Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.158.2.6
      1 /*	$NetBSD: lfs_segment.c,v 1.158.2.6 2006/05/20 22:05:51 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.158.2.6 2006/05/20 22:05:51 riz Exp $");
     71 
     72 #ifdef DEBUG
     73 # define vndebug(vp, str) do {						\
     74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     76 		     VTOI(vp)->i_number, (str), op));			\
     77 } while(0)
     78 #else
     79 # define vndebug(vp, str)
     80 #endif
     81 #define ivndebug(vp, str) \
     82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     83 
     84 #if defined(_KERNEL_OPT)
     85 #include "opt_ddb.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/namei.h>
     91 #include <sys/kernel.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/file.h>
     94 #include <sys/stat.h>
     95 #include <sys/buf.h>
     96 #include <sys/proc.h>
     97 #include <sys/vnode.h>
     98 #include <sys/mount.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 #include <miscfs/fifofs/fifo.h>
    102 
    103 #include <ufs/ufs/inode.h>
    104 #include <ufs/ufs/dir.h>
    105 #include <ufs/ufs/ufsmount.h>
    106 #include <ufs/ufs/ufs_extern.h>
    107 
    108 #include <ufs/lfs/lfs.h>
    109 #include <ufs/lfs/lfs_extern.h>
    110 
    111 #include <uvm/uvm.h>
    112 #include <uvm/uvm_extern.h>
    113 
    114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    115 
    116 extern int count_lock_queue(void);
    117 extern struct simplelock vnode_free_list_slock;		/* XXX */
    118 extern struct simplelock bqueue_slock;			/* XXX */
    119 
    120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    121 static void lfs_super_aiodone(struct buf *);
    122 static void lfs_cluster_aiodone(struct buf *);
    123 static void lfs_cluster_callback(struct buf *);
    124 
    125 /*
    126  * Determine if it's OK to start a partial in this segment, or if we need
    127  * to go on to a new segment.
    128  */
    129 #define	LFS_PARTIAL_FITS(fs) \
    130 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    131 	fragstofsb((fs), (fs)->lfs_frag))
    132 
    133 /*
    134  * Figure out whether we should do a checkpoint write or go ahead with
    135  * an ordinary write.
    136  */
    137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
    138 	(fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
    139 	 (flags & SEGM_CKP) ||						\
    140 	 fs->lfs_nclean < LFS_MAX_ACTIVE)
    141 
    142 int	 lfs_match_fake(struct lfs *, struct buf *);
    143 void	 lfs_newseg(struct lfs *);
    144 /* XXX ondisk32 */
    145 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    146 void	 lfs_supercallback(struct buf *);
    147 void	 lfs_updatemeta(struct segment *);
    148 void	 lfs_writesuper(struct lfs *, daddr_t);
    149 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    150 	    struct segment *sp, int dirops);
    151 
    152 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    153 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    154 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    155 int	lfs_dirvcount = 0;		/* # active dirops */
    156 
    157 /* Statistics Counters */
    158 int lfs_dostats = 1;
    159 struct lfs_stats lfs_stats;
    160 
    161 /* op values to lfs_writevnodes */
    162 #define	VN_REG		0
    163 #define	VN_DIROP	1
    164 #define	VN_EMPTY	2
    165 #define VN_CLEAN	3
    166 
    167 /*
    168  * XXX KS - Set modification time on the Ifile, so the cleaner can
    169  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    170  * since we don't really need this to be flushed to disk (and in any
    171  * case that wouldn't happen to the Ifile until we checkpoint).
    172  */
    173 void
    174 lfs_imtime(struct lfs *fs)
    175 {
    176 	struct timespec ts;
    177 	struct inode *ip;
    178 
    179 	ASSERT_MAYBE_SEGLOCK(fs);
    180 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    181 	ip = VTOI(fs->lfs_ivnode);
    182 	ip->i_ffs1_mtime = ts.tv_sec;
    183 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    184 }
    185 
    186 /*
    187  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    188  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    189  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    190  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    191  */
    192 
    193 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    194 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    195 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    196 
    197 int
    198 lfs_vflush(struct vnode *vp)
    199 {
    200 	struct inode *ip;
    201 	struct lfs *fs;
    202 	struct segment *sp;
    203 	struct buf *bp, *nbp, *tbp, *tnbp;
    204 	int error, s;
    205 	int flushed;
    206 	int relock;
    207 
    208 	ip = VTOI(vp);
    209 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    210 	relock = 0;
    211 
    212     top:
    213 	ASSERT_NO_SEGLOCK(fs);
    214 	if (ip->i_flag & IN_CLEANING) {
    215 		ivndebug(vp,"vflush/in_cleaning");
    216 		LFS_CLR_UINO(ip, IN_CLEANING);
    217 		LFS_SET_UINO(ip, IN_MODIFIED);
    218 
    219 		/*
    220 		 * Toss any cleaning buffers that have real counterparts
    221 		 * to avoid losing new data.
    222 		 */
    223 		s = splbio();
    224 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    225 			nbp = LIST_NEXT(bp, b_vnbufs);
    226 			if (!LFS_IS_MALLOC_BUF(bp))
    227 				continue;
    228 			/*
    229 			 * Look for pages matching the range covered
    230 			 * by cleaning blocks.  It's okay if more dirty
    231 			 * pages appear, so long as none disappear out
    232 			 * from under us.
    233 			 */
    234 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    235 			    vp != fs->lfs_ivnode) {
    236 				struct vm_page *pg;
    237 				voff_t off;
    238 
    239 				simple_lock(&vp->v_interlock);
    240 				for (off = lblktosize(fs, bp->b_lblkno);
    241 				     off < lblktosize(fs, bp->b_lblkno + 1);
    242 				     off += PAGE_SIZE) {
    243 					pg = uvm_pagelookup(&vp->v_uobj, off);
    244 					if (pg == NULL)
    245 						continue;
    246 					if ((pg->flags & PG_CLEAN) == 0 ||
    247 					    pmap_is_modified(pg)) {
    248 						fs->lfs_avail += btofsb(fs,
    249 							bp->b_bcount);
    250 						wakeup(&fs->lfs_avail);
    251 						lfs_freebuf(fs, bp);
    252 						bp = NULL;
    253 						goto nextbp;
    254 					}
    255 				}
    256 				simple_unlock(&vp->v_interlock);
    257 			}
    258 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    259 			    tbp = tnbp)
    260 			{
    261 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    262 				if (tbp->b_vp == bp->b_vp
    263 				   && tbp->b_lblkno == bp->b_lblkno
    264 				   && tbp != bp)
    265 				{
    266 					fs->lfs_avail += btofsb(fs,
    267 						bp->b_bcount);
    268 					wakeup(&fs->lfs_avail);
    269 					lfs_freebuf(fs, bp);
    270 					bp = NULL;
    271 					break;
    272 				}
    273 			}
    274 		    nextbp:
    275 			;
    276 		}
    277 		splx(s);
    278 	}
    279 
    280 	/* If the node is being written, wait until that is done */
    281 	simple_lock(&vp->v_interlock);
    282 	s = splbio();
    283 	if (WRITEINPROG(vp)) {
    284 		ivndebug(vp,"vflush/writeinprog");
    285 		ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
    286 	}
    287 	splx(s);
    288 	simple_unlock(&vp->v_interlock);
    289 
    290 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    291 	lfs_seglock(fs, SEGM_SYNC);
    292 
    293 	/* If we're supposed to flush a freed inode, just toss it */
    294 	/* XXX - seglock, so these buffers can't be gathered, right? */
    295 	if (ip->i_mode == 0) {
    296 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    297 		      ip->i_number));
    298 		s = splbio();
    299 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    300 			nbp = LIST_NEXT(bp, b_vnbufs);
    301 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    302 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    303 				wakeup(&fs->lfs_avail);
    304 			}
    305 			/* Copied from lfs_writeseg */
    306 			if (bp->b_flags & B_CALL) {
    307 				biodone(bp);
    308 			} else {
    309 				bremfree(bp);
    310 				LFS_UNLOCK_BUF(bp);
    311 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    312 					 B_GATHERED);
    313 				bp->b_flags |= B_DONE;
    314 				reassignbuf(bp, vp);
    315 				brelse(bp);
    316 			}
    317 		}
    318 		splx(s);
    319 		LFS_CLR_UINO(ip, IN_CLEANING);
    320 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    321 		ip->i_flag &= ~IN_ALLMOD;
    322 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    323 		      ip->i_number));
    324 		lfs_segunlock(fs);
    325 		return 0;
    326 	}
    327 
    328 	SET_FLUSHING(fs,vp);
    329 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
    330 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    331 		CLR_FLUSHING(fs,vp);
    332 		lfs_segunlock(fs);
    333 		return error;
    334 	}
    335 	sp = fs->lfs_sp;
    336 
    337 	flushed = 0;
    338 	if (VPISEMPTY(vp)) {
    339 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    340 		++flushed;
    341 	} else if ((ip->i_flag & IN_CLEANING) &&
    342 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    343 		ivndebug(vp,"vflush/clean");
    344 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    345 		++flushed;
    346 	} else if (lfs_dostats) {
    347 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    348 			++lfs_stats.vflush_invoked;
    349 		ivndebug(vp,"vflush");
    350 	}
    351 
    352 #ifdef DIAGNOSTIC
    353 	if (vp->v_flag & VDIROP) {
    354 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
    355 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
    356 	}
    357 	if (vp->v_usecount < 0) {
    358 		printf("usecount=%ld\n", (long)vp->v_usecount);
    359 		panic("lfs_vflush: usecount<0");
    360 	}
    361 #endif
    362 
    363 	do {
    364 		do {
    365 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    366 				relock = lfs_writefile(fs, sp, vp);
    367 				if (relock) {
    368 					/*
    369 					 * Might have to wait for the
    370 					 * cleaner to run; but we're
    371 					 * still not done with this vnode.
    372 					 */
    373 					lfs_writeseg(fs, sp);
    374 					lfs_segunlock(fs);
    375 					lfs_segunlock_relock(fs);
    376 					goto top;
    377 				}
    378 			}
    379 		} while (lfs_writeinode(fs, sp, ip));
    380 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    381 
    382 	if (lfs_dostats) {
    383 		++lfs_stats.nwrites;
    384 		if (sp->seg_flags & SEGM_SYNC)
    385 			++lfs_stats.nsync_writes;
    386 		if (sp->seg_flags & SEGM_CKP)
    387 			++lfs_stats.ncheckpoints;
    388 	}
    389 	/*
    390 	 * If we were called from somewhere that has already held the seglock
    391 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    392 	 * the write to complete because we are still locked.
    393 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    394 	 * we must explicitly wait, if that is the case.
    395 	 *
    396 	 * We compare the iocount against 1, not 0, because it is
    397 	 * artificially incremented by lfs_seglock().
    398 	 */
    399 	simple_lock(&fs->lfs_interlock);
    400 	if (fs->lfs_seglock > 1) {
    401 		while (fs->lfs_iocount > 1)
    402 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
    403 				     "lfs_vflush", 0, &fs->lfs_interlock);
    404 	}
    405 	simple_unlock(&fs->lfs_interlock);
    406 
    407 	lfs_segunlock(fs);
    408 
    409 	/* Wait for these buffers to be recovered by aiodoned */
    410 	s = splbio();
    411 	simple_lock(&global_v_numoutput_slock);
    412 	while (vp->v_numoutput > 0) {
    413 		vp->v_flag |= VBWAIT;
    414 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
    415 			&global_v_numoutput_slock);
    416 	}
    417 	simple_unlock(&global_v_numoutput_slock);
    418 	splx(s);
    419 
    420 	CLR_FLUSHING(fs,vp);
    421 	return (0);
    422 }
    423 
    424 int
    425 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    426 {
    427 	struct inode *ip;
    428 	struct vnode *vp, *nvp;
    429 	int inodes_written = 0, only_cleaning;
    430 	int error = 0;
    431 
    432 	ASSERT_SEGLOCK(fs);
    433 #ifndef LFS_NO_BACKVP_HACK
    434 	/* BEGIN HACK */
    435 #define	VN_OFFSET	\
    436 	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    437 #define	BACK_VP(VP)	\
    438 	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    439 #define	BEG_OF_VLIST	\
    440 	((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
    441 	- VN_OFFSET))
    442 
    443 	/* Find last vnode. */
    444  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    445 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    446 	     vp = LIST_NEXT(vp, v_mntvnodes));
    447 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    448 		nvp = BACK_VP(vp);
    449 #else
    450 	loop:
    451 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    452 		nvp = LIST_NEXT(vp, v_mntvnodes);
    453 #endif
    454 		/*
    455 		 * If the vnode that we are about to sync is no longer
    456 		 * associated with this mount point, start over.
    457 		 */
    458 		if (vp->v_mount != mp) {
    459 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    460 			/*
    461 			 * After this, pages might be busy
    462 			 * due to our own previous putpages.
    463 			 * Start actual segment write here to avoid deadlock.
    464 			 */
    465 			(void)lfs_writeseg(fs, sp);
    466 			goto loop;
    467 		}
    468 
    469 		if (vp->v_type == VNON) {
    470 			continue;
    471 		}
    472 
    473 		ip = VTOI(vp);
    474 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    475 		    (op != VN_DIROP && op != VN_CLEAN &&
    476 		    (vp->v_flag & VDIROP))) {
    477 			vndebug(vp,"dirop");
    478 			continue;
    479 		}
    480 
    481 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    482 			vndebug(vp,"empty");
    483 			continue;
    484 		}
    485 
    486 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    487 		   && vp != fs->lfs_flushvp
    488 		   && !(ip->i_flag & IN_CLEANING)) {
    489 			vndebug(vp,"cleaning");
    490 			continue;
    491 		}
    492 
    493 		if (lfs_vref(vp)) {
    494 			vndebug(vp,"vref");
    495 			continue;
    496 		}
    497 
    498 		only_cleaning = 0;
    499 		/*
    500 		 * Write the inode/file if dirty and it's not the IFILE.
    501 		 */
    502 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    503 			only_cleaning =
    504 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    505 
    506 			if (ip->i_number != LFS_IFILE_INUM) {
    507 				error = lfs_writefile(fs, sp, vp);
    508 				if (error) {
    509 					lfs_vunref(vp);
    510 					if (error == EAGAIN) {
    511 						/*
    512 						 * This error from lfs_putpages
    513 						 * indicates we need to drop
    514 						 * the segment lock and start
    515 						 * over after the cleaner has
    516 						 * had a chance to run.
    517 						 */
    518 						lfs_writeseg(fs, sp);
    519 						if (!VPISEMPTY(vp) &&
    520 						    !WRITEINPROG(vp) &&
    521 						    !(ip->i_flag & IN_ALLMOD))
    522 							LFS_SET_UINO(ip, IN_MODIFIED);
    523 						break;
    524 					}
    525 					error = 0; /* XXX not quite right */
    526 					continue;
    527 				}
    528 
    529 				if (!VPISEMPTY(vp)) {
    530 					if (WRITEINPROG(vp)) {
    531 						ivndebug(vp,"writevnodes/write2");
    532 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    533 						LFS_SET_UINO(ip, IN_MODIFIED);
    534 					}
    535 				}
    536 				(void) lfs_writeinode(fs, sp, ip);
    537 				inodes_written++;
    538 			}
    539 		}
    540 
    541 		if (lfs_clean_vnhead && only_cleaning)
    542 			lfs_vunref_head(vp);
    543 		else
    544 			lfs_vunref(vp);
    545 	}
    546 	return error;
    547 }
    548 
    549 /*
    550  * Do a checkpoint.
    551  */
    552 int
    553 lfs_segwrite(struct mount *mp, int flags)
    554 {
    555 	struct buf *bp;
    556 	struct inode *ip;
    557 	struct lfs *fs;
    558 	struct segment *sp;
    559 	struct vnode *vp;
    560 	SEGUSE *segusep;
    561 	int do_ckp, did_ckp, error, s;
    562 	unsigned n, segleft, maxseg, sn, i, curseg;
    563 	int writer_set = 0;
    564 	int dirty;
    565 	int redo;
    566 	int um_error;
    567 
    568 	fs = VFSTOUFS(mp)->um_lfs;
    569 	ASSERT_MAYBE_SEGLOCK(fs);
    570 
    571 	if (fs->lfs_ronly)
    572 		return EROFS;
    573 
    574 	lfs_imtime(fs);
    575 
    576 	/*
    577 	 * Allocate a segment structure and enough space to hold pointers to
    578 	 * the maximum possible number of buffers which can be described in a
    579 	 * single summary block.
    580 	 */
    581 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
    582 
    583 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    584 	sp = fs->lfs_sp;
    585 
    586 	/*
    587 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    588 	 * in which case we have to flush *all* buffers off of this vnode.
    589 	 * We don't care about other nodes, but write any non-dirop nodes
    590 	 * anyway in anticipation of another getnewvnode().
    591 	 *
    592 	 * If we're cleaning we only write cleaning and ifile blocks, and
    593 	 * no dirops, since otherwise we'd risk corruption in a crash.
    594 	 */
    595 	if (sp->seg_flags & SEGM_CLEAN)
    596 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    597 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    598 		do {
    599 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
    600 			if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    601 				if (!writer_set) {
    602 					lfs_writer_enter(fs, "lfs writer");
    603 					writer_set = 1;
    604 				}
    605 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
    606 				if (um_error == 0)
    607 					um_error = error;
    608 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    609 			}
    610 			if (do_ckp && um_error) {
    611 				lfs_segunlock_relock(fs);
    612 				sp = fs->lfs_sp;
    613 			}
    614 		} while (do_ckp && um_error != 0);
    615 	}
    616 
    617 	/*
    618 	 * If we are doing a checkpoint, mark everything since the
    619 	 * last checkpoint as no longer ACTIVE.
    620 	 */
    621 	if (do_ckp) {
    622 		segleft = fs->lfs_nseg;
    623 		curseg = 0;
    624 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    625 			dirty = 0;
    626 			if (bread(fs->lfs_ivnode,
    627 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
    628 				panic("lfs_segwrite: ifile read");
    629 			segusep = (SEGUSE *)bp->b_data;
    630 			maxseg = min(segleft, fs->lfs_sepb);
    631 			for (i = 0; i < maxseg; i++) {
    632 				sn = curseg + i;
    633 				if (sn != dtosn(fs, fs->lfs_curseg) &&
    634 				    segusep->su_flags & SEGUSE_ACTIVE) {
    635 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    636 					--fs->lfs_nactive;
    637 					++dirty;
    638 				}
    639 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    640 					segusep->su_flags;
    641 				if (fs->lfs_version > 1)
    642 					++segusep;
    643 				else
    644 					segusep = (SEGUSE *)
    645 						((SEGUSE_V1 *)segusep + 1);
    646 			}
    647 
    648 			if (dirty)
    649 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    650 			else
    651 				brelse(bp);
    652 			segleft -= fs->lfs_sepb;
    653 			curseg += fs->lfs_sepb;
    654 		}
    655 	}
    656 
    657 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
    658 
    659 	did_ckp = 0;
    660 	if (do_ckp || fs->lfs_doifile) {
    661 		vp = fs->lfs_ivnode;
    662 		vn_lock(vp, LK_EXCLUSIVE);
    663 		do {
    664 #ifdef DEBUG
    665 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    666 #endif
    667 			simple_lock(&fs->lfs_interlock);
    668 			fs->lfs_flags &= ~LFS_IFDIRTY;
    669 			simple_unlock(&fs->lfs_interlock);
    670 
    671 			ip = VTOI(vp);
    672 
    673 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    674 				/*
    675 				 * Ifile has no pages, so we don't need
    676 				 * to check error return here.
    677 				 */
    678 				lfs_writefile(fs, sp, vp);
    679 			}
    680 
    681 			if (ip->i_flag & IN_ALLMOD)
    682 				++did_ckp;
    683 			redo = lfs_writeinode(fs, sp, ip);
    684 			redo += lfs_writeseg(fs, sp);
    685 			simple_lock(&fs->lfs_interlock);
    686 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    687 			simple_unlock(&fs->lfs_interlock);
    688 		} while (redo && do_ckp);
    689 
    690 		/*
    691 		 * Unless we are unmounting, the Ifile may continue to have
    692 		 * dirty blocks even after a checkpoint, due to changes to
    693 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    694 		 * for other parts of the Ifile to be dirty after the loop
    695 		 * above, since we hold the segment lock.
    696 		 */
    697 		s = splbio();
    698 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    699 			LFS_CLR_UINO(ip, IN_ALLMOD);
    700 		}
    701 #ifdef DIAGNOSTIC
    702 		else if (do_ckp) {
    703 			int do_panic = 0;
    704 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    705 				if (bp->b_lblkno < fs->lfs_cleansz +
    706 				    fs->lfs_segtabsz &&
    707 				    !(bp->b_flags & B_GATHERED)) {
    708 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    709 						(long)bp->b_lblkno,
    710 						(long)bp->b_flags);
    711 					++do_panic;
    712 				}
    713 			}
    714 			if (do_panic)
    715 				panic("dirty blocks");
    716 		}
    717 #endif
    718 		splx(s);
    719 		VOP_UNLOCK(vp, 0);
    720 	} else {
    721 		(void) lfs_writeseg(fs, sp);
    722 	}
    723 
    724 	/* Note Ifile no longer needs to be written */
    725 	fs->lfs_doifile = 0;
    726 	if (writer_set)
    727 		lfs_writer_leave(fs);
    728 
    729 	/*
    730 	 * If we didn't write the Ifile, we didn't really do anything.
    731 	 * That means that (1) there is a checkpoint on disk and (2)
    732 	 * nothing has changed since it was written.
    733 	 *
    734 	 * Take the flags off of the segment so that lfs_segunlock
    735 	 * doesn't have to write the superblock either.
    736 	 */
    737 	if (do_ckp && !did_ckp) {
    738 		sp->seg_flags &= ~SEGM_CKP;
    739 	}
    740 
    741 	if (lfs_dostats) {
    742 		++lfs_stats.nwrites;
    743 		if (sp->seg_flags & SEGM_SYNC)
    744 			++lfs_stats.nsync_writes;
    745 		if (sp->seg_flags & SEGM_CKP)
    746 			++lfs_stats.ncheckpoints;
    747 	}
    748 	lfs_segunlock(fs);
    749 	return (0);
    750 }
    751 
    752 /*
    753  * Write the dirty blocks associated with a vnode.
    754  */
    755 int
    756 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    757 {
    758 	struct buf *bp;
    759 	struct finfo *fip;
    760 	struct inode *ip;
    761 	IFILE *ifp;
    762 	int i, frag;
    763 	int error;
    764 
    765 	ASSERT_SEGLOCK(fs);
    766 	error = 0;
    767 	ip = VTOI(vp);
    768 
    769 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    770 	    sp->sum_bytes_left < sizeof(struct finfo))
    771 		(void) lfs_writeseg(fs, sp);
    772 
    773 	sp->sum_bytes_left -= FINFOSIZE;
    774 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    775 
    776 	if (vp->v_flag & VDIROP)
    777 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    778 
    779 	fip = sp->fip;
    780 	fip->fi_nblocks = 0;
    781 	fip->fi_ino = ip->i_number;
    782 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    783 	fip->fi_version = ifp->if_version;
    784 	brelse(bp);
    785 
    786 	if (sp->seg_flags & SEGM_CLEAN) {
    787 		lfs_gather(fs, sp, vp, lfs_match_fake);
    788 		/*
    789 		 * For a file being flushed, we need to write *all* blocks.
    790 		 * This means writing the cleaning blocks first, and then
    791 		 * immediately following with any non-cleaning blocks.
    792 		 * The same is true of the Ifile since checkpoints assume
    793 		 * that all valid Ifile blocks are written.
    794 		 */
    795 		if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
    796 			lfs_gather(fs, sp, vp, lfs_match_data);
    797 			/*
    798 			 * Don't call VOP_PUTPAGES: if we're flushing,
    799 			 * we've already done it, and the Ifile doesn't
    800 			 * use the page cache.
    801 			 */
    802 		}
    803 	} else {
    804 		lfs_gather(fs, sp, vp, lfs_match_data);
    805 		/*
    806 		 * If we're flushing, we've already called VOP_PUTPAGES
    807 		 * so don't do it again.  Otherwise, we want to write
    808 		 * everything we've got.
    809 		 */
    810 		if (!IS_FLUSHING(fs, vp)) {
    811 			simple_lock(&vp->v_interlock);
    812 			error = VOP_PUTPAGES(vp, 0, 0,
    813 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    814 		}
    815 	}
    816 
    817 	/*
    818 	 * It may not be necessary to write the meta-data blocks at this point,
    819 	 * as the roll-forward recovery code should be able to reconstruct the
    820 	 * list.
    821 	 *
    822 	 * We have to write them anyway, though, under two conditions: (1) the
    823 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    824 	 * checkpointing.
    825 	 *
    826 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    827 	 * new blocks not being written yet, in addition to fragments being
    828 	 * moved out of a cleaned segment.  If that is the case, don't
    829 	 * write the indirect blocks, or the finfo will have a small block
    830 	 * in the middle of it!
    831 	 * XXX in this case isn't the inode size wrong too?
    832 	 */
    833 	frag = 0;
    834 	if (sp->seg_flags & SEGM_CLEAN) {
    835 		for (i = 0; i < NDADDR; i++)
    836 			if (ip->i_lfs_fragsize[i] > 0 &&
    837 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    838 				++frag;
    839 	}
    840 #ifdef DIAGNOSTIC
    841 	if (frag > 1)
    842 		panic("lfs_writefile: more than one fragment!");
    843 #endif
    844 	if (IS_FLUSHING(fs, vp) ||
    845 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    846 		lfs_gather(fs, sp, vp, lfs_match_indir);
    847 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    848 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    849 	}
    850 	fip = sp->fip;
    851 	if (fip->fi_nblocks != 0) {
    852 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    853 				   sizeof(int32_t) * (fip->fi_nblocks));
    854 		sp->start_lbp = &sp->fip->fi_blocks[0];
    855 	} else {
    856 		sp->sum_bytes_left += FINFOSIZE;
    857 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    858 	}
    859 
    860 	return error;
    861 }
    862 
    863 int
    864 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    865 {
    866 	struct buf *bp, *ibp;
    867 	struct ufs1_dinode *cdp;
    868 	IFILE *ifp;
    869 	SEGUSE *sup;
    870 	daddr_t daddr;
    871 	int32_t *daddrp;	/* XXX ondisk32 */
    872 	ino_t ino;
    873 	int error, i, ndx, fsb = 0;
    874 	int redo_ifile = 0;
    875 	struct timespec ts;
    876 	int gotblk = 0;
    877 
    878 	ASSERT_SEGLOCK(fs);
    879 	if (!(ip->i_flag & IN_ALLMOD))
    880 		return (0);
    881 
    882 	/* Allocate a new inode block if necessary. */
    883 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    884 	    sp->ibp == NULL) {
    885 		/* Allocate a new segment if necessary. */
    886 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    887 		    sp->sum_bytes_left < sizeof(int32_t))
    888 			(void) lfs_writeseg(fs, sp);
    889 
    890 		/* Get next inode block. */
    891 		daddr = fs->lfs_offset;
    892 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    893 		sp->ibp = *sp->cbpp++ =
    894 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
    895 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
    896 		gotblk++;
    897 
    898 		/* Zero out inode numbers */
    899 		for (i = 0; i < INOPB(fs); ++i)
    900 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
    901 			    0;
    902 
    903 		++sp->start_bpp;
    904 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    905 		/* Set remaining space counters. */
    906 		sp->seg_bytes_left -= fs->lfs_ibsize;
    907 		sp->sum_bytes_left -= sizeof(int32_t);
    908 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    909 			sp->ninodes / INOPB(fs) - 1;
    910 		((int32_t *)(sp->segsum))[ndx] = daddr;
    911 	}
    912 
    913 	/* Update the inode times and copy the inode onto the inode page. */
    914 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    915 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    916 	if (ip->i_number != LFS_IFILE_INUM)
    917 		LFS_ITIMES(ip, &ts, &ts, &ts);
    918 
    919 	/*
    920 	 * If this is the Ifile, and we've already written the Ifile in this
    921 	 * partial segment, just overwrite it (it's not on disk yet) and
    922 	 * continue.
    923 	 *
    924 	 * XXX we know that the bp that we get the second time around has
    925 	 * already been gathered.
    926 	 */
    927 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    928 		*(sp->idp) = *ip->i_din.ffs1_din;
    929 		ip->i_lfs_osize = ip->i_size;
    930 		return 0;
    931 	}
    932 
    933 	bp = sp->ibp;
    934 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    935 	*cdp = *ip->i_din.ffs1_din;
    936 
    937 	/*
    938 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
    939 	 * addresses to disk; possibly change the on-disk record of
    940 	 * the inode size, either by reverting to the previous size
    941 	 * (in the case of cleaning) or by verifying the inode's block
    942 	 * holdings (in the case of files being allocated as they are being
    943 	 * written).
    944 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
    945 	 * XXX count on disk wrong by the same amount.	We should be
    946 	 * XXX able to "borrow" from lfs_avail and return it after the
    947 	 * XXX Ifile is written.  See also in lfs_writeseg.
    948 	 */
    949 
    950 	/* Check file size based on highest allocated block */
    951 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
    952 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
    953 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
    954 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
    955 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
    956 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
    957 	}
    958 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
    959 		if (ip->i_flags & IN_CLEANING)
    960 			cdp->di_size = ip->i_lfs_osize;
    961 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
    962 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
    963 		      ip->i_ffs1_blocks, fs->lfs_offset));
    964 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
    965 		     daddrp++) {
    966 			if (*daddrp == UNWRITTEN) {
    967 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
    968 				*daddrp = 0;
    969 			}
    970 		}
    971 	} else {
    972 		/* If all blocks are going to disk, update "size on disk" */
    973 		ip->i_lfs_osize = ip->i_size;
    974 	}
    975 
    976 #ifdef DIAGNOSTIC
    977 	/*
    978 	 * Check dinode held blocks against dinode size.
    979 	 * This should be identical to the check in lfs_vget().
    980 	 */
    981 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
    982 	     i < NDADDR; i++) {
    983 		KASSERT(i >= 0);
    984 		if ((cdp->di_mode & IFMT) == IFLNK)
    985 			continue;
    986 		if (((cdp->di_mode & IFMT) == IFBLK ||
    987 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
    988 			continue;
    989 		if (cdp->di_db[i] != 0) {
    990 # ifdef DEBUG
    991 			lfs_dump_dinode(cdp);
    992 # endif
    993 			panic("writing inconsistent inode");
    994 		}
    995 	}
    996 #endif /* DIAGNOSTIC */
    997 
    998 	if (ip->i_flag & IN_CLEANING)
    999 		LFS_CLR_UINO(ip, IN_CLEANING);
   1000 	else {
   1001 		/* XXX IN_ALLMOD */
   1002 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
   1003 			     IN_UPDATE | IN_MODIFY);
   1004 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
   1005 			LFS_CLR_UINO(ip, IN_MODIFIED);
   1006 		else
   1007 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
   1008 			      "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
   1009 			      ip->i_lfs_effnblks));
   1010 	}
   1011 
   1012 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
   1013 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
   1014 			(sp->ninodes % INOPB(fs));
   1015 	if (gotblk) {
   1016 		LFS_LOCK_BUF(bp);
   1017 		brelse(bp);
   1018 	}
   1019 
   1020 	/* Increment inode count in segment summary block. */
   1021 	++((SEGSUM *)(sp->segsum))->ss_ninos;
   1022 
   1023 	/* If this page is full, set flag to allocate a new page. */
   1024 	if (++sp->ninodes % INOPB(fs) == 0)
   1025 		sp->ibp = NULL;
   1026 
   1027 	/*
   1028 	 * If updating the ifile, update the super-block.  Update the disk
   1029 	 * address and access times for this inode in the ifile.
   1030 	 */
   1031 	ino = ip->i_number;
   1032 	if (ino == LFS_IFILE_INUM) {
   1033 		daddr = fs->lfs_idaddr;
   1034 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
   1035 	} else {
   1036 		LFS_IENTRY(ifp, fs, ino, ibp);
   1037 		daddr = ifp->if_daddr;
   1038 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
   1039 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
   1040 	}
   1041 
   1042 	/*
   1043 	 * The inode's last address should not be in the current partial
   1044 	 * segment, except under exceptional circumstances (lfs_writevnodes
   1045 	 * had to start over, and in the meantime more blocks were written
   1046 	 * to a vnode).	 Both inodes will be accounted to this segment
   1047 	 * in lfs_writeseg so we need to subtract the earlier version
   1048 	 * here anyway.	 The segment count can temporarily dip below
   1049 	 * zero here; keep track of how many duplicates we have in
   1050 	 * "dupino" so we don't panic below.
   1051 	 */
   1052 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
   1053 		++sp->ndupino;
   1054 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
   1055 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
   1056 		      (long long)daddr, sp->ndupino));
   1057 	}
   1058 	/*
   1059 	 * Account the inode: it no longer belongs to its former segment,
   1060 	 * though it will not belong to the new segment until that segment
   1061 	 * is actually written.
   1062 	 */
   1063 	if (daddr != LFS_UNUSED_DADDR) {
   1064 		u_int32_t oldsn = dtosn(fs, daddr);
   1065 #ifdef DIAGNOSTIC
   1066 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1067 #endif
   1068 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1069 #ifdef DIAGNOSTIC
   1070 		if (sup->su_nbytes +
   1071 		    sizeof (struct ufs1_dinode) * ndupino
   1072 		      < sizeof (struct ufs1_dinode)) {
   1073 			printf("lfs_writeinode: negative bytes "
   1074 			       "(segment %" PRIu32 " short by %d, "
   1075 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1076 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1077 			       "ndupino=%d)\n",
   1078 			       dtosn(fs, daddr),
   1079 			       (int)sizeof (struct ufs1_dinode) *
   1080 				   (1 - sp->ndupino) - sup->su_nbytes,
   1081 			       oldsn, sp->seg_number, daddr,
   1082 			       (unsigned int)sup->su_nbytes,
   1083 			       sp->ndupino);
   1084 			panic("lfs_writeinode: negative bytes");
   1085 			sup->su_nbytes = sizeof (struct ufs1_dinode);
   1086 		}
   1087 #endif
   1088 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1089 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
   1090 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
   1091 		redo_ifile =
   1092 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1093 		if (redo_ifile) {
   1094 			simple_lock(&fs->lfs_interlock);
   1095 			fs->lfs_flags |= LFS_IFDIRTY;
   1096 			simple_unlock(&fs->lfs_interlock);
   1097 		}
   1098 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1099 	}
   1100 	return (redo_ifile);
   1101 }
   1102 
   1103 int
   1104 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1105 {
   1106 	struct lfs *fs;
   1107 	int vers;
   1108 	int j, blksinblk;
   1109 
   1110 	ASSERT_SEGLOCK(sp->fs);
   1111 	/*
   1112 	 * If full, finish this segment.  We may be doing I/O, so
   1113 	 * release and reacquire the splbio().
   1114 	 */
   1115 #ifdef DIAGNOSTIC
   1116 	if (sp->vp == NULL)
   1117 		panic ("lfs_gatherblock: Null vp in segment");
   1118 #endif
   1119 	fs = sp->fs;
   1120 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1121 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1122 	    sp->seg_bytes_left < bp->b_bcount) {
   1123 		if (sptr)
   1124 			splx(*sptr);
   1125 		lfs_updatemeta(sp);
   1126 
   1127 		vers = sp->fip->fi_version;
   1128 		(void) lfs_writeseg(fs, sp);
   1129 
   1130 		sp->fip->fi_version = vers;
   1131 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1132 		/* Add the current file to the segment summary. */
   1133 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1134 		sp->sum_bytes_left -= FINFOSIZE;
   1135 
   1136 		if (sptr)
   1137 			*sptr = splbio();
   1138 		return (1);
   1139 	}
   1140 
   1141 	if (bp->b_flags & B_GATHERED) {
   1142 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1143 		      " lbn %" PRId64 "\n",
   1144 		      sp->fip->fi_ino, bp->b_lblkno));
   1145 		return (0);
   1146 	}
   1147 
   1148 	/* Insert into the buffer list, update the FINFO block. */
   1149 	bp->b_flags |= B_GATHERED;
   1150 
   1151 	*sp->cbpp++ = bp;
   1152 	for (j = 0; j < blksinblk; j++) {
   1153 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1154 		/* This block's accounting moves from lfs_favail to lfs_avail */
   1155 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
   1156 	}
   1157 
   1158 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1159 	sp->seg_bytes_left -= bp->b_bcount;
   1160 	return (0);
   1161 }
   1162 
   1163 int
   1164 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1165     int (*match)(struct lfs *, struct buf *))
   1166 {
   1167 	struct buf *bp, *nbp;
   1168 	int s, count = 0;
   1169 
   1170 	ASSERT_SEGLOCK(fs);
   1171 	if (vp->v_type == VBLK)
   1172 		return 0;
   1173 	KASSERT(sp->vp == NULL);
   1174 	sp->vp = vp;
   1175 	s = splbio();
   1176 
   1177 #ifndef LFS_NO_BACKBUF_HACK
   1178 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1179 # define	BUF_OFFSET	\
   1180 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1181 # define	BACK_BUF(BP)	\
   1182 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1183 # define	BEG_OF_LIST	\
   1184 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1185 
   1186 loop:
   1187 	/* Find last buffer. */
   1188 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1189 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1190 	     bp = LIST_NEXT(bp, b_vnbufs))
   1191 		/* nothing */;
   1192 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1193 		nbp = BACK_BUF(bp);
   1194 #else /* LFS_NO_BACKBUF_HACK */
   1195 loop:
   1196 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1197 		nbp = LIST_NEXT(bp, b_vnbufs);
   1198 #endif /* LFS_NO_BACKBUF_HACK */
   1199 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1200 #ifdef DEBUG
   1201 			if (vp == fs->lfs_ivnode &&
   1202 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1203 				DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
   1204 				      PRId64 " busy (%x)",
   1205 				      bp->b_lblkno, bp->b_flags));
   1206 #endif
   1207 			continue;
   1208 		}
   1209 #ifdef DIAGNOSTIC
   1210 # ifdef LFS_USE_B_INVAL
   1211 		if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1212 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1213 			      " is B_INVAL\n", bp->b_lblkno));
   1214 			VOP_PRINT(bp->b_vp);
   1215 		}
   1216 # endif /* LFS_USE_B_INVAL */
   1217 		if (!(bp->b_flags & B_DELWRI))
   1218 			panic("lfs_gather: bp not B_DELWRI");
   1219 		if (!(bp->b_flags & B_LOCKED)) {
   1220 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1221 			      " blk %" PRId64 " not B_LOCKED\n",
   1222 			      bp->b_lblkno,
   1223 			      dbtofsb(fs, bp->b_blkno)));
   1224 			VOP_PRINT(bp->b_vp);
   1225 			panic("lfs_gather: bp not B_LOCKED");
   1226 		}
   1227 #endif
   1228 		if (lfs_gatherblock(sp, bp, &s)) {
   1229 			goto loop;
   1230 		}
   1231 		count++;
   1232 	}
   1233 	splx(s);
   1234 	lfs_updatemeta(sp);
   1235 	KASSERT(sp->vp == vp);
   1236 	sp->vp = NULL;
   1237 	return count;
   1238 }
   1239 
   1240 #if DEBUG
   1241 # define DEBUG_OOFF(n) do {						\
   1242 	if (ooff == 0) {						\
   1243 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1244 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1245 			", was 0x0 (or %" PRId64 ")\n",			\
   1246 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1247 	}								\
   1248 } while (0)
   1249 #else
   1250 # define DEBUG_OOFF(n)
   1251 #endif
   1252 
   1253 /*
   1254  * Change the given block's address to ndaddr, finding its previous
   1255  * location using ufs_bmaparray().
   1256  *
   1257  * Account for this change in the segment table.
   1258  *
   1259  * called with sp == NULL by roll-forwarding code.
   1260  */
   1261 void
   1262 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1263     daddr_t lbn, int32_t ndaddr, int size)
   1264 {
   1265 	SEGUSE *sup;
   1266 	struct buf *bp;
   1267 	struct indir a[NIADDR + 2], *ap;
   1268 	struct inode *ip;
   1269 	daddr_t daddr, ooff;
   1270 	int num, error;
   1271 	int bb, osize, obb;
   1272 
   1273 	ASSERT_SEGLOCK(fs);
   1274 	KASSERT(sp == NULL || sp->vp == vp);
   1275 	ip = VTOI(vp);
   1276 
   1277 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1278 	if (error)
   1279 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1280 
   1281 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1282 	KASSERT(daddr <= LFS_MAX_DADDR);
   1283 	if (daddr > 0)
   1284 		daddr = dbtofsb(fs, daddr);
   1285 
   1286 	bb = fragstofsb(fs, numfrags(fs, size));
   1287 	switch (num) {
   1288 	    case 0:
   1289 		    ooff = ip->i_ffs1_db[lbn];
   1290 		    DEBUG_OOFF(0);
   1291 		    if (ooff == UNWRITTEN)
   1292 			    ip->i_ffs1_blocks += bb;
   1293 		    else {
   1294 			    /* possible fragment truncation or extension */
   1295 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1296 			    ip->i_ffs1_blocks += (bb - obb);
   1297 		    }
   1298 		    ip->i_ffs1_db[lbn] = ndaddr;
   1299 		    break;
   1300 	    case 1:
   1301 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1302 		    DEBUG_OOFF(1);
   1303 		    if (ooff == UNWRITTEN)
   1304 			    ip->i_ffs1_blocks += bb;
   1305 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1306 		    break;
   1307 	    default:
   1308 		    ap = &a[num - 1];
   1309 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1310 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1311 				  ap->in_lbn);
   1312 
   1313 		    /* XXX ondisk32 */
   1314 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1315 		    DEBUG_OOFF(num);
   1316 		    if (ooff == UNWRITTEN)
   1317 			    ip->i_ffs1_blocks += bb;
   1318 		    /* XXX ondisk32 */
   1319 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1320 		    (void) VOP_BWRITE(bp);
   1321 	}
   1322 
   1323 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1324 
   1325 	/* Update hiblk when extending the file */
   1326 	if (lbn > ip->i_lfs_hiblk)
   1327 		ip->i_lfs_hiblk = lbn;
   1328 
   1329 	/*
   1330 	 * Though we'd rather it couldn't, this *can* happen right now
   1331 	 * if cleaning blocks and regular blocks coexist.
   1332 	 */
   1333 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1334 
   1335 	/*
   1336 	 * Update segment usage information, based on old size
   1337 	 * and location.
