lfs_segment.c revision 1.159 1 /* $NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 int lfs_match_fake(struct lfs *, struct buf *);
134 void lfs_newseg(struct lfs *);
135 /* XXX ondisk32 */
136 void lfs_shellsort(struct buf **, int32_t *, int, int);
137 void lfs_supercallback(struct buf *);
138 void lfs_updatemeta(struct segment *);
139 void lfs_writesuper(struct lfs *, daddr_t);
140 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
141 struct segment *sp, int dirops);
142
143 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
144 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
145 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
146 int lfs_dirvcount = 0; /* # active dirops */
147
148 /* Statistics Counters */
149 int lfs_dostats = 1;
150 struct lfs_stats lfs_stats;
151
152 /* op values to lfs_writevnodes */
153 #define VN_REG 0
154 #define VN_DIROP 1
155 #define VN_EMPTY 2
156 #define VN_CLEAN 3
157
158 /*
159 * XXX KS - Set modification time on the Ifile, so the cleaner can
160 * read the fs mod time off of it. We don't set IN_UPDATE here,
161 * since we don't really need this to be flushed to disk (and in any
162 * case that wouldn't happen to the Ifile until we checkpoint).
163 */
164 void
165 lfs_imtime(struct lfs *fs)
166 {
167 struct timespec ts;
168 struct inode *ip;
169
170 ASSERT_MAYBE_SEGLOCK(fs);
171 TIMEVAL_TO_TIMESPEC(&time, &ts);
172 ip = VTOI(fs->lfs_ivnode);
173 ip->i_ffs1_mtime = ts.tv_sec;
174 ip->i_ffs1_mtimensec = ts.tv_nsec;
175 }
176
177 /*
178 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
179 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
180 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
181 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
182 */
183
184 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
185 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
186 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
187
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 struct inode *ip;
192 struct lfs *fs;
193 struct segment *sp;
194 struct buf *bp, *nbp, *tbp, *tnbp;
195 int error, s;
196 int flushed;
197 #if 0
198 int redo;
199 #endif
200
201 ip = VTOI(vp);
202 fs = VFSTOUFS(vp->v_mount)->um_lfs;
203
204 ASSERT_NO_SEGLOCK(fs);
205 if (ip->i_flag & IN_CLEANING) {
206 ivndebug(vp,"vflush/in_cleaning");
207 LFS_CLR_UINO(ip, IN_CLEANING);
208 LFS_SET_UINO(ip, IN_MODIFIED);
209
210 /*
211 * Toss any cleaning buffers that have real counterparts
212 * to avoid losing new data.
213 */
214 s = splbio();
215 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
216 nbp = LIST_NEXT(bp, b_vnbufs);
217 if (!LFS_IS_MALLOC_BUF(bp))
218 continue;
219 /*
220 * Look for pages matching the range covered
221 * by cleaning blocks. It's okay if more dirty
222 * pages appear, so long as none disappear out
223 * from under us.
224 */
225 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
226 vp != fs->lfs_ivnode) {
227 struct vm_page *pg;
228 voff_t off;
229
230 simple_lock(&vp->v_interlock);
231 for (off = lblktosize(fs, bp->b_lblkno);
232 off < lblktosize(fs, bp->b_lblkno + 1);
233 off += PAGE_SIZE) {
234 pg = uvm_pagelookup(&vp->v_uobj, off);
235 if (pg == NULL)
236 continue;
237 if ((pg->flags & PG_CLEAN) == 0 ||
238 pmap_is_modified(pg)) {
239 fs->lfs_avail += btofsb(fs,
240 bp->b_bcount);
241 wakeup(&fs->lfs_avail);
242 lfs_freebuf(fs, bp);
243 bp = NULL;
244 goto nextbp;
245 }
246 }
247 simple_unlock(&vp->v_interlock);
248 }
249 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
250 tbp = tnbp)
251 {
252 tnbp = LIST_NEXT(tbp, b_vnbufs);
253 if (tbp->b_vp == bp->b_vp
254 && tbp->b_lblkno == bp->b_lblkno
255 && tbp != bp)
256 {
257 fs->lfs_avail += btofsb(fs,
258 bp->b_bcount);
259 wakeup(&fs->lfs_avail);
260 lfs_freebuf(fs, bp);
261 bp = NULL;
262 break;
263 }
264 }
265 nextbp:
266 ;
267 }
268 splx(s);
269 }
270
271 /* If the node is being written, wait until that is done */
272 simple_lock(&vp->v_interlock);
273 s = splbio();
274 if (WRITEINPROG(vp)) {
275 ivndebug(vp,"vflush/writeinprog");
276 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
277 }
278 splx(s);
279 simple_unlock(&vp->v_interlock);
280
281 /* Protect against VXLOCK deadlock in vinvalbuf() */
282 lfs_seglock(fs, SEGM_SYNC);
283
284 /* If we're supposed to flush a freed inode, just toss it */
285 /* XXX - seglock, so these buffers can't be gathered, right? */
286 if (ip->i_mode == 0) {
287 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
288 ip->i_number));
289 s = splbio();
290 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
291 nbp = LIST_NEXT(bp, b_vnbufs);
292 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
293 fs->lfs_avail += btofsb(fs, bp->b_bcount);
294 wakeup(&fs->lfs_avail);
295 }
296 /* Copied from lfs_writeseg */
297 if (bp->b_flags & B_CALL) {
