lfs_segment.c revision 1.158.2.9 1 /* $NetBSD: lfs_segment.c,v 1.158.2.9 2006/05/20 22:34:06 riz Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.158.2.9 2006/05/20 22:34:06 riz Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 /*
134 * Figure out whether we should do a checkpoint write or go ahead with
135 * an ordinary write.
136 */
137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
138 (fs->lfs_nactive > LFS_MAX_ACTIVE || \
139 (flags & SEGM_CKP) || \
140 fs->lfs_nclean < LFS_MAX_ACTIVE)
141
142 int lfs_match_fake(struct lfs *, struct buf *);
143 void lfs_newseg(struct lfs *);
144 /* XXX ondisk32 */
145 void lfs_shellsort(struct buf **, int32_t *, int, int);
146 void lfs_supercallback(struct buf *);
147 void lfs_updatemeta(struct segment *);
148 void lfs_writesuper(struct lfs *, daddr_t);
149 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
150 struct segment *sp, int dirops);
151
152 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
153 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
154 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
155 int lfs_dirvcount = 0; /* # active dirops */
156
157 /* Statistics Counters */
158 int lfs_dostats = 1;
159 struct lfs_stats lfs_stats;
160
161 /* op values to lfs_writevnodes */
162 #define VN_REG 0
163 #define VN_DIROP 1
164 #define VN_EMPTY 2
165 #define VN_CLEAN 3
166
167 /*
168 * XXX KS - Set modification time on the Ifile, so the cleaner can
169 * read the fs mod time off of it. We don't set IN_UPDATE here,
170 * since we don't really need this to be flushed to disk (and in any
171 * case that wouldn't happen to the Ifile until we checkpoint).
172 */
173 void
174 lfs_imtime(struct lfs *fs)
175 {
176 struct timespec ts;
177 struct inode *ip;
178
179 ASSERT_MAYBE_SEGLOCK(fs);
180 TIMEVAL_TO_TIMESPEC(&time, &ts);
181 ip = VTOI(fs->lfs_ivnode);
182 ip->i_ffs1_mtime = ts.tv_sec;
183 ip->i_ffs1_mtimensec = ts.tv_nsec;
184 }
185
186 /*
187 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
188 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
189 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
190 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
191 */
192
193 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
194
195 int
196 lfs_vflush(struct vnode *vp)
197 {
198 struct inode *ip;
199 struct lfs *fs;
200 struct segment *sp;
201 struct buf *bp, *nbp, *tbp, *tnbp;
202 int error, s;
203 int flushed;
204 int relock;
205
206 ip = VTOI(vp);
207 fs = VFSTOUFS(vp->v_mount)->um_lfs;
208 relock = 0;
209
210 top:
211 ASSERT_NO_SEGLOCK(fs);
212 if (ip->i_flag & IN_CLEANING) {
213 ivndebug(vp,"vflush/in_cleaning");
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data.
220 */
221 s = splbio();
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (!LFS_IS_MALLOC_BUF(bp))
225 continue;
226 /*
227 * Look for pages matching the range covered
228 * by cleaning blocks. It's okay if more dirty
229 * pages appear, so long as none disappear out
230 * from under us.
231 */
232 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
233 vp != fs->lfs_ivnode) {
234 struct vm_page *pg;
235 voff_t off;
236
237 simple_lock(&vp->v_interlock);
238 for (off = lblktosize(fs, bp->b_lblkno);
239 off < lblktosize(fs, bp->b_lblkno + 1);
240 off += PAGE_SIZE) {
241 pg = uvm_pagelookup(&vp->v_uobj, off);
242 if (pg == NULL)
243 continue;
244 if ((pg->flags & PG_CLEAN) == 0 ||
245 pmap_is_modified(pg)) {
246 fs->lfs_avail += btofsb(fs,
247 bp->b_bcount);
248 wakeup(&fs->lfs_avail);
249 lfs_freebuf(fs, bp);
250 bp = NULL;
251 simple_unlock(&vp->v_interlock);
252 goto nextbp;
253 }
254 }
255 simple_unlock(&vp->v_interlock);
256 }
257 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
258 tbp = tnbp)
259 {
260 tnbp = LIST_NEXT(tbp, b_vnbufs);
261 if (tbp->b_vp == bp->b_vp
262 && tbp->b_lblkno == bp->b_lblkno
263 && tbp != bp)
264 {
265 fs->lfs_avail += btofsb(fs,
266 bp->b_bcount);
267 wakeup(&fs->lfs_avail);
268 lfs_freebuf(fs, bp);
269 bp = NULL;
270 break;
271 }
272 }
273 nextbp:
274 ;
275 }
276 splx(s);
277 }
278
279 /* If the node is being written, wait until that is done */
280 simple_lock(&vp->v_interlock);
281 s = splbio();
282 if (WRITEINPROG(vp)) {
283 ivndebug(vp,"vflush/writeinprog");
284 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
285 }
286 splx(s);
287 simple_unlock(&vp->v_interlock);
288
289 /* Protect against VXLOCK deadlock in vinvalbuf() */
290 lfs_seglock(fs, SEGM_SYNC);
291
292 /* If we're supposed to flush a freed inode, just toss it */
293 /* XXX - seglock, so these buffers can't be gathered, right? */
294 if (ip->i_mode == 0) {
295 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
296 ip->i_number));
297 s = splbio();
298 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
299 nbp = LIST_NEXT(bp, b_vnbufs);
300 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
301 fs->lfs_avail += btofsb(fs, bp->b_bcount);
302 wakeup(&fs->lfs_avail);
303 }
304 /* Copied from lfs_writeseg */
305 if (bp->b_flags & B_CALL) {
306 biodone(bp);
307 } else {
308 bremfree(bp);
309 LFS_UNLOCK_BUF(bp);
310 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
311 B_GATHERED);
312 bp->b_flags |= B_DONE;
313 reassignbuf(bp, vp);
314 brelse(bp);
315 }
316 }
317 splx(s);
318 LFS_CLR_UINO(ip, IN_CLEANING);
319 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
320 ip->i_flag &= ~IN_ALLMOD;
321 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
322 ip->i_number));
323 lfs_segunlock(fs);
324 return 0;
325 }
326
327 fs->lfs_flushvp = vp;
328 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
329 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
330 fs->lfs_flushvp = NULL;
331 KASSERT(fs->lfs_flushvp_fakevref == 0);
332 lfs_segunlock(fs);
333 return error;
334 }
335 sp = fs->lfs_sp;
336
337 flushed = 0;
338 if (VPISEMPTY(vp)) {
339 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
340 ++flushed;
341 } else if ((ip->i_flag & IN_CLEANING) &&
342 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
343 ivndebug(vp,"vflush/clean");
344 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
345 ++flushed;
346 } else if (lfs_dostats) {
347 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
348 ++lfs_stats.vflush_invoked;
349 ivndebug(vp,"vflush");
350 }
351
352 #ifdef DIAGNOSTIC
353 if (vp->v_flag & VDIROP) {
354 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
355 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
356 }
357 if (vp->v_usecount < 0) {
358 printf("usecount=%ld\n", (long)vp->v_usecount);
359 panic("lfs_vflush: usecount<0");
360 }
361 #endif
362
363 do {
364 do {
365 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
366 relock = lfs_writefile(fs, sp, vp);
367 if (relock) {
368 /*
369 * Might have to wait for the
370 * cleaner to run; but we're
371 * still not done with this vnode.
372 */
373 lfs_writeseg(fs, sp);
374 lfs_segunlock(fs);
375 lfs_segunlock_relock(fs);
376 goto top;
377 }
378 }
379 /*
380 * If we begin a new segment in the middle of writing
381 * the Ifile, it creates an inconsistent checkpoint,
382 * since the Ifile information for the new segment
383 * is not up-to-date. Take care of this here by
384 * sending the Ifile through again in case there
385 * are newly dirtied blocks. But wait, there's more!
386 * This second Ifile write could *also* cross a segment
387 * boundary, if the first one was large. The second
388 * one is guaranteed to be no more than 8 blocks,
389 * though (two segment blocks and supporting indirects)
390 * so the third write *will not* cross the boundary.
391 */
392 if (vp == fs->lfs_ivnode) {
393 lfs_writefile(fs, sp, vp);
394 lfs_writefile(fs, sp, vp);
395 }
396 } while (lfs_writeinode(fs, sp, ip));
397 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
398
399 if (lfs_dostats) {
400 ++lfs_stats.nwrites;
401 if (sp->seg_flags & SEGM_SYNC)
402 ++lfs_stats.nsync_writes;
403 if (sp->seg_flags & SEGM_CKP)
404 ++lfs_stats.ncheckpoints;
405 }
406 /*
407 * If we were called from somewhere that has already held the seglock
408 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
409 * the write to complete because we are still locked.
410 * Since lfs_vflush() must return the vnode with no dirty buffers,
411 * we must explicitly wait, if that is the case.
412 *
413 * We compare the iocount against 1, not 0, because it is
414 * artificially incremented by lfs_seglock().
415 */
416 simple_lock(&fs->lfs_interlock);
417 if (fs->lfs_seglock > 1) {
418 while (fs->lfs_iocount > 1)
419 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
420 "lfs_vflush", 0, &fs->lfs_interlock);
421 }
422 simple_unlock(&fs->lfs_interlock);
423
424 lfs_segunlock(fs);
425
426 /* Wait for these buffers to be recovered by aiodoned */
427 s = splbio();
428 simple_lock(&global_v_numoutput_slock);
429 while (vp->v_numoutput > 0) {
430 vp->v_flag |= VBWAIT;
431 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
432 &global_v_numoutput_slock);
433 }
434 simple_unlock(&global_v_numoutput_slock);
435 splx(s);
436
437 fs->lfs_flushvp = NULL;
438 KASSERT(fs->lfs_flushvp_fakevref == 0);
439
440 return (0);
441 }
442
443 int
444 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
445 {
446 struct inode *ip;
447 struct vnode *vp, *nvp;
448 int inodes_written = 0, only_cleaning;
449 int error = 0;
450
451 ASSERT_SEGLOCK(fs);
452 #ifndef LFS_NO_BACKVP_HACK
453 /* BEGIN HACK */
454 #define VN_OFFSET \
455 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
456 #define BACK_VP(VP) \
457 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
458 #define BEG_OF_VLIST \
459 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
460 - VN_OFFSET))
461
462 /* Find last vnode. */
463 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
464 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
465 vp = LIST_NEXT(vp, v_mntvnodes));
466 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
467 nvp = BACK_VP(vp);
468 #else
469 loop:
470 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
471 nvp = LIST_NEXT(vp, v_mntvnodes);
472 #endif
473 /*
474 * If the vnode that we are about to sync is no longer
475 * associated with this mount point, start over.
476 */
477 if (vp->v_mount != mp) {
478 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
479 /*
480 * After this, pages might be busy
481 * due to our own previous putpages.
482 * Start actual segment write here to avoid deadlock.
483 */
484 (void)lfs_writeseg(fs, sp);
485 goto loop;
486 }
487
488 if (vp->v_type == VNON) {
489 continue;
490 }
491
492 ip = VTOI(vp);
493 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
494 (op != VN_DIROP && op != VN_CLEAN &&
495 (vp->v_flag & VDIROP))) {
496 vndebug(vp,"dirop");
497 continue;
498 }
499
500 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
501 vndebug(vp,"empty");
502 continue;
503 }
504
505 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
506 && vp != fs->lfs_flushvp
507 && !(ip->i_flag & IN_CLEANING)) {
508 vndebug(vp,"cleaning");
509 continue;
510 }
511
512 if (lfs_vref(vp)) {
513 vndebug(vp,"vref");
514 continue;
515 }
516
517 only_cleaning = 0;
518 /*
519 * Write the inode/file if dirty and it's not the IFILE.
520 */
521 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
522 only_cleaning =
523 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
524
525 if (ip->i_number != LFS_IFILE_INUM) {
526 error = lfs_writefile(fs, sp, vp);
527 if (error) {
528 lfs_vunref(vp);
529 if (error == EAGAIN) {
530 /*
531 * This error from lfs_putpages
532 * indicates we need to drop
533 * the segment lock and start
534 * over after the cleaner has
535 * had a chance to run.
536 */
537 lfs_writeseg(fs, sp);
538 if (!VPISEMPTY(vp) &&
539 !WRITEINPROG(vp) &&
540 !(ip->i_flag & IN_ALLMOD))
541 LFS_SET_UINO(ip, IN_MODIFIED);
542 break;
543 }
544 error = 0; /* XXX not quite right */
545 continue;
546 }
547
548 if (!VPISEMPTY(vp)) {
549 if (WRITEINPROG(vp)) {
550 ivndebug(vp,"writevnodes/write2");
551 } else if (!(ip->i_flag & IN_ALLMOD)) {
552 LFS_SET_UINO(ip, IN_MODIFIED);
553 }
554 }
555 (void) lfs_writeinode(fs, sp, ip);
556 inodes_written++;
557 }
558 }
559
560 if (lfs_clean_vnhead && only_cleaning)
561 lfs_vunref_head(vp);
562 else
563 lfs_vunref(vp);
564 }
565 return error;
566 }
567
568 /*
569 * Do a checkpoint.
570 */
571 int
572 lfs_segwrite(struct mount *mp, int flags)
573 {
574 struct buf *bp;
575 struct inode *ip;
576 struct lfs *fs;
577 struct segment *sp;
578 struct vnode *vp;
579 SEGUSE *segusep;
580 int do_ckp, did_ckp, error, s;
581 unsigned n, segleft, maxseg, sn, i, curseg;
582 int writer_set = 0;
583 int dirty;
584 int redo;
585 int um_error;
586
587 fs = VFSTOUFS(mp)->um_lfs;
588 ASSERT_MAYBE_SEGLOCK(fs);
589
590 if (fs->lfs_ronly)
591 return EROFS;
592
593 lfs_imtime(fs);
594
595 /*
596 * Allocate a segment structure and enough space to hold pointers to
597 * the maximum possible number of buffers which can be described in a
598 * single summary block.
599 */
600 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
601
602 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
603 sp = fs->lfs_sp;
604
605 /*
606 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
607 * in which case we have to flush *all* buffers off of this vnode.
608 * We don't care about other nodes, but write any non-dirop nodes
609 * anyway in anticipation of another getnewvnode().
610 *
611 * If we're cleaning we only write cleaning and ifile blocks, and
612 * no dirops, since otherwise we'd risk corruption in a crash.
613 */
614 if (sp->seg_flags & SEGM_CLEAN)
615 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
616 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
617 do {
618 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
619 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
620 if (!writer_set) {
621 lfs_writer_enter(fs, "lfs writer");
622 writer_set = 1;
623 }
624 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
625 if (um_error == 0)
626 um_error = error;
627 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
628 }
629 if (do_ckp && um_error) {
630 lfs_segunlock_relock(fs);
631 sp = fs->lfs_sp;
632 }
633 } while (do_ckp && um_error != 0);
634 }
635
636 /*
637 * If we are doing a checkpoint, mark everything since the
638 * last checkpoint as no longer ACTIVE.
639 */
640 if (do_ckp) {
641 segleft = fs->lfs_nseg;
642 curseg = 0;
643 for (n = 0; n < fs->lfs_segtabsz; n++) {
644 dirty = 0;
645 if (bread(fs->lfs_ivnode,
646 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
647 panic("lfs_segwrite: ifile read");
648 segusep = (SEGUSE *)bp->b_data;
649 maxseg = min(segleft, fs->lfs_sepb);
650 for (i = 0; i < maxseg; i++) {
651 sn = curseg + i;
652 if (sn != dtosn(fs, fs->lfs_curseg) &&
653 segusep->su_flags & SEGUSE_ACTIVE) {
654 segusep->su_flags &= ~SEGUSE_ACTIVE;
655 --fs->lfs_nactive;
656 ++dirty;
657 }
658 fs->lfs_suflags[fs->lfs_activesb][sn] =
659 segusep->su_flags;
660 if (fs->lfs_version > 1)
661 ++segusep;
662 else
663 segusep = (SEGUSE *)
664 ((SEGUSE_V1 *)segusep + 1);
665 }
666
667 if (dirty)
668 error = LFS_BWRITE_LOG(bp); /* Ifile */
669 else
670 brelse(bp);
671 segleft -= fs->lfs_sepb;
672 curseg += fs->lfs_sepb;
673 }
674 }
675
676 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
677
678 did_ckp = 0;
679 if (do_ckp || fs->lfs_doifile) {
680 vp = fs->lfs_ivnode;
681 vn_lock(vp, LK_EXCLUSIVE);
682 do {
683 #ifdef DEBUG
684 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
685 #endif
686 simple_lock(&fs->lfs_interlock);
687 fs->lfs_flags &= ~LFS_IFDIRTY;
688 simple_unlock(&fs->lfs_interlock);
689
690 ip = VTOI(vp);
691
692 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
693 /*
694 * Ifile has no pages, so we don't need
695 * to check error return here.
696 */
697 lfs_writefile(fs, sp, vp);
698 /*
699 * Ensure the Ifile takes the current segment
700 * into account. See comment in lfs_vflush.
701 */
702 lfs_writefile(fs, sp, vp);
703 lfs_writefile(fs, sp, vp);
704 }
705
706 if (ip->i_flag & IN_ALLMOD)
707 ++did_ckp;
708 redo = lfs_writeinode(fs, sp, ip);
709 redo += lfs_writeseg(fs, sp);
710 simple_lock(&fs->lfs_interlock);
711 redo += (fs->lfs_flags & LFS_IFDIRTY);
712 simple_unlock(&fs->lfs_interlock);
713 } while (redo && do_ckp);
714
715 /*
716 * Unless we are unmounting, the Ifile may continue to have
717 * dirty blocks even after a checkpoint, due to changes to
718 * inodes' atime. If we're checkpointing, it's "impossible"
719 * for other parts of the Ifile to be dirty after the loop
720 * above, since we hold the segment lock.
721 */
722 s = splbio();
723 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
724 LFS_CLR_UINO(ip, IN_ALLMOD);
725 }
726 #ifdef DIAGNOSTIC
727 else if (do_ckp) {
728 int do_panic = 0;
729 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
730 if (bp->b_lblkno < fs->lfs_cleansz +
731 fs->lfs_segtabsz &&
732 !(bp->b_flags & B_GATHERED)) {
733 printf("ifile lbn %ld still dirty (flags %lx)\n",
734 (long)bp->b_lblkno,
735 (long)bp->b_flags);
736 ++do_panic;
737 }
738 }
739 if (do_panic)
740 panic("dirty blocks");
741 }
742 #endif
743 splx(s);
744 VOP_UNLOCK(vp, 0);
745 } else {
746 (void) lfs_writeseg(fs, sp);
747 }
748
749 /* Note Ifile no longer needs to be written */
750 fs->lfs_doifile = 0;
751 if (writer_set)
752 lfs_writer_leave(fs);
753
754 /*
755 * If we didn't write the Ifile, we didn't really do anything.
756 * That means that (1) there is a checkpoint on disk and (2)
757 * nothing has changed since it was written.
758 *
759 * Take the flags off of the segment so that lfs_segunlock
760 * doesn't have to write the superblock either.
761 */
762 if (do_ckp && !did_ckp) {
763 sp->seg_flags &= ~SEGM_CKP;
764 }
765
766 if (lfs_dostats) {
767 ++lfs_stats.nwrites;
768 if (sp->seg_flags & SEGM_SYNC)
769 ++lfs_stats.nsync_writes;
770 if (sp->seg_flags & SEGM_CKP)
771 ++lfs_stats.ncheckpoints;
772 }
773 lfs_segunlock(fs);
774 return (0);
775 }
776
777 /*
778 * Write the dirty blocks associated with a vnode.
