp, vp, lfs_match_indir);
878 lfs_gather(fs, sp, vp, lfs_match_dindir);
879 lfs_gather(fs, sp, vp, lfs_match_tindir);
880 }
881 fip = sp->fip;
882 if (fip->fi_nblocks != 0) {
883 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
884 sizeof(int32_t) * (fip->fi_nblocks));
885 sp->start_lbp = &sp->fip->fi_blocks[0];
886 } else {
887 sp->sum_bytes_left += FINFOSIZE;
888 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
889 }
890
891 return error;
892 }
893
894 int
895 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
896 {
897 struct buf *bp, *ibp;
898 struct ufs1_dinode *cdp;
899 IFILE *ifp;
900 SEGUSE *sup;
901 daddr_t daddr;
902 int32_t *daddrp; /* XXX ondisk32 */
903 ino_t ino;
904 int error, i, ndx, fsb = 0;
905 int redo_ifile = 0;
906 struct timespec ts;
907 int gotblk = 0;
908
909 ASSERT_SEGLOCK(fs);
910 if (!(ip->i_flag & IN_ALLMOD))
911 return (0);
912
913 /* Allocate a new inode block if necessary. */
914 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
915 sp->ibp == NULL) {
916 /* Allocate a new segment if necessary. */
917 if (sp->seg_bytes_left < fs->lfs_ibsize ||
918 sp->sum_bytes_left < sizeof(int32_t))
919 (void) lfs_writeseg(fs, sp);
920
921 /* Get next inode block. */
922 daddr = fs->lfs_offset;
923 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
924 sp->ibp = *sp->cbpp++ =
925 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
926 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
927 gotblk++;
928
929 /* Zero out inode numbers */
930 for (i = 0; i < INOPB(fs); ++i)
931 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
932 0;
933
934 ++sp->start_bpp;
935 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
936 /* Set remaining space counters. */
937 sp->seg_bytes_left -= fs->lfs_ibsize;
938 sp->sum_bytes_left -= sizeof(int32_t);
939 ndx = fs->lfs_sumsize / sizeof(int32_t) -
940 sp->ninodes / INOPB(fs) - 1;
941 ((int32_t *)(sp->segsum))[ndx] = daddr;
942 }
943
944 /* Update the inode times and copy the inode onto the inode page. */
945 TIMEVAL_TO_TIMESPEC(&time, &ts);
946 /* XXX kludge --- don't redirty the ifile just to put times on it */
947 if (ip->i_number != LFS_IFILE_INUM)
948 LFS_ITIMES(ip, &ts, &ts, &ts);
949
950 /*
951 * If this is the Ifile, and we've already written the Ifile in this
952 * partial segment, just overwrite it (it's not on disk yet) and
953 * continue.
954 *
955 * XXX we know that the bp that we get the second time around has
956 * already been gathered.
957 */
958 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
959 *(sp->idp) = *ip->i_din.ffs1_din;
960 ip->i_lfs_osize = ip->i_size;
961 return 0;
962 }
963
964 bp = sp->ibp;
965 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
966 *cdp = *ip->i_din.ffs1_din;
967
968 /* We can finish the segment accounting for truncations now */
969 lfs_finalize_ino_seguse(fs, ip);
970
971 /*
972 * If we are cleaning, ensure that we don't write UNWRITTEN disk
973 * addresses to disk; possibly change the on-disk record of
974 * the inode size, either by reverting to the previous size
975 * (in the case of cleaning) or by verifying the inode's block
976 * holdings (in the case of files being allocated as they are being
977 * written).
978 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
979 * XXX count on disk wrong by the same amount. We should be
980 * XXX able to "borrow" from lfs_avail and return it after the
981 * XXX Ifile is written. See also in lfs_writeseg.
982 */
983
984 /* Check file size based on highest allocated block */
985 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
986 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
987 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
988 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
989 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
990 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
991 }
992 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
993 if (ip->i_flags & IN_CLEANING)
994 cdp->di_size = ip->i_lfs_osize;
995 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
996 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
997 ip->i_ffs1_blocks, fs->lfs_offset));
998 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
999 daddrp++) {
1000 if (*daddrp == UNWRITTEN) {
1001 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1002 *daddrp = 0;
1003 }
1004 }
1005 } else {
1006 /* If all blocks are going to disk, update "size on disk" */
1007 ip->i_lfs_osize = ip->i_size;
1008 }
1009
1010 #ifdef DIAGNOSTIC
1011 /*
1012 * Check dinode held blocks against dinode size.
1013 * This should be identical to the check in lfs_vget().
1014 */
1015 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1016 i < NDADDR; i++) {
1017 KASSERT(i >= 0);
1018 if ((cdp->di_mode & IFMT) == IFLNK)
1019 continue;
1020 if (((cdp->di_mode & IFMT) == IFBLK ||
1021 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1022 continue;
1023 if (cdp->di_db[i] != 0) {
1024 # ifdef DEBUG
1025 lfs_dump_dinode(cdp);
1026 # endif
1027 panic("writing inconsistent inode");
1028 }
1029 }
1030 #endif /* DIAGNOSTIC */
1031
1032 if (ip->i_flag & IN_CLEANING)
1033 LFS_CLR_UINO(ip, IN_CLEANING);
1034 else {
1035 /* XXX IN_ALLMOD */
1036 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1037 IN_UPDATE | IN_MODIFY);
1038 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1039 LFS_CLR_UINO(ip, IN_MODIFIED);
1040 else
1041 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1042 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1043 ip->i_lfs_effnblks));
1044 }
1045
1046 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
1047 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1048 (sp->ninodes % INOPB(fs));
1049 if (gotblk) {
1050 LFS_LOCK_BUF(bp);
1051 brelse(bp);
1052 }
1053
1054 /* Increment inode count in segment summary block. */
1055 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1056
1057 /* If this page is full, set flag to allocate a new page. */
1058 if (++sp->ninodes % INOPB(fs) == 0)
1059 sp->ibp = NULL;
1060
1061 /*
1062 * If updating the ifile, update the super-block. Update the disk
1063 * address and access times for this inode in the ifile.
1064 */
1065 ino = ip->i_number;
1066 if (ino == LFS_IFILE_INUM) {
1067 daddr = fs->lfs_idaddr;
1068 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
1069 } else {
1070 LFS_IENTRY(ifp, fs, ino, ibp);
1071 daddr = ifp->if_daddr;
1072 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
1073 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1074 }
1075
1076 /*
1077 * The inode's last address should not be in the current partial
1078 * segment, except under exceptional circumstances (lfs_writevnodes
1079 * had to start over, and in the meantime more blocks were written
1080 * to a vnode). Both inodes will be accounted to this segment
1081 * in lfs_writeseg so we need to subtract the earlier version
1082 * here anyway. The segment count can temporarily dip below
1083 * zero here; keep track of how many duplicates we have in
1084 * "dupino" so we don't panic below.
1085 */
1086 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1087 ++sp->ndupino;
1088 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1089 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1090 (long long)daddr, sp->ndupino));
1091 }
1092 /*
1093 * Account the inode: it no longer belongs to its former segment,
1094 * though it will not belong to the new segment until that segment
1095 * is actually written.