298 biodone(bp);
299 } else {
300 bremfree(bp);
301 LFS_UNLOCK_BUF(bp);
302 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
303 B_GATHERED);
304 bp->b_flags |= B_DONE;
305 reassignbuf(bp, vp);
306 brelse(bp);
307 }
308 }
309 splx(s);
310 LFS_CLR_UINO(ip, IN_CLEANING);
311 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
312 ip->i_flag &= ~IN_ALLMOD;
313 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
314 ip->i_number));
315 lfs_segunlock(fs);
316 return 0;
317 }
318
319 SET_FLUSHING(fs,vp);
320 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
321 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
322 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
323 CLR_FLUSHING(fs,vp);
324 lfs_segunlock(fs);
325 return error;
326 }
327 sp = fs->lfs_sp;
328
329 flushed = 0;
330 if (VPISEMPTY(vp)) {
331 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
332 ++flushed;
333 } else if ((ip->i_flag & IN_CLEANING) &&
334 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
335 ivndebug(vp,"vflush/clean");
336 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
337 ++flushed;
338 } else if (lfs_dostats) {
339 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
340 ++lfs_stats.vflush_invoked;
341 ivndebug(vp,"vflush");
342 }
343
344 #ifdef DIAGNOSTIC
345 if (vp->v_flag & VDIROP) {
346 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
347 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
348 }
349 if (vp->v_usecount < 0) {
350 printf("usecount=%ld\n", (long)vp->v_usecount);
351 panic("lfs_vflush: usecount<0");
352 }
353 #endif
354
355 #if 1
356 do {
357 do {
358 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
359 lfs_writefile(fs, sp, vp);
360 } while (lfs_writeinode(fs, sp, ip));
361 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
362 #else
363 if (flushed && vp != fs->lfs_ivnode)
364 lfs_writeseg(fs, sp);
365 else do {
366 simple_lock(&fs->lfs_interlock);
367 fs->lfs_flags &= ~LFS_IFDIRTY;
368 simple_unlock(&fs->lfs_interlock);
369 lfs_writefile(fs, sp, vp);
370 redo = lfs_writeinode(fs, sp, ip);
371 redo += lfs_writeseg(fs, sp);
372 simple_lock(&fs->lfs_interlock);
373 redo += (fs->lfs_flags & LFS_IFDIRTY);
374 simple_unlock(&fs->lfs_interlock);
375 } while (redo && vp == fs->lfs_ivnode);
376 #endif
377 if (lfs_dostats) {
378 ++lfs_stats.nwrites;
379 if (sp->seg_flags & SEGM_SYNC)
380 ++lfs_stats.nsync_writes;
381 if (sp->seg_flags & SEGM_CKP)
382 ++lfs_stats.ncheckpoints;
383 }
384 /*
385 * If we were called from somewhere that has already held the seglock
386 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
387 * the write to complete because we are still locked.
388 * Since lfs_vflush() must return the vnode with no dirty buffers,
389 * we must explicitly wait, if that is the case.
390 *
391 * We compare the iocount against 1, not 0, because it is
392 * artificially incremented by lfs_seglock().
393 */
394 simple_lock(&fs->lfs_interlock);
395 if (fs->lfs_seglock > 1) {
396 while (fs->lfs_iocount > 1)
397 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
398 "lfs_vflush", 0, &fs->lfs_interlock);
399 }
400 simple_unlock(&fs->lfs_interlock);
401
402 lfs_segunlock(fs);
403
404 /* Wait for these buffers to be recovered by aiodoned */
405 s = splbio();
406 simple_lock(&global_v_numoutput_slock);
407 while (vp->v_numoutput > 0) {
408 vp->v_flag |= VBWAIT;
409 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
410 &global_v_numoutput_slock);
411 }
412 simple_unlock(&global_v_numoutput_slock);
413 splx(s);
414
415 CLR_FLUSHING(fs,vp);
416 return (0);
417 }
418
419 int
420 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
421 {
422 struct inode *ip;
423 struct vnode *vp, *nvp;
424 int inodes_written = 0, only_cleaning;
425
426 ASSERT_SEGLOCK(fs);
427 #ifndef LFS_NO_BACKVP_HACK
428 /* BEGIN HACK */
429 #define VN_OFFSET \
430 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
431 #define BACK_VP(VP) \
432 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
433 #define BEG_OF_VLIST \
434 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
435 - VN_OFFSET))
436
437 /* Find last vnode. */
438 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
439 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
440 vp = LIST_NEXT(vp, v_mntvnodes));
441 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
442 nvp = BACK_VP(vp);
443 #else
444 loop:
445 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
446 nvp = LIST_NEXT(vp, v_mntvnodes);
447 #endif
448 /*
449 * If the vnode that we are about to sync is no longer
450 * associated with this mount point, start over.
451 */
452 if (vp->v_mount != mp) {
453 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
454 /*
455 * After this, pages might be busy
456 * due to our own previous putpages.
457 * Start actual segment write here to avoid deadