Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.158.2.12
      1 /*	$NetBSD: lfs_segment.c,v 1.158.2.12 2006/05/20 22:43:42 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.158.2.12 2006/05/20 22:43:42 riz Exp $");
     71 
     72 #ifdef DEBUG
     73 # define vndebug(vp, str) do {						\
     74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     76 		     VTOI(vp)->i_number, (str), op));			\
     77 } while(0)
     78 #else
     79 # define vndebug(vp, str)
     80 #endif
     81 #define ivndebug(vp, str) \
     82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     83 
     84 #if defined(_KERNEL_OPT)
     85 #include "opt_ddb.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/namei.h>
     91 #include <sys/kernel.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/file.h>
     94 #include <sys/stat.h>
     95 #include <sys/buf.h>
     96 #include <sys/proc.h>
     97 #include <sys/vnode.h>
     98 #include <sys/mount.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 #include <miscfs/fifofs/fifo.h>
    102 
    103 #include <ufs/ufs/inode.h>
    104 #include <ufs/ufs/dir.h>
    105 #include <ufs/ufs/ufsmount.h>
    106 #include <ufs/ufs/ufs_extern.h>
    107 
    108 #include <ufs/lfs/lfs.h>
    109 #include <ufs/lfs/lfs_extern.h>
    110 
    111 #include <uvm/uvm.h>
    112 #include <uvm/uvm_extern.h>
    113 
    114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    115 
    116 extern int count_lock_queue(void);
    117 extern struct simplelock vnode_free_list_slock;		/* XXX */
    118 extern struct simplelock bqueue_slock;			/* XXX */
    119 
    120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    121 static void lfs_super_aiodone(struct buf *);
    122 static void lfs_cluster_aiodone(struct buf *);
    123 static void lfs_cluster_callback(struct buf *);
    124 
    125 /*
    126  * Determine if it's OK to start a partial in this segment, or if we need
    127  * to go on to a new segment.
    128  */
    129 #define	LFS_PARTIAL_FITS(fs) \
    130 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    131 	fragstofsb((fs), (fs)->lfs_frag))
    132 
    133 /*
    134  * Figure out whether we should do a checkpoint write or go ahead with
    135  * an ordinary write.
    136  */
    137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
    138 	(fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
    139 	 (flags & SEGM_CKP) ||						\
    140 	 fs->lfs_nclean < LFS_MAX_ACTIVE)
    141 
    142 int	 lfs_match_fake(struct lfs *, struct buf *);
    143 void	 lfs_newseg(struct lfs *);
    144 /* XXX ondisk32 */
    145 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    146 void	 lfs_supercallback(struct buf *);
    147 void	 lfs_updatemeta(struct segment *);
    148 void	 lfs_writesuper(struct lfs *, daddr_t);
    149 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    150 	    struct segment *sp, int dirops);
    151 
    152 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    153 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    154 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    155 int	lfs_dirvcount = 0;		/* # active dirops */
    156 
    157 /* Statistics Counters */
    158 int lfs_dostats = 1;
    159 struct lfs_stats lfs_stats;
    160 
    161 /* op values to lfs_writevnodes */
    162 #define	VN_REG		0
    163 #define	VN_DIROP	1
    164 #define	VN_EMPTY	2
    165 #define VN_CLEAN	3
    166 
    167 /*
    168  * XXX KS - Set modification time on the Ifile, so the cleaner can
    169  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    170  * since we don't really need this to be flushed to disk (and in any
    171  * case that wouldn't happen to the Ifile until we checkpoint).
    172  */
    173 void
    174 lfs_imtime(struct lfs *fs)
    175 {
    176 	struct timespec ts;
    177 	struct inode *ip;
    178 
    179 	ASSERT_MAYBE_SEGLOCK(fs);
    180 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    181 	ip = VTOI(fs->lfs_ivnode);
    182 	ip->i_ffs1_mtime = ts.tv_sec;
    183 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    184 }
    185 
    186 /*
    187  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    188  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    189  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    190  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    191  */
    192 
    193 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    194 
    195 int
    196 lfs_vflush(struct vnode *vp)
    197 {
    198 	struct inode *ip;
    199 	struct lfs *fs;
    200 	struct segment *sp;
    201 	struct buf *bp, *nbp, *tbp, *tnbp;
    202 	int error, s;
    203 	int flushed;
    204 	int relock;
    205 
    206 	ip = VTOI(vp);
    207 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    208 	relock = 0;
    209 
    210     top:
    211 	ASSERT_NO_SEGLOCK(fs);
    212 	if (ip->i_flag & IN_CLEANING) {
    213 		ivndebug(vp,"vflush/in_cleaning");
    214 		LFS_CLR_UINO(ip, IN_CLEANING);
    215 		LFS_SET_UINO(ip, IN_MODIFIED);
    216 
    217 		/*
    218 		 * Toss any cleaning buffers that have real counterparts
    219 		 * to avoid losing new data.
    220 		 */
    221 		s = splbio();
    222 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    223 			nbp = LIST_NEXT(bp, b_vnbufs);
    224 			if (!LFS_IS_MALLOC_BUF(bp))
    225 				continue;
    226 			/*
    227 			 * Look for pages matching the range covered
    228 			 * by cleaning blocks.  It's okay if more dirty
    229 			 * pages appear, so long as none disappear out
    230 			 * from under us.
    231 			 */
    232 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    233 			    vp != fs->lfs_ivnode) {
    234 				struct vm_page *pg;
    235 				voff_t off;
    236 
    237 				simple_lock(&vp->v_interlock);
    238 				for (off = lblktosize(fs, bp->b_lblkno);
    239 				     off < lblktosize(fs, bp->b_lblkno + 1);
    240 				     off += PAGE_SIZE) {
    241 					pg = uvm_pagelookup(&vp->v_uobj, off);
    242 					if (pg == NULL)
    243 						continue;
    244 					if ((pg->flags & PG_CLEAN) == 0 ||
    245 					    pmap_is_modified(pg)) {
    246 						fs->lfs_avail += btofsb(fs,
    247 							bp->b_bcount);
    248 						wakeup(&fs->lfs_avail);
    249 						lfs_freebuf(fs, bp);
    250 						bp = NULL;
    251 						simple_unlock(&vp->v_interlock);
    252 						goto nextbp;
    253 					}
    254 				}
    255 				simple_unlock(&vp->v_interlock);
    256 			}
    257 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    258 			    tbp = tnbp)
    259 			{
    260 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    261 				if (tbp->b_vp == bp->b_vp
    262 				   && tbp->b_lblkno == bp->b_lblkno
    263 				   && tbp != bp)
    264 				{
    265 					fs->lfs_avail += btofsb(fs,
    266 						bp->b_bcount);
    267 					wakeup(&fs->lfs_avail);
    268 					lfs_freebuf(fs, bp);
    269 					bp = NULL;
    270 					break;
    271 				}
    272 			}
    273 		    nextbp:
    274 			;
    275 		}
    276 		splx(s);
    277 	}
    278 
    279 	/* If the node is being written, wait until that is done */
    280 	simple_lock(&vp->v_interlock);
    281 	s = splbio();
    282 	if (WRITEINPROG(vp)) {
    283 		ivndebug(vp,"vflush/writeinprog");
    284 		ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
    285 	}
    286 	splx(s);
    287 	simple_unlock(&vp->v_interlock);
    288 
    289 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    290 	lfs_seglock(fs, SEGM_SYNC);
    291 
    292 	/* If we're supposed to flush a freed inode, just toss it */
    293 	if (ip->i_lfs_iflags & LFSI_DELETED) {
    294 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    295 		      ip->i_number));
    296 		s = splbio();
    297 		/* Drain v_numoutput */
    298 		simple_lock(&global_v_numoutput_slock);
    299 		while (vp->v_numoutput > 0) {
    300 			vp->v_flag |= VBWAIT;
    301 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
    302 				&global_v_numoutput_slock);
    303 		}
    304 		simple_unlock(&global_v_numoutput_slock);
    305 		KASSERT(vp->v_numoutput == 0);
    306 
    307 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    308 			nbp = LIST_NEXT(bp, b_vnbufs);
    309 
    310 			KASSERT((bp->b_flags & B_GATHERED) == 0);
    311 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    312 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    313 				wakeup(&fs->lfs_avail);
    314 			}
    315 			/* Copied from lfs_writeseg */
    316 			if (bp->b_flags & B_CALL) {
    317 				biodone(bp);
    318 			} else {
    319 				bremfree(bp);
    320 				LFS_UNLOCK_BUF(bp);
    321 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    322 					 B_GATHERED);
    323 				bp->b_flags |= B_DONE;
    324 				reassignbuf(bp, vp);
    325 				brelse(bp);
    326 			}
    327 		}
    328 		splx(s);
    329 		LFS_CLR_UINO(ip, IN_CLEANING);
    330 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    331 		ip->i_flag &= ~IN_ALLMOD;
    332 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    333 		      ip->i_number));
    334 		lfs_segunlock(fs);
    335 
    336 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    337 
    338 		return 0;
    339 	}
    340 
    341 	fs->lfs_flushvp = vp;
    342 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
    343 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    344 		fs->lfs_flushvp = NULL;
    345 		KASSERT(fs->lfs_flushvp_fakevref == 0);
    346 		lfs_segunlock(fs);
    347 
    348 		/* Make sure that any pending buffers get written */
    349 		s = splbio();
    350 		simple_lock(&global_v_numoutput_slock);
    351 		while (vp->v_numoutput > 0) {
    352 			vp->v_flag |= VBWAIT;
    353 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
    354 				&global_v_numoutput_slock);
    355 		}
    356 		simple_unlock(&global_v_numoutput_slock);
    357 		splx(s);
    358 
    359 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    360 		KASSERT(vp->v_numoutput == 0);
    361 
    362 		return error;
    363 	}
    364 	sp = fs->lfs_sp;
    365 
    366 	flushed = 0;
    367 	if (VPISEMPTY(vp)) {
    368 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    369 		++flushed;
    370 	} else if ((ip->i_flag & IN_CLEANING) &&
    371 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    372 		ivndebug(vp,"vflush/clean");
    373 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    374 		++flushed;
    375 	} else if (lfs_dostats) {
    376 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    377 			++lfs_stats.vflush_invoked;
    378 		ivndebug(vp,"vflush");
    379 	}
    380 
    381 #ifdef DIAGNOSTIC
    382 	if (vp->v_flag & VDIROP) {
    383 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
    384 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
    385 	}
    386 	if (vp->v_usecount < 0) {
    387 		printf("usecount=%ld\n", (long)vp->v_usecount);
    388 		panic("lfs_vflush: usecount<0");
    389 	}
    390 #endif
    391 
    392 	do {
    393 		do {
    394 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    395 				relock = lfs_writefile(fs, sp, vp);
    396 				if (relock) {
    397 					/*
    398 					 * Might have to wait for the
    399 					 * cleaner to run; but we're
    400 					 * still not done with this vnode.
    401 					 */
    402 					lfs_writeinode(fs, sp, ip);
    403 					LFS_SET_UINO(ip, IN_MODIFIED);
    404 					lfs_writeseg(fs, sp);
    405 					lfs_segunlock(fs);
    406 					lfs_segunlock_relock(fs);
    407 					goto top;
    408 				}
    409 			}
    410 			/*
    411 			 * If we begin a new segment in the middle of writing
    412 			 * the Ifile, it creates an inconsistent checkpoint,
    413 			 * since the Ifile information for the new segment
    414 			 * is not up-to-date.  Take care of this here by
    415 			 * sending the Ifile through again in case there
    416 			 * are newly dirtied blocks.  But wait, there's more!