1096 */
1097 if (daddr != LFS_UNUSED_DADDR) {
1098 u_int32_t oldsn = dtosn(fs, daddr);
1099 #ifdef DIAGNOSTIC
1100 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1101 #endif
1102 LFS_SEGENTRY(sup, fs, oldsn, bp);
1103 #ifdef DIAGNOSTIC
1104 if (sup->su_nbytes +
1105 sizeof (struct ufs1_dinode) * ndupino
1106 < sizeof (struct ufs1_dinode)) {
1107 printf("lfs_writeinode: negative bytes "
1108 "(segment %" PRIu32 " short by %d, "
1109 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1110 ", daddr=%" PRId64 ", su_nbytes=%u, "
1111 "ndupino=%d)\n",
1112 dtosn(fs, daddr),
1113 (int)sizeof (struct ufs1_dinode) *
1114 (1 - sp->ndupino) - sup->su_nbytes,
1115 oldsn, sp->seg_number, daddr,
1116 (unsigned int)sup->su_nbytes,
1117 sp->ndupino);
1118 panic("lfs_writeinode: negative bytes");
1119 sup->su_nbytes = sizeof (struct ufs1_dinode);
1120 }
1121 #endif
1122 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1123 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1124 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1125 redo_ifile =
1126 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1127 if (redo_ifile) {
1128 simple_lock(&fs->lfs_interlock);
1129 fs->lfs_flags |= LFS_IFDIRTY;
1130 simple_unlock(&fs->lfs_interlock);
1131 }
1132 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1133 }
1134 return (redo_ifile);
1135 }
1136
1137 int
1138 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1139 {
1140 struct lfs *fs;
1141 int vers;
1142 int j, blksinblk;
1143
1144 ASSERT_SEGLOCK(sp->fs);
1145 /*
1146 * If full, finish this segment. We may be doing I/O, so
1147 * release and reacquire the splbio().
1148 */
1149 #ifdef DIAGNOSTIC
1150 if (sp->vp == NULL)
1151 panic ("lfs_gatherblock: Null vp in segment");
1152 #endif
1153 fs = sp->fs;
1154 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1155 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1156 sp->seg_bytes_left < bp->b_bcount) {
1157 if (sptr)
1158 splx(*sptr);
1159 lfs_updatemeta(sp);
1160
1161 vers = sp->fip->fi_version;
1162 (void) lfs_writeseg(fs, sp);
1163
1164 sp->fip->fi_version = vers;
1165 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1166 /* Add the current file to the segment summary. */
1167 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1168 sp->sum_bytes_left -= FINFOSIZE;
1169
1170 if (sptr)
1171 *sptr = splbio();
1172 return (1);
1173 }
1174
1175 if (bp->b_flags & B_GATHERED) {
1176 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1177 " lbn %" PRId64 "\n",
1178 sp->fip->fi_ino, bp->b_lblkno));
1179 return (0);
1180 }
1181
1182 /* Insert into the buffer list, update the FINFO block. */
1183 bp->b_flags |= B_GATHERED;
1184
1185 *sp->cbpp++ = bp;
1186 for (j = 0; j < blksinblk; j++) {
1187 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1188 /* This block's accounting moves from lfs_favail to lfs_avail */
1189 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1190 }
1191
1192 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1193 sp->seg_bytes_left -= bp->b_bcount;
1194 return (0);
1195 }
1196
1197 int
1198 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1199 int (*match)(struct lfs *, struct buf *))
1200 {
1201 struct buf *bp, *nbp;
1202 int s, count = 0;
1203
1204 ASSERT_SEGLOCK(fs);
1205 if (vp->v_type == VBLK)
1206 return 0;
1207 KASSERT(sp->vp == NULL);
1208 sp->vp = vp;
1209 s = splbio();
1210
1211 #ifndef LFS_NO_BACKBUF_HACK
1212 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1213 # define BUF_OFFSET \
1214 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1215 # define BACK_BUF(BP) \
1216 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1217 # define BEG_OF_LIST \
1218 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1219
1220 loop:
1221 /* Find last buffer. */
1222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1223 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1224 bp = LIST_NEXT(bp, b_vnbufs))
1225 /* nothing */;
1226 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1227 nbp = BACK_BUF(bp);
1228 #else /* LFS_NO_BACKBUF_HACK */
1229 loop:
1230 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1231 nbp = LIST_NEXT(bp, b_vnbufs);
1232 #endif /* LFS_NO_BACKBUF_HACK */
1233 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1234 #ifdef DEBUG
1235 if (vp == fs->lfs_ivnode &&
1236 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1237 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1238 PRId64 " busy (%x)",
1239 bp->b_lblkno, bp->b_flags));
1240 #endif
1241 continue;
1242 }
1243 #ifdef DIAGNOSTIC
1244 # ifdef LFS_USE_B_INVAL
1245 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1246 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1247 " is B_INVAL\n", bp->b_lblkno));
1248 VOP_PRINT(bp->b_vp);
1249 }
1250 # endif /* LFS_USE_B_INVAL */
1251 if (!(bp->b_flags & B_DELWRI))
1252 panic("lfs_gather: bp not B_DELWRI");
1253 if (!(bp->b_flags & B_LOCKED)) {
1254 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1255 " blk %" PRId64 " not B_LOCKED\n",
1256 bp->b_lblkno,
1257 dbtofsb(fs, bp->b_blkno)));
1258 VOP_PRINT(bp->b_vp);
1259 panic("lfs_gather: bp not B_LOCKED");
1260 }
1261 #endif
1262 if (lfs_gatherblock(sp, bp, &s)) {
1263 goto loop;
1264 }
1265 count++;
1266 }
1267 splx(s);
1268 lfs_updatemeta(sp);
1269 KASSERT(sp->vp == vp);
1270 sp->vp = NULL;
1271 return count;
1272 }
1273
1274 #if DEBUG
1275 # define DEBUG_OOFF(n) do { \
1276 if (ooff == 0) { \
1277 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1278 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1279 ", was 0x0 (or %" PRId64 ")\n", \
1280 (n), ip->i_number, lbn, ndaddr, daddr)); \
1281 } \
1282 } while (0)
1283 #else
1284 # define DEBUG_OOFF(n)
1285 #endif
1286
1287 /*
1288 * Change the given block's address to ndaddr, finding its previous
1289 * location using ufs_bmaparray().
1290 *
1291 * Account for this change in the segment table.
1292 *
1293 * called with sp == NULL by roll-forwarding code.