   1338 	 */
   1339 	if (daddr > 0) {
   1340 		u_int32_t oldsn = dtosn(fs, daddr);
   1341 #ifdef DIAGNOSTIC
   1342 		int ndupino;
   1343 
   1344 		if (sp && sp->seg_number == oldsn) {
   1345 			ndupino = sp->ndupino;
   1346 		} else {
   1347 			ndupino = 0;
   1348 		}
   1349 #endif
   1350 		KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
   1351 		if (lbn >= 0 && lbn < NDADDR)
   1352 			osize = ip->i_lfs_fragsize[lbn];
   1353 		else
   1354 			osize = fs->lfs_bsize;
   1355 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1356 #ifdef DIAGNOSTIC
   1357 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
   1358 		    < osize) {
   1359 			printf("lfs_updatemeta: negative bytes "
   1360 			       "(segment %" PRIu32 " short by %" PRId64
   1361 			       ")\n", dtosn(fs, daddr),
   1362 			       (int64_t)osize -
   1363 			       (sizeof (struct ufs1_dinode) * ndupino +
   1364 				sup->su_nbytes));
   1365 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
   1366 			       ", addr = 0x%" PRIx64 "\n",
   1367 			       (unsigned long long)ip->i_number, lbn, daddr);
   1368 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1369 			panic("lfs_updatemeta: negative bytes");
   1370 			sup->su_nbytes = osize -
   1371 			    sizeof (struct ufs1_dinode) * ndupino;
   1372 		}
   1373 #endif
   1374 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1375 		      " db 0x%" PRIx64 "\n",
   1376 		      dtosn(fs, daddr), osize,
   1377 		      ip->i_number, lbn, daddr));
   1378 		sup->su_nbytes -= osize;
   1379 		if (!(bp->b_flags & B_GATHERED)) {
   1380 			simple_lock(&fs->lfs_interlock);
   1381 			fs->lfs_flags |= LFS_IFDIRTY;
   1382 			simple_unlock(&fs->lfs_interlock);
   1383 		}
   1384 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1385 	}
   1386 	/*
   1387 	 * Now that this block has a new address, and its old
   1388 	 * segment no longer owns it, we can forget about its
   1389 	 * old size.
   1390 	 */
   1391 	if (lbn >= 0 && lbn < NDADDR)
   1392 		ip->i_lfs_fragsize[lbn] = size;
   1393 }
   1394 
   1395 /*
   1396  * Update the metadata that points to the blocks listed in the FINFO
   1397  * array.
   1398  */
   1399 void
   1400 lfs_updatemeta(struct segment *sp)
   1401 {
   1402 	struct buf *sbp;
   1403 	struct lfs *fs;
   1404 	struct vnode *vp;
   1405 	daddr_t lbn;
   1406 	int i, nblocks, num;
   1407 	int bb;
   1408 	int bytesleft, size;
   1409 
   1410 	ASSERT_SEGLOCK(sp->fs);
   1411 	vp = sp->vp;
   1412 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1413 	KASSERT(nblocks >= 0);
   1414 	KASSERT(vp != NULL);
   1415 	if (nblocks == 0)
   1416 		return;
   1417 
   1418 	/*
   1419 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1420 	 * Correct for this. (XXX we should be able to keep track of these.)
   1421 	 */
   1422 	fs = sp->fs;
   1423 	for (i = 0; i < nblocks; i++) {
   1424 		if (sp->start_bpp[i] == NULL) {
   1425 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1426 			nblocks = i;
   1427 			break;
   1428 		}
   1429 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1430 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1431 		nblocks -= num - 1;
   1432 	}
   1433 
   1434 	KASSERT(vp->v_type == VREG ||
   1435 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1436 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1437 
   1438 	/*
   1439 	 * Sort the blocks.
   1440 	 *
   1441 	 * We have to sort even if the blocks come from the
   1442 	 * cleaner, because there might be other pending blocks on the
   1443 	 * same inode...and if we don't sort, and there are fragments
   1444 	 * present, blocks may be written in the wrong place.
   1445 	 */
   1446 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1447 
   1448 	/*
   1449 	 * Record the length of the last block in case it's a fragment.
   1450 	 * If there are indirect blocks present, they sort last.  An
   1451 	 * indirect block will be lfs_bsize and its presence indicates
   1452 	 * that you cannot have fragments.
   1453 	 *
   1454 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1455 	 * XXX a later indirect block.	This will continue to be
   1456 	 * XXX true until lfs_markv is fixed to do everything with
   1457 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1458 	 */
   1459 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1460 		fs->lfs_bmask) + 1;
   1461 
   1462 	/*
   1463 	 * Assign disk addresses, and update references to the logical
   1464 	 * block and the segment usage information.
   1465 	 */
   1466 	for (i = nblocks; i--; ++sp->start_bpp) {
   1467 		sbp = *sp->start_bpp;
   1468 		lbn = *sp->start_lbp;
   1469 		KASSERT(sbp->b_lblkno == lbn);
   1470 
   1471 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1472 
   1473 		/*
   1474 		 * If we write a frag in the wrong place, the cleaner won't
   1475 		 * be able to correctly identify its size later, and the
   1476 		 * segment will be uncleanable.	 (Even worse, it will assume
   1477 		 * that the indirect block that actually ends the list
   1478 		 * is of a smaller size!)
   1479 		 */
   1480 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1481 			panic("lfs_updatemeta: fragment is not last block");
   1482 
   1483 		/*
   1484 		 * For each subblock in this possibly oversized block,
   1485 		 * update its address on disk.
   1486 		 */
   1487 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1488 		KASSERT(vp == sbp->b_vp);
   1489 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1490 		     bytesleft -= fs->lfs_bsize) {
   1491 			size = MIN(bytesleft, fs->lfs_bsize);
   1492 			bb = fragstofsb(fs, numfrags(fs, size));
   1493 			lbn = *sp->start_lbp++;
   1494 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1495 			    size);
   1496 			fs->lfs_offset += bb;
   1497 		}
   1498 
   1499 	}
   1500 }
   1501 
   1502 /*
   1503  * Move lfs_offset to a segment earlier than sn.
   1504  */
   1505 int
   1506 lfs_rewind(struct lfs *fs, int newsn)
   1507 {
   1508 	int sn, osn, isdirty;
   1509 	struct buf *bp;
   1510 	SEGUSE *sup;
   1511 
   1512 	ASSERT_SEGLOCK(fs);
   1513 
   1514 	osn = dtosn(fs, fs->lfs_offset);
   1515 	if (osn < newsn)
   1516 		return 0;
   1517 
   1518 	/* lfs_avail eats the remaining space in this segment */
   1519 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
   1520 
   1521 	/* Find a low-numbered segment */
   1522 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
   1523 		LFS_SEGENTRY(sup, fs, sn, bp);
   1524 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1525 		brelse(bp);
   1526 
   1527 		if (!isdirty)
   1528 			break;
   1529 	}
   1530 	if (sn == fs->lfs_nseg)
   1531 		panic("lfs_rewind: no clean segments");
   1532 	if (sn >= newsn)
   1533 		return ENOENT;
   1534 	fs->lfs_nextseg = sn;
   1535 	lfs_newseg(fs);
   1536 	fs->lfs_offset = fs->lfs_curseg;
   1537 
   1538 	return 0;
   1539 }
   1540 
   1541 /*
   1542  * Start a new partial segment.
   1543  *
   1544  * Return 1 when we entered to a new segment.
   1545  * Otherwise, return 0.
   1546  */
   1547 int
   1548 lfs_initseg(struct lfs *fs)
   1549 {
   1550 	struct segment *sp = fs->lfs_sp;
   1551 	SEGSUM *ssp;
   1552 	struct buf *sbp;	/* buffer for SEGSUM */
   1553 	int repeat = 0;		/* return value */
   1554 
   1555 	ASSERT_SEGLOCK(fs);
   1556 	/* Advance to the next segment. */
   1557 	if (!LFS_PARTIAL_FITS(fs)) {
   1558 		SEGUSE *sup;
   1559 		struct buf *bp;
   1560 
   1561 		/* lfs_avail eats the remaining space */
   1562 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1563 						   fs->lfs_curseg);
   1564 		/* Wake up any cleaning procs waiting on this file system. */
   1565 		wakeup(&lfs_allclean_wakeup);
   1566 		wakeup(&fs->lfs_nextseg);
   1567 		lfs_newseg(fs);
   1568 		repeat = 1;
   1569 		fs->lfs_offset = fs->lfs_curseg;
   1570 
   1571 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1572 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1573 
   1574 		/*
   1575 		 * If the segment contains a superblock, update the offset
   1576 		 * and summary address to skip over it.
   1577 		 */
   1578 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1579 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1580 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1581 			sp->seg_bytes_left -= LFS_SBPAD;
   1582 		}
   1583 		brelse(bp);
   1584 		/* Segment zero could also contain the labelpad */
   1585 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1586 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1587 			fs->lfs_offset +=
   1588 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1589 			sp->seg_bytes_left -=
   1590 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1591 		}
   1592 	} else {
   1593 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1594 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1595 				      (fs->lfs_offset - fs->lfs_curseg));
   1596 	}
   1597 	fs->lfs_lastpseg = fs->lfs_offset;
   1598 
   1599 	/* Record first address of this partial segment */
   1600 	if (sp->seg_flags & SEGM_CLEAN) {
   1601 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1602 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1603 			/* "1" is the artificial inc in lfs_seglock */
   1604 			simple_lock(&fs->lfs_interlock);
   1605 			while (fs->lfs_iocount > 1) {
   1606 				ltsleep(&fs->lfs_iocount, PRIBIO + 1,
   1607 				    "lfs_initseg", 0, &fs->lfs_interlock);
   1608 			}
   1609 			simple_unlock(&fs->lfs_interlock);
   1610 			fs->lfs_cleanind = 0;
   1611 		}
   1612 	}
   1613 
   1614 	sp->fs = fs;
   1615 	sp->ibp = NULL;
   1616 	sp->idp = NULL;
   1617 	sp->ninodes = 0;
   1618 	sp->ndupino = 0;
   1619 
   1620 	sp->cbpp = sp->bpp;
   1621 
   1622 	/* Get a new buffer for SEGSUM */
   1623 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1624 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1625 
   1626 	/* ... and enter it into the buffer list. */
   1627 	*sp->cbpp = sbp;
   1628 	sp->cbpp++;
   1629 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1630 
   1631 	sp->start_bpp = sp->cbpp;
   1632 
   1633 	/* Set point to SEGSUM, initialize it. */
   1634 	ssp = sp->segsum = sbp->b_data;
   1635 	memset(ssp, 0, fs->lfs_sumsize);
   1636 	ssp->ss_next = fs->lfs_nextseg;
   1637 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1638 	ssp->ss_magic = SS_MAGIC;
   1639 
   1640 	/* Set pointer to first FINFO, initialize it. */
   1641 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1642 	sp->fip->fi_nblocks = 0;
   1643 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1644 	sp->fip->fi_lastlength = 0;
   1645 
   1646 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1647 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1648 
   1649 	return (repeat);
   1650 }
   1651 
   1652 /*
   1653  * Remove SEGUSE_INVAL from all segments.