779 */
780 int
781 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
782 {
783 struct buf *bp;
784 struct finfo *fip;
785 struct inode *ip;
786 IFILE *ifp;
787 int i, frag;
788 int error;
789
790 ASSERT_SEGLOCK(fs);
791 error = 0;
792 ip = VTOI(vp);
793
794 if (sp->seg_bytes_left < fs->lfs_bsize ||
795 sp->sum_bytes_left < sizeof(struct finfo))
796 (void) lfs_writeseg(fs, sp);
797
798 sp->sum_bytes_left -= FINFOSIZE;
799 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
800
801 if (vp->v_flag & VDIROP)
802 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
803
804 fip = sp->fip;
805 fip->fi_nblocks = 0;
806 fip->fi_ino = ip->i_number;
807 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
808 fip->fi_version = ifp->if_version;
809 brelse(bp);
810
811 if (sp->seg_flags & SEGM_CLEAN) {
812 lfs_gather(fs, sp, vp, lfs_match_fake);
813 /*
814 * For a file being flushed, we need to write *all* blocks.
815 * This means writing the cleaning blocks first, and then
816 * immediately following with any non-cleaning blocks.
817 * The same is true of the Ifile since checkpoints assume
818 * that all valid Ifile blocks are written.
819 */
820 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
821 lfs_gather(fs, sp, vp, lfs_match_data);
822 /*
823 * Don't call VOP_PUTPAGES: if we're flushing,
824 * we've already done it, and the Ifile doesn't
825 * use the page cache.
826 */
827 }
828 } else {
829 lfs_gather(fs, sp, vp, lfs_match_data);
830 /*
831 * If we're flushing, we've already called VOP_PUTPAGES
832 * so don't do it again. Otherwise, we want to write
833 * everything we've got.
834 */
835 if (!IS_FLUSHING(fs, vp)) {
836 simple_lock(&vp->v_interlock);
837 error = VOP_PUTPAGES(vp, 0, 0,
838 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
839 }
840 }
841
842 /*
843 * It may not be necessary to write the meta-data blocks at this point,
844 * as the roll-forward recovery code should be able to reconstruct the
845 * list.
846 *
847 * We have to write them anyway, though, under two conditions: (1) the
848 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
849 * checkpointing.
850 *
851 * BUT if we are cleaning, we might have indirect blocks that refer to
852 * new blocks not being written yet, in addition to fragments being
853 * moved out of a cleaned segment. If that is the case, don't
854 * write the indirect blocks, or the finfo will have a small block
855 * in the middle of it!
856 * XXX in this case isn't the inode size wrong too?
857 */
858 frag = 0;
859 if (sp->seg_flags & SEGM_CLEAN) {
860 for (i = 0; i < NDADDR; i++)
861 if (ip->i_lfs_fragsize[i] > 0 &&
862 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
863 ++frag;
864 }
865 #ifdef DIAGNOSTIC
866 if (frag > 1)
867 panic("lfs_writefile: more than one fragment!");
868 #endif
869 if (IS_FLUSHING(fs, vp) ||
870 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
871 lfs_gather(fs, sp, vp, lfs_match_indir);
872 lfs_gather(fs, sp, vp, lfs_match_dindir);
873 lfs_gather(fs, sp, vp, lfs_match_tindir);
874 }
875 fip = sp->fip;
876 if (fip->fi_nblocks != 0) {
877 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
878 sizeof(int32_t) * (fip->fi_nblocks));
879 sp->start_lbp = &sp->fip->fi_blocks[0];
880 } else {
881 sp->sum_bytes_left += FINFOSIZE;
882 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
883 }
884
885 return error;
886 }
887
888 int
889 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
890 {
891 struct buf *bp, *ibp;
892 struct ufs1_dinode *cdp;
893 IFILE *ifp;
894 SEGUSE *sup;
895 daddr_t daddr;
896 int32_t *daddrp; /* XXX ondisk32 */
897 ino_t ino;
898 int error, i, ndx, fsb = 0;
899 int redo_ifile = 0;
900 struct timespec ts;
901 int gotblk = 0;
902
903 ASSERT_SEGLOCK(fs);
904 if (!(ip->i_flag & IN_ALLMOD))
905 return (0);
906
907 /* Allocate a new inode block if necessary. */
908 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
909 sp->ibp == NULL) {
910 /* Allocate a new segment if necessary. */
911 if (sp->seg_bytes_left < fs->lfs_ibsize ||
912 sp->sum_bytes_left < sizeof(int32_t))
913 (void) lfs_writeseg(fs, sp);
914
915 /* Get next inode block. */
916 daddr = fs->lfs_offset;
917 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
918 sp->ibp = *sp->cbpp++ =
919 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
920 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
921 gotblk++;
922
923 /* Zero out inode numbers */
924 for (i = 0; i < INOPB(fs); ++i)
925 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
926 0;
927
928 ++sp->start_bpp;
929 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
930 /* Set remaining space counters. */
931 sp->seg_bytes_left -= fs->lfs_ibsize;
932 sp->sum_bytes_left -= sizeof(int32_t);
933 ndx = fs->lfs_sumsize / sizeof(int32_t) -
934 sp->ninodes / INOPB(fs) - 1;
935 ((int32_t *)(sp->segsum))[ndx] = daddr;
936 }
937
938 /* Update the inode times and copy the inode onto the inode page. */
939 TIMEVAL_TO_TIMESPEC(&time, &ts);
940 /* XXX kludge --- don't redirty the ifile just to put times on it */
941 if (ip->i_number != LFS_IFILE_INUM)
942 LFS_ITIMES(ip, &ts, &ts, &ts);
943
944 /*
945 * If this is the Ifile, and we've already written the Ifile in this
946 * partial segment, just overwrite it (it's not on disk yet) and
947 * continue.
948 *
949 * XXX we know that the bp that we get the second time around has
950 * already been gathered.
951 */
952 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
953 *(sp->idp) = *ip->i_din.ffs1_din;
954 ip->i_lfs_osize = ip->i_size;
955 return 0;
956 }
957
958 bp = sp->ibp;
959 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
960 *cdp = *ip->i_din.ffs1_din;
961
962 /*
963 * If we are cleaning, ensure that we don't write UNWRITTEN disk
964 * addresses to disk; possibly change the on-disk record of
965 * the inode size, either by reverting to the previous size
966 * (in the case of cleaning) or by verifying the inode's block
967 * holdings (in the case of files being allocated as they are being
968 * written).
969 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
970 * XXX count on disk wrong by the same amount. We should be
971 * XXX able to "borrow" from lfs_avail and return it after the
972 * XXX Ifile is written. See also in lfs_writeseg.
973 */
974
975 /* Check file size based on highest allocated block */
976 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
977 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
978 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
979 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
980 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
981 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
982 }
983 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
984 if (ip->i_flags & IN_CLEANING)
985 cdp->di_size = ip->i_lfs_osize;
986 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
987 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
988 ip->i_ffs1_blocks, fs->lfs_offset));
989 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
990 daddrp++) {
991 if (*daddrp == UNWRITTEN) {
992 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
993 *daddrp = 0;
994 }
995 }
996 } else {
997 /* If all blocks are going to disk, update "size on disk" */
998 ip->i_lfs_osize = ip->i_size;
999 }
1000
1001 #ifdef DIAGNOSTIC
1002 /*
1003 * Check dinode held blocks against dinode size.
1004 * This should be identical to the check in lfs_vget().
1005 */
1006 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1007 i < NDADDR; i++) {
1008 KASSERT(i >= 0);
1009 if ((cdp->di_mode & IFMT) == IFLNK)
1010 continue;
1011 if (((cdp->di_mode & IFMT) == IFBLK ||
1012 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1013 continue;
1014 if (cdp->di_db[i] != 0) {
1015 # ifdef DEBUG
1016 lfs_dump_dinode(cdp);
1017 # endif
1018 panic("writing inconsistent inode");
1019 }
1020 }
1021 #endif /* DIAGNOSTIC */
1022
1023 if (ip->i_flag & IN_CLEANING)
1024 LFS_CLR_UINO(ip, IN_CLEANING);
1025 else {
1026 /* XXX IN_ALLMOD */
1027 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1028 IN_UPDATE | IN_MODIFY);
1029 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1030 LFS_CLR_UINO(ip, IN_MODIFIED);
1031 else
1032 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1033 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1034 ip->i_lfs_effnblks));
1035 }
1036
1037 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
1038 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1039 (sp->ninodes % INOPB(fs));
1040 if (gotblk) {
1041 LFS_LOCK_BUF(bp);
1042 brelse(bp);
1043 }
1044
1045 /* Increment inode count in segment summary block. */
1046 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1047
1048 /* If this page is full, set flag to allocate a new page. */
1049 if (++sp->ninodes % INOPB(fs) == 0)
1050 sp->ibp = NULL;
1051
1052 /*
1053 * If updating the ifile, update the super-block. Update the disk
1054 * address and access times for this inode in the ifile.
1055 */
1056 ino = ip->i_number;
1057 if (ino == LFS_IFILE_INUM) {
1058 daddr = fs->lfs_idaddr;
1059 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
1060 } else {
1061 LFS_IENTRY(ifp, fs, ino, ibp);
1062 daddr = ifp->if_daddr;
1063 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
1064 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1065 }
1066
1067 /*
1068 * The inode's last address should not be in the current partial
1069 * segment, except under exceptional circumstances (lfs_writevnodes
1070 * had to start over, and in the meantime more blocks were written
1071 * to a vnode). Both inodes will be accounted to this segment
1072 * in lfs_writeseg so we need to subtract the earlier version
1073 * here anyway. The segment count can temporarily dip below
1074 * zero here; keep track of how many duplicates we have in
1075 * "dupino" so we don't panic below.