1294 */
1295 void
1296 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1297 daddr_t lbn, int32_t ndaddr, int size)
1298 {
1299 SEGUSE *sup;
1300 struct buf *bp;
1301 struct indir a[NIADDR + 2], *ap;
1302 struct inode *ip;
1303 daddr_t daddr, ooff;
1304 int num, error;
1305 int bb, osize, obb;
1306
1307 ASSERT_SEGLOCK(fs);
1308 KASSERT(sp == NULL || sp->vp == vp);
1309 ip = VTOI(vp);
1310
1311 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1312 if (error)
1313 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1314
1315 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1316 KASSERT(daddr <= LFS_MAX_DADDR);
1317 if (daddr > 0)
1318 daddr = dbtofsb(fs, daddr);
1319
1320 bb = fragstofsb(fs, numfrags(fs, size));
1321 switch (num) {
1322 case 0:
1323 ooff = ip->i_ffs1_db[lbn];
1324 DEBUG_OOFF(0);
1325 if (ooff == UNWRITTEN)
1326 ip->i_ffs1_blocks += bb;
1327 else {
1328 /* possible fragment truncation or extension */
1329 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1330 ip->i_ffs1_blocks += (bb - obb);
1331 }
1332 ip->i_ffs1_db[lbn] = ndaddr;
1333 break;
1334 case 1:
1335 ooff = ip->i_ffs1_ib[a[0].in_off];
1336 DEBUG_OOFF(1);
1337 if (ooff == UNWRITTEN)
1338 ip->i_ffs1_blocks += bb;
1339 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1340 break;
1341 default:
1342 ap = &a[num - 1];
1343 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1344 panic("lfs_updatemeta: bread bno %" PRId64,
1345 ap->in_lbn);
1346
1347 /* XXX ondisk32 */
1348 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1349 DEBUG_OOFF(num);
1350 if (ooff == UNWRITTEN)
1351 ip->i_ffs1_blocks += bb;
1352 /* XXX ondisk32 */
1353 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1354 (void) VOP_BWRITE(bp);
1355 }
1356
1357 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1358
1359 /* Update hiblk when extending the file */
1360 if (lbn > ip->i_lfs_hiblk)
1361 ip->i_lfs_hiblk = lbn;
1362
1363 /*
1364 * Though we'd rather it couldn't, this *can* happen right now
1365 * if cleaning blocks and regular blocks coexist.
1366 */
1367 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1368
1369 /*
1370 * Update segment usage information, based on old size
1371 * and location.
1372 */
1373 if (daddr > 0) {
1374 u_int32_t oldsn = dtosn(fs, daddr);
1375 #ifdef DIAGNOSTIC
1376 int ndupino;
1377
1378 if (sp && sp->seg_number == oldsn) {
1379 ndupino = sp->ndupino;
1380 } else {
1381 ndupino = 0;
1382 }
1383 #endif
1384 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1385 if (lbn >= 0 && lbn < NDADDR)
1386 osize = ip->i_lfs_fragsize[lbn];
1387 else
1388 osize = fs->lfs_bsize;
1389 LFS_SEGENTRY(sup, fs, oldsn, bp);
1390 #ifdef DIAGNOSTIC
1391 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1392 < osize) {
1393 printf("lfs_updatemeta: negative bytes "
1394 "(segment %" PRIu32 " short by %" PRId64
1395 ")\n", dtosn(fs, daddr),
1396 (int64_t)osize -
1397 (sizeof (struct ufs1_dinode) * ndupino +
1398 sup->su_nbytes));
1399 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1400 ", addr = 0x%" PRIx64 "\n",
1401 (unsigned long long)ip->i_number, lbn, daddr);
1402 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1403 panic("lfs_updatemeta: negative bytes");
1404 sup->su_nbytes = osize -
1405 sizeof (struct ufs1_dinode) * ndupino;
1406 }
1407 #endif
1408 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1409 " db 0x%" PRIx64 "\n",
1410 dtosn(fs, daddr), osize,
1411 ip->i_number, lbn, daddr));
1412 sup->su_nbytes -= osize;
1413 if (!(bp->b_flags & B_GATHERED)) {
1414 simple_lock(&fs->lfs_interlock);
1415 fs->lfs_flags |= LFS_IFDIRTY;
1416 simple_unlock(&fs->lfs_interlock);
1417 }
1418 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1419 }
1420 /*
1421 * Now that this block has a new address, and its old
1422 * segment no longer owns it, we can forget about its
1423 * old size.
1424 */
1425 if (lbn >= 0 && lbn < NDADDR)
1426 ip->i_lfs_fragsize[lbn] = size;
1427 }
1428
1429 /*
1430 * Update the metadata that points to the blocks listed in the FINFO
1431 * array.
1432 */
1433 void
1434 lfs_updatemeta(struct segment *sp)
1435 {
1436 struct buf *sbp;
1437 struct lfs *fs;
1438 struct vnode *vp;
1439 daddr_t lbn;
1440 int i, nblocks, num;
1441 int bb;
1442 int bytesleft, size;
1443
1444 ASSERT_SEGLOCK(sp->fs);
1445 vp = sp->vp;
1446 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1447 KASSERT(nblocks >= 0);
1448 KASSERT(vp != NULL);
1449 if (nblocks == 0)
1450 return;
1451
1452 /*
1453 * This count may be high due to oversize blocks from lfs_gop_write.
1454 * Correct for this. (XXX we should be able to keep track of these.)
1455 */
1456 fs = sp->fs;
1457 for (i = 0; i < nblocks; i++) {
1458 if (sp->start_bpp[i] == NULL) {
1459 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1460 nblocks = i;
1461 break;
1462 }
1463 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1464 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1465 nblocks -= num - 1;
1466 }
1467
1468 KASSERT(vp->v_type == VREG ||
1469 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1470 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1471
1472 /*
1473 * Sort the blocks.
1474 *
1475 * We have to sort even if the blocks come from the
1476 * cleaner, because there might be other pending blocks on the
1477 * same inode...and if we don't sort, and there are fragments
1478 * present, blocks may be written in the wrong place.
1479 */
1480 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1481
1482 /*
1483 * Record the length of the last block in case it's a fragment.
1484 * If there are indirect blocks present, they sort last. An
1485 * indirect block will be lfs_bsize and its presence indicates
1486 * that you cannot have fragments.
1487 *
1488 * XXX This last is a lie. A cleaned fragment can coexist with
1489 * XXX a later indirect block. This will continue to be
1490 * XXX true until lfs_markv is fixed to do everything with
1491 * XXX fake blocks (including fake inodes and fake indirect blocks).
1492 */
1493 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1494 fs->lfs_bmask) + 1;
1495
1496 /*
1497 * Assign disk addresses, and update references to the logical
1498 * block and the segment usage information.
1499 */
1500 for (i = nblocks; i--; ++sp->start_bpp) {
1501 sbp = *sp->start_bpp;
1502 lbn = *sp->start_lbp;
1503 KASSERT(sbp->b_lblkno == lbn);
1504
1505 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1506
1507 /*
1508 * If we write a frag in the wrong place, the cleaner won't
1509 * be able to correctly identify its size later, and the
1510 * segment will be uncleanable. (Even worse, it will assume
1511 * that the indirect block that actually ends the list
1512 * is of a smaller size!)
1513 */
1514 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1515 panic("lfs_updatemeta: fragment is not last block");
1516
1517 /*
1518 * For each subblock in this possibly oversized block,
1519 * update its address on disk.
1520 */
1521 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1522 KASSERT(vp == sbp->b_vp);
1523 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1524 bytesleft -= fs->lfs_bsize) {
1525 size = MIN(bytesleft, fs->lfs_bsize);
1526 bb = fragstofsb(fs, numfrags(fs, size));
1527 lbn = *sp->start_lbp++;
1528 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1529 size);
1530 fs->lfs_offset += bb;
1531 }
1532
1533 }
1534 }
1535
1536 /*
1537 * Move lfs_offset to a segment earlier than sn.
1538 */
1539 int
1540 lfs_rewind(struct lfs *fs, int newsn)
1541 {
1542 int sn, osn, isdirty;
1543 struct buf *bp;
1544 SEGUSE *sup;
1545
1546 ASSERT_SEGLOCK(fs);
1547
1548 osn = dtosn(fs, fs->lfs_offset);
1549 if (osn < newsn)
1550 return 0;
1551
1552 /* lfs_avail eats the remaining space in this segment */
1553 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1554
1555 /* Find a low-numbered segment */
1556 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1557 LFS_SEGENTRY(sup, fs, sn, bp);
1558 isdirty = sup->su_flags & SEGUSE_DIRTY;
1559 brelse(bp);
1560
1561 if (!isdirty)
1562 break;
1563 }
1564 if (sn == fs->lfs_nseg)
1565 panic("lfs_rewind: no clean segments");
1566 if (sn >= newsn)
1567 return ENOENT;
1568 fs->lfs_nextseg = sn;
1569 lfs_newseg(fs);
1570 fs->lfs_offset = fs->lfs_curseg;
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * Start a new partial segment.
1577 *
1578 * Return 1 when we entered to a new segment.
1579 * Otherwise, return 0.
1580 */
1581 int
1582 lfs_initseg(struct lfs *fs)
1583 {
1584 struct segment *sp = fs->lfs_sp;
1585 SEGSUM *ssp;
1586 struct buf *sbp; /* buffer for SEGSUM */
1587 int repeat = 0; /* return value */
1588
1589 ASSERT_SEGLOCK(fs);
1590 /* Advance to the next segment. */
1591 if (!LFS_PARTIAL_FITS(fs)) {
1592 SEGUSE *sup;
1593 struct buf *bp;
1594
1595 /* lfs_avail eats the remaining space */
1596 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1597 fs->lfs_curseg);
1598 /* Wake up any cleaning procs waiting on this file system. */
1599 wakeup(&lfs_allclean_wakeup);
1600 wakeup(&fs->lfs_nextseg);
1601 lfs_newseg(fs);
1602 repeat = 1;
1603 fs->lfs_offset = fs->lfs_curseg;
1604
1605 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1606 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1607
1608 /*
1609 * If the segment contains a superblock, update the offset
1610 * and summary address to skip over it.
1611 */
1612 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1613 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1614 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1615 sp->seg_bytes_left -= LFS_SBPAD;
1616 }
1617 brelse(bp);
1618 /* Segment zero could also contain the labelpad */
1619 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1620 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1621 fs->lfs_offset +=
1622 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1623 sp->seg_bytes_left -=
1624 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1625 }
1626 } else {
1627 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1628 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1629 (fs->lfs_offset - fs->lfs_curseg));
1630 }
1631 fs->lfs_lastpseg = fs->lfs_offset;
1632
1633 /* Record first address of this partial segment */
1634 if (sp->seg_flags & SEGM_CLEAN) {
1635 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1636 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1637 /* "1" is the artificial inc in lfs_seglock */
1638 simple_lock(&fs->lfs_interlock);
1639 while (fs->lfs_iocount > 1) {
1640 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1641 "lfs_initseg", 0, &fs->lfs_interlock);
1642 }
1643 simple_unlock(&fs->lfs_interlock);
1644 fs->lfs_cleanind = 0;
1645 }
1646 }
1647
1648 sp->fs = fs;
1649 sp->ibp = NULL;
1650 sp->idp = NULL;
1651 sp->ninodes = 0;
1652 sp->ndupino = 0;
1653
1654 sp->cbpp = sp->bpp;
1655
1656 /* Get a new buffer for SEGSUM */
1657 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1658 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1659
1660 /* ... and enter it into the buffer list. */
1661 *sp->cbpp = sbp;
1662 sp->cbpp++;
1663 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1664
1665 sp->start_bpp = sp->cbpp;
1666
1667 /* Set point to SEGSUM, initialize it. */
1668 ssp = sp->segsum = sbp->b_data;
1669 memset(ssp, 0, fs->lfs_sumsize);
1670 ssp->ss_next = fs->lfs_nextseg;
1671 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1672 ssp->ss_magic = SS_MAGIC;
1673
1674 /* Set pointer to first FINFO, initialize it. */
1675 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1676 sp->fip->fi_nblocks = 0;
1677 sp->start_lbp = &sp->fip->fi_blocks[0];
1678 sp->fip->fi_lastlength = 0;
1679
1680 sp->seg_bytes_left -= fs->lfs_sumsize;
1681 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1682
1683 return (repeat);
1684 }
1685
1686 /*
1687 * Remove SEGUSE_INVAL from all segments.
1688 */
1689 void
1690 lfs_unset_inval_all(struct lfs *fs)
1691 {
1692 SEGUSE *sup;
1693 struct buf *bp;
1694 int i;
1695
1696 for (i = 0; i < fs->lfs_nseg; i++) {
1697 LFS_SEGENTRY(sup, fs, i, bp);
1698 if (sup->su_flags & SEGUSE_INVAL) {
1699 sup->su_flags &= ~SEGUSE_INVAL;
1700 VOP_BWRITE(bp);
1701 } else
1702 brelse(bp);
1703 }
1704 }
1705
1706 /*
1707 * Return the next segment to write.