   1654  */
   1655 void
   1656 lfs_unset_inval_all(struct lfs *fs)
   1657 {
   1658 	SEGUSE *sup;
   1659 	struct buf *bp;
   1660 	int i;
   1661 
   1662 	for (i = 0; i < fs->lfs_nseg; i++) {
   1663 		LFS_SEGENTRY(sup, fs, i, bp);
   1664 		if (sup->su_flags & SEGUSE_INVAL) {
   1665 			sup->su_flags &= ~SEGUSE_INVAL;
   1666 			VOP_BWRITE(bp);
   1667 		} else
   1668 			brelse(bp);
   1669 	}
   1670 }
   1671 
   1672 /*
   1673  * Return the next segment to write.
   1674  */
   1675 void
   1676 lfs_newseg(struct lfs *fs)
   1677 {
   1678 	CLEANERINFO *cip;
   1679 	SEGUSE *sup;
   1680 	struct buf *bp;
   1681 	int curseg, isdirty, sn, skip_inval;
   1682 
   1683 	ASSERT_SEGLOCK(fs);
   1684 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1685 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1686 	      dtosn(fs, fs->lfs_nextseg)));
   1687 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1688 	sup->su_nbytes = 0;
   1689 	sup->su_nsums = 0;
   1690 	sup->su_ninos = 0;
   1691 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1692 
   1693 	LFS_CLEANERINFO(cip, fs, bp);
   1694 	--cip->clean;
   1695 	++cip->dirty;
   1696 	fs->lfs_nclean = cip->clean;
   1697 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1698 
   1699 	fs->lfs_lastseg = fs->lfs_curseg;
   1700 	fs->lfs_curseg = fs->lfs_nextseg;
   1701 	skip_inval = 1;
   1702 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1703 		sn = (sn + 1) % fs->lfs_nseg;
   1704 		if (sn == curseg) {
   1705 			if (skip_inval)
   1706 				skip_inval = 0;
   1707 			else
   1708 				panic("lfs_nextseg: no clean segments");
   1709 		}
   1710 		LFS_SEGENTRY(sup, fs, sn, bp);
   1711 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
   1712 		/* Check SEGUSE_EMPTY as we go along */
   1713 		if (isdirty && sup->su_nbytes == 0 &&
   1714 		    !(sup->su_flags & SEGUSE_EMPTY))
   1715 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1716 		else
   1717 			brelse(bp);
   1718 
   1719 		if (!isdirty)
   1720 			break;
   1721 	}
   1722 	if (skip_inval == 0)
   1723 		lfs_unset_inval_all(fs);
   1724 
   1725 	++fs->lfs_nactive;
   1726 	fs->lfs_nextseg = sntod(fs, sn);
   1727 	if (lfs_dostats) {
   1728 		++lfs_stats.segsused;
   1729 	}
   1730 }
   1731 
   1732 static struct buf *
   1733 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1734 {
   1735 	struct lfs_cluster *cl;
   1736 	struct buf **bpp, *bp;
   1737 	int s;
   1738 
   1739 	ASSERT_SEGLOCK(fs);
   1740 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1741 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1742 	memset(cl, 0, sizeof(*cl));
   1743 	cl->fs = fs;
   1744 	cl->bpp = bpp;
   1745 	cl->bufcount = 0;
   1746 	cl->bufsize = 0;
   1747 
   1748 	/* If this segment is being written synchronously, note that */
   1749 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1750 		cl->flags |= LFS_CL_SYNC;
   1751 		cl->seg = fs->lfs_sp;
   1752 		++cl->seg->seg_iocount;
   1753 	}
   1754 
   1755 	/* Get an empty buffer header, or maybe one with something on it */
   1756 	s = splbio();
   1757 	bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
   1758 	splx(s);
   1759 	memset(bp, 0, sizeof(*bp));
   1760 	BUF_INIT(bp);
   1761 
   1762 	bp->b_flags = B_BUSY | B_CALL;
   1763 	bp->b_dev = NODEV;
   1764 	bp->b_blkno = bp->b_lblkno = addr;
   1765 	bp->b_iodone = lfs_cluster_callback;
   1766 	bp->b_private = cl;
   1767 	bp->b_vp = vp;
   1768 
   1769 	return bp;
   1770 }
   1771 
   1772 int
   1773 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1774 {
   1775 	struct buf **bpp, *bp, *cbp, *newbp;
   1776 	SEGUSE *sup;
   1777 	SEGSUM *ssp;
   1778 	int i, s;
   1779 	int do_again, nblocks, byteoffset;
   1780 	size_t el_size;
   1781 	struct lfs_cluster *cl;
   1782 	u_short ninos;
   1783 	struct vnode *devvp;
   1784 	char *p = NULL;
   1785 	struct vnode *vp;
   1786 	int32_t *daddrp;	/* XXX ondisk32 */
   1787 	int changed;
   1788 	u_int32_t sum;
   1789 
   1790 	ASSERT_SEGLOCK(fs);
   1791 	/*
   1792 	 * If there are no buffers other than the segment summary to write
   1793 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1794 	 * even if there aren't any buffers, you need to write the superblock.
   1795 	 */
   1796 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1797 		return (0);
   1798 
   1799 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1800 
   1801 	/* Update the segment usage information. */
   1802 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1803 
   1804 	/* Loop through all blocks, except the segment summary. */
   1805 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1806 		if ((*bpp)->b_vp != devvp) {
   1807 			sup->su_nbytes += (*bpp)->b_bcount;
   1808 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   1809 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   1810 			      sp->seg_number, (*bpp)->b_bcount,
   1811 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1812 			      (*bpp)->b_blkno));
   1813 		}
   1814 	}
   1815 
   1816 	ssp = (SEGSUM *)sp->segsum;
   1817 
   1818 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1819 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   1820 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
   1821 	      ssp->ss_ninos));
   1822 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
   1823 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1824 	if (fs->lfs_version == 1)
   1825 		sup->su_olastmod = time.tv_sec;
   1826 	else
   1827 		sup->su_lastmod = time.tv_sec;
   1828 	sup->su_ninos += ninos;
   1829 	++sup->su_nsums;
   1830 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1831 
   1832 	do_again = !(bp->b_flags & B_GATHERED);
   1833 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1834 
   1835 	/*
   1836 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1837 	 * the checksum computation and the actual write.
   1838 	 *
   1839 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1840 	 * there are any, replace them with copies that have UNASSIGNED
   1841 	 * instead.
   1842 	 */
   1843 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1844 		++bpp;
   1845 		bp = *bpp;
   1846 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1847 			bp->b_flags |= B_BUSY;
   1848 			continue;
   1849 		}
   1850 
   1851 		simple_lock(&bp->b_interlock);
   1852 		s = splbio();
   1853 		while (bp->b_flags & B_BUSY) {
   1854 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   1855 			      " data summary corruption for ino %d, lbn %"
   1856 			      PRId64 "\n",
   1857 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   1858 			bp->b_flags |= B_WANTED;
   1859 			ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
   1860 				&bp->b_interlock);
   1861 			splx(s);
   1862 			s = splbio();
   1863 		}
   1864 		bp->b_flags |= B_BUSY;
   1865 		splx(s);
   1866 		simple_unlock(&bp->b_interlock);
   1867 
   1868 		/*
   1869 		 * Check and replace indirect block UNWRITTEN bogosity.
   1870 		 * XXX See comment in lfs_writefile.
   1871 		 */
   1872 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1873 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   1874 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1875 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1876 			      VTOI(bp->b_vp)->i_number,
   1877 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   1878 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   1879 			/* Make a copy we'll make changes to */
   1880 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1881 					   bp->b_bcount, LFS_NB_IBLOCK);
   1882 			newbp->b_blkno = bp->b_blkno;
   1883 			memcpy(newbp->b_data, bp->b_data,
   1884 			       newbp->b_bcount);
   1885 
   1886 			changed = 0;
   1887 			/* XXX ondisk32 */
   1888 			for (daddrp = (int32_t *)(newbp->b_data);
   1889 			     daddrp < (int32_t *)(newbp->b_data +
   1890 						  newbp->b_bcount); daddrp++) {
   1891 				if (*daddrp == UNWRITTEN) {
   1892 					++changed;
   1893 					*daddrp = 0;
   1894 				}
   1895 			}
   1896 			/*
   1897 			 * Get rid of the old buffer.  Don't mark it clean,
   1898 			 * though, if it still has dirty data on it.
   1899 			 */
   1900 			if (changed) {
   1901 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   1902 				      " bp = %p newbp = %p\n", changed, bp,
   1903 				      newbp));
   1904 				*bpp = newbp;
   1905 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1906 				if (bp->b_flags & B_CALL) {
   1907 					DLOG((DLOG_SEG, "lfs_writeseg: "
   1908 					      "indir bp should not be B_CALL\n"));
   1909 					s = splbio();
   1910 					biodone(bp);
   1911 					splx(s);
   1912 					bp = NULL;
   1913 				} else {
   1914 					/* Still on free list, leave it there */
   1915 					s = splbio();
   1916 					bp->b_flags &= ~B_BUSY;
   1917 					if (bp->b_flags & B_WANTED)
   1918 						wakeup(bp);
   1919 					splx(s);
   1920 					/*
   1921 					 * We have to re-decrement lfs_avail
   1922 					 * since this block is going to come
   1923 					 * back around to us in the next
   1924 					 * segment.
   1925 					 */
   1926 					fs->lfs_avail -=
   1927 					    btofsb(fs, bp->b_bcount);
   1928 				}
   1929 			} else {
   1930 				lfs_freebuf(fs, newbp);
   1931 			}
   1932 		}
   1933 	}
   1934 	/*
   1935 	 * Compute checksum across data and then across summary; the first
   1936 	 * block (the summary block) is skipped.  Set the create time here
   1937 	 * so that it's guaranteed to be later than the inode mod times.