1076 */
1077 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1078 ++sp->ndupino;
1079 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1080 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1081 (long long)daddr, sp->ndupino));
1082 }
1083 /*
1084 * Account the inode: it no longer belongs to its former segment,
1085 * though it will not belong to the new segment until that segment
1086 * is actually written.
1087 */
1088 if (daddr != LFS_UNUSED_DADDR) {
1089 u_int32_t oldsn = dtosn(fs, daddr);
1090 #ifdef DIAGNOSTIC
1091 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1092 #endif
1093 LFS_SEGENTRY(sup, fs, oldsn, bp);
1094 #ifdef DIAGNOSTIC
1095 if (sup->su_nbytes +
1096 sizeof (struct ufs1_dinode) * ndupino
1097 < sizeof (struct ufs1_dinode)) {
1098 printf("lfs_writeinode: negative bytes "
1099 "(segment %" PRIu32 " short by %d, "
1100 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1101 ", daddr=%" PRId64 ", su_nbytes=%u, "
1102 "ndupino=%d)\n",
1103 dtosn(fs, daddr),
1104 (int)sizeof (struct ufs1_dinode) *
1105 (1 - sp->ndupino) - sup->su_nbytes,
1106 oldsn, sp->seg_number, daddr,
1107 (unsigned int)sup->su_nbytes,
1108 sp->ndupino);
1109 panic("lfs_writeinode: negative bytes");
1110 sup->su_nbytes = sizeof (struct ufs1_dinode);
1111 }
1112 #endif
1113 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1114 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1115 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1116 redo_ifile =
1117 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1118 if (redo_ifile) {
1119 simple_lock(&fs->lfs_interlock);
1120 fs->lfs_flags |= LFS_IFDIRTY;
1121 simple_unlock(&fs->lfs_interlock);
1122 }
1123 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1124 }
1125 return (redo_ifile);
1126 }
1127
1128 int
1129 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1130 {
1131 struct lfs *fs;
1132 int vers;
1133 int j, blksinblk;
1134
1135 ASSERT_SEGLOCK(sp->fs);
1136 /*
1137 * If full, finish this segment. We may be doing I/O, so
1138 * release and reacquire the splbio().
1139 */
1140 #ifdef DIAGNOSTIC
1141 if (sp->vp == NULL)
1142 panic ("lfs_gatherblock: Null vp in segment");
1143 #endif
1144 fs = sp->fs;
1145 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1146 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1147 sp->seg_bytes_left < bp->b_bcount) {
1148 if (sptr)
1149 splx(*sptr);
1150 lfs_updatemeta(sp);
1151
1152 vers = sp->fip->fi_version;
1153 (void) lfs_writeseg(fs, sp);
1154
1155 sp->fip->fi_version = vers;
1156 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1157 /* Add the current file to the segment summary. */
1158 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1159 sp->sum_bytes_left -= FINFOSIZE;
1160
1161 if (sptr)
1162 *sptr = splbio();
1163 return (1);
1164 }
1165
1166 if (bp->b_flags & B_GATHERED) {
1167 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1168 " lbn %" PRId64 "\n",
1169 sp->fip->fi_ino, bp->b_lblkno));
1170 return (0);
1171 }
1172
1173 /* Insert into the buffer list, update the FINFO block. */
1174 bp->b_flags |= B_GATHERED;
1175
1176 *sp->cbpp++ = bp;
1177 for (j = 0; j < blksinblk; j++) {
1178 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1179 /* This block's accounting moves from lfs_favail to lfs_avail */
1180 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1181 }
1182
1183 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1184 sp->seg_bytes_left -= bp->b_bcount;
1185 return (0);
1186 }
1187
1188 int
1189 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1190 int (*match)(struct lfs *, struct buf *))
1191 {
1192 struct buf *bp, *nbp;
1193 int s, count = 0;
1194
1195 ASSERT_SEGLOCK(fs);
1196 if (vp->v_type == VBLK)
1197 return 0;
1198 KASSERT(sp->vp == NULL);
1199 sp->vp = vp;
1200 s = splbio();
1201
1202 #ifndef LFS_NO_BACKBUF_HACK
1203 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1204 # define BUF_OFFSET \
1205 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1206 # define BACK_BUF(BP) \
1207 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1208 # define BEG_OF_LIST \
1209 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1210
1211 loop:
1212 /* Find last buffer. */
1213 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1214 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1215 bp = LIST_NEXT(bp, b_vnbufs))
1216 /* nothing */;
1217 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1218 nbp = BACK_BUF(bp);
1219 #else /* LFS_NO_BACKBUF_HACK */
1220 loop:
1221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1222 nbp = LIST_NEXT(bp, b_vnbufs);
1223 #endif /* LFS_NO_BACKBUF_HACK */
1224 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1225 #ifdef DEBUG
1226 if (vp == fs->lfs_ivnode &&
1227 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1228 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1229 PRId64 " busy (%x)",
1230 bp->b_lblkno, bp->b_flags));
1231 #endif
1232 continue;
1233 }
1234 #ifdef DIAGNOSTIC
1235 # ifdef LFS_USE_B_INVAL
1236 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1237 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1238 " is B_INVAL\n", bp->b_lblkno));
1239 VOP_PRINT(bp->b_vp);
1240 }
1241 # endif /* LFS_USE_B_INVAL */
1242 if (!(bp->b_flags & B_DELWRI))
1243 panic("lfs_gather: bp not B_DELWRI");
1244 if (!(bp->b_flags & B_LOCKED)) {
1245 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1246 " blk %" PRId64 " not B_LOCKED\n",
1247 bp->b_lblkno,
1248 dbtofsb(fs, bp->b_blkno)));
1249 VOP_PRINT(bp->b_vp);
1250 panic("lfs_gather: bp not B_LOCKED");
1251 }
1252 #endif
1253 if (lfs_gatherblock(sp, bp, &s)) {
1254 goto loop;
1255 }
1256 count++;
1257 }
1258 splx(s);
1259 lfs_updatemeta(sp);
1260 KASSERT(sp->vp == vp);
1261 sp->vp = NULL;
1262 return count;
1263 }
1264
1265 #if DEBUG
1266 # define DEBUG_OOFF(n) do { \
1267 if (ooff == 0) { \
1268 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1269 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1270 ", was 0x0 (or %" PRId64 ")\n", \
1271 (n), ip->i_number, lbn, ndaddr, daddr)); \
1272 } \
1273 } while (0)
1274 #else
1275 # define DEBUG_OOFF(n)
1276 #endif
1277
1278 /*
1279 * Change the given block's address to ndaddr, finding its previous
1280 * location using ufs_bmaparray().
1281 *
1282 * Account for this change in the segment table.
1283 *
1284 * called with sp == NULL by roll-forwarding code.
1285 */
1286 void
1287 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1288 daddr_t lbn, int32_t ndaddr, int size)
1289 {
1290 SEGUSE *sup;
1291 struct buf *bp;
1292 struct indir a[NIADDR + 2], *ap;
1293 struct inode *ip;
1294 daddr_t daddr, ooff;
1295 int num, error;
1296 int bb, osize, obb;
1297
1298 ASSERT_SEGLOCK(fs);
1299 KASSERT(sp == NULL || sp->vp == vp);
1300 ip = VTOI(vp);
1301
1302 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1303 if (error)
1304 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1305
1306 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1307 KASSERT(daddr <= LFS_MAX_DADDR);
1308 if (daddr > 0)
1309 daddr = dbtofsb(fs, daddr);
1310
1311 bb = fragstofsb(fs, numfrags(fs, size));
1312 switch (num) {
1313 case 0:
1314 ooff = ip->i_ffs1_db[lbn];
1315 DEBUG_OOFF(0);
1316 if (ooff == UNWRITTEN)
1317 ip->i_ffs1_blocks += bb;
1318 else {
1319 /* possible fragment truncation or extension */
1320 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1321 ip->i_ffs1_blocks += (bb - obb);
1322 }
1323 ip->i_ffs1_db[lbn] = ndaddr;
1324 break;
1325 case 1:
1326 ooff = ip->i_ffs1_ib[a[0].in_off];
1327 DEBUG_OOFF(1);
1328 if (ooff == UNWRITTEN)
1329 ip->i_ffs1_blocks += bb;
1330 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1331 break;
1332 default:
1333 ap = &a[num - 1];
1334 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1335 panic("lfs_updatemeta: bread bno %" PRId64,
1336 ap->in_lbn);
1337
1338 /* XXX ondisk32 */
1339 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1340 DEBUG_OOFF(num);
1341 if (ooff == UNWRITTEN)
1342 ip->i_ffs1_blocks += bb;
1343 /* XXX ondisk32 */
1344 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1345 (void) VOP_BWRITE(bp);
1346 }
1347
1348 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1349
1350 /* Update hiblk when extending the file */
1351 if (lbn > ip->i_lfs_hiblk)
1352 ip->i_lfs_hiblk = lbn;
1353
1354 /*
1355 * Though we'd rather it couldn't, this *can* happen right now
1356 * if cleaning blocks and regular blocks coexist.
1357 */
1358 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1359
1360 /*
1361 * Update segment usage information, based on old size
1362 * and location.
1363 */
1364 if (daddr > 0) {
1365 u_int32_t oldsn = dtosn(fs, daddr);
1366 #ifdef DIAGNOSTIC
1367 int ndupino;
1368
1369 if (sp && sp->seg_number == oldsn) {
1370 ndupino = sp->ndupino;
1371 } else {
1372 ndupino = 0;
1373 }
1374 #endif
1375 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1376 if (lbn >= 0 && lbn < NDADDR)
1377 osize = ip->i_lfs_fragsize[lbn];
1378 else
1379 osize = fs->lfs_bsize;
1380 LFS_SEGENTRY(sup, fs, oldsn, bp);
1381 #ifdef DIAGNOSTIC
1382 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1383 < osize) {
1384 printf("lfs_updatemeta: negative bytes "
1385 "(segment %" PRIu32 " short by %" PRId64
1386 ")\n", dtosn(fs, daddr),
1387 (int64_t)osize -
1388 (sizeof (struct ufs1_dinode) * ndupino +
1389 sup->su_nbytes));
1390 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1391 ", addr = 0x%" PRIx64 "\n",
1392 (unsigned long long)ip->i_number, lbn, daddr);
1393 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1394 panic("lfs_updatemeta: negative bytes");
1395 sup->su_nbytes = osize -
1396 sizeof (struct ufs1_dinode) * ndupino;
1397 }
1398 #endif
1399 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1400 " db 0x%" PRIx64 "\n",
1401 dtosn(fs, daddr), osize,
1402 ip->i_number, lbn, daddr));
1403 sup->su_nbytes -= osize;
1404 if (!(bp->b_flags & B_GATHERED)) {
1405 simple_lock(&fs->lfs_interlock);
1406 fs->lfs_flags |= LFS_IFDIRTY;
1407 simple_unlock(&fs->lfs_interlock);
1408 }
1409 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1410 }
1411 /*
1412 * Now that this block has a new address, and its old
1413 * segment no longer owns it, we can forget about its
1414 * old size.
1415 */
1416 if (lbn >= 0 && lbn < NDADDR)
1417 ip->i_lfs_fragsize[lbn] = size;
1418 }
1419
1420 /*
1421 * Update the metadata that points to the blocks listed in the FINFO
1422 * array.
1423 */
1424 void
1425 lfs_updatemeta(struct segment *sp)
1426 {
1427 struct buf *sbp;
1428 struct lfs *fs;
1429 struct vnode *vp;
1430 daddr_t lbn;
1431 int i, nblocks, num;
1432 int bb;
1433 int bytesleft, size;
1434
1435 ASSERT_SEGLOCK(sp->fs);
1436 vp = sp->vp;
1437 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1438 KASSERT(nblocks >= 0);
1439 KASSERT(vp != NULL);
1440 if (nblocks == 0)
1441 return;
1442
1443 /*
1444 * This count may be high due to oversize blocks from lfs_gop_write.
1445 * Correct for this. (XXX we should be able to keep track of these.)
1446 */
1447 fs = sp->fs;
1448 for (i = 0; i < nblocks; i++) {
1449 if (sp->start_bpp[i] == NULL) {
1450 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1451 nblocks = i;
1452 break;
1453 }
1454 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1455 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1456 nblocks -= num - 1;
1457 }
1458
1459 KASSERT(vp->v_type == VREG ||
1460 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1461 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1462
1463 /*
1464 * Sort the blocks.
1465 *
1466 * We have to sort even if the blocks come from the
1467 * cleaner, because there might be other pending blocks on the
1468 * same inode...and if we don't sort, and there are fragments
1469 * present, blocks may be written in the wrong place.
1470 */
1471 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1472
1473 /*
1474 * Record the length of the last block in case it's a fragment.
1475 * If there are indirect blocks present, they sort last. An
1476 * indirect block will be lfs_bsize and its presence indicates
1477 * that you cannot have fragments.
1478 *
1479 * XXX This last is a lie. A cleaned fragment can coexist with
1480 * XXX a later indirect block. This will continue to be
1481 * XXX true until lfs_markv is fixed to do everything with
1482 * XXX fake blocks (including fake inodes and fake indirect blocks).
1483 */
1484 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1485 fs->lfs_bmask) + 1;
1486
1487 /*
1488 * Assign disk addresses, and update references to the logical
1489 * block and the segment usage information.
1490 */
1491 for (i = nblocks; i--; ++sp->start_bpp) {
1492 sbp = *sp->start_bpp;
1493 lbn = *sp->start_lbp;
1494 KASSERT(sbp->b_lblkno == lbn);
1495
1496 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1497
1498 /*
1499 * If we write a frag in the wrong place, the cleaner won't
1500 * be able to correctly identify its size later, and the
1501 * segment will be uncleanable. (Even worse, it will assume
1502 * that the indirect block that actually ends the list
1503 * is of a smaller size!)
1504 */
1505 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1506 panic("lfs_updatemeta: fragment is not last block");
1507
1508 /*
1509 * For each subblock in this possibly oversized block,
1510 * update its address on disk.
1511 */
1512 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1513 KASSERT(vp == sbp->b_vp);
1514 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1515 bytesleft -= fs->lfs_bsize) {
1516 size = MIN(bytesleft, fs->lfs_bsize);
1517 bb = fragstofsb(fs, numfrags(fs, size));
1518 lbn = *sp->start_lbp++;
1519 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1520 size);
1521 fs->lfs_offset += bb;
1522 }
1523
1524 }
1525 }
1526
1527 /*
1528 * Move lfs_offset to a segment earlier than sn.
1529 */
1530 int
1531 lfs_rewind(struct lfs *fs, int newsn)
1532 {
1533 int sn, osn, isdirty;
1534 struct buf *bp;
1535 SEGUSE *sup;
1536
1537 ASSERT_SEGLOCK(fs);
1538
1539 osn = dtosn(fs, fs->lfs_offset);
1540 if (osn < newsn)
1541 return 0;
1542
1543 /* lfs_avail eats the remaining space in this segment */
1544 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1545
1546 /* Find a low-numbered segment */
1547 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1548 LFS_SEGENTRY(sup, fs, sn, bp);
1549 isdirty = sup->su_flags & SEGUSE_DIRTY;
1550 brelse(bp);
1551
1552 if (!isdirty)
1553 break;
1554 }
1555 if (sn == fs->lfs_nseg)
1556 panic("lfs_rewind: no clean segments");
1557 if (sn >= newsn)
1558 return ENOENT;
1559 fs->lfs_nextseg = sn;
1560 lfs_newseg(fs);
1561 fs->lfs_offset = fs->lfs_curseg;
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * Start a new partial segment.
1568 *
1569 * Return 1 when we entered to a new segment.
1570 * Otherwise, return 0.
1571 */
1572 int
1573 lfs_initseg(struct lfs *fs)
1574 {
1575 struct segment *sp = fs->lfs_sp;
1576 SEGSUM *ssp;
1577 struct buf *sbp; /* buffer for SEGSUM */
1578 int repeat = 0; /* return value */
1579
1580 ASSERT_SEGLOCK(fs);
1581 /* Advance to the next segment. */
1582 if (!LFS_PARTIAL_FITS(fs)) {
1583 SEGUSE *sup;
1584 struct buf *bp;
1585
1586 /* lfs_avail eats the remaining space */
1587 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1588 fs->lfs_curseg);
1589 /* Wake up any cleaning procs waiting on this file system. */
1590 wakeup(&lfs_allclean_wakeup);
1591 wakeup(&fs->lfs_nextseg);
1592 lfs_newseg(fs);
1593 repeat = 1;
1594 fs->lfs_offset = fs->lfs_curseg;
1595
1596 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1597 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1598
1599 /*
1600 * If the segment contains a superblock, update the offset
1601 * and summary address to skip over it.
1602 */
1603 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1604 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1605 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1606 sp->seg_bytes_left -= LFS_SBPAD;
1607 }
1608 brelse(bp);
1609 /* Segment zero could also contain the labelpad */
1610 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1611 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1612 fs->lfs_offset +=
1613 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1614 sp->seg_bytes_left -=
1615 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1616 }
1617 } else {
1618 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1619 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1620 (fs->lfs_offset - fs->lfs_curseg));
1621 }
1622 fs->lfs_lastpseg = fs->lfs_offset;
1623
1624 /* Record first address of this partial segment */
1625 if (sp->seg_flags & SEGM_CLEAN) {
1626 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1627 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1628 /* "1" is the artificial inc in lfs_seglock */
1629 simple_lock(&fs->lfs_interlock);
1630 while (fs->lfs_iocount > 1) {
1631 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1632 "lfs_initseg", 0, &fs->lfs_interlock);
1633 }
1634 simple_unlock(&fs->lfs_interlock);
1635 fs->lfs_cleanind = 0;
1636 }
1637 }
1638
1639 sp->fs = fs;
1640 sp->ibp = NULL;
1641 sp->idp = NULL;
1642 sp->ninodes = 0;
1643 sp->ndupino = 0;
1644
1645 sp->cbpp = sp->bpp;
1646
1647 /* Get a new buffer for SEGSUM */
1648 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1649 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1650
1651 /* ... and enter it into the buffer list. */
1652 *sp->cbpp = sbp;
1653 sp->cbpp++;
1654 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1655
1656 sp->start_bpp = sp->cbpp;
1657
1658 /* Set point to SEGSUM, initialize it. */
1659 ssp = sp->segsum = sbp->b_data;
1660 memset(ssp, 0, fs->lfs_sumsize);
1661 ssp->ss_next = fs->lfs_nextseg;
1662 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1663 ssp->ss_magic = SS_MAGIC;
1664
1665 /* Set pointer to first FINFO, initialize it. */
1666 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1667 sp->fip->fi_nblocks = 0;
1668 sp->start_lbp = &sp->fip->fi_blocks[0];
1669 sp->fip->fi_lastlength = 0;
1670
1671 sp->seg_bytes_left -= fs->lfs_sumsize;
1672 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1673
1674 return (repeat);
1675 }
1676
1677 /*
1678 * Remove SEGUSE_INVAL from all segments.
1679 */
1680 void
1681 lfs_unset_inval_all(struct lfs *fs)
1682 {
1683 SEGUSE *sup;
1684 struct buf *bp;
1685 int i;
1686
1687 for (i = 0; i < fs->lfs_nseg; i++) {
1688 LFS_SEGENTRY(sup, fs, i, bp);
1689 if (sup->su_flags & SEGUSE_INVAL) {
1690 sup->su_flags &= ~SEGUSE_INVAL;
1691 VOP_BWRITE(bp);
1692 } else
1693 brelse(bp);
1694 }
1695 }
1696
1697 /*
1698 * Return the next segment to write.
1699 */
1700 void
1701 lfs_newseg(struct lfs *fs)
1702 {
1703 CLEANERINFO *cip;
1704 SEGUSE *sup;
1705 struct buf *bp;
1706 int curseg, isdirty, sn, skip_inval;
1707
1708 ASSERT_SEGLOCK(fs);
1709
1710 /* Honor LFCNWRAPSTOP */
1711 simple_lock(&fs->lfs_interlock);
1712 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1713 wakeup(&fs->lfs_nowrap);
1714 ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
1715 &fs->lfs_interlock);
1716 }
1717 simple_unlock(&fs->lfs_interlock);
1718
1719 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1720 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1721 dtosn(fs, fs->lfs_nextseg)));
1722 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1723 sup->su_nbytes = 0;
1724 sup->su_nsums = 0;
1725 sup->su_ninos = 0;
1726 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1727
1728 LFS_CLEANERINFO(cip, fs, bp);
1729 --cip->clean;
1730 ++cip->dirty;
1731 fs->lfs_nclean = cip->clean;
1732 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1733
1734 fs->lfs_lastseg = fs->lfs_curseg;
1735 fs->lfs_curseg = fs->lfs_nextseg;
1736 skip_inval = 1;
1737 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1738 sn = (sn + 1) % fs->lfs_nseg;
1739
1740 if (sn == curseg) {
1741 if (skip_inval)
1742 skip_inval = 0;
1743 else
1744 panic("lfs_nextseg: no clean segments");
1745 }
1746 LFS_SEGENTRY(sup, fs, sn, bp);
1747 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1748 /* Check SEGUSE_EMPTY as we go along */
1749 if (isdirty && sup->su_nbytes == 0 &&
1750 !(sup->su_flags & SEGUSE_EMPTY))
1751 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1752 else
1753 brelse(bp);
1754
1755 if (!isdirty)
1756 break;
1757 }
1758 if (skip_inval == 0)
1759 lfs_unset_inval_all(fs);
1760
1761 ++fs->lfs_nactive;
1762 fs->lfs_nextseg = sntod(fs, sn);
1763 if (lfs_dostats) {
1764 ++lfs_stats.segsused;
1765 }
1766 }
1767
1768 static struct buf *
1769 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1770 {
1771 struct lfs_cluster *cl;
1772 struct buf **bpp, *bp;
1773 int s;
1774
1775 ASSERT_SEGLOCK(fs);
1776 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1777 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1778 memset(cl, 0, sizeof(*cl));
1779 cl->fs = fs;
1780 cl->bpp = bpp;
1781 cl->bufcount = 0;
1782 cl->bufsize = 0;
1783
1784 /* If this segment is being written synchronously, note that */
1785 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1786 cl->flags |= LFS_CL_SYNC;
1787 cl->seg = fs->lfs_sp;
1788 ++cl->seg->seg_iocount;
1789 }
1790
1791 /* Get an empty buffer header, or maybe one with something on it */
1792 s = splbio();
1793 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1794 splx(s);
1795 memset(bp, 0, sizeof(*bp));
1796 BUF_INIT(bp);
1797
1798 bp->b_flags = B_BUSY | B_CALL;
1799 bp->b_dev = NODEV;
1800 bp->b_blkno = bp->b_lblkno = addr;
1801 bp->b_iodone = lfs_cluster_callback;
1802 bp->b_private = cl;
1803 bp->b_vp = vp;
1804
1805 return bp;
1806 }
1807
1808 int
1809 lfs_writeseg(struct lfs *fs, struct segment *sp)
1810 {
1811 struct buf **bpp, *bp, *cbp, *newbp;
1812 SEGUSE *sup;
1813 SEGSUM *ssp;
1814 int i, s;
1815 int do_again, nblocks, byteoffset;
1816 size_t el_size;
1817 struct lfs_cluster *cl;
1818 u_short ninos;
1819 struct vnode *devvp;
1820 char *p = NULL;
1821 struct vnode *vp;
1822 int32_t *daddrp; /* XXX ondisk32 */
1823 int changed;
1824 u_int32_t sum;
1825
1826 ASSERT_SEGLOCK(fs);
1827 /*
1828 * If there are no buffers other than the segment summary to write
1829 * and it is not a checkpoint, don't do anything. On a checkpoint,
1830 * even if there aren't any buffers, you need to write the superblock.
1831 */
1832 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1833 return (0);
1834
1835 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1836
1837 /* Update the segment usage information. */
1838 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1839
1840 /* Loop through all blocks, except the segment summary. */
1841 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1842 if ((*bpp)->b_vp != devvp) {
1843 sup->su_nbytes += (*bpp)->b_bcount;
1844 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1845 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1846 sp->seg_number, (*bpp)->b_bcount,
1847 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1848 (*bpp)->b_blkno));
1849 }
1850 }
1851
1852 ssp = (SEGSUM *)sp->segsum;
1853
1854 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1855 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1856 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1857 ssp->ss_ninos));
1858 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1859 /* sup->su_nbytes += fs->lfs_sumsize; */
1860 if (fs->lfs_version == 1)
1861 sup->su_olastmod = time.tv_sec;
1862 else
1863 sup->su_lastmod = time.tv_sec;
1864 sup->su_ninos += ninos;
1865 ++sup->su_nsums;
1866 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1867
1868 do_again = !(bp->b_flags & B_GATHERED);
1869 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1870
1871 /*
1872 * Mark blocks B_BUSY, to prevent then from being changed between
1873 * the checksum computation and the actual write.
1874 *
1875 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1876 * there are any, replace them with copies that have UNASSIGNED
1877 * instead.
1878 */
1879 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1880 ++bpp;
1881 bp = *bpp;
1882 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1883 bp->b_flags |= B_BUSY;
1884 continue;
1885 }
1886
1887 simple_lock(&bp->b_interlock);
1888 s = splbio();
1889 while (bp->b_flags & B_BUSY) {
1890 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1891 " data summary corruption for ino %d, lbn %"
1892 PRId64 "\n",
1893 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1894 bp->b_flags |= B_WANTED;
1895 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1896 &bp->b_interlock);
1897 splx(s);
1898 s = splbio();
1899 }
1900 bp->b_flags |= B_BUSY;
1901 splx(s);
1902 simple_unlock(&bp->b_interlock);
1903
1904 /*
1905 * Check and replace indirect block UNWRITTEN bogosity.
1906 * XXX See comment in lfs_writefile.
1907 */
1908 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1909 VTOI(bp->b_vp)->i_ffs1_blocks !=
1910 VTOI(bp->b_vp)->i_lfs_effnblks) {
1911 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1912 VTOI(bp->b_vp)->i_number,
1913 VTOI(bp->b_vp)->i_lfs_effnblks,
1914 VTOI(bp->b_vp)->i_ffs1_blocks));
1915 /* Make a copy we'll make changes to */
1916 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1917 bp->b_bcount, LFS_NB_IBLOCK);
1918 newbp->b_blkno = bp->b_blkno;
1919 memcpy(newbp->b_data, bp->b_data,
1920 newbp->b_bcount);
1921
1922 changed = 0;
1923 /* XXX ondisk32 */
1924 for (daddrp = (int32_t *)(newbp->b_data);
1925 daddrp < (int32_t *)(newbp->b_data +
1926 newbp->b_bcount); daddrp++) {
1927 if (*daddrp == UNWRITTEN) {
1928 ++changed;
1929 *daddrp = 0;
1930 }
1931 }
1932 /*
1933 * Get rid of the old buffer. Don't mark it clean,
1934 * though, if it still has dirty data on it.
1935 */
1936 if (changed) {
1937 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1938 " bp = %p newbp = %p\n", changed, bp,
1939 newbp));
1940 *bpp = newbp;
1941 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1942 if (bp->b_flags & B_CALL) {
1943 DLOG((DLOG_SEG, "lfs_writeseg: "
1944 "indir bp should not be B_CALL\n"));
1945 s = splbio();
1946 biodone(bp);
1947 splx(s);
1948 bp = NULL;
1949 } else {
1950 /* Still on free list, leave it there */
1951 s = splbio();
1952 bp->b_flags &= ~B_BUSY;
1953 if (bp->b_flags & B_WANTED)
1954 wakeup(bp);
1955 splx(s);
1956 /*
1957 * We have to re-decrement lfs_avail
1958 * since this block is going to come
1959 * back around to us in the next
1960 * segment.
1961 */
1962 fs->lfs_avail -=
1963 btofsb(fs, bp->b_bcount);
1964 }
1965 } else {
1966 lfs_freebuf(fs, newbp);
1967 }
1968 }
1969 }
1970 /*
1971 * Compute checksum across data and then across summary; the first
1972 * block (the summary block) is skipped. Set the create time here
1973 * so that it's guaranteed to be later than the inode mod times.
1974 */
1975 sum = 0;
1976 if (fs->lfs_version == 1)
1977 el_size = sizeof(u_long);
1978 else
1979 el_size = sizeof(u_int32_t);
1980 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1981 ++bpp;
1982 /* Loop through gop_write cluster blocks */
1983 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1984 byteoffset += fs->lfs_bsize) {
1985 #ifdef LFS_USE_B_INVAL
1986 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1987 (B_CALL | B_INVAL)) {
1988 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1989 byteoffset, dp, el_size)) {
1990 panic("lfs_writeseg: copyin failed [1]:"
1991 " ino %d blk %" PRId64,
1992 VTOI((*bpp)->b_vp)->i_number,
1993 (*bpp)->b_lblkno);
1994 }
1995 } else
1996 #endif /* LFS_USE_B_INVAL */
1997 {
1998 sum = lfs_cksum_part(
1999 (*bpp)->b_data + byteoffset, el_size, sum);
2000 }
2001 }
2002 }
2003 if (fs->lfs_version == 1)
2004 ssp->ss_ocreate = time.tv_sec;
2005 else {
2006 ssp->ss_create = time.tv_sec;
2007 ssp->ss_serial = ++fs->lfs_serial;
2008 ssp->ss_ident = fs->lfs_ident;
2009 }
2010 ssp->ss_datasum = lfs_cksum_fold(sum);
2011 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2012 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2013
2014 simple_lock(&fs->lfs_interlock);
2015 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2016 btofsb(fs, fs->lfs_sumsize));
2017 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2018 btofsb(fs, fs->lfs_sumsize));
2019 simple_unlock(&fs->lfs_interlock);
2020
2021 /*
2022 * When we simply write the blocks we lose a rotation for every block
2023 * written. To avoid this problem, we cluster the buffers into a
2024 * chunk and write the chunk. MAXPHYS is the largest size I/O
2025 * devices can handle, use that for the size of the chunks.