    417 			 * This second Ifile write could *also* cross a segment
    418 			 * boundary, if the first one was large.  The second
    419 			 * one is guaranteed to be no more than 8 blocks,
    420 			 * though (two segment blocks and supporting indirects)
    421 			 * so the third write *will not* cross the boundary.
    422 			 */
    423 			if (vp == fs->lfs_ivnode) {
    424 				lfs_writefile(fs, sp, vp);
    425 				lfs_writefile(fs, sp, vp);
    426 			}
    427 		} while (lfs_writeinode(fs, sp, ip));
    428 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    429 
    430 	if (lfs_dostats) {
    431 		++lfs_stats.nwrites;
    432 		if (sp->seg_flags & SEGM_SYNC)
    433 			++lfs_stats.nsync_writes;
    434 		if (sp->seg_flags & SEGM_CKP)
    435 			++lfs_stats.ncheckpoints;
    436 	}
    437 	/*
    438 	 * If we were called from somewhere that has already held the seglock
    439 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    440 	 * the write to complete because we are still locked.
    441 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    442 	 * we must explicitly wait, if that is the case.
    443 	 *
    444 	 * We compare the iocount against 1, not 0, because it is
    445 	 * artificially incremented by lfs_seglock().
    446 	 */
    447 	simple_lock(&fs->lfs_interlock);
    448 	if (fs->lfs_seglock > 1) {
    449 		while (fs->lfs_iocount > 1)
    450 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
    451 				     "lfs_vflush", 0, &fs->lfs_interlock);
    452 	}
    453 	simple_unlock(&fs->lfs_interlock);
    454 
    455 	lfs_segunlock(fs);
    456 
    457 	/* Wait for these buffers to be recovered by aiodoned */
    458 	s = splbio();
    459 	simple_lock(&global_v_numoutput_slock);
    460 	while (vp->v_numoutput > 0) {
    461 		vp->v_flag |= VBWAIT;
    462 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
    463 			&global_v_numoutput_slock);
    464 	}
    465 	simple_unlock(&global_v_numoutput_slock);
    466 	splx(s);
    467 
    468 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    469 	KASSERT(vp->v_numoutput == 0);
    470 
    471 	fs->lfs_flushvp = NULL;
    472 	KASSERT(fs->lfs_flushvp_fakevref == 0);
    473 
    474 	return (0);
    475 }
    476 
    477 int
    478 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    479 {
    480 	struct inode *ip;
    481 	struct vnode *vp, *nvp;
    482 	int inodes_written = 0, only_cleaning;
    483 	int error = 0;
    484 
    485 	ASSERT_SEGLOCK(fs);
    486 #ifndef LFS_NO_BACKVP_HACK
    487 	/* BEGIN HACK */
    488 #define	VN_OFFSET	\
    489 	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    490 #define	BACK_VP(VP)	\
    491 	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    492 #define	BEG_OF_VLIST	\
    493 	((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
    494 	- VN_OFFSET))
    495 
    496 	/* Find last vnode. */
    497  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    498 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    499 	     vp = LIST_NEXT(vp, v_mntvnodes));
    500 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    501 		nvp = BACK_VP(vp);
    502 #else
    503 	loop:
    504 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    505 		nvp = LIST_NEXT(vp, v_mntvnodes);
    506 #endif
    507 		/*
    508 		 * If the vnode that we are about to sync is no longer
    509 		 * associated with this mount point, start over.
    510 		 */
    511 		if (vp->v_mount != mp) {
    512 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    513 			/*
    514 			 * After this, pages might be busy
    515 			 * due to our own previous putpages.
    516 			 * Start actual segment write here to avoid deadlock.
    517 			 */
    518 			(void)lfs_writeseg(fs, sp);
    519 			goto loop;
    520 		}
    521 
    522 		if (vp->v_type == VNON) {
    523 			continue;
    524 		}
    525 
    526 		ip = VTOI(vp);
    527 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    528 		    (op != VN_DIROP && op != VN_CLEAN &&
    529 		    (vp->v_flag & VDIROP))) {
    530 			vndebug(vp,"dirop");
    531 			continue;
    532 		}
    533 
    534 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    535 			vndebug(vp,"empty");
    536 			continue;
    537 		}
    538 
    539 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    540 		   && vp != fs->lfs_flushvp
    541 		   && !(ip->i_flag & IN_CLEANING)) {
    542 			vndebug(vp,"cleaning");
    543 			continue;
    544 		}
    545 
    546 		if (lfs_vref(vp)) {
    547 			vndebug(vp,"vref");
    548 			continue;
    549 		}
    550 
    551 		only_cleaning = 0;
    552 		/*
    553 		 * Write the inode/file if dirty and it's not the IFILE.
    554 		 */
    555 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    556 			only_cleaning =
    557 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    558 
    559 			if (ip->i_number != LFS_IFILE_INUM) {
    560 				error = lfs_writefile(fs, sp, vp);
    561 				if (error) {
    562 					lfs_vunref(vp);
    563 					if (error == EAGAIN) {
    564 						/*
    565 						 * This error from lfs_putpages
    566 						 * indicates we need to drop
    567 						 * the segment lock and start
    568 						 * over after the cleaner has
    569 						 * had a chance to run.
    570 						 */
    571 						lfs_writeinode(fs, sp, ip);
    572 						lfs_writeseg(fs, sp);
    573 						if (!VPISEMPTY(vp) &&
    574 						    !WRITEINPROG(vp) &&
    575 						    !(ip->i_flag & IN_ALLMOD))
    576 							LFS_SET_UINO(ip, IN_MODIFIED);
    577 						break;
    578 					}
    579 					error = 0; /* XXX not quite right */
    580 					continue;
    581 				}
    582 
    583 				if (!VPISEMPTY(vp)) {
    584 					if (WRITEINPROG(vp)) {
    585 						ivndebug(vp,"writevnodes/write2");
    586 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    587 						LFS_SET_UINO(ip, IN_MODIFIED);
    588 					}
    589 				}
    590 				(void) lfs_writeinode(fs, sp, ip);
    591 				inodes_written++;
    592 			}
    593 		}
    594 
    595 		if (lfs_clean_vnhead && only_cleaning)
    596 			lfs_vunref_head(vp);
    597 		else
    598 			lfs_vunref(vp);
    599 	}
    600 	return error;
    601 }
    602 
    603 /*
    604  * Do a checkpoint.
    605  */
    606 int
    607 lfs_segwrite(struct mount *mp, int flags)
    608 {
    609 	struct buf *bp;
    610 	struct inode *ip;
    611 	struct lfs *fs;
    612 	struct segment *sp;
    613 	struct vnode *vp;
    614 	SEGUSE *segusep;
    615 	int do_ckp, did_ckp, error, s;
    616 	unsigned n, segleft, maxseg, sn, i, curseg;
    617 	int writer_set = 0;
    618 	int dirty;
    619 	int redo;
    620 	int um_error;
    621 
    622 	fs = VFSTOUFS(mp)->um_lfs;
    623 	ASSERT_MAYBE_SEGLOCK(fs);
    624 
    625 	if (fs->lfs_ronly)
    626 		return EROFS;
    627 
    628 	lfs_imtime(fs);
    629 
    630 	/*
    631 	 * Allocate a segment structure and enough space to hold pointers to
    632 	 * the maximum possible number of buffers which can be described in a
    633 	 * single summary block.
    634 	 */
    635 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
    636 
    637 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    638 	sp = fs->lfs_sp;
    639 
    640 	/*
    641 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    642 	 * in which case we have to flush *all* buffers off of this vnode.
    643 	 * We don't care about other nodes, but write any non-dirop nodes
    644 	 * anyway in anticipation of another getnewvnode().
    645 	 *
    646 	 * If we're cleaning we only write cleaning and ifile blocks, and
    647 	 * no dirops, since otherwise we'd risk corruption in a crash.
    648 	 */
    649 	if (sp->seg_flags & SEGM_CLEAN)
    650 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    651 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    652 		do {
    653 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
    654 			if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    655 				if (!writer_set) {
    656 					lfs_writer_enter(fs, "lfs writer");
    657 					writer_set = 1;
    658 				}
    659 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
    660 				if (um_error == 0)
    661 					um_error = error;
    662 				/* In case writevnodes errored out */
    663 				lfs_flush_dirops(fs);
    664 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    665 				lfs_finalize_fs_seguse(fs);
    666 			}
    667 			if (do_ckp && um_error) {
    668 				lfs_segunlock_relock(fs);
    669 				sp = fs->lfs_sp;
    670 			}
    671 		} while (do_ckp && um_error != 0);
    672 	}
    673 
    674 	/*
    675 	 * If we are doing a checkpoint, mark everything since the
    676 	 * last checkpoint as no longer ACTIVE.
    677 	 */
    678 	if (do_ckp) {
    679 		segleft = fs->lfs_nseg;
    680 		curseg = 0;
    681 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    682 			dirty = 0;
    683 			if (bread(fs->lfs_ivnode,
    684 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
    685 				panic("lfs_segwrite: ifile read");
    686 			segusep = (SEGUSE *)bp->b_data;
    687 			maxseg = min(segleft, fs->lfs_sepb);
    688 			for (i = 0; i < maxseg; i++) {
    689 				sn = curseg + i;
    690 				if (sn != dtosn(fs, fs->lfs_curseg) &&
    691 				    segusep->su_flags & SEGUSE_ACTIVE) {
    692 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    693 					--fs->lfs_nactive;
    694 					++dirty;
    695 				}
    696 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    697 					segusep->su_flags;
    698 				if (fs->lfs_version > 1)
    699 					++segusep;
    700 				else
    701 					segusep = (SEGUSE *)
    702 						((SEGUSE_V1 *)segusep + 1);
    703 			}
    704 
    705 			if (dirty)
    706 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    707 			else
    708 				brelse(bp);
    709 			segleft -= fs->lfs_sepb;
    710 			curseg += fs->lfs_sepb;
    711 		}
    712 	}
    713 
    714 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
    715 
    716 	did_ckp = 0;
    717 	if (do_ckp || fs->lfs_doifile) {
    718 		vp = fs->lfs_ivnode;
    719 		vn_lock(vp, LK_EXCLUSIVE);
    720 		do {
    721 #ifdef DEBUG
    722 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    723 #endif
    724 			simple_lock(&fs->lfs_interlock);
    725 			fs->lfs_flags &= ~LFS_IFDIRTY;
    726 			simple_unlock(&fs->lfs_interlock);
    727 
    728 			ip = VTOI(vp);
    729 
    730 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    731 				/*
    732 				 * Ifile has no pages, so we don't need
    733 				 * to check error return here.
    734 				 */
    735 				lfs_writefile(fs, sp, vp);
    736 				/*
    737 				 * Ensure the Ifile takes the current segment
    738 				 * into account.  See comment in lfs_vflush.
    739 				 */
    740 				lfs_writefile(fs, sp, vp);
    741 				lfs_writefile(fs, sp, vp);
    742 			}
    743 
    744 			if (ip->i_flag & IN_ALLMOD)
    745 				++did_ckp;
    746 			redo = lfs_writeinode(fs, sp, ip);
    747 			redo += lfs_writeseg(fs, sp);
    748 			simple_lock(&fs->lfs_interlock);
    749 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    750 			simple_unlock(&fs->lfs_interlock);
    751 		} while (redo && do_ckp);
    752 
    753 		/*
    754 		 * Unless we are unmounting, the Ifile may continue to have
    755 		 * dirty blocks even after a checkpoint, due to changes to
    756 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    757 		 * for other parts of the Ifile to be dirty after the loop
    758 		 * above, since we hold the segment lock.
    759 		 */
    760 		s = splbio();
    761 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    762 			LFS_CLR_UINO(ip, IN_ALLMOD);
    763 		}
    764 #ifdef DIAGNOSTIC
    765 		else if (do_ckp) {
    766 			int do_panic = 0;
    767 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    768 				if (bp->b_lblkno < fs->lfs_cleansz +
    769 				    fs->lfs_segtabsz &&
    770 				    !(bp->b_flags & B_GATHERED)) {
    771 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    772 						(long)bp->b_lblkno,
    773 						(long)bp->b_flags);
    774 					++do_panic;
    775 				}
    776 			}
    777 			if (do_panic)
    778 				panic("dirty blocks");
    779 		}
    780 #endif
    781 		splx(s);
    782 		VOP_UNLOCK(vp, 0);
    783 	} else {
    784 		(void) lfs_writeseg(fs, sp);
    785 	}
    786 
    787 	/* Note Ifile no longer needs to be written */
    788 	fs->lfs_doifile = 0;
    789 	if (writer_set)
    790 		lfs_writer_leave(fs);
    791 
    792 	/*
    793 	 * If we didn't write the Ifile, we didn't really do anything.
    794 	 * That means that (1) there is a checkpoint on disk and (2)
    795 	 * nothing has changed since it was written.
    796 	 *
    797 	 * Take the flags off of the segment so that lfs_segunlock
    798 	 * doesn't have to write the superblock either.
    799 	 */
    800 	if (do_ckp && !did_ckp) {
    801 		sp->seg_flags &= ~SEGM_CKP;
    802 	}
    803 
    804 	if (lfs_dostats) {
    805 		++lfs_stats.nwrites;
    806 		if (sp->seg_flags & SEGM_SYNC)
    807 			++lfs_stats.nsync_writes;
    808 		if (sp->seg_flags & SEGM_CKP)
    809 			++lfs_stats.ncheckpoints;
    810 	}
    811 	lfs_segunlock(fs);
    812 	return (0);
    813 }
    814 
    815 /*
    816  * Write the dirty blocks associated with a vnode.
    817  */
    818 int
    819 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    820 {
    821 	struct buf *bp;
    822 	struct finfo *fip;
    823 	struct inode *ip;
    824 	IFILE *ifp;
    825 	int i, frag;
    826 	int error;
    827 
    828 	ASSERT_SEGLOCK(fs);
    829 	error = 0;
    830 	ip = VTOI(vp);
    831 
    832 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    833 	    sp->sum_bytes_left < sizeof(struct finfo))
    834 		(void) lfs_writeseg(fs, sp);
    835 
    836 	sp->sum_bytes_left -= FINFOSIZE;
    837 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    838 
    839 	if (vp->v_flag & VDIROP)
    840 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    841 
    842 	fip = sp->fip;
    843 	fip->fi_nblocks = 0;
    844 	fip->fi_ino = ip->i_number;
    845 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    846 	fip->fi_version = ifp->if_version;
    847 	brelse(bp);
    848 
    849 	if (sp->seg_flags & SEGM_CLEAN) {
    850 		lfs_gather(fs, sp, vp, lfs_match_fake);
    851 		/*
    852 		 * For a file being flushed, we need to write *all* blocks.
    853 		 * This means writing the cleaning blocks first, and then
    854 		 * immediately following with any non-cleaning blocks.
    855 		 * The same is true of the Ifile since checkpoints assume
    856 		 * that all valid Ifile blocks are written.
    857 		 */
    858 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
    859 			lfs_gather(fs, sp, vp, lfs_match_data);
    860 			/*
    861 			 * Don't call VOP_PUTPAGES: if we're flushing,
    862 			 * we've already done it, and the Ifile doesn't
    863 			 * use the page cache.
    864 			 */
    865 		}
    866 	} else {
    867 		lfs_gather(fs, sp, vp, lfs_match_data);
    868 		/*
    869 		 * If we're flushing, we've already called VOP_PUTPAGES
    870 		 * so don't do it again.  Otherwise, we want to write
    871 		 * everything we've got.
    872 		 */
    873 		if (!IS_FLUSHING(fs, vp)) {
    874 			simple_lock(&vp->v_interlock);
    875 			error = VOP_PUTPAGES(vp, 0, 0,
    876 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    877 		}
    878 	}
    879 
    880 	/*
    881 	 * It may not be necessary to write the meta-data blocks at this point,
    882 	 * as the roll-forward recovery code should be able to reconstruct the
    883 	 * list.
    884 	 *
    885 	 * We have to write them anyway, though, under two conditions: (1) the
    886 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    887 	 * checkpointing.
    888 	 *
    889 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    890 	 * new blocks not being written yet, in addition to fragments being
    891 	 * moved out of a cleaned segment.  If that is the case, don't
    892 	 * write the indirect blocks, or the finfo will have a small block
    893 	 * in the middle of it!
    894 	 * XXX in this case isn't the inode size wrong too?
    895 	 */
    896 	frag = 0;
    897 	if (sp->seg_flags & SEGM_CLEAN) {
    898 		for (i = 0; i < NDADDR; i++)
    899 			if (ip->i_lfs_fragsize[i] > 0 &&
    900 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    901 				++frag;
    902 	}
    903 #ifdef DIAGNOSTIC
    904 	if (frag > 1)
    905 		panic("lfs_writefile: more than one fragment!");
    906 #endif
    907 	if (IS_FLUSHING(fs, vp) ||
    908 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    909 		lfs_gather(fs, sp, vp, lfs_match_indir);
    910 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    911 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    912 	}
    913 	fip = sp->fip;
    914 	if (fip->fi_nblocks != 0) {
    915 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    916 				   sizeof(int32_t) * (fip->fi_nblocks));
    917 		sp->start_lbp = &sp->fip->fi_blocks[0];
    918 	} else {
    919 		sp->sum_bytes_left += FINFOSIZE;
    920 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    921 	}
    922 
    923 	return error;
    924 }
    925 
    926 int
    927 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    928 {
    929 	struct buf *bp, *ibp;
    930 	struct ufs1_dinode *cdp;
    931 	IFILE *ifp;
    932 	SEGUSE *sup;
    933 	daddr_t daddr;
    934 	int32_t *daddrp;	/* XXX ondisk32 */
    935 	ino_t ino;
    936 	int error, i, ndx, fsb = 0;
    937 	int redo_ifile = 0;
    938 	struct timespec ts;
    939 	int gotblk = 0;
    940 
    941 	ASSERT_SEGLOCK(fs);
    942 	if (!(ip->i_flag & IN_ALLMOD))
    943 		return (0);
    944 
    945 	/* Allocate a new inode block if necessary. */
    946 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    947 	    sp->ibp == NULL) {
    948 		/* Allocate a new segment if necessary. */
    949 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    950 		    sp->sum_bytes_left < sizeof(int32_t))
    951 			(void) lfs_writeseg(fs, sp);
    952 
    953 		/* Get next inode block. */
    954 		daddr = fs->lfs_offset;
    955 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    956 		sp->ibp = *sp->cbpp++ =
    957 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
    958 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
    959 		gotblk++;
    960 
    961 		/* Zero out inode numbers */
    962 		for (i = 0; i < INOPB(fs); ++i)
    963 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
    964 			    0;
    965 
    966 		++sp->start_bpp;
    967 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    968 		/* Set remaining space counters. */
    969 		sp->seg_bytes_left -= fs->lfs_ibsize;
    970 		sp->sum_bytes_left -= sizeof(int32_t);
    971 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    972 			sp->ninodes / INOPB(fs) - 1;
    973 		((int32_t *)(sp->segsum))[ndx] = daddr;
    974 	}
    975 
    976 	/* Update the inode times and copy the inode onto the inode page. */
    977 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    978 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    979 	if (ip->i_number != LFS_IFILE_INUM)
    980 		LFS_ITIMES(ip, &ts, &ts, &ts);
    981 
    982 	/*
    983 	 * If this is the Ifile, and we've already written the Ifile in this
    984 	 * partial segment, just overwrite it (it's not on disk yet) and
    985 	 * continue.
    986 	 *
    987 	 * XXX we know that the bp that we get the second time around has
    988 	 * already been gathered.
    989 	 */
    990 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    991 		*(sp->idp) = *ip->i_din.ffs1_din;
    992 		ip->i_lfs_osize = ip->i_size;
    993 		return 0;
    994 	}
    995 
    996 	bp = sp->ibp;
    997 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    998 	*cdp = *ip->i_din.ffs1_din;
    999 
   1000 	/* We can finish the segment accounting for truncations now */
   1001 	lfs_finalize_ino_seguse(fs, ip);
   1002 
   1003 	/*
   1004 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
   1005 	 * addresses to disk; possibly change the on-disk record of
   1006 	 * the inode size, either by reverting to the previous size
   1007 	 * (in the case of cleaning) or by verifying the inode's block
   1008 	 * holdings (in the case of files being allocated as they are being
   1009 	 * written).
   1010 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
   1011 	 * XXX count on disk wrong by the same amount.	We should be
   1012 	 * XXX able to "borrow" from lfs_avail and return it after the
   1013 	 * XXX Ifile is written.  See also in lfs_writeseg.
   1014 	 */
   1015 
   1016 	/* Check file size based on highest allocated block */
   1017 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
   1018 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
   1019 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
   1020 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
   1021 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
   1022 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
   1023 	}
   1024 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
   1025 		if (ip->i_flags & IN_CLEANING)
   1026 			cdp->di_size = ip->i_lfs_osize;
   1027 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
   1028 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
   1029 		      ip->i_ffs1_blocks, fs->lfs_offset));
   1030 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
   1031 		     daddrp++) {
   1032 			if (*daddrp == UNWRITTEN) {
   1033 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
   1034 				*daddrp = 0;
   1035 			}
   1036 		}
   1037 	} else {
   1038 		/* If all blocks are going to disk, update "size on disk" */
   1039 		ip->i_lfs_osize = ip->i_size;
   1040 	}
   1041 
   1042 #ifdef DIAGNOSTIC
   1043 	/*
   1044 	 * Check dinode held blocks against dinode size.
   1045 	 * This should be identical to the check in lfs_vget().
   1046 	 */
   1047 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1048 	     i < NDADDR; i++) {
   1049 		KASSERT(i >= 0);
   1050 		if ((cdp->di_mode & IFMT) == IFLNK)
   1051 			continue;
   1052 		if (((cdp->di_mode & IFMT) == IFBLK ||
   1053 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
   1054 			continue;
   1055 		if (cdp->di_db[i] != 0) {
   1056 # ifdef DEBUG
   1057 			lfs_dump_dinode(cdp);
   1058 # endif
   1059 			panic("writing inconsistent inode");
   1060 		}
   1061 	}
   1062 #endif /* DIAGNOSTIC */
   1063 
   1064 	if (ip->i_flag & IN_CLEANING)
   1065 		LFS_CLR_UINO(ip, IN_CLEANING);
   1066 	else {
   1067 		/* XXX IN_ALLMOD */
   1068 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
   1069 			     IN_UPDATE | IN_MODIFY);
   1070 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
   1071 			LFS_CLR_UINO(ip, IN_MODIFIED);
   1072 		else
   1073 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
   1074 			      "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
   1075 			      ip->i_lfs_effnblks));
   1076 	}
   1077 
   1078 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
   1079 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
   1080 			(sp->ninodes % INOPB(fs));
   1081 	if (gotblk) {
   1082 		LFS_LOCK_BUF(bp);
   1083 		brelse(bp);
   1084 	}
   1085 
   1086 	/* Increment inode count in segment summary block. */
   1087 	++((SEGSUM *)(sp->segsum))->ss_ninos;
   1088 
   1089 	/* If this page is full, set flag to allocate a new page. */
   1090 	if (++sp->ninodes % INOPB(fs) == 0)
   1091 		sp->ibp = NULL;
   1092 
   1093 	/*
   1094 	 * If updating the ifile, update the super-block.  Update the disk
   1095 	 * address and access times for this inode in the ifile.
   1096 	 */
   1097 	ino = ip->i_number;
   1098 	if (ino == LFS_IFILE_INUM) {
   1099 		daddr = fs->lfs_idaddr;
   1100 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
   1101 	} else {
   1102 		LFS_IENTRY(ifp, fs, ino, ibp);
   1103 		daddr = ifp->if_daddr;
   1104 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
   1105 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
   1106 	}
   1107 
   1108 	/*
   1109 	 * The inode's last address should not be in the current partial
   1110 	 * segment, except under exceptional circumstances (lfs_writevnodes
   1111 	 * had to start over, and in the meantime more blocks were written
   1112 	 * to a vnode).	 Both inodes will be accounted to this segment
   1113 	 * in lfs_writeseg so we need to subtract the earlier version
   1114 	 * here anyway.	 The segment count can temporarily dip below
   1115 	 * zero here; keep track of how many duplicates we have in
   1116 	 * "dupino" so we don't panic below.
   1117 	 */
   1118 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
   1119 		++sp->ndupino;
   1120 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
   1121 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
   1122 		      (long long)daddr, sp->ndupino));
   1123 	}
   1124 	/*
   1125 	 * Account the inode: it no longer belongs to its former segment,
   1126 	 * though it will not belong to the new segment until that segment
   1127 	 * is actually written.
   1128 	 */
   1129 	if (daddr != LFS_UNUSED_DADDR) {
   1130 		u_int32_t oldsn = dtosn(fs, daddr);
   1131 #ifdef DIAGNOSTIC
   1132 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1133 #endif
   1134 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1135 #ifdef DIAGNOSTIC
   1136 		if (sup->su_nbytes +
   1137 		    sizeof (struct ufs1_dinode) * ndupino
   1138 		      < sizeof (struct ufs1_dinode)) {
   1139 			printf("lfs_writeinode: negative bytes "
   1140 			       "(segment %" PRIu32 " short by %d, "
   1141 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1142 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1143 			       "ndupino=%d)\n",
   1144 			       dtosn(fs, daddr),
   1145 			       (int)sizeof (struct ufs1_dinode) *
   1146 				   (1 - sp->ndupino) - sup->su_nbytes,
   1147 			       oldsn, sp->seg_number, daddr,
   1148 			       (unsigned int)sup->su_nbytes,
   1149 			       sp->ndupino);
   1150 			panic("lfs_writeinode: negative bytes");
   1151 			sup->su_nbytes = sizeof (struct ufs1_dinode);
   1152 		}
   1153 #endif
   1154 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1155 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
   1156 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
   1157 		redo_ifile =
   1158 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1159 		if (redo_ifile) {
   1160 			simple_lock(&fs->lfs_interlock);
   1161 			fs->lfs_flags |= LFS_IFDIRTY;
   1162 			simple_unlock(&fs->lfs_interlock);
   1163 		}
   1164 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1165 	}
   1166 	return (redo_ifile);
   1167 }
   1168 
   1169 int
   1170 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1171 {
   1172 	struct lfs *fs;
   1173 	int vers;
   1174 	int j, blksinblk;
   1175 
   1176 	ASSERT_SEGLOCK(sp->fs);
   1177 	/*
   1178 	 * If full, finish this segment.  We may be doing I/O, so
   1179 	 * release and reacquire the splbio().
   1180 	 */
   1181 #ifdef DIAGNOSTIC
   1182 	if (sp->vp == NULL)
   1183 		panic ("lfs_gatherblock: Null vp in segment");
   1184 #endif
   1185 	fs = sp->fs;
   1186 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1187 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1188 	    sp->seg_bytes_left < bp->b_bcount) {
   1189 		if (sptr)
   1190 			splx(*sptr);
   1191 		lfs_updatemeta(sp);
   1192 
   1193 		vers = sp->fip->fi_version;
   1194 		(void) lfs_writeseg(fs, sp);
   1195 
   1196 		sp->fip->fi_version = vers;
   1197 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1198 		/* Add the current file to the segment summary. */
   1199 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1200 		sp->sum_bytes_left -= FINFOSIZE;
   1201 
   1202 		if (sptr)
   1203 			*sptr = splbio();
   1204 		return (1);
   1205 	}
   1206 
   1207 	if (bp->b_flags & B_GATHERED) {
   1208 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1209 		      " lbn %" PRId64 "\n",
   1210 		      sp->fip->fi_ino, bp->b_lblkno));
   1211 		return (0);
   1212 	}
   1213 
   1214 	/* Insert into the buffer list, update the FINFO block. */
   1215 	bp->b_flags |= B_GATHERED;
   1216 
   1217 	*sp->cbpp++ = bp;
   1218 	for (j = 0; j < blksinblk; j++) {
   1219 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1220 		/* This block's accounting moves from lfs_favail to lfs_avail */
   1221 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
   1222 	}
   1223 
   1224 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1225 	sp->seg_bytes_left -= bp->b_bcount;
   1226 	return (0);
   1227 }
   1228 
   1229 int
   1230 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1231     int (*match)(struct lfs *, struct buf *))
   1232 {
   1233 	struct buf *bp, *nbp;
   1234 	int s, count = 0;
   1235 
   1236 	ASSERT_SEGLOCK(fs);
   1237 	if (vp->v_type == VBLK)
   1238 		return 0;
   1239 	KASSERT(sp->vp == NULL);
   1240 	sp->vp = vp;
   1241 	s = splbio();
   1242 
   1243 #ifndef LFS_NO_BACKBUF_HACK
   1244 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1245 # define	BUF_OFFSET	\
   1246 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1247 # define	BACK_BUF(BP)	\
   1248 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1249 # define	BEG_OF_LIST	\
   1250 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1251 
   1252 loop:
   1253 	/* Find last buffer. */
   1254 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1255 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1256 	     bp = LIST_NEXT(bp, b_vnbufs))
   1257 		/* nothing */;
   1258 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1259 		nbp = BACK_BUF(bp);
   1260 #else /* LFS_NO_BACKBUF_HACK */
   1261 loop:
   1262 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1263 		nbp = LIST_NEXT(bp, b_vnbufs);
   1264 #endif /* LFS_NO_BACKBUF_HACK */
   1265 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1266 #ifdef DEBUG
   1267 			if (vp == fs->lfs_ivnode &&
   1268 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1269 				DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
   1270 				      PRId64 " busy (%x)",
   1271 				      bp->b_lblkno, bp->b_flags));
   1272 #endif
   1273 			continue;
   1274 		}
   1275 #ifdef DIAGNOSTIC
   1276 # ifdef LFS_USE_B_INVAL
   1277 		if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1278 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1279 			      " is B_INVAL\n", bp->b_lblkno));
   1280 			VOP_PRINT(bp->b_vp);
   1281 		}
   1282 # endif /* LFS_USE_B_INVAL */
   1283 		if (!(bp->b_flags & B_DELWRI))
   1284 			panic("lfs_gather: bp not B_DELWRI");
   1285 		if (!(bp->b_flags & B_LOCKED)) {
   1286 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1287 			      " blk %" PRId64 " not B_LOCKED\n",
   1288 			      bp->b_lblkno,
   1289 			      dbtofsb(fs, bp->b_blkno)));
   1290 			VOP_PRINT(bp->b_vp);
   1291 			panic("lfs_gather: bp not B_LOCKED");
   1292 		}
   1293 #endif
   1294 		if (lfs_gatherblock(sp, bp, &s)) {
   1295 			goto loop;
   1296 		}
   1297 		count++;
   1298 	}
   1299 	splx(s);
   1300 	lfs_updatemeta(sp);
   1301 	KASSERT(sp->vp == vp);
   1302 	sp->vp = NULL;
   1303 	return count;
   1304 }
   1305 
   1306 #if DEBUG
   1307 # define DEBUG_OOFF(n) do {						\
   1308 	if (ooff == 0) {						\
   1309 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1310 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1311 			", was 0x0 (or %" PRId64 ")\n",			\
   1312 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1313 	}								\
   1314 } while (0)
   1315 #else
   1316 # define DEBUG_OOFF(n)
   1317 #endif
   1318 
   1319 /*
   1320  * Change the given block's address to ndaddr, finding its previous
   1321  * location using ufs_bmaparray().
   1322  *
   1323  * Account for this change in the segment table.
   1324  *
   1325  * called with sp == NULL by roll-forwarding code.
   1326  */
   1327 void
   1328 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1329     daddr_t lbn, int32_t ndaddr, int size)
   1330 {
   1331 	SEGUSE *sup;
   1332 	struct buf *bp;
   1333 	struct indir a[NIADDR + 2], *ap;
   1334 	struct inode *ip;
   1335 	daddr_t daddr, ooff;
   1336 	int num, error;
   1337 	int bb, osize, obb;
   1338 
   1339 	ASSERT_SEGLOCK(fs);
   1340 	KASSERT(sp == NULL || sp->vp == vp);
   1341 	ip = VTOI(vp);
   1342 
   1343 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1344 	if (error)
   1345 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1346 
   1347 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1348 	KASSERT(daddr <= LFS_MAX_DADDR);
   1349 	if (daddr > 0)
   1350 		daddr = dbtofsb(fs, daddr);
   1351 
   1352 	bb = fragstofsb(fs, numfrags(fs, size));
   1353 	switch (num) {
   1354 	    case 0:
   1355 		    ooff = ip->i_ffs1_db[lbn];
   1356 		    DEBUG_OOFF(0);
   1357 		    if (ooff == UNWRITTEN)
   1358 			    ip->i_ffs1_blocks += bb;
   1359 		    else {
   1360 			    /* possible fragment truncation or extension */
   1361 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1362 			    ip->i_ffs1_blocks += (bb - obb);
   1363 		    }
   1364 		    ip->i_ffs1_db[lbn] = ndaddr;
   1365 		    break;
   1366 	    case 1:
   1367 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1368 		    DEBUG_OOFF(1);
   1369 		    if (ooff == UNWRITTEN)
   1370 			    ip->i_ffs1_blocks += bb;
   1371 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1372 		    break;
   1373 	    default:
   1374 		    ap = &a[num - 1];
   1375 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1376 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1377 				  ap->in_lbn);
   1378 
   1379 		    /* XXX ondisk32 */
   1380 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1381 		    DEBUG_OOFF(num);
   1382 		    if (ooff == UNWRITTEN)
   1383 			    ip->i_ffs1_blocks += bb;
   1384 		    /* XXX ondisk32 */
   1385 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1386 		    (void) VOP_BWRITE(bp);
   1387 	}
   1388 
   1389 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1390 
   1391 	/* Update hiblk when extending the file */
   1392 	if (lbn > ip->i_lfs_hiblk)
   1393 		ip->i_lfs_hiblk = lbn;
   1394 
   1395 	/*
   1396 	 * Though we'd rather it couldn't, this *can* happen right now
   1397 	 * if cleaning blocks and regular blocks coexist.
   1398 	 */
   1399 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1400 
   1401 	/*
   1402 	 * Update segment usage information, based on old size
   1403 	 * and location.
   1404 	 */
   1405 	if (daddr > 0) {
   1406 		u_int32_t oldsn = dtosn(fs, daddr);
   1407 #ifdef DIAGNOSTIC
   1408 		int ndupino;
   1409 
   1410 		if (sp && sp->seg_number == oldsn) {
   1411 			ndupino = sp->ndupino;
   1412 		} else {
   1413 			ndupino = 0;
   1414 		}
   1415 #endif
   1416 		KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
   1417 		if (lbn >= 0 && lbn < NDADDR)
   1418 			osize = ip->i_lfs_fragsize[lbn];
   1419 		else
   1420 			osize = fs->lfs_bsize;
   1421 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1422 #ifdef DIAGNOSTIC
   1423 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
   1424 		    < osize) {
   1425 			printf("lfs_updatemeta: negative bytes "
   1426 			       "(segment %" PRIu32 " short by %" PRId64
   1427 			       ")\n", dtosn(fs, daddr),
   1428 			       (int64_t)osize -
   1429 			       (sizeof (struct ufs1_dinode) * ndupino +
   1430 				sup->su_nbytes));
   1431 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
   1432 			       ", addr = 0x%" PRIx64 "\n",
   1433 			       (unsigned long long)ip->i_number, lbn, daddr);
   1434 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1435 			panic("lfs_updatemeta: negative bytes");
   1436 			sup->su_nbytes = osize -
   1437 			    sizeof (struct ufs1_dinode) * ndupino;
   1438 		}
   1439 #endif
   1440 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1441 		      " db 0x%" PRIx64 "\n",
   1442 		      dtosn(fs, daddr), osize,
   1443 		      ip->i_number, lbn, daddr));
   1444 		sup->su_nbytes -= osize;
   1445 		if (!(bp->b_flags & B_GATHERED)) {
   1446 			simple_lock(&fs->lfs_interlock);
   1447 			fs->lfs_flags |= LFS_IFDIRTY;
   1448 			simple_unlock(&fs->lfs_interlock);
   1449 		}
   1450 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1451 	}
   1452 	/*
   1453 	 * Now that this block has a new address, and its old
   1454 	 * segment no longer owns it, we can forget about its
   1455 	 * old size.
   1456 	 */
   1457 	if (lbn >= 0 && lbn < NDADDR)
   1458 		ip->i_lfs_fragsize[lbn] = size;
   1459 }
   1460 
   1461 /*
   1462  * Update the metadata that points to the blocks listed in the FINFO
   1463  * array.
   1464  */
   1465 void
   1466 lfs_updatemeta(struct segment *sp)
   1467 {
   1468 	struct buf *sbp;
   1469 	struct lfs *fs;
   1470 	struct vnode *vp;
   1471 	daddr_t lbn;
   1472 	int i, nblocks, num;
   1473 	int bb;
   1474 	int bytesleft, size;
   1475 
   1476 	ASSERT_SEGLOCK(sp->fs);
   1477 	vp = sp->vp;
   1478 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1479 	KASSERT(nblocks >= 0);
   1480 	KASSERT(vp != NULL);
   1481 	if (nblocks == 0)
   1482 		return;
   1483 
   1484 	/*
   1485 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1486 	 * Correct for this. (XXX we should be able to keep track of these.)
   1487 	 */
   1488 	fs = sp->fs;
   1489 	for (i = 0; i < nblocks; i++) {
   1490 		if (sp->start_bpp[i] == NULL) {
   1491 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1492 			nblocks = i;
   1493 			break;
   1494 		}
   1495 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1496 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1497 		nblocks -= num - 1;
   1498 	}
   1499 
   1500 	KASSERT(vp->v_type == VREG ||
   1501 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1502 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1503 
   1504 	/*
   1505 	 * Sort the blocks.
   1506 	 *
   1507 	 * We have to sort even if the blocks come from the
   1508 	 * cleaner, because there might be other pending blocks on the
   1509 	 * same inode...and if we don't sort, and there are fragments
   1510 	 * present, blocks may be written in the wrong place.
   1511 	 */
   1512 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1513 
   1514 	/*
   1515 	 * Record the length of the last block in case it's a fragment.
   1516 	 * If there are indirect blocks present, they sort last.  An
   1517 	 * indirect block will be lfs_bsize and its presence indicates
   1518 	 * that you cannot have fragments.
   1519 	 *
   1520 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1521 	 * XXX a later indirect block.	This will continue to be
   1522 	 * XXX true until lfs_markv is fixed to do everything with
   1523 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1524 	 */
   1525 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1526 		fs->lfs_bmask) + 1;
   1527 
   1528 	/*
   1529 	 * Assign disk addresses, and update references to the logical
   1530 	 * block and the segment usage information.
   1531 	 */
   1532 	for (i = nblocks; i--; ++sp->start_bpp) {
   1533 		sbp = *sp->start_bpp;
   1534 		lbn = *sp->start_lbp;
   1535 		KASSERT(sbp->b_lblkno == lbn);
   1536 
   1537 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1538 
   1539 		/*
   1540 		 * If we write a frag in the wrong place, the cleaner won't
   1541 		 * be able to correctly identify its size later, and the
   1542 		 * segment will be uncleanable.	 (Even worse, it will assume
   1543 		 * that the indirect block that actually ends the list
   1544 		 * is of a smaller size!)
   1545 		 */
   1546 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1547 			panic("lfs_updatemeta: fragment is not last block");
   1548 
   1549 		/*
   1550 		 * For each subblock in this possibly oversized block,
   1551 		 * update its address on disk.
   1552 		 */
   1553 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1554 		KASSERT(vp == sbp->b_vp);
   1555 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1556 		     bytesleft -= fs->lfs_bsize) {
   1557 			size = MIN(bytesleft, fs->lfs_bsize);
   1558 			bb = fragstofsb(fs, numfrags(fs, size));
   1559 			lbn = *sp->start_lbp++;
   1560 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1561 			    size);
   1562 			fs->lfs_offset += bb;
   1563 		}
   1564 
   1565 	}
   1566 }
   1567 
   1568 /*
   1569  * Move lfs_offset to a segment earlier than sn.
   1570  */
   1571 int
   1572 lfs_rewind(struct lfs *fs, int newsn)
   1573 {
   1574 	int sn, osn, isdirty;
   1575 	struct buf *bp;
   1576 	SEGUSE *sup;
   1577 
   1578 	ASSERT_SEGLOCK(fs);
   1579 
   1580 	osn = dtosn(fs, fs->lfs_offset);
   1581 	if (osn < newsn)
   1582 		return 0;
   1583 
   1584 	/* lfs_avail eats the remaining space in this segment */
   1585 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
   1586 
   1587 	/* Find a low-numbered segment */
   1588 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
   1589 		LFS_SEGENTRY(sup, fs, sn, bp);
   1590 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1591 		brelse(bp);
   1592 
   1593 		if (!isdirty)
   1594 			break;
   1595 	}
   1596 	if (sn == fs->lfs_nseg)
   1597 		panic("lfs_rewind: no clean segments");
   1598 	if (sn >= newsn)
   1599 		return ENOENT;
   1600 	fs->lfs_nextseg = sn;
   1601 	lfs_newseg(fs);
   1602 	fs->lfs_offset = fs->lfs_curseg;
   1603 
   1604 	return 0;
   1605 }
   1606 
   1607 /*
   1608  * Start a new partial segment.
   1609  *
   1610  * Return 1 when we entered to a new segment.
   1611  * Otherwise, return 0.
   1612  */
   1613 int
   1614 lfs_initseg(struct lfs *fs)
   1615 {
   1616 	struct segment *sp = fs->lfs_sp;
   1617 	SEGSUM *ssp;
   1618 	struct buf *sbp;	/* buffer for SEGSUM */
   1619 	int repeat = 0;		/* return value */
   1620 
   1621 	ASSERT_SEGLOCK(fs);
   1622 	/* Advance to the next segment. */
   1623 	if (!LFS_PARTIAL_FITS(fs)) {
   1624 		SEGUSE *sup;
   1625 		struct buf *bp;
   1626 
   1627 		/* lfs_avail eats the remaining space */
   1628 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1629 						   fs->lfs_curseg);
   1630 		/* Wake up any cleaning procs waiting on this file system. */
   1631 		wakeup(&lfs_allclean_wakeup);
   1632 		wakeup(&fs->lfs_nextseg);
   1633 		lfs_newseg(fs);
   1634 		repeat = 1;
   1635 		fs->lfs_offset = fs->lfs_curseg;
   1636 
   1637 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1638 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1639 
   1640 		/*
   1641 		 * If the segment contains a superblock, update the offset
   1642 		 * and summary address to skip over it.
   1643 		 */
   1644 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1645 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1646 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1647 			sp->seg_bytes_left -= LFS_SBPAD;
   1648 		}
   1649 		brelse(bp);
   1650 		/* Segment zero could also contain the labelpad */
   1651 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1652 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1653 			fs->lfs_offset +=
   1654 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1655 			sp->seg_bytes_left -=
   1656 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1657 		}
   1658 	} else {
   1659 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1660 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1661 				      (fs->lfs_offset - fs->lfs_curseg));
   1662 	}
   1663 	fs->lfs_lastpseg = fs->lfs_offset;
   1664 
   1665 	/* Record first address of this partial segment */
   1666 	if (sp->seg_flags & SEGM_CLEAN) {
   1667 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1668 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1669 			/* "1" is the artificial inc in lfs_seglock */
   1670 			simple_lock(&fs->lfs_interlock);
   1671 			while (fs->lfs_iocount > 1) {
   1672 				ltsleep(&fs->lfs_iocount, PRIBIO + 1,
   1673 				    "lfs_initseg", 0, &fs->lfs_interlock);
   1674 			}
   1675 			simple_unlock(&fs->lfs_interlock);
   1676 			fs->lfs_cleanind = 0;
   1677 		}
   1678 	}
   1679 
   1680 	sp->fs = fs;
   1681 	sp->ibp = NULL;
   1682 	sp->idp = NULL;
   1683 	sp->ninodes = 0;
   1684 	sp->ndupino = 0;
   1685 
   1686 	sp->cbpp = sp->bpp;
   1687 
   1688 	/* Get a new buffer for SEGSUM */
   1689 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1690 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1691 
   1692 	/* ... and enter it into the buffer list. */
   1693 	*sp->cbpp = sbp;
   1694 	sp->cbpp++;
   1695 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1696 
   1697 	sp->start_bpp = sp->cbpp;
   1698 
   1699 	/* Set point to SEGSUM, initialize it. */
   1700 	ssp = sp->segsum = sbp->b_data;
   1701 	memset(ssp, 0, fs->lfs_sumsize);
   1702 	ssp->ss_next = fs->lfs_nextseg;
   1703 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1704 	ssp->ss_magic = SS_MAGIC;
   1705 
   1706 	/* Set pointer to first FINFO, initialize it. */
   1707 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1708 	sp->fip->fi_nblocks = 0;
   1709 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1710 	sp->fip->fi_lastlength = 0;
   1711 
   1712 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1713 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1714 
   1715 	return (repeat);
   1716 }
   1717 
   1718 /*
   1719  * Remove SEGUSE_INVAL from all segments.
   1720  */
   1721 void
   1722 lfs_unset_inval_all(struct lfs *fs)
   1723 {
   1724 	SEGUSE *sup;
   1725 	struct buf *bp;
   1726 	int i;
   1727 
   1728 	for (i = 0; i < fs->lfs_nseg; i++) {
   1729 		LFS_SEGENTRY(sup, fs, i, bp);
   1730 		if (sup->su_flags & SEGUSE_INVAL) {
   1731 			sup->su_flags &= ~SEGUSE_INVAL;
   1732 			VOP_BWRITE(bp);
   1733 		} else
   1734 			brelse(bp);
   1735 	}
   1736 }
   1737 
   1738 /*
   1739  * Return the next segment to write.
   1740  */
   1741 void
   1742 lfs_newseg(struct lfs *fs)
   1743 {
   1744 	CLEANERINFO *cip;
   1745 	SEGUSE *sup;
   1746 	struct buf *bp;
   1747 	int curseg, isdirty, sn, skip_inval;
   1748 
   1749 	ASSERT_SEGLOCK(fs);
   1750 
   1751 	/* Honor LFCNWRAPSTOP */
   1752 	simple_lock(&fs->lfs_interlock);
   1753 	if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
   1754 		wakeup(&fs->lfs_nowrap);
   1755 		ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
   1756 			&fs->lfs_interlock);
   1757 	}
   1758 	simple_unlock(&fs->lfs_interlock);
   1759 
   1760 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1761 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1762 	      dtosn(fs, fs->lfs_nextseg)));
   1763 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1764 	sup->su_nbytes = 0;
   1765 	sup->su_nsums = 0;
   1766 	sup->su_ninos = 0;
   1767 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1768 
   1769 	LFS_CLEANERINFO(cip, fs, bp);
   1770 	--cip->clean;
   1771 	++cip->dirty;
   1772 	fs->lfs_nclean = cip->clean;
   1773 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1774 
   1775 	fs->lfs_lastseg = fs->lfs_curseg;
   1776 	fs->lfs_curseg = fs->lfs_nextseg;
   1777 	skip_inval = 1;
   1778 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1779 		sn = (sn + 1) % fs->lfs_nseg;
   1780 
   1781 		if (sn == curseg) {
   1782 			if (skip_inval)
   1783 				skip_inval = 0;
   1784 			else
   1785 				panic("lfs_nextseg: no clean segments");
   1786 		}
   1787 		LFS_SEGENTRY(sup, fs, sn, bp);
   1788 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
   1789 		/* Check SEGUSE_EMPTY as we go along */
   1790 		if (isdirty && sup->su_nbytes == 0 &&
   1791 		    !(sup->su_flags & SEGUSE_EMPTY))
   1792 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1793 		else
   1794 			brelse(bp);
   1795 
   1796 		if (!isdirty)
   1797 			break;
   1798 	}
   1799 	if (skip_inval == 0)
   1800 		lfs_unset_inval_all(fs);
   1801 
   1802 	++fs->lfs_nactive;
   1803 	fs->lfs_nextseg = sntod(fs, sn);
   1804 	if (lfs_dostats) {
   1805 		++lfs_stats.segsused;
   1806 	}
   1807 }
   1808 
   1809 static struct buf *
   1810 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1811 {
   1812 	struct lfs_cluster *cl;
   1813 	struct buf **bpp, *bp;
   1814 	int s;
   1815 
   1816 	ASSERT_SEGLOCK(fs);
   1817 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1818 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1819 	memset(cl, 0, sizeof(*cl));
   1820 	cl->fs = fs;
   1821 	cl->bpp = bpp;
   1822 	cl->bufcount = 0;
   1823 	cl->bufsize = 0;
   1824 
   1825 	/* If this segment is being written synchronously, note that */
   1826 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1827 		cl->flags |= LFS_CL_SYNC;
   1828 		cl->seg = fs->lfs_sp;
   1829 		++cl->seg->seg_iocount;
   1830 	}
   1831 
   1832 	/* Get an empty buffer header, or maybe one with something on it */
   1833 	s = splbio();
   1834 	bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
   1835 	splx(s);
   1836 	memset(bp, 0, sizeof(*bp));
   1837 	BUF_INIT(bp);
   1838 
   1839 	bp->b_flags = B_BUSY | B_CALL;
   1840 	bp->b_dev = NODEV;
   1841 	bp->b_blkno = bp->b_lblkno = addr;
   1842 	bp->b_iodone = lfs_cluster_callback;
   1843 	bp->b_private = cl;
   1844 	bp->b_vp = vp;
   1845 
   1846 	return bp;
   1847 }
   1848 
   1849 int
   1850 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1851 {
   1852 	struct buf **bpp, *bp, *cbp, *newbp;
   1853 	SEGUSE *sup;
   1854 	SEGSUM *ssp;
   1855 	int i, s;
   1856 	int do_again, nblocks, byteoffset;
   1857 	size_t el_size;
   1858 	struct lfs_cluster *cl;
   1859 	u_short ninos;
   1860 	struct vnode *devvp;
   1861 	char *p = NULL;
   1862 	struct vnode *vp;
   1863 	int32_t *daddrp;	/* XXX ondisk32 */
   1864 	int changed;
   1865 	u_int32_t sum;
   1866 
   1867 	ASSERT_SEGLOCK(fs);
   1868 	/*
   1869 	 * If there are no buffers other than the segment summary to write
   1870 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1871 	 * even if there aren't any buffers, you need to write the superblock.
   1872 	 */
   1873 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1874 		return (0);
   1875 
   1876 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1877 
   1878 	/* Update the segment usage information. */
   1879 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1880 
   1881 	/* Loop through all blocks, except the segment summary. */
   1882 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1883 		if ((*bpp)->b_vp != devvp) {
   1884 			sup->su_nbytes += (*bpp)->b_bcount;
   1885 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   1886 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   1887 			      sp->seg_number, (*bpp)->b_bcount,
   1888 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1889 			      (*bpp)->b_blkno));
   1890 		}
   1891 	}
   1892 
   1893 	ssp = (SEGSUM *)sp->segsum;
   1894 
   1895 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1896 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   1897 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
   1898 	      ssp->ss_ninos));
   1899 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
   1900 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1901 	if (fs->lfs_version == 1)
   1902 		sup->su_olastmod = time.tv_sec;
   1903 	else
   1904 		sup->su_lastmod = time.tv_sec;
   1905 	sup->su_ninos += ninos;
   1906 	++sup->su_nsums;
   1907 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1908 
   1909 	do_again = !(bp->b_flags & B_GATHERED);
   1910 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1911 
   1912 	/*
   1913 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1914 	 * the checksum computation and the actual write.
   1915 	 *
   1916 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1917 	 * there are any, replace them with copies that have UNASSIGNED
   1918 	 * instead.
   1919 	 */
   1920 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1921 		++bpp;
   1922 		bp = *bpp;
   1923 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1924 			bp->b_flags |= B_BUSY;
   1925 			continue;
   1926 		}
   1927 
   1928 		simple_lock(&bp->b_interlock);
   1929 		s = splbio();
   1930 		while (bp->b_flags & B_BUSY) {
   1931 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   1932 			      " data summary corruption for ino %d, lbn %"
   1933 			      PRId64 "\n",
   1934 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   1935 			bp->b_flags |= B_WANTED;
   1936 			ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
   1937 				&bp->b_interlock);
   1938 			splx(s);
   1939 			s = splbio();
   1940 		}
   1941 		bp->b_flags |= B_BUSY;
   1942 		splx(s);
   1943 		simple_unlock(&bp->b_interlock);
   1944 
   1945 		/*
   1946 		 * Check and replace indirect block UNWRITTEN bogosity.
   1947 		 * XXX See comment in lfs_writefile.
   1948 		 */
   1949 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1950 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   1951 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1952 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1953 			      VTOI(bp->b_vp)->i_number,
   1954 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   1955 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   1956 			/* Make a copy we'll make changes to */
   1957 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1958 					   bp->b_bcount, LFS_NB_IBLOCK);
   1959 			newbp->b_blkno = bp->b_blkno;
   1960 			memcpy(newbp->b_data, bp->b_data,
   1961 			       newbp->b_bcount);
   1962 
   1963 			changed = 0;
   1964 			/* XXX ondisk32 */
   1965 			for (daddrp = (int32_t *)(newbp->b_data);
   1966 			     daddrp < (int32_t *)(newbp->b_data +
   1967 						  newbp->b_bcount); daddrp++) {
   1968 				if (*daddrp == UNWRITTEN) {
   1969 					++changed;
   1970 					*daddrp = 0;
   1971 				}
   1972 			}
   1973 			/*
   1974 			 * Get rid of the old buffer.  Don't mark it clean,
   1975 			 * though, if it still has dirty data on it.
   1976 			 */
   1977 			if (changed) {
   1978 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   1979 				      " bp = %p newbp = %p\n", changed, bp,
   1980 				      newbp));
   1981 				*bpp = newbp;
   1982 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1983 				if (bp->b_flags & B_CALL) {
   1984 					DLOG((DLOG_SEG, "lfs_writeseg: "
   1985 					      "indir bp should not be B_CALL\n"));
   1986 					s = splbio();
   1987 					biodone(bp);
   1988 					splx(s);
   1989 					bp = NULL;
   1990 				} else {
   1991 					/* Still on free list, leave it there */
   1992 					s = splbio();
   1993 					bp->b_flags &= ~B_BUSY;
   1994 					if (bp->b_flags & B_WANTED)
   1995 						wakeup(bp);
   1996 					splx(s);
   1997 					/*
   1998 					 * We have to re-decrement lfs_avail
   1999 					 * since this block is going to come
   2000 					 * back around to us in the next
   2001 					 * segment.
   2002 					 */
   2003 					fs->lfs_avail -=
   2004 					    btofsb(fs, bp->b_bcount);
   2005 				}
   2006 			} else {
   2007 				lfs_freebuf(fs, newbp);
   2008 			}
   2009 		}
   2010 	}
   2011 	/*
   2012 	 * Compute checksum across data and then across summary; the first
   2013 	 * block (the summary block) is skipped.  Set the create time here
   2014 	 * so that it's guaranteed to be later than the inode mod times.
   2015 	 */
   2016 	sum = 0;
   2017 	if (fs->lfs_version == 1)
   2018 		el_size = sizeof(u_long);
   2019 	else
   2020 		el_size = sizeof(u_int32_t);
   2021 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   2022 		++bpp;
   2023 		/* Loop through gop_write cluster blocks */
   2024 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   2025 		     byteoffset += fs->lfs_bsize) {
   2026 #ifdef LFS_USE_B_INVAL
   2027 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   2028 			    (B_CALL | B_INVAL)) {
   2029 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   2030 					   byteoffset, dp, el_size)) {
   2031 					panic("lfs_writeseg: copyin failed [1]:"
   2032 						" ino %d blk %" PRId64,
   2033 						VTOI((*bpp)->b_vp)->i_number,
   2034 						(*bpp)->b_lblkno);
   2035 				}
   2036 			} else
   2037 #endif /* LFS_USE_B_INVAL */
   2038 			{
   2039 				sum = lfs_cksum_part(
   2040 				    (*bpp)->b_data + byteoffset, el_size, sum);
   2041 			}
   2042 		}
   2043 	}
   2044 	if (fs->lfs_version == 1)
   2045 		ssp->ss_ocreate = time.tv_sec;
   2046 	else {
   2047 		ssp->ss_create = time.tv_sec;
   2048 		ssp->ss_serial = ++fs->lfs_serial;
   2049 		ssp->ss_ident  = fs->lfs_ident;
   2050 	}
   2051 	ssp->ss_datasum = lfs_cksum_fold(sum);
   2052 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   2053 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   2054 
   2055 	simple_lock(&fs->lfs_interlock);
   2056 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   2057 			  btofsb(fs, fs->lfs_sumsize));
   2058 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
   2059 			  btofsb(fs, fs->lfs_sumsize));
   2060 	simple_unlock(&fs->lfs_interlock);
   2061 
   2062 	/*
   2063 	 * When we simply write the blocks we lose a rotation for every block
   2064 	 * written.  To avoid this problem, we cluster the buffers into a
   2065 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   2066 	 * devices can handle, use that for the size of the chunks.
   2067 	 *
   2068 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   2069 	 * don't bother to copy into other clusters.
   2070 	 */
   2071 
   2072 #define CHUNKSIZE MAXPHYS
   2073 
   2074 	if (devvp == NULL)
   2075 		panic("devvp is NULL");
   2076 	for (bpp = sp->bpp, i = nblocks; i;) {
   2077 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   2078 		cl = cbp->b_private;
   2079 
   2080 		cbp->b_flags |= B_ASYNC | B_BUSY;
   2081 		cbp->b_bcount = 0;
   2082 
   2083 #if defined(DEBUG) && defined(DIAGNOSTIC)
   2084 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   2085 		    / sizeof(int32_t)) {
   2086 			panic("lfs_writeseg: real bpp overwrite");
   2087 		}
   2088 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
   2089 			panic("lfs_writeseg: theoretical bpp overwrite");
   2090 		}
   2091 #endif
   2092 
   2093 		/*
   2094 		 * Construct the cluster.
   2095 		 */
   2096 		simple_lock(&fs->lfs_interlock);
   2097 		++fs->lfs_iocount;
   2098 		simple_unlock(&fs->lfs_interlock);
   2099 		while (i && cbp->b_bcount < CHUNKSIZE) {
   2100 			bp = *bpp;
   2101 
   2102 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   2103 				break;
   2104 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   2105 				break;
   2106 
   2107 			/* Clusters from GOP_WRITE are expedited */
   2108 			if (bp->b_bcount > fs->lfs_bsize) {
   2109 				if (cbp->b_bcount > 0)
   2110 					/* Put in its own buffer */
   2111 					break;
   2112 				else {
   2113 					cbp->b_data = bp->b_data;
   2114 				}
   2115 			} else if (cbp->b_bcount == 0) {
   2116 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   2117 							     LFS_NB_CLUSTER);
   2118 				cl->flags |= LFS_CL_MALLOC;
   2119 			}
   2120 #ifdef DIAGNOSTIC
   2121 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   2122 					      btodb(bp->b_bcount - 1))) !=
   2123 			    sp->seg_number) {
   2124 				printf("blk size %d daddr %" PRIx64
   2125 				    " not in seg %d\n",
   2126 				    bp->b_bcount, bp->b_blkno,
   2127 				    sp->seg_number);
   2128 				panic("segment overwrite");
   2129 			}
   2130 #endif
   2131 
   2132 #ifdef LFS_USE_B_INVAL
   2133 			/*
   2134 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2135 			 * We need to copy the data from user space rather than
   2136 			 * from the buffer indicated.
   2137 			 * XXX == what do I do on an error?
   2138 			 */
   2139 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
   2140 			    (B_CALL|B_INVAL)) {
   2141 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2142 					panic("lfs_writeseg: "
   2143 					    "copyin failed [2]");
   2144 			} else
   2145 #endif /* LFS_USE_B_INVAL */
   2146 			if (cl->flags & LFS_CL_MALLOC) {
   2147 				/* copy data into our cluster. */
   2148 				memcpy(p, bp->b_data, bp->b_bcount);
   2149 				p += bp->b_bcount;
   2150 			}
   2151 
   2152 			cbp->b_bcount += bp->b_bcount;
   2153 			cl->bufsize += bp->b_bcount;
   2154 
   2155 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   2156 			cl->bpp[cl->bufcount++] = bp;
   2157 			vp = bp->b_vp;
   2158 			s = splbio();
   2159 			reassignbuf(bp, vp);
   2160 			V_INCR_NUMOUTPUT(vp);
   2161 			splx(s);
   2162 
   2163 			bpp++;
   2164 			i--;
   2165 		}
   2166 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2167 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   2168 		else
   2169 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   2170 		s = splbio();
   2171 		V_INCR_NUMOUTPUT(devvp);
   2172 		splx(s);
   2173 		VOP_STRATEGY(devvp, cbp);
   2174 		curproc->p_stats->p_ru.ru_oublock++;
   2175 	}
   2176 
   2177 	if (lfs_dostats) {
   2178 		++lfs_stats.psegwrites;
   2179 		lfs_stats.blocktot += nblocks - 1;
   2180 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2181 			++lfs_stats.psyncwrites;
   2182 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2183 			++lfs_stats.pcleanwrites;
   2184 			lfs_stats.cleanblocks += nblocks - 1;
   2185 		}
   2186 	}
   2187 	return (lfs_initseg(fs) || do_again);
   2188 }
   2189 
   2190 void
   2191 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2192 {
   2193 	struct buf *bp;
   2194 	int s;
   2195 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2196 
   2197 	ASSERT_MAYBE_SEGLOCK(fs);
   2198 #ifdef DIAGNOSTIC
   2199 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   2200 #endif
   2201 	/*
   2202 	 * If we can write one superblock while another is in
   2203 	 * progress, we risk not having a complete checkpoint if we crash.
   2204 	 * So, block here if a superblock write is in progress.
   2205 	 */
   2206 	simple_lock(&fs->lfs_interlock);
   2207 	s = splbio();
   2208 	while (fs->lfs_sbactive) {
   2209 		ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   2210 			&fs->lfs_interlock);
   2211 	}
   2212 	fs->lfs_sbactive = daddr;
   2213 	splx(s);
   2214 	simple_unlock(&fs->lfs_interlock);
   2215 
   2216 	/* Set timestamp of this version of the superblock */
   2217 	if (fs->lfs_version == 1)
   2218 		fs->lfs_otstamp = time.tv_sec;
   2219 	fs->lfs_tstamp = time.tv_sec;
   2220 
   2221 	/* Checksum the superblock and copy it into a buffer. */
   2222 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2223 	bp = lfs_newbuf(fs, devvp,
   2224 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2225 	memset(bp->b_data + sizeof(struct dlfs), 0,
   2226 	    LFS_SBPAD - sizeof(struct dlfs));
   2227 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2228 
   2229 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2230 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2231 	bp->b_iodone = lfs_supercallback;
   2232 
   2233 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2234 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2235 	else
   2236 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2237 	curproc->p_stats->p_ru.ru_oublock++;
   2238 	s = splbio();
   2239 	V_INCR_NUMOUTPUT(bp->b_vp);
   2240 	splx(s);
   2241 	simple_lock(&fs->lfs_interlock);
   2242 	++fs->lfs_iocount;
   2243 	simple_unlock(&fs->lfs_interlock);
   2244 	VOP_STRATEGY(devvp, bp);
   2245 }
   2246 
   2247 /*
   2248  * Logical block number match routines used when traversing the dirty block
   2249  * chain.
   2250  */
   2251 int
   2252 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2253 {
   2254 
   2255 	ASSERT_SEGLOCK(fs);
   2256 	return LFS_IS_MALLOC_BUF(bp);
   2257 }
   2258 
   2259 #if 0
   2260 int
   2261 lfs_match_real(struct lfs *fs, struct buf *bp)
   2262 {
   2263 
   2264 	ASSERT_SEGLOCK(fs);
   2265 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2266 }
   2267 #endif
   2268 
   2269 int
   2270 lfs_match_data(struct lfs *fs, struct buf *bp)
   2271 {
   2272 
   2273 	ASSERT_SEGLOCK(fs);
   2274 	return (bp->b_lblkno >= 0);
   2275 }
   2276 
   2277 int
   2278 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2279 {
   2280 	daddr_t lbn;
   2281 
   2282 	ASSERT_SEGLOCK(fs);
   2283 	lbn = bp->b_lblkno;
   2284 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2285 }
   2286 
   2287 int
   2288 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2289 {
   2290 	daddr_t lbn;
   2291 
   2292 	ASSERT_SEGLOCK(fs);
   2293 	lbn = bp->b_lblkno;
   2294 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2295 }
   2296 
   2297 int
   2298 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2299 {
   2300 	daddr_t lbn;
   2301 
   2302 	ASSERT_SEGLOCK(fs);
   2303 	lbn = bp->b_lblkno;
   2304 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2305 }
   2306 
   2307 /*
   2308  * XXX - The only buffers that are going to hit these functions are the
   2309  * segment write blocks, or the segment summaries, or the superblocks.
   2310  *
   2311  * All of the above are created by lfs_newbuf, and so do not need to be
   2312  * released via brelse.
   2313  */
   2314 void
   2315 lfs_callback(struct buf *bp)
   2316 {
   2317 	struct lfs *fs;
   2318 
   2319 	fs = bp->b_private;
   2320 	ASSERT_NO_SEGLOCK(fs);
   2321 	lfs_freebuf(fs, bp);
   2322 }
   2323 
   2324 static void
   2325 lfs_super_aiodone(struct buf *bp)
   2326 {
   2327 	struct lfs *fs;
   2328 
   2329 	fs = bp->b_private;
   2330 	ASSERT_NO_SEGLOCK(fs);
   2331 	simple_lock(&fs->lfs_interlock);
   2332 	fs->lfs_sbactive = 0;
   2333 	if (--fs->lfs_iocount <= 1)
   2334 		wakeup(&fs->lfs_iocount);
   2335 	simple_unlock(&fs->lfs_interlock);
   2336 	wakeup(&fs->lfs_sbactive);
   2337 	lfs_freebuf(fs, bp);
   2338 }
   2339 
   2340 static void
   2341 lfs_cluster_aiodone(struct buf *bp)
   2342 {
   2343 	struct lfs_cluster *cl;
   2344 	struct lfs *fs;
   2345 	struct buf *tbp, *fbp;
   2346 	struct vnode *vp, *devvp;
   2347 	struct inode *ip;
   2348 	int s, error=0;
   2349 
   2350 	if (bp->b_flags & B_ERROR)
   2351 		error = bp->b_error;
   2352 
   2353 	cl = bp->b_private;
   2354 	fs = cl->fs;
   2355 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2356 	ASSERT_NO_SEGLOCK(fs);
   2357 
   2358 	/* Put the pages back, and release the buffer */
   2359 	while (cl->bufcount--) {
   2360 		tbp = cl->bpp[cl->bufcount];
   2361 		KASSERT(tbp->b_flags & B_BUSY);
   2362 		if (error) {
   2363 			tbp->b_flags |= B_ERROR;
   2364 			tbp->b_error = error;
   2365 		}
   2366 
   2367 		/*
   2368 		 * We're done with tbp.	 If it has not been re-dirtied since
   2369 		 * the cluster was written, free it.  Otherwise, keep it on
   2370 		 * the locked list to be written again.
   2371 		 */
   2372 		vp = tbp->b_vp;
   2373 
   2374 		tbp->b_flags &= ~B_GATHERED;
   2375 
   2376 		LFS_BCLEAN_LOG(fs, tbp);
   2377 
   2378 		if (!(tbp->b_flags & B_CALL)) {
   2379 			KASSERT(tbp->b_flags & B_LOCKED);
   2380 			s = splbio();
   2381 			simple_lock(&bqueue_slock);
   2382 			bremfree(tbp);
   2383 			simple_unlock(&bqueue_slock);
   2384 			if (vp)
   2385 				reassignbuf(tbp, vp);
   2386 			splx(s);
   2387 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2388 		}
   2389 
   2390 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2391 			LFS_UNLOCK_BUF(tbp);
   2392 
   2393 		if (tbp->b_flags & B_DONE) {
   2394 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2395 				cl->bufcount, (long)tbp->b_flags));
   2396 		}
   2397 
   2398 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2399 			/*
   2400 			 * A buffer from the page daemon.
   2401 			 * We use the same iodone as it does,
   2402 			 * so we must manually disassociate its
   2403 			 * buffers from the vp.
   2404 			 */
   2405 			if (tbp->b_vp) {
   2406 				/* This is just silly */
   2407 				s = splbio();
   2408 				brelvp(tbp);
   2409 				tbp->b_vp = vp;
   2410 				splx(s);
   2411 			}
   2412 			/* Put it back the way it was */
   2413 			tbp->b_flags |= B_ASYNC;
   2414 			/* Master buffers have B_AGE */
   2415 			if (tbp->b_private == tbp)
   2416 				tbp->b_flags |= B_AGE;
   2417 		}
   2418 		s = splbio();
   2419 		biodone(tbp);
   2420 
   2421 		/*
   2422 		 * If this is the last block for this vnode, but
   2423 		 * there are other blocks on its dirty list,
   2424 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2425 		 * sort of block.  Only do this for our mount point,
   2426 		 * not for, e.g., inode blocks that are attached to
   2427 		 * the devvp.
   2428 		 * XXX KS - Shouldn't we set *both* if both types
   2429 		 * of blocks are present (traverse the dirty list?)
   2430 		 */
   2431 		simple_lock(&global_v_numoutput_slock);
   2432 		if (vp != devvp && vp->v_numoutput == 0 &&
   2433 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2434 			ip = VTOI(vp);
   2435 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2436 			       ip->i_number));
   2437 			if (LFS_IS_MALLOC_BUF(fbp))
   2438 				LFS_SET_UINO(ip, IN_CLEANING);
   2439 			else
   2440 				LFS_SET_UINO(ip, IN_MODIFIED);
   2441 		}
   2442 		simple_unlock(&global_v_numoutput_slock);
   2443 		splx(s);
   2444 		wakeup(vp);
   2445 	}
   2446 
   2447 	/* Fix up the cluster buffer, and release it */
   2448 	if (cl->flags & LFS_CL_MALLOC)
   2449 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2450 	s = splbio();
   2451 	pool_put(&bufpool, bp); /* XXX should use lfs_free? */
   2452 	splx(s);
   2453 
   2454 	/* Note i/o done */
   2455 	if (cl->flags & LFS_CL_SYNC) {
   2456 		if (--cl->seg->seg_iocount == 0)
   2457 			wakeup(&cl->seg->seg_iocount);
   2458 	}
   2459 	simple_lock(&fs->lfs_interlock);
   2460 #ifdef DIAGNOSTIC
   2461 	if (fs->lfs_iocount == 0)
   2462 		panic("lfs_cluster_aiodone: zero iocount");
   2463 #endif
   2464 	if (--fs->lfs_iocount <= 1)
   2465 		wakeup(&fs->lfs_iocount);
   2466 	simple_unlock(&fs->lfs_interlock);
   2467 
   2468 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2469 	cl->bpp = NULL;
   2470 	pool_put(&fs->lfs_clpool, cl);
   2471 }
   2472 
   2473 static void
   2474 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2475 {
   2476 	/* reset b_iodone for when this is a single-buf i/o. */
   2477 	bp->b_iodone = aiodone;
   2478 
   2479 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2480 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2481 	wakeup(&uvm.aiodoned);
   2482 	simple_unlock(&uvm.aiodoned_lock);
   2483 }
   2484 
   2485 static void
   2486 lfs_cluster_callback(struct buf *bp)
   2487 {
   2488 
   2489 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2490 }
   2491 
   2492 void
   2493 lfs_supercallback(struct buf *bp)
   2494 {
   2495 
   2496 	lfs_generic_callback(bp, lfs_super_aiodone);
   2497 }
   2498 
   2499 /*
   2500  * Shellsort (diminishing increment sort) from Data Structures and
   2501  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2502  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2503  * formula (8), page 95.  Roughly O(N^3/2).
   2504  */
   2505 /*
   2506  * This is our own private copy of shellsort because we want to sort
   2507  * two parallel arrays (the array of buffer pointers and the array of
   2508  * logical block numbers) simultaneously.  Note that we cast the array
   2509  * of logical block numbers to a unsigned in this routine so that the
   2510  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2511  */
   2512 
   2513 void
   2514 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2515 {
   2516 	static int __rsshell_increments[] = { 4, 1, 0 };
   2517 	int incr, *incrp, t1, t2;
   2518 	struct buf *bp_temp;
   2519 
   2520 #ifdef DEBUG
   2521 	incr = 0;
   2522 	for (t1 = 0; t1 < nmemb; t1++) {
   2523 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2524 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2525 				/* dump before panic */
   2526 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2527 				    nmemb, size);
   2528 				incr = 0;
   2529 				for (t1 = 0; t1 < nmemb; t1++) {
   2530 					const struct buf *bp = bp_array[t1];
   2531 
   2532 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2533 					    PRIu64 "\n", t1,
   2534 					    (uint64_t)bp->b_bcount,
   2535 					    (uint64_t)bp->b_lblkno);
   2536 					printf("lbns:");
   2537 					for (t2 = 0; t2 * size < bp->b_bcount;
   2538 					    t2++) {
   2539 						printf(" %" PRId32,
   2540 						    lb_array[incr++]);
   2541 					}
   2542 					printf("\n");
   2543 				}
   2544 				panic("lfs_shellsort: inconsistent input");
   2545 			}
   2546 		}
   2547 	}
   2548 #endif
   2549 
   2550 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2551 		for (t1 = incr; t1 < nmemb; ++t1)
   2552 			for (t2 = t1 - incr; t2 >= 0;)
   2553 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2554 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2555 					bp_temp = bp_array[t2];
   2556 					bp_array[t2] = bp_array[t2 + incr];
   2557 					bp_array[t2 + incr] = bp_temp;
   2558 					t2 -= incr;
   2559 				} else
   2560 					break;
   2561 
   2562 	/* Reform the list of logical blocks */
   2563 	incr = 0;
   2564 	for (t1 = 0; t1 < nmemb; t1++) {
   2565 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2566 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2567 		}
   2568 	}
   2569 }
   2570 
   2571 /*
   2572  * Call vget with LK_NOWAIT.  If we are the one who holds VXLOCK/VFREEING,
   2573  * however, we must press on.  Just fake success in that case.
   2574  */
   2575 int
   2576 lfs_vref(struct vnode *vp)
   2577 {
   2578 	int error;
   2579 	struct lfs *fs;
   2580 
   2581 	fs = VTOI(vp)->i_lfs;
   2582 
   2583 	ASSERT_MAYBE_SEGLOCK(fs);
   2584 
   2585 	/*
   2586 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2587 	 * being able to flush all of the pages from this vnode, which
   2588 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2589 	 */
   2590 	error = vget(vp, LK_NOWAIT);
   2591 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2592 		++fs->lfs_flushvp_fakevref;
   2593 		return 0;
   2594 	}
   2595 	return error;
   2596 }
   2597 
   2598 /*
   2599  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2600  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2601  */
   2602 void
   2603 lfs_vunref(struct vnode *vp)
   2604 {
   2605 	struct lfs *fs;
   2606 
   2607 	fs = VTOI(vp)->i_lfs;
   2608 	ASSERT_MAYBE_SEGLOCK(fs);
   2609 
   2610 	/*
   2611 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2612 	 */
   2613 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
   2614 		--fs->lfs_flushvp_fakevref;
   2615 		return;
   2616 	}
   2617 
   2618 	simple_lock(&vp->v_interlock);
   2619 #ifdef DIAGNOSTIC
   2620 	if (vp->v_usecount <= 0) {
   2621 		printf("lfs_vunref: inum is %llu\n", (unsigned long long)
   2622 		    VTOI(vp)->i_number);
   2623 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2624 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2625 		panic("lfs_vunref: v_usecount < 0");
   2626 	}
   2627 #endif
   2628 	vp->v_usecount--;
   2629 	if (vp->v_usecount > 0) {
   2630 		simple_unlock(&vp->v_interlock);
   2631 		return;
   2632 	}
   2633 	/*
   2634 	 * insert at tail of LRU list
   2635 	 */
   2636 	simple_lock(&vnode_free_list_slock);
   2637 	if (vp->v_holdcnt > 0)
   2638 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2639 	else
   2640 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2641 	simple_unlock(&vnode_free_list_slock);
   2642 	simple_unlock(&vp->v_interlock);
   2643 }
   2644 
   2645 /*
   2646  * We use this when we have vnodes that were loaded in solely for cleaning.
   2647  * There is no reason to believe that these vnodes will be referenced again
   2648  * soon, since the cleaning process is unrelated to normal filesystem
   2649  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2650  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2651  * cleaning at the head of the list, instead.
   2652  */
   2653 void
   2654 lfs_vunref_head(struct vnode *vp)
   2655 {
   2656 
   2657 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2658 	simple_lock(&vp->v_interlock);
   2659 #ifdef DIAGNOSTIC
   2660 	if (vp->v_usecount == 0) {
   2661 		panic("lfs_vunref: v_usecount<0");
   2662 	}
   2663 #endif
   2664 	vp->v_usecount--;
   2665 	if (vp->v_usecount > 0) {
   2666 		simple_unlock(&vp->v_interlock);
   2667 		return;
   2668 	}
   2669 	/*
   2670 	 * insert at head of LRU list
   2671 	 */
   2672 	simple_lock(&vnode_free_list_slock);
   2673 	if (vp->v_holdcnt > 0)
   2674 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2675 	else
   2676 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2677 	simple_unlock(&vnode_free_list_slock);
   2678 	simple_unlock(&vp->v_interlock);
   2679 }
   2680 
   2681