   1938 	 */
   1939 	sum = 0;
   1940 	if (fs->lfs_version == 1)
   1941 		el_size = sizeof(u_long);
   1942 	else
   1943 		el_size = sizeof(u_int32_t);
   1944 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   1945 		++bpp;
   1946 		/* Loop through gop_write cluster blocks */
   1947 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   1948 		     byteoffset += fs->lfs_bsize) {
   1949 #ifdef LFS_USE_B_INVAL
   1950 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   1951 			    (B_CALL | B_INVAL)) {
   1952 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   1953 					   byteoffset, dp, el_size)) {
   1954 					panic("lfs_writeseg: copyin failed [1]:"
   1955 						" ino %d blk %" PRId64,
   1956 						VTOI((*bpp)->b_vp)->i_number,
   1957 						(*bpp)->b_lblkno);
   1958 				}
   1959 			} else
   1960 #endif /* LFS_USE_B_INVAL */
   1961 			{
   1962 				sum = lfs_cksum_part(
   1963 				    (*bpp)->b_data + byteoffset, el_size, sum);
   1964 			}
   1965 		}
   1966 	}
   1967 	if (fs->lfs_version == 1)
   1968 		ssp->ss_ocreate = time.tv_sec;
   1969 	else {
   1970 		ssp->ss_create = time.tv_sec;
   1971 		ssp->ss_serial = ++fs->lfs_serial;
   1972 		ssp->ss_ident  = fs->lfs_ident;
   1973 	}
   1974 	ssp->ss_datasum = lfs_cksum_fold(sum);
   1975 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   1976 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   1977 
   1978 	simple_lock(&fs->lfs_interlock);
   1979 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   1980 			  btofsb(fs, fs->lfs_sumsize));
   1981 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
   1982 			  btofsb(fs, fs->lfs_sumsize));
   1983 	simple_unlock(&fs->lfs_interlock);
   1984 
   1985 	/*
   1986 	 * When we simply write the blocks we lose a rotation for every block
   1987 	 * written.  To avoid this problem, we cluster the buffers into a
   1988 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   1989 	 * devices can handle, use that for the size of the chunks.
   1990 	 *
   1991 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   1992 	 * don't bother to copy into other clusters.
   1993 	 */
   1994 
   1995 #define CHUNKSIZE MAXPHYS
   1996 
   1997 	if (devvp == NULL)
   1998 		panic("devvp is NULL");
   1999 	for (bpp = sp->bpp, i = nblocks; i;) {
   2000 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   2001 		cl = cbp->b_private;
   2002 
   2003 		cbp->b_flags |= B_ASYNC | B_BUSY;
   2004 		cbp->b_bcount = 0;
   2005 
   2006 #if defined(DEBUG) && defined(DIAGNOSTIC)
   2007 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   2008 		    / sizeof(int32_t)) {
   2009 			panic("lfs_writeseg: real bpp overwrite");
   2010 		}
   2011 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
   2012 			panic("lfs_writeseg: theoretical bpp overwrite");
   2013 		}
   2014 #endif
   2015 
   2016 		/*
   2017 		 * Construct the cluster.
   2018 		 */
   2019 		simple_lock(&fs->lfs_interlock);
   2020 		++fs->lfs_iocount;
   2021 		simple_unlock(&fs->lfs_interlock);
   2022 		while (i && cbp->b_bcount < CHUNKSIZE) {
   2023 			bp = *bpp;
   2024 
   2025 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   2026 				break;
   2027 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   2028 				break;
   2029 
   2030 			/* Clusters from GOP_WRITE are expedited */
   2031 			if (bp->b_bcount > fs->lfs_bsize) {
   2032 				if (cbp->b_bcount > 0)
   2033 					/* Put in its own buffer */
   2034 					break;
   2035 				else {
   2036 					cbp->b_data = bp->b_data;
   2037 				}
   2038 			} else if (cbp->b_bcount == 0) {
   2039 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   2040 							     LFS_NB_CLUSTER);
   2041 				cl->flags |= LFS_CL_MALLOC;
   2042 			}
   2043 #ifdef DIAGNOSTIC
   2044 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   2045 					      btodb(bp->b_bcount - 1))) !=
   2046 			    sp->seg_number) {
   2047 				printf("blk size %d daddr %" PRIx64
   2048 				    " not in seg %d\n",
   2049 				    bp->b_bcount, bp->b_blkno,
   2050 				    sp->seg_number);
   2051 				panic("segment overwrite");
   2052 			}
   2053 #endif
   2054 
   2055 #ifdef LFS_USE_B_INVAL
   2056 			/*
   2057 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2058 			 * We need to copy the data from user space rather than
   2059 			 * from the buffer indicated.
   2060 			 * XXX == what do I do on an error?
   2061 			 */
   2062 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
   2063 			    (B_CALL|B_INVAL)) {
   2064 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2065 					panic("lfs_writeseg: "
   2066 					    "copyin failed [2]");
   2067 			} else
   2068 #endif /* LFS_USE_B_INVAL */
   2069 			if (cl->flags & LFS_CL_MALLOC) {
   2070 				/* copy data into our cluster. */
   2071 				memcpy(p, bp->b_data, bp->b_bcount);
   2072 				p += bp->b_bcount;
   2073 			}
   2074 
   2075 			cbp->b_bcount += bp->b_bcount;
   2076 			cl->bufsize += bp->b_bcount;
   2077 
   2078 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   2079 			cl->bpp[cl->bufcount++] = bp;
   2080 			vp = bp->b_vp;
   2081 			s = splbio();
   2082 			reassignbuf(bp, vp);
   2083 			V_INCR_NUMOUTPUT(vp);
   2084 			splx(s);
   2085 
   2086 			bpp++;
   2087 			i--;
   2088 		}
   2089 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2090 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   2091 		else
   2092 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   2093 		s = splbio();
   2094 		V_INCR_NUMOUTPUT(devvp);
   2095 		splx(s);
   2096 		VOP_STRATEGY(devvp, cbp);
   2097 		curproc->p_stats->p_ru.ru_oublock++;
   2098 	}
   2099 
   2100 	if (lfs_dostats) {
   2101 		++lfs_stats.psegwrites;
   2102 		lfs_stats.blocktot += nblocks - 1;
   2103 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2104 			++lfs_stats.psyncwrites;
   2105 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2106 			++lfs_stats.pcleanwrites;
   2107 			lfs_stats.cleanblocks += nblocks - 1;
   2108 		}
   2109 	}
   2110 	return (lfs_initseg(fs) || do_again);
   2111 }
   2112 
   2113 void
   2114 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2115 {
   2116 	struct buf *bp;
   2117 	int s;
   2118 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2119 
   2120 	ASSERT_MAYBE_SEGLOCK(fs);
   2121 #ifdef DIAGNOSTIC
   2122 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   2123 #endif
   2124 	/*
   2125 	 * If we can write one superblock while another is in
   2126 	 * progress, we risk not having a complete checkpoint if we crash.
   2127 	 * So, block here if a superblock write is in progress.
   2128 	 */
   2129 	simple_lock(&fs->lfs_interlock);
   2130 	s = splbio();
   2131 	while (fs->lfs_sbactive) {
   2132 		ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   2133 			&fs->lfs_interlock);
   2134 	}
   2135 	fs->lfs_sbactive = daddr;
   2136 	splx(s);
   2137 	simple_unlock(&fs->lfs_interlock);
   2138 
   2139 	/* Set timestamp of this version of the superblock */
   2140 	if (fs->lfs_version == 1)
   2141 		fs->lfs_otstamp = time.tv_sec;
   2142 	fs->lfs_tstamp = time.tv_sec;
   2143 
   2144 	/* Checksum the superblock and copy it into a buffer. */
   2145 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2146 	bp = lfs_newbuf(fs, devvp,
   2147 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2148 	memset(bp->b_data + sizeof(struct dlfs), 0,
   2149 	    LFS_SBPAD - sizeof(struct dlfs));
   2150 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2151 
   2152 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2153 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2154 	bp->b_iodone = lfs_supercallback;
   2155 
   2156 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2157 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2158 	else
   2159 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2160 	curproc->p_stats->p_ru.ru_oublock++;
   2161 	s = splbio();
   2162 	V_INCR_NUMOUTPUT(bp->b_vp);
   2163 	splx(s);
   2164 	simple_lock(&fs->lfs_interlock);
   2165 	++fs->lfs_iocount;
   2166 	simple_unlock(&fs->lfs_interlock);
   2167 	VOP_STRATEGY(devvp, bp);
   2168 }
   2169 
   2170 /*
   2171  * Logical block number match routines used when traversing the dirty block
   2172  * chain.
   2173  */
   2174 int
   2175 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2176 {
   2177 
   2178 	ASSERT_SEGLOCK(fs);
   2179 	return LFS_IS_MALLOC_BUF(bp);
   2180 }
   2181 
   2182 #if 0
   2183 int
   2184 lfs_match_real(struct lfs *fs, struct buf *bp)
   2185 {
   2186 
   2187 	ASSERT_SEGLOCK(fs);
   2188 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2189 }
   2190 #endif
   2191 
   2192 int
   2193 lfs_match_data(struct lfs *fs, struct buf *bp)
   2194 {
   2195 
   2196 	ASSERT_SEGLOCK(fs);
   2197 	return (bp->b_lblkno >= 0);
   2198 }
   2199 
   2200 int
   2201 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2202 {
   2203 	daddr_t lbn;
   2204 
   2205 	ASSERT_SEGLOCK(fs);
   2206 	lbn = bp->b_lblkno;
   2207 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2208 }
   2209 
   2210 int
   2211 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2212 {
   2213 	daddr_t lbn;
   2214 
   2215 	ASSERT_SEGLOCK(fs);
   2216 	lbn = bp->b_lblkno;
   2217 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2218 }
   2219 
   2220 int
   2221 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2222 {
   2223 	daddr_t lbn;
   2224 
   2225 	ASSERT_SEGLOCK(fs);
   2226 	lbn = bp->b_lblkno;
   2227 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2228 }
   2229 
   2230 /*
   2231  * XXX - The only buffers that are going to hit these functions are the
   2232  * segment write blocks, or the segment summaries, or the superblocks.
   2233  *
   2234  * All of the above are created by lfs_newbuf, and so do not need to be
   2235  * released via brelse.
   2236  */
   2237 void
   2238 lfs_callback(struct buf *bp)
   2239 {
   2240 	struct lfs *fs;
   2241 
   2242 	fs = bp->b_private;
   2243 	ASSERT_NO_SEGLOCK(fs);
   2244 	lfs_freebuf(fs, bp);
   2245 }
   2246 
   2247 static void
   2248 lfs_super_aiodone(struct buf *bp)
   2249 {
   2250 	struct lfs *fs;
   2251 
   2252 	fs = bp->b_private;
   2253 	ASSERT_NO_SEGLOCK(fs);
   2254 	simple_lock(&fs->lfs_interlock);
   2255 	fs->lfs_sbactive = 0;
   2256 	if (--fs->lfs_iocount <= 1)
   2257 		wakeup(&fs->lfs_iocount);
   2258 	simple_unlock(&fs->lfs_interlock);
   2259 	wakeup(&fs->lfs_sbactive);
   2260 	lfs_freebuf(fs, bp);
   2261 }
   2262 
   2263 static void
   2264 lfs_cluster_aiodone(struct buf *bp)
   2265 {
   2266 	struct lfs_cluster *cl;
   2267 	struct lfs *fs;
   2268 	struct buf *tbp, *fbp;
   2269 	struct vnode *vp, *devvp;
   2270 	struct inode *ip;
   2271 	int s, error=0;
   2272 
   2273 	if (bp->b_flags & B_ERROR)
   2274 		error = bp->b_error;
   2275 
   2276 	cl = bp->b_private;
   2277 	fs = cl->fs;
   2278 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2279 	ASSERT_NO_SEGLOCK(fs);
   2280 
   2281 	/* Put the pages back, and release the buffer */
   2282 	while (cl->bufcount--) {
   2283 		tbp = cl->bpp[cl->bufcount];
   2284 		KASSERT(tbp->b_flags & B_BUSY);
   2285 		if (error) {
   2286 			tbp->b_flags |= B_ERROR;
   2287 			tbp->b_error = error;
   2288 		}
   2289 
   2290 		/*
   2291 		 * We're done with tbp.	 If it has not been re-dirtied since
   2292 		 * the cluster was written, free it.  Otherwise, keep it on
   2293 		 * the locked list to be written again.
   2294 		 */
   2295 		vp = tbp->b_vp;
   2296 
   2297 		tbp->b_flags &= ~B_GATHERED;
   2298 
   2299 		LFS_BCLEAN_LOG(fs, tbp);
   2300 
   2301 		if (!(tbp->b_flags & B_CALL)) {
   2302 			KASSERT(tbp->b_flags & B_LOCKED);
   2303 			s = splbio();
   2304 			simple_lock(&bqueue_slock);
   2305 			bremfree(tbp);
   2306 			simple_unlock(&bqueue_slock);
   2307 			if (vp)
   2308 				reassignbuf(tbp, vp);
   2309 			splx(s);
   2310 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2311 		}
   2312 
   2313 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2314 			LFS_UNLOCK_BUF(tbp);
   2315 
   2316 		if (tbp->b_flags & B_DONE) {
   2317 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2318 				cl->bufcount, (long)tbp->b_flags));
   2319 		}
   2320 
   2321 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2322 			/*
   2323 			 * A buffer from the page daemon.
   2324 			 * We use the same iodone as it does,
   2325 			 * so we must manually disassociate its
   2326 			 * buffers from the vp.
   2327 			 */
   2328 			if (tbp->b_vp) {
   2329 				/* This is just silly */
   2330 				s = splbio();
   2331 				brelvp(tbp);
   2332 				tbp->b_vp = vp;
   2333 				splx(s);
   2334 			}
   2335 			/* Put it back the way it was */
   2336 			tbp->b_flags |= B_ASYNC;
   2337 			/* Master buffers have B_AGE */
   2338 			if (tbp->b_private == tbp)
   2339 				tbp->b_flags |= B_AGE;
   2340 		}
   2341 		s = splbio();
   2342 		biodone(tbp);
   2343 
   2344 		/*
   2345 		 * If this is the last block for this vnode, but
   2346 		 * there are other blocks on its dirty list,
   2347 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2348 		 * sort of block.  Only do this for our mount point,
   2349 		 * not for, e.g., inode blocks that are attached to
   2350 		 * the devvp.
   2351 		 * XXX KS - Shouldn't we set *both* if both types
   2352 		 * of blocks are present (traverse the dirty list?)
   2353 		 */
   2354 		simple_lock(&global_v_numoutput_slock);
   2355 		if (vp != devvp && vp->v_numoutput == 0 &&
   2356 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2357 			ip = VTOI(vp);
   2358 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2359 			       ip->i_number));
   2360 			if (LFS_IS_MALLOC_BUF(fbp))
   2361 				LFS_SET_UINO(ip, IN_CLEANING);
   2362 			else
   2363 				LFS_SET_UINO(ip, IN_MODIFIED);
   2364 		}
   2365 		simple_unlock(&global_v_numoutput_slock);
   2366 		splx(s);
   2367 		wakeup(vp);
   2368 	}
   2369 
   2370 	/* Fix up the cluster buffer, and release it */
   2371 	if (cl->flags & LFS_CL_MALLOC)
   2372 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2373 	s = splbio();
   2374 	pool_put(&bufpool, bp); /* XXX should use lfs_free? */
   2375 	splx(s);
   2376 
   2377 	/* Note i/o done */
   2378 	if (cl->flags & LFS_CL_SYNC) {
   2379 		if (--cl->seg->seg_iocount == 0)
   2380 			wakeup(&cl->seg->seg_iocount);
   2381 	}
   2382 	simple_lock(&fs->lfs_interlock);
   2383 #ifdef DIAGNOSTIC
   2384 	if (fs->lfs_iocount == 0)
   2385 		panic("lfs_cluster_aiodone: zero iocount");
   2386 #endif
   2387 	if (--fs->lfs_iocount <= 1)
   2388 		wakeup(&fs->lfs_iocount);
   2389 	simple_unlock(&fs->lfs_interlock);
   2390 
   2391 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2392 	cl->bpp = NULL;
   2393 	pool_put(&fs->lfs_clpool, cl);
   2394 }
   2395 
   2396 static void
   2397 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2398 {
   2399 	/* reset b_iodone for when this is a single-buf i/o. */
   2400 	bp->b_iodone = aiodone;
   2401 
   2402 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2403 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2404 	wakeup(&uvm.aiodoned);
   2405 	simple_unlock(&uvm.aiodoned_lock);
   2406 }
   2407 
   2408 static void
   2409 lfs_cluster_callback(struct buf *bp)
   2410 {
   2411 
   2412 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2413 }
   2414 
   2415 void
   2416 lfs_supercallback(struct buf *bp)
   2417 {
   2418 
   2419 	lfs_generic_callback(bp, lfs_super_aiodone);
   2420 }
   2421 
   2422 /*
   2423  * Shellsort (diminishing increment sort) from Data Structures and
   2424  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2425  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2426  * formula (8), page 95.  Roughly O(N^3/2).
   2427  */
   2428 /*
   2429  * This is our own private copy of shellsort because we want to sort
   2430  * two parallel arrays (the array of buffer pointers and the array of
   2431  * logical block numbers) simultaneously.  Note that we cast the array
   2432  * of logical block numbers to a unsigned in this routine so that the
   2433  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2434  */
   2435 
   2436 void
   2437 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2438 {
   2439 	static int __rsshell_increments[] = { 4, 1, 0 };
   2440 	int incr, *incrp, t1, t2;
   2441 	struct buf *bp_temp;
   2442 
   2443 #ifdef DEBUG
   2444 	incr = 0;
   2445 	for (t1 = 0; t1 < nmemb; t1++) {
   2446 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2447 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2448 				/* dump before panic */
   2449 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2450 				    nmemb, size);
   2451 				incr = 0;
   2452 				for (t1 = 0; t1 < nmemb; t1++) {
   2453 					const struct buf *bp = bp_array[t1];
   2454 
   2455 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2456 					    PRIu64 "\n", t1,
   2457 					    (uint64_t)bp->b_bcount,
   2458 					    (uint64_t)bp->b_lblkno);
   2459 					printf("lbns:");
   2460 					for (t2 = 0; t2 * size < bp->b_bcount;
   2461 					    t2++) {
   2462 						printf(" %" PRId32,
   2463 						    lb_array[incr++]);
   2464 					}
   2465 					printf("\n");
   2466 				}
   2467 				panic("lfs_shellsort: inconsistent input");
   2468 			}
   2469 		}
   2470 	}
   2471 #endif
   2472 
   2473 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2474 		for (t1 = incr; t1 < nmemb; ++t1)
   2475 			for (t2 = t1 - incr; t2 >= 0;)
   2476 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2477 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2478 					bp_temp = bp_array[t2];
   2479 					bp_array[t2] = bp_array[t2 + incr];
   2480 					bp_array[t2 + incr] = bp_temp;
   2481 					t2 -= incr;
   2482 				} else
   2483 					break;
   2484 
   2485 	/* Reform the list of logical blocks */
   2486 	incr = 0;
   2487 	for (t1 = 0; t1 < nmemb; t1++) {
   2488 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2489 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2490 		}
   2491 	}
   2492 }
   2493 
   2494 /*
   2495  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   2496  */
   2497 int
   2498 lfs_vref(struct vnode *vp)
   2499 {
   2500 	ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
   2501 	/*
   2502 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2503 	 * being able to flush all of the pages from this vnode, which
   2504 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2505 	 */
   2506 	if (vp->v_flag & VXLOCK) {
   2507 		if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2508 			return 0;
   2509 		}
   2510 		return (1);
   2511 	}
   2512 	return (vget(vp, 0));
   2513 }
   2514 
   2515 /*
   2516  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2517  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2518  */
   2519 void
   2520 lfs_vunref(struct vnode *vp)
   2521 {
   2522 	ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
   2523 	/*
   2524 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2525 	 */
   2526 	if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2527 		return;
   2528 	}
   2529 
   2530 	simple_lock(&vp->v_interlock);
   2531 #ifdef DIAGNOSTIC
   2532 	if (vp->v_usecount <= 0) {
   2533 		printf("lfs_vunref: inum is %llu\n", (unsigned long long)
   2534 		    VTOI(vp)->i_number);
   2535 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2536 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2537 		panic("lfs_vunref: v_usecount < 0");
   2538 	}
   2539 #endif
   2540 	vp->v_usecount--;
   2541 	if (vp->v_usecount > 0) {
   2542 		simple_unlock(&vp->v_interlock);
   2543 		return;
   2544 	}
   2545 	/*
   2546 	 * insert at tail of LRU list
   2547 	 */
   2548 	simple_lock(&vnode_free_list_slock);
   2549 	if (vp->v_holdcnt > 0)
   2550 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2551 	else
   2552 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2553 	simple_unlock(&vnode_free_list_slock);
   2554 	simple_unlock(&vp->v_interlock);
   2555 }
   2556 
   2557 /*
   2558  * We use this when we have vnodes that were loaded in solely for cleaning.
   2559  * There is no reason to believe that these vnodes will be referenced again
   2560  * soon, since the cleaning process is unrelated to normal filesystem
   2561  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2562  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2563  * cleaning at the head of the list, instead.
   2564  */
   2565 void
   2566 lfs_vunref_head(struct vnode *vp)
   2567 {
   2568 
   2569 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2570 	simple_lock(&vp->v_interlock);
   2571 #ifdef DIAGNOSTIC
   2572 	if (vp->v_usecount == 0) {
   2573 		panic("lfs_vunref: v_usecount<0");
   2574 	}
   2575 #endif
   2576 	vp->v_usecount--;
   2577 	if (vp->v_usecount > 0) {
   2578 		simple_unlock(&vp->v_interlock);
   2579 		return;
   2580 	}
   2581 	/*
   2582 	 * insert at head of LRU list
   2583 	 */
   2584 	simple_lock(&vnode_free_list_slock);
   2585 	if (vp->v_holdcnt > 0)
   2586 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2587 	else
   2588 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2589 	simple_unlock(&vnode_free_list_slock);
   2590 	simple_unlock(&vp->v_interlock);
   2591 }
   2592 
   2593