2026 *
2027 * Blocks that are already clusters (from GOP_WRITE), however, we
2028 * don't bother to copy into other clusters.
2029 */
2030
2031 #define CHUNKSIZE MAXPHYS
2032
2033 if (devvp == NULL)
2034 panic("devvp is NULL");
2035 for (bpp = sp->bpp, i = nblocks; i;) {
2036 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2037 cl = cbp->b_private;
2038
2039 cbp->b_flags |= B_ASYNC | B_BUSY;
2040 cbp->b_bcount = 0;
2041
2042 #if defined(DEBUG) && defined(DIAGNOSTIC)
2043 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2044 / sizeof(int32_t)) {
2045 panic("lfs_writeseg: real bpp overwrite");
2046 }
2047 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2048 panic("lfs_writeseg: theoretical bpp overwrite");
2049 }
2050 #endif
2051
2052 /*
2053 * Construct the cluster.
2054 */
2055 simple_lock(&fs->lfs_interlock);
2056 ++fs->lfs_iocount;
2057 simple_unlock(&fs->lfs_interlock);
2058 while (i && cbp->b_bcount < CHUNKSIZE) {
2059 bp = *bpp;
2060
2061 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2062 break;
2063 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2064 break;
2065
2066 /* Clusters from GOP_WRITE are expedited */
2067 if (bp->b_bcount > fs->lfs_bsize) {
2068 if (cbp->b_bcount > 0)
2069 /* Put in its own buffer */
2070 break;
2071 else {
2072 cbp->b_data = bp->b_data;
2073 }
2074 } else if (cbp->b_bcount == 0) {
2075 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2076 LFS_NB_CLUSTER);
2077 cl->flags |= LFS_CL_MALLOC;
2078 }
2079 #ifdef DIAGNOSTIC
2080 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2081 btodb(bp->b_bcount - 1))) !=
2082 sp->seg_number) {
2083 printf("blk size %d daddr %" PRIx64
2084 " not in seg %d\n",
2085 bp->b_bcount, bp->b_blkno,
2086 sp->seg_number);
2087 panic("segment overwrite");
2088 }
2089 #endif
2090
2091 #ifdef LFS_USE_B_INVAL
2092 /*
2093 * Fake buffers from the cleaner are marked as B_INVAL.
2094 * We need to copy the data from user space rather than
2095 * from the buffer indicated.
2096 * XXX == what do I do on an error?
2097 */
2098 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2099 (B_CALL|B_INVAL)) {
2100 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2101 panic("lfs_writeseg: "
2102 "copyin failed [2]");
2103 } else
2104 #endif /* LFS_USE_B_INVAL */
2105 if (cl->flags & LFS_CL_MALLOC) {
2106 /* copy data into our cluster. */
2107 memcpy(p, bp->b_data, bp->b_bcount);
2108 p += bp->b_bcount;
2109 }
2110
2111 cbp->b_bcount += bp->b_bcount;
2112 cl->bufsize += bp->b_bcount;
2113
2114 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2115 cl->bpp[cl->bufcount++] = bp;
2116 vp = bp->b_vp;
2117 s = splbio();
2118 reassignbuf(bp, vp);
2119 V_INCR_NUMOUTPUT(vp);
2120 splx(s);
2121
2122 bpp++;
2123 i--;
2124 }
2125 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2126 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2127 else
2128 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2129 s = splbio();
2130 V_INCR_NUMOUTPUT(devvp);
2131 splx(s);
2132 VOP_STRATEGY(devvp, cbp);
2133 curproc->p_stats->p_ru.ru_oublock++;
2134 }
2135
2136 if (lfs_dostats) {
2137 ++lfs_stats.psegwrites;
2138 lfs_stats.blocktot += nblocks - 1;
2139 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2140 ++lfs_stats.psyncwrites;
2141 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2142 ++lfs_stats.pcleanwrites;
2143 lfs_stats.cleanblocks += nblocks - 1;
2144 }
2145 }
2146 return (lfs_initseg(fs) || do_again);
2147 }
2148
2149 void
2150 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2151 {
2152 struct buf *bp;
2153 int s;
2154 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2155
2156 ASSERT_MAYBE_SEGLOCK(fs);
2157 #ifdef DIAGNOSTIC
2158 KASSERT(fs->lfs_magic == LFS_MAGIC);
2159 #endif
2160 /*
2161 * If we can write one superblock while another is in
2162 * progress, we risk not having a complete checkpoint if we crash.
2163 * So, block here if a superblock write is in progress.
2164 */
2165 simple_lock(&fs->lfs_interlock);
2166 s = splbio();
2167 while (fs->lfs_sbactive) {
2168 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2169 &fs->lfs_interlock);
2170 }
2171 fs->lfs_sbactive = daddr;
2172 splx(s);
2173 simple_unlock(&fs->lfs_interlock);
2174
2175 /* Set timestamp of this version of the superblock */
2176 if (fs->lfs_version == 1)
2177 fs->lfs_otstamp = time.tv_sec;
2178 fs->lfs_tstamp = time.tv_sec;
2179
2180 /* Checksum the superblock and copy it into a buffer. */
2181 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2182 bp = lfs_newbuf(fs, devvp,
2183 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2184 memset(bp->b_data + sizeof(struct dlfs), 0,
2185 LFS_SBPAD - sizeof(struct dlfs));
2186 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2187
2188 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2189 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2190 bp->b_iodone = lfs_supercallback;
2191
2192 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2193 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2194 else
2195 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2196 curproc->p_stats->p_ru.ru_oublock++;
2197 s = splbio();
2198 V_INCR_NUMOUTPUT(bp->b_vp);
2199 splx(s);
2200 simple_lock(&fs->lfs_interlock);
2201 ++fs->lfs_iocount;
2202 simple_unlock(&fs->lfs_interlock);
2203 VOP_STRATEGY(devvp, bp);
2204 }
2205
2206 /*
2207 * Logical block number match routines used when traversing the dirty block
2208 * chain.
2209 */
2210 int
2211 lfs_match_fake(struct lfs *fs, struct buf *bp)
2212 {
2213
2214 ASSERT_SEGLOCK(fs);
2215 return LFS_IS_MALLOC_BUF(bp);
2216 }
2217
2218 #if 0
2219 int
2220 lfs_match_real(struct lfs *fs, struct buf *bp)
2221 {
2222
2223 ASSERT_SEGLOCK(fs);
2224 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2225 }
2226 #endif
2227
2228 int
2229 lfs_match_data(struct lfs *fs, struct buf *bp)
2230 {
2231
2232 ASSERT_SEGLOCK(fs);
2233 return (bp->b_lblkno >= 0);
2234 }
2235
2236 int
2237 lfs_match_indir(struct lfs *fs, struct buf *bp)
2238 {
2239 daddr_t lbn;
2240
2241 ASSERT_SEGLOCK(fs);
2242 lbn = bp->b_lblkno;
2243 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2244 }
2245
2246 int
2247 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2248 {
2249 daddr_t lbn;
2250
2251 ASSERT_SEGLOCK(fs);
2252 lbn = bp->b_lblkno;
2253 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2254 }
2255
2256 int
2257 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2258 {
2259 daddr_t lbn;
2260
2261 ASSERT_SEGLOCK(fs);
2262 lbn = bp->b_lblkno;
2263 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2264 }
2265
2266 /*
2267 * XXX - The only buffers that are going to hit these functions are the
2268 * segment write blocks, or the segment summaries, or the superblocks.
2269 *
2270 * All of the above are created by lfs_newbuf, and so do not need to be
2271 * released via brelse.
2272 */
2273 void
2274 lfs_callback(struct buf *bp)
2275 {
2276 struct lfs *fs;
2277
2278 fs = bp->b_private;
2279 ASSERT_NO_SEGLOCK(fs);
2280 lfs_freebuf(fs, bp);
2281 }
2282
2283 static void
2284 lfs_super_aiodone(struct buf *bp)
2285 {
2286 struct lfs *fs;
2287
2288 fs = bp->b_private;
2289 ASSERT_NO_SEGLOCK(fs);
2290 simple_lock(&fs->lfs_interlock);
2291 fs->lfs_sbactive = 0;
2292 if (--fs->lfs_iocount <= 1)
2293 wakeup(&fs->lfs_iocount);
2294 simple_unlock(&fs->lfs_interlock);
2295 wakeup(&fs->lfs_sbactive);
2296 lfs_freebuf(fs, bp);
2297 }
2298
2299 static void
2300 lfs_cluster_aiodone(struct buf *bp)
2301 {
2302 struct lfs_cluster *cl;
2303 struct lfs *fs;
2304 struct buf *tbp, *fbp;
2305 struct vnode *vp, *devvp;
2306 struct inode *ip;
2307 int s, error=0;
2308
2309 if (bp->b_flags & B_ERROR)
2310 error = bp->b_error;
2311
2312 cl = bp->b_private;
2313 fs = cl->fs;
2314 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2315 ASSERT_NO_SEGLOCK(fs);
2316
2317 /* Put the pages back, and release the buffer */
2318 while (cl->bufcount--) {
2319 tbp = cl->bpp[cl->bufcount];
2320 KASSERT(tbp->b_flags & B_BUSY);
2321 if (error) {
2322 tbp->b_flags |= B_ERROR;
2323 tbp->b_error = error;
2324 }
2325
2326 /*
2327 * We're done with tbp. If it has not been re-dirtied since
2328 * the cluster was written, free it. Otherwise, keep it on
2329 * the locked list to be written again.
2330 */
2331 vp = tbp->b_vp;
2332
2333 tbp->b_flags &= ~B_GATHERED;
2334
2335 LFS_BCLEAN_LOG(fs, tbp);
2336
2337 if (!(tbp->b_flags & B_CALL)) {
2338 KASSERT(tbp->b_flags & B_LOCKED);
2339 s = splbio();
2340 simple_lock(&bqueue_slock);
2341 bremfree(tbp);
2342 simple_unlock(&bqueue_slock);
2343 if (vp)
2344 reassignbuf(tbp, vp);
2345 splx(s);
2346 tbp->b_flags |= B_ASYNC; /* for biodone */
2347 }
2348
2349 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2350 LFS_UNLOCK_BUF(tbp);
2351
2352 if (tbp->b_flags & B_DONE) {
2353 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2354 cl->bufcount, (long)tbp->b_flags));
2355 }
2356
2357 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2358 /*
2359 * A buffer from the page daemon.
2360 * We use the same iodone as it does,
2361 * so we must manually disassociate its
2362 * buffers from the vp.
2363 */
2364 if (tbp->b_vp) {
2365 /* This is just silly */
2366 s = splbio();
2367 brelvp(tbp);
2368 tbp->b_vp = vp;
2369 splx(s);
2370 }
2371 /* Put it back the way it was */
2372 tbp->b_flags |= B_ASYNC;
2373 /* Master buffers have B_AGE */
2374 if (tbp->b_private == tbp)
2375 tbp->b_flags |= B_AGE;
2376 }
2377 s = splbio();
2378 biodone(tbp);
2379
2380 /*
2381 * If this is the last block for this vnode, but
2382 * there are other blocks on its dirty list,
2383 * set IN_MODIFIED/IN_CLEANING depending on what
2384 * sort of block. Only do this for our mount point,
2385 * not for, e.g., inode blocks that are attached to
2386 * the devvp.
2387 * XXX KS - Shouldn't we set *both* if both types
2388 * of blocks are present (traverse the dirty list?)
2389 */
2390 simple_lock(&global_v_numoutput_slock);
2391 if (vp != devvp && vp->v_numoutput == 0 &&
2392 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2393 ip = VTOI(vp);
2394 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2395 ip->i_number));
2396 if (LFS_IS_MALLOC_BUF(fbp))
2397 LFS_SET_UINO(ip, IN_CLEANING);
2398 else
2399 LFS_SET_UINO(ip, IN_MODIFIED);
2400 }
2401 simple_unlock(&global_v_numoutput_slock);
2402 splx(s);
2403 wakeup(vp);
2404 }
2405
2406 /* Fix up the cluster buffer, and release it */
2407 if (cl->flags & LFS_CL_MALLOC)
2408 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2409 s = splbio();
2410 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2411 splx(s);
2412
2413 /* Note i/o done */
2414 if (cl->flags & LFS_CL_SYNC) {
2415 if (--cl->seg->seg_iocount == 0)
2416 wakeup(&cl->seg->seg_iocount);
2417 }
2418 simple_lock(&fs->lfs_interlock);
2419 #ifdef DIAGNOSTIC
2420 if (fs->lfs_iocount == 0)
2421 panic("lfs_cluster_aiodone: zero iocount");
2422 #endif
2423 if (--fs->lfs_iocount <= 1)
2424 wakeup(&fs->lfs_iocount);
2425 simple_unlock(&fs->lfs_interlock);
2426
2427 pool_put(&fs->lfs_bpppool, cl->bpp);
2428 cl->bpp = NULL;
2429 pool_put(&fs->lfs_clpool, cl);
2430 }
2431
2432 static void
2433 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2434 {
2435 /* reset b_iodone for when this is a single-buf i/o. */
2436 bp->b_iodone = aiodone;
2437
2438 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2439 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2440 wakeup(&uvm.aiodoned);
2441 simple_unlock(&uvm.aiodoned_lock);
2442 }
2443
2444 static void
2445 lfs_cluster_callback(struct buf *bp)
2446 {
2447
2448 lfs_generic_callback(bp, lfs_cluster_aiodone);
2449 }
2450
2451 void
2452 lfs_supercallback(struct buf *bp)
2453 {
2454
2455 lfs_generic_callback(bp, lfs_super_aiodone);
2456 }
2457
2458 /*
2459 * Shellsort (diminishing increment sort) from Data Structures and
2460 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2461 * see also Knuth Vol. 3, page 84. The increments are selected from
2462 * formula (8), page 95. Roughly O(N^3/2).
2463 */
2464 /*
2465 * This is our own private copy of shellsort because we want to sort
2466 * two parallel arrays (the array of buffer pointers and the array of
2467 * logical block numbers) simultaneously. Note that we cast the array
2468 * of logical block numbers to a unsigned in this routine so that the
2469 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2470 */
2471
2472 void
2473 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2474 {
2475 static int __rsshell_increments[] = { 4, 1, 0 };
2476 int incr, *incrp, t1, t2;
2477 struct buf *bp_temp;
2478
2479 #ifdef DEBUG
2480 incr = 0;
2481 for (t1 = 0; t1 < nmemb; t1++) {
2482 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2483 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2484 /* dump before panic */
2485 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2486 nmemb, size);
2487 incr = 0;
2488 for (t1 = 0; t1 < nmemb; t1++) {
2489 const struct buf *bp = bp_array[t1];
2490
2491 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2492 PRIu64 "\n", t1,
2493 (uint64_t)bp->b_bcount,
2494 (uint64_t)bp->b_lblkno);
2495 printf("lbns:");
2496 for (t2 = 0; t2 * size < bp->b_bcount;
2497 t2++) {
2498 printf(" %" PRId32,
2499 lb_array[incr++]);
2500 }
2501 printf("\n");
2502 }
2503 panic("lfs_shellsort: inconsistent input");
2504 }
2505 }
2506 }
2507 #endif
2508
2509 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2510 for (t1 = incr; t1 < nmemb; ++t1)
2511 for (t2 = t1 - incr; t2 >= 0;)
2512 if ((u_int32_t)bp_array[t2]->b_lblkno >
2513 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2514 bp_temp = bp_array[t2];
2515 bp_array[t2] = bp_array[t2 + incr];
2516 bp_array[t2 + incr] = bp_temp;
2517 t2 -= incr;
2518 } else
2519 break;
2520
2521 /* Reform the list of logical blocks */
2522 incr = 0;
2523 for (t1 = 0; t1 < nmemb; t1++) {
2524 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2525 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2526 }
2527 }
2528 }
2529
2530 /*
2531 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2532 * however, we must press on. Just fake success in that case.
2533 */
2534 int
2535 lfs_vref(struct vnode *vp)
2536 {
2537 int error;
2538 struct lfs *fs;
2539
2540 fs = VTOI(vp)->i_lfs;
2541
2542 ASSERT_MAYBE_SEGLOCK(fs);
2543
2544 /*
2545 * If we return 1 here during a flush, we risk vinvalbuf() not
2546 * being able to flush all of the pages from this vnode, which
2547 * will cause it to panic. So, return 0 if a flush is in progress.
2548 */
2549 error = vget(vp, LK_NOWAIT);
2550 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2551 ++fs->lfs_flushvp_fakevref;
2552 return 0;
2553 }
2554 return error;
2555 }
2556
2557 /*
2558 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2559 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2560 */
2561 void
2562 lfs_vunref(struct vnode *vp)
2563 {
2564 struct lfs *fs;
2565
2566 fs = VTOI(vp)->i_lfs;
2567 ASSERT_MAYBE_SEGLOCK(fs);
2568
2569 /*
2570 * Analogous to lfs_vref, if the node is flushing, fake it.
2571 */
2572 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2573 --fs->lfs_flushvp_fakevref;
2574 return;
2575 }
2576
2577 simple_lock(&vp->v_interlock);
2578 #ifdef DIAGNOSTIC
2579 if (vp->v_usecount <= 0) {
2580 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2581 VTOI(vp)->i_number);
2582 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2583 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2584 panic("lfs_vunref: v_usecount < 0");
2585 }
2586 #endif
2587 vp->v_usecount--;
2588 if (vp->v_usecount > 0) {
2589 simple_unlock(&vp->v_interlock);
2590 return;
2591 }
2592 /*
2593 * insert at tail of LRU list
2594 */
2595 simple_lock(&vnode_free_list_slock);
2596 if (vp->v_holdcnt > 0)
2597 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2598 else
2599 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2600 simple_unlock(&vnode_free_list_slock);
2601 simple_unlock(&vp->v_interlock);
2602 }
2603
2604 /*
2605 * We use this when we have vnodes that were loaded in solely for cleaning.
2606 * There is no reason to believe that these vnodes will be referenced again
2607 * soon, since the cleaning process is unrelated to normal filesystem
2608 * activity. Putting cleaned vnodes at the tail of the list has the effect
2609 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2610 * cleaning at the head of the list, instead.
2611 */
2612 void
2613 lfs_vunref_head(struct vnode *vp)
2614 {
2615
2616 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2617 simple_lock(&vp->v_interlock);
2618 #ifdef DIAGNOSTIC
2619 if (vp->v_usecount == 0) {
2620 panic("lfs_vunref: v_usecount<0");
2621 }
2622 #endif
2623 vp->v_usecount--;
2624 if (vp->v_usecount > 0) {
2625 simple_unlock(&vp->v_interlock);
2626 return;
2627 }
2628 /*
2629 * insert at head of LRU list
2630 */
2631 simple_lock(&vnode_free_list_slock);
2632 if (vp->v_holdcnt > 0)
2633 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2634 else
2635 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2636 simple_unlock(&vnode_free_list_slock);
2637 simple_unlock(&vp->v_interlock);
2638 }
2639
2640