1708 */
1709 void
1710 lfs_newseg(struct lfs *fs)
1711 {
1712 CLEANERINFO *cip;
1713 SEGUSE *sup;
1714 struct buf *bp;
1715 int curseg, isdirty, sn, skip_inval;
1716
1717 ASSERT_SEGLOCK(fs);
1718
1719 /* Honor LFCNWRAPSTOP */
1720 simple_lock(&fs->lfs_interlock);
1721 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1722 wakeup(&fs->lfs_nowrap);
1723 ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
1724 &fs->lfs_interlock);
1725 }
1726 simple_unlock(&fs->lfs_interlock);
1727
1728 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1729 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1730 dtosn(fs, fs->lfs_nextseg)));
1731 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1732 sup->su_nbytes = 0;
1733 sup->su_nsums = 0;
1734 sup->su_ninos = 0;
1735 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1736
1737 LFS_CLEANERINFO(cip, fs, bp);
1738 --cip->clean;
1739 ++cip->dirty;
1740 fs->lfs_nclean = cip->clean;
1741 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1742
1743 fs->lfs_lastseg = fs->lfs_curseg;
1744 fs->lfs_curseg = fs->lfs_nextseg;
1745 skip_inval = 1;
1746 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1747 sn = (sn + 1) % fs->lfs_nseg;
1748
1749 if (sn == curseg) {
1750 if (skip_inval)
1751 skip_inval = 0;
1752 else
1753 panic("lfs_nextseg: no clean segments");
1754 }
1755 LFS_SEGENTRY(sup, fs, sn, bp);
1756 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1757 /* Check SEGUSE_EMPTY as we go along */
1758 if (isdirty && sup->su_nbytes == 0 &&
1759 !(sup->su_flags & SEGUSE_EMPTY))
1760 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1761 else
1762 brelse(bp);
1763
1764 if (!isdirty)
1765 break;
1766 }
1767 if (skip_inval == 0)
1768 lfs_unset_inval_all(fs);
1769
1770 ++fs->lfs_nactive;
1771 fs->lfs_nextseg = sntod(fs, sn);
1772 if (lfs_dostats) {
1773 ++lfs_stats.segsused;
1774 }
1775 }
1776
1777 static struct buf *
1778 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1779 {
1780 struct lfs_cluster *cl;
1781 struct buf **bpp, *bp;
1782 int s;
1783
1784 ASSERT_SEGLOCK(fs);
1785 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1786 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1787 memset(cl, 0, sizeof(*cl));
1788 cl->fs = fs;
1789 cl->bpp = bpp;
1790 cl->bufcount = 0;
1791 cl->bufsize = 0;
1792
1793 /* If this segment is being written synchronously, note that */
1794 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1795 cl->flags |= LFS_CL_SYNC;
1796 cl->seg = fs->lfs_sp;
1797 ++cl->seg->seg_iocount;
1798 }
1799
1800 /* Get an empty buffer header, or maybe one with something on it */
1801 s = splbio();
1802 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1803 splx(s);
1804 memset(bp, 0, sizeof(*bp));
1805 BUF_INIT(bp);
1806
1807 bp->b_flags = B_BUSY | B_CALL;
1808 bp->b_dev = NODEV;
1809 bp->b_blkno = bp->b_lblkno = addr;
1810 bp->b_iodone = lfs_cluster_callback;
1811 bp->b_private = cl;
1812 bp->b_vp = vp;
1813
1814 return bp;
1815 }
1816
1817 int
1818 lfs_writeseg(struct lfs *fs, struct segment *sp)
1819 {
1820 struct buf **bpp, *bp, *cbp, *newbp;
1821 SEGUSE *sup;
1822 SEGSUM *ssp;
1823 int i, s;
1824 int do_again, nblocks, byteoffset;
1825 size_t el_size;
1826 struct lfs_cluster *cl;
1827 u_short ninos;
1828 struct vnode *devvp;
1829 char *p = NULL;
1830 struct vnode *vp;
1831 int32_t *daddrp; /* XXX ondisk32 */
1832 int changed;
1833 u_int32_t sum;
1834
1835 ASSERT_SEGLOCK(fs);
1836 /*
1837 * If there are no buffers other than the segment summary to write
1838 * and it is not a checkpoint, don't do anything. On a checkpoint,
1839 * even if there aren't any buffers, you need to write the superblock.
1840 */
1841 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1842 return (0);
1843
1844 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1845
1846 /* Update the segment usage information. */
1847 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1848
1849 /* Loop through all blocks, except the segment summary. */
1850 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1851 if ((*bpp)->b_vp != devvp) {
1852 sup->su_nbytes += (*bpp)->b_bcount;
1853 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1854 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1855 sp->seg_number, (*bpp)->b_bcount,
1856 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1857 (*bpp)->b_blkno));
1858 }
1859 }
1860
1861 ssp = (SEGSUM *)sp->segsum;
1862
1863 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1864 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1865 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1866 ssp->ss_ninos));
1867 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1868 /* sup->su_nbytes += fs->lfs_sumsize; */
1869 if (fs->lfs_version == 1)
1870 sup->su_olastmod = time.tv_sec;
1871 else
1872 sup->su_lastmod = time.tv_sec;
1873 sup->su_ninos += ninos;
1874 ++sup->su_nsums;
1875 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1876
1877 do_again = !(bp->b_flags & B_GATHERED);
1878 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1879
1880 /*
1881 * Mark blocks B_BUSY, to prevent then from being changed between
1882 * the checksum computation and the actual write.
1883 *
1884 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1885 * there are any, replace them with copies that have UNASSIGNED
1886 * instead.
1887 */
1888 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1889 ++bpp;
1890 bp = *bpp;
1891 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1892 bp->b_flags |= B_BUSY;
1893 continue;
1894 }
1895
1896 simple_lock(&bp->b_interlock);
1897 s = splbio();
1898 while (bp->b_flags & B_BUSY) {
1899 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1900 " data summary corruption for ino %d, lbn %"
1901 PRId64 "\n",
1902 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1903 bp->b_flags |= B_WANTED;
1904 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1905 &bp->b_interlock);
1906 splx(s);
1907 s = splbio();
1908 }
1909 bp->b_flags |= B_BUSY;
1910 splx(s);
1911 simple_unlock(&bp->b_interlock);
1912
1913 /*
1914 * Check and replace indirect block UNWRITTEN bogosity.
1915 * XXX See comment in lfs_writefile.
1916 */
1917 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1918 VTOI(bp->b_vp)->i_ffs1_blocks !=
1919 VTOI(bp->b_vp)->i_lfs_effnblks) {
1920 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1921 VTOI(bp->b_vp)->i_number,
1922 VTOI(bp->b_vp)->i_lfs_effnblks,
1923 VTOI(bp->b_vp)->i_ffs1_blocks));
1924 /* Make a copy we'll make changes to */
1925 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1926 bp->b_bcount, LFS_NB_IBLOCK);
1927 newbp->b_blkno = bp->b_blkno;
1928 memcpy(newbp->b_data, bp->b_data,
1929 newbp->b_bcount);
1930
1931 changed = 0;
1932 /* XXX ondisk32 */
1933 for (daddrp = (int32_t *)(newbp->b_data);
1934 daddrp < (int32_t *)(newbp->b_data +
1935 newbp->b_bcount); daddrp++) {
1936 if (*daddrp == UNWRITTEN) {
1937 ++changed;
1938 *daddrp = 0;
1939 }
1940 }
1941 /*
1942 * Get rid of the old buffer. Don't mark it clean,
1943 * though, if it still has dirty data on it.
1944 */
1945 if (changed) {
1946 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1947 " bp = %p newbp = %p\n", changed, bp,
1948 newbp));
1949 *bpp = newbp;
1950 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1951 if (bp->b_flags & B_CALL) {
1952 DLOG((DLOG_SEG, "lfs_writeseg: "
1953 "indir bp should not be B_CALL\n"));
1954 s = splbio();
1955 biodone(bp);
1956 splx(s);
1957 bp = NULL;
1958 } else {
1959 /* Still on free list, leave it there */
1960 s = splbio();
1961 bp->b_flags &= ~B_BUSY;
1962 if (bp->b_flags & B_WANTED)
1963 wakeup(bp);
1964 splx(s);
1965 /*
1966 * We have to re-decrement lfs_avail
1967 * since this block is going to come
1968 * back around to us in the next
1969 * segment.
1970 */
1971 fs->lfs_avail -=
1972 btofsb(fs, bp->b_bcount);
1973 }
1974 } else {
1975 lfs_freebuf(fs, newbp);
1976 }
1977 }
1978 }
1979 /*
1980 * Compute checksum across data and then across summary; the first
1981 * block (the summary block) is skipped. Set the create time here
1982 * so that it's guaranteed to be later than the inode mod times.
1983 */
1984 sum = 0;
1985 if (fs->lfs_version == 1)
1986 el_size = sizeof(u_long);
1987 else
1988 el_size = sizeof(u_int32_t);
1989 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1990 ++bpp;
1991 /* Loop through gop_write cluster blocks */
1992 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1993 byteoffset += fs->lfs_bsize) {
1994 #ifdef LFS_USE_B_INVAL
1995 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1996 (B_CALL | B_INVAL)) {
1997 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1998 byteoffset, dp, el_size)) {
1999 panic("lfs_writeseg: copyin failed [1]:"
2000 " ino %d blk %" PRId64,
2001 VTOI((*bpp)->b_vp)->i_number,
2002 (*bpp)->b_lblkno);
2003 }
2004 } else
2005 #endif /* LFS_USE_B_INVAL */
2006 {
2007 sum = lfs_cksum_part(
2008 (*bpp)->b_data + byteoffset, el_size, sum);
2009 }
2010 }
2011 }
2012 if (fs->lfs_version == 1)
2013 ssp->ss_ocreate = time.tv_sec;
2014 else {
2015 ssp->ss_create = time.tv_sec;
2016 ssp->ss_serial = ++fs->lfs_serial;
2017 ssp->ss_ident = fs->lfs_ident;
2018 }
2019 ssp->ss_datasum = lfs_cksum_fold(sum);
2020 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2021 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2022
2023 simple_lock(&fs->lfs_interlock);
2024 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2025 btofsb(fs, fs->lfs_sumsize));
2026 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2027 btofsb(fs, fs->lfs_sumsize));
2028 simple_unlock(&fs->lfs_interlock);
2029
2030 /*
2031 * When we simply write the blocks we lose a rotation for every block
2032 * written. To avoid this problem, we cluster the buffers into a
2033 * chunk and write the chunk. MAXPHYS is the largest size I/O
2034 * devices can handle, use that for the size of the chunks.
2035 *
2036 * Blocks that are already clusters (from GOP_WRITE), however, we
2037 * don't bother to copy into other clusters.
2038 */
2039
2040 #define CHUNKSIZE MAXPHYS
2041
2042 if (devvp == NULL)
2043 panic("devvp is NULL");
2044 for (bpp = sp->bpp, i = nblocks; i;) {
2045 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2046 cl = cbp->b_private;
2047
2048 cbp->b_flags |= B_ASYNC | B_BUSY;
2049 cbp->b_bcount = 0;
2050
2051 #if defined(DEBUG) && defined(DIAGNOSTIC)
2052 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2053 / sizeof(int32_t)) {
2054 panic("lfs_writeseg: real bpp overwrite");
2055 }
2056 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2057 panic("lfs_writeseg: theoretical bpp overwrite");
2058 }
2059 #endif
2060
2061 /*
2062 * Construct the cluster.
2063 */
2064 simple_lock(&fs->lfs_interlock);
2065 ++fs->lfs_iocount;
2066 simple_unlock(&fs->lfs_interlock);
2067 while (i && cbp->b_bcount < CHUNKSIZE) {
2068 bp = *bpp;
2069
2070 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2071 break;
2072 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2073 break;
2074
2075 /* Clusters from GOP_WRITE are expedited */
2076 if (bp->b_bcount > fs->lfs_bsize) {
2077 if (cbp->b_bcount > 0)
2078 /* Put in its own buffer */
2079 break;
2080 else {
2081 cbp->b_data = bp->b_data;
2082 }
2083 } else if (cbp->b_bcount == 0) {
2084 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2085 LFS_NB_CLUSTER);
2086 cl->flags |= LFS_CL_MALLOC;
2087 }
2088 #ifdef DIAGNOSTIC
2089 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2090 btodb(bp->b_bcount - 1))) !=
2091 sp->seg_number) {
2092 printf("blk size %d daddr %" PRIx64
2093 " not in seg %d\n",
2094 bp->b_bcount, bp->b_blkno,
2095 sp->seg_number);
2096 panic("segment overwrite");
2097 }
2098 #endif
2099
2100 #ifdef LFS_USE_B_INVAL
2101 /*
2102 * Fake buffers from the cleaner are marked as B_INVAL.
2103 * We need to copy the data from user space rather than
2104 * from the buffer indicated.
2105 * XXX == what do I do on an error?
2106 */
2107 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2108 (B_CALL|B_INVAL)) {
2109 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2110 panic("lfs_writeseg: "
2111 "copyin failed [2]");
2112 } else
2113 #endif /* LFS_USE_B_INVAL */
2114 if (cl->flags & LFS_CL_MALLOC) {
2115 /* copy data into our cluster. */
2116 memcpy(p, bp->b_data, bp->b_bcount);
2117 p += bp->b_bcount;
2118 }
2119
2120 cbp->b_bcount += bp->b_bcount;
2121 cl->bufsize += bp->b_bcount;
2122
2123 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2124 cl->bpp[cl->bufcount++] = bp;
2125 vp = bp->b_vp;
2126 s = splbio();
2127 reassignbuf(bp, vp);
2128 V_INCR_NUMOUTPUT(vp);
2129 splx(s);
2130
2131 bpp++;
2132 i--;
2133 }
2134 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2135 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2136 else
2137 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2138 s = splbio();
2139 V_INCR_NUMOUTPUT(devvp);
2140 splx(s);
2141 VOP_STRATEGY(devvp, cbp);
2142 curproc->p_stats->p_ru.ru_oublock++;
2143 }
2144
2145 if (lfs_dostats) {
2146 ++lfs_stats.psegwrites;
2147 lfs_stats.blocktot += nblocks - 1;
2148 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2149 ++lfs_stats.psyncwrites;
2150 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2151 ++lfs_stats.pcleanwrites;
2152 lfs_stats.cleanblocks += nblocks - 1;
2153 }
2154 }
2155 return (lfs_initseg(fs) || do_again);
2156 }
2157
2158 void
2159 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2160 {
2161 struct buf *bp;
2162 int s;
2163 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2164
2165 ASSERT_MAYBE_SEGLOCK(fs);
2166 #ifdef DIAGNOSTIC
2167 KASSERT(fs->lfs_magic == LFS_MAGIC);
2168 #endif
2169 /*
2170 * If we can write one superblock while another is in
2171 * progress, we risk not having a complete checkpoint if we crash.
2172 * So, block here if a superblock write is in progress.
2173 */
2174 simple_lock(&fs->lfs_interlock);
2175 s = splbio();
2176 while (fs->lfs_sbactive) {
2177 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2178 &fs->lfs_interlock);
2179 }
2180 fs->lfs_sbactive = daddr;
2181 splx(s);
2182 simple_unlock(&fs->lfs_interlock);
2183
2184 /* Set timestamp of this version of the superblock */
2185 if (fs->lfs_version == 1)
2186 fs->lfs_otstamp = time.tv_sec;
2187 fs->lfs_tstamp = time.tv_sec;
2188
2189 /* Checksum the superblock and copy it into a buffer. */
2190 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2191 bp = lfs_newbuf(fs, devvp,
2192 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2193 memset(bp->b_data + sizeof(struct dlfs), 0,
2194 LFS_SBPAD - sizeof(struct dlfs));
2195 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2196
2197 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2198 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2199 bp->b_iodone = lfs_supercallback;
2200
2201 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2202 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2203 else
2204 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2205 curproc->p_stats->p_ru.ru_oublock++;
2206 s = splbio();
2207 V_INCR_NUMOUTPUT(bp->b_vp);
2208 splx(s);
2209 simple_lock(&fs->lfs_interlock);
2210 ++fs->lfs_iocount;
2211 simple_unlock(&fs->lfs_interlock);
2212 VOP_STRATEGY(devvp, bp);
2213 }
2214
2215 /*
2216 * Logical block number match routines used when traversing the dirty block
2217 * chain.
2218 */
2219 int
2220 lfs_match_fake(struct lfs *fs, struct buf *bp)
2221 {
2222
2223 ASSERT_SEGLOCK(fs);
2224 return LFS_IS_MALLOC_BUF(bp);
2225 }
2226
2227 #if 0
2228 int
2229 lfs_match_real(struct lfs *fs, struct buf *bp)
2230 {
2231
2232 ASSERT_SEGLOCK(fs);
2233 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2234 }
2235 #endif
2236
2237 int
2238 lfs_match_data(struct lfs *fs, struct buf *bp)
2239 {
2240
2241 ASSERT_SEGLOCK(fs);
2242 return (bp->b_lblkno >= 0);
2243 }
2244
2245 int
2246 lfs_match_indir(struct lfs *fs, struct buf *bp)
2247 {
2248 daddr_t lbn;
2249
2250 ASSERT_SEGLOCK(fs);
2251 lbn = bp->b_lblkno;
2252 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2253 }
2254
2255 int
2256 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2257 {
2258 daddr_t lbn;
2259
2260 ASSERT_SEGLOCK(fs);
2261 lbn = bp->b_lblkno;
2262 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2263 }
2264
2265 int
2266 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2267 {
2268 daddr_t lbn;
2269
2270 ASSERT_SEGLOCK(fs);
2271 lbn = bp->b_lblkno;
2272 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2273 }
2274
2275 /*
2276 * XXX - The only buffers that are going to hit these functions are the
2277 * segment write blocks, or the segment summaries, or the superblocks.
2278 *
2279 * All of the above are created by lfs_newbuf, and so do not need to be
2280 * released via brelse.
2281 */
2282 void
2283 lfs_callback(struct buf *bp)
2284 {
2285 struct lfs *fs;
2286
2287 fs = bp->b_private;
2288 ASSERT_NO_SEGLOCK(fs);
2289 lfs_freebuf(fs, bp);
2290 }
2291
2292 static void
2293 lfs_super_aiodone(struct buf *bp)
2294 {
2295 struct lfs *fs;
2296
2297 fs = bp->b_private;
2298 ASSERT_NO_SEGLOCK(fs);
2299 simple_lock(&fs->lfs_interlock);
2300 fs->lfs_sbactive = 0;
2301 if (--fs->lfs_iocount <= 1)
2302 wakeup(&fs->lfs_iocount);
2303 simple_unlock(&fs->lfs_interlock);
2304 wakeup(&fs->lfs_sbactive);
2305 lfs_freebuf(fs, bp);
2306 }
2307
2308 static void
2309 lfs_cluster_aiodone(struct buf *bp)
2310 {
2311 struct lfs_cluster *cl;
2312 struct lfs *fs;
2313 struct buf *tbp, *fbp;
2314 struct vnode *vp, *devvp;
2315 struct inode *ip;
2316 int s, error=0;
2317
2318 if (bp->b_flags & B_ERROR)
2319 error = bp->b_error;
2320
2321 cl = bp->b_private;
2322 fs = cl->fs;
2323 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2324 ASSERT_NO_SEGLOCK(fs);
2325
2326 /* Put the pages back, and release the buffer */
2327 while (cl->bufcount--) {
2328 tbp = cl->bpp[cl->bufcount];
2329 KASSERT(tbp->b_flags & B_BUSY);
2330 if (error) {
2331 tbp->b_flags |= B_ERROR;
2332 tbp->b_error = error;
2333 }
2334
2335 /*
2336 * We're done with tbp. If it has not been re-dirtied since
2337 * the cluster was written, free it. Otherwise, keep it on
2338 * the locked list to be written again.
2339 */
2340 vp = tbp->b_vp;
2341
2342 tbp->b_flags &= ~B_GATHERED;
2343
2344 LFS_BCLEAN_LOG(fs, tbp);
2345
2346 if (!(tbp->b_flags & B_CALL)) {
2347 KASSERT(tbp->b_flags & B_LOCKED);
2348 s = splbio();
2349 simple_lock(&bqueue_slock);
2350 bremfree(tbp);
2351 simple_unlock(&bqueue_slock);
2352 if (vp)
2353 reassignbuf(tbp, vp);
2354 splx(s);
2355 tbp->b_flags |= B_ASYNC; /* for biodone */
2356 }
2357
2358 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2359 LFS_UNLOCK_BUF(tbp);
2360
2361 if (tbp->b_flags & B_DONE) {
2362 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2363 cl->bufcount, (long)tbp->b_flags));
2364 }
2365
2366 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2367 /*
2368 * A buffer from the page daemon.
2369 * We use the same iodone as it does,
2370 * so we must manually disassociate its
2371 * buffers from the vp.
2372 */
2373 if (tbp->b_vp) {
2374 /* This is just silly */
2375 s = splbio();
2376 brelvp(tbp);
2377 tbp->b_vp = vp;
2378 splx(s);
2379 }
2380 /* Put it back the way it was */
2381 tbp->b_flags |= B_ASYNC;
2382 /* Master buffers have B_AGE */
2383 if (tbp->b_private == tbp)
2384 tbp->b_flags |= B_AGE;
2385 }
2386 s = splbio();
2387 biodone(tbp);
2388
2389 /*
2390 * If this is the last block for this vnode, but
2391 * there are other blocks on its dirty list,
2392 * set IN_MODIFIED/IN_CLEANING depending on what
2393 * sort of block. Only do this for our mount point,
2394 * not for, e.g., inode blocks that are attached to
2395 * the devvp.
2396 * XXX KS - Shouldn't we set *both* if both types
2397 * of blocks are present (traverse the dirty list?)
2398 */
2399 simple_lock(&global_v_numoutput_slock);
2400 if (vp != devvp && vp->v_numoutput == 0 &&
2401 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2402 ip = VTOI(vp);
2403 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2404 ip->i_number));
2405 if (LFS_IS_MALLOC_BUF(fbp))
2406 LFS_SET_UINO(ip, IN_CLEANING);
2407 else
2408 LFS_SET_UINO(ip, IN_MODIFIED);
2409 }
2410 simple_unlock(&global_v_numoutput_slock);
2411 splx(s);
2412 wakeup(vp);
2413 }
2414
2415 /* Fix up the cluster buffer, and release it */
2416 if (cl->flags & LFS_CL_MALLOC)
2417 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2418 s = splbio();
2419 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2420 splx(s);
2421
2422 /* Note i/o done */
2423 if (cl->flags & LFS_CL_SYNC) {
2424 if (--cl->seg->seg_iocount == 0)
2425 wakeup(&cl->seg->seg_iocount);
2426 }
2427 simple_lock(&fs->lfs_interlock);
2428 #ifdef DIAGNOSTIC
2429 if (fs->lfs_iocount == 0)
2430 panic("lfs_cluster_aiodone: zero iocount");
2431 #endif
2432 if (--fs->lfs_iocount <= 1)
2433 wakeup(&fs->lfs_iocount);
2434 simple_unlock(&fs->lfs_interlock);
2435
2436 pool_put(&fs->lfs_bpppool, cl->bpp);
2437 cl->bpp = NULL;
2438 pool_put(&fs->lfs_clpool, cl);
2439 }
2440
2441 static void
2442 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2443 {
2444 /* reset b_iodone for when this is a single-buf i/o. */
2445 bp->b_iodone = aiodone;
2446
2447 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2448 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2449 wakeup(&uvm.aiodoned);
2450 simple_unlock(&uvm.aiodoned_lock);
2451 }
2452
2453 static void
2454 lfs_cluster_callback(struct buf *bp)
2455 {
2456
2457 lfs_generic_callback(bp, lfs_cluster_aiodone);
2458 }
2459
2460 void
2461 lfs_supercallback(struct buf *bp)
2462 {
2463
2464 lfs_generic_callback(bp, lfs_super_aiodone);
2465 }
2466
2467 /*
2468 * Shellsort (diminishing increment sort) from Data Structures and
2469 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2470 * see also Knuth Vol. 3, page 84. The increments are selected from
2471 * formula (8), page 95. Roughly O(N^3/2).
2472 */
2473 /*
2474 * This is our own private copy of shellsort because we want to sort
2475 * two parallel arrays (the array of buffer pointers and the array of
2476 * logical block numbers) simultaneously. Note that we cast the array
2477 * of logical block numbers to a unsigned in this routine so that the
2478 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2479 */
2480
2481 void
2482 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2483 {
2484 static int __rsshell_increments[] = { 4, 1, 0 };
2485 int incr, *incrp, t1, t2;
2486 struct buf *bp_temp;
2487
2488 #ifdef DEBUG
2489 incr = 0;
2490 for (t1 = 0; t1 < nmemb; t1++) {
2491 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2492 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2493 /* dump before panic */
2494 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2495 nmemb, size);
2496 incr = 0;
2497 for (t1 = 0; t1 < nmemb; t1++) {
2498 const struct buf *bp = bp_array[t1];
2499
2500 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2501 PRIu64 "\n", t1,
2502 (uint64_t)bp->b_bcount,
2503 (uint64_t)bp->b_lblkno);
2504 printf("lbns:");
2505 for (t2 = 0; t2 * size < bp->b_bcount;
2506 t2++) {
2507 printf(" %" PRId32,
2508 lb_array[incr++]);
2509 }
2510 printf("\n");
2511 }
2512 panic("lfs_shellsort: inconsistent input");
2513 }
2514 }
2515 }
2516 #endif
2517
2518 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2519 for (t1 = incr; t1 < nmemb; ++t1)
2520 for (t2 = t1 - incr; t2 >= 0;)
2521 if ((u_int32_t)bp_array[t2]->b_lblkno >
2522 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2523 bp_temp = bp_array[t2];
2524 bp_array[t2] = bp_array[t2 + incr];
2525 bp_array[t2 + incr] = bp_temp;
2526 t2 -= incr;
2527 } else
2528 break;
2529
2530 /* Reform the list of logical blocks */
2531 incr = 0;
2532 for (t1 = 0; t1 < nmemb; t1++) {
2533 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2534 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2535 }
2536 }
2537 }
2538
2539 /*
2540 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2541 * however, we must press on. Just fake success in that case.
2542 */
2543 int
2544 lfs_vref(struct vnode *vp)
2545 {
2546 int error;
2547 struct lfs *fs;
2548
2549 fs = VTOI(vp)->i_lfs;
2550
2551 ASSERT_MAYBE_SEGLOCK(fs);
2552
2553 /*
2554 * If we return 1 here during a flush, we risk vinvalbuf() not
2555 * being able to flush all of the pages from this vnode, which
2556 * will cause it to panic. So, return 0 if a flush is in progress.
2557 */
2558 error = vget(vp, LK_NOWAIT);
2559 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2560 ++fs->lfs_flushvp_fakevref;
2561 return 0;
2562 }
2563 return error;
2564 }
2565
2566 /*
2567 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2568 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2569 */
2570 void
2571 lfs_vunref(struct vnode *vp)
2572 {
2573 struct lfs *fs;
2574
2575 fs = VTOI(vp)->i_lfs;
2576 ASSERT_MAYBE_SEGLOCK(fs);
2577
2578 /*
2579 * Analogous to lfs_vref, if the node is flushing, fake it.
2580 */
2581 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2582 --fs->lfs_flushvp_fakevref;
2583 return;
2584 }
2585
2586 simple_lock(&vp->v_interlock);
2587 #ifdef DIAGNOSTIC
2588 if (vp->v_usecount <= 0) {
2589 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2590 VTOI(vp)->i_number);
2591 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2592 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2593 panic("lfs_vunref: v_usecount < 0");
2594 }
2595 #endif
2596 vp->v_usecount--;
2597 if (vp->v_usecount > 0) {
2598 simple_unlock(&vp->v_interlock);
2599 return;
2600 }
2601 /*
2602 * insert at tail of LRU list
2603 */
2604 simple_lock(&vnode_free_list_slock);
2605 if (vp->v_holdcnt > 0)
2606 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2607 else
2608 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2609 simple_unlock(&vnode_free_list_slock);
2610 simple_unlock(&vp->v_interlock);
2611 }
2612
2613 /*
2614 * We use this when we have vnodes that were loaded in solely for cleaning.
2615 * There is no reason to believe that these vnodes will be referenced again
2616 * soon, since the cleaning process is unrelated to normal filesystem
2617 * activity. Putting cleaned vnodes at the tail of the list has the effect
2618 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2619 * cleaning at the head of the list, instead.
2620 */
2621 void
2622 lfs_vunref_head(struct vnode *vp)
2623 {
2624
2625 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2626 simple_lock(&vp->v_interlock);
2627 #ifdef DIAGNOSTIC
2628 if (vp->v_usecount == 0) {
2629 panic("lfs_vunref: v_usecount<0");
2630 }
2631 #endif
2632 vp->v_usecount--;
2633 if (vp->v_usecount > 0) {
2634 simple_unlock(&vp->v_interlock);
2635 return;
2636 }
2637 /*
2638 * insert at head of LRU list
2639 */
2640 simple_lock(&vnode_free_list_slock);
2641 if (vp->v_holdcnt > 0)
2642 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2643 else
2644 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2645 simple_unlock(&vnode_free_list_slock);
2646 simple_unlock(&vp->v_interlock);
2647 }
2648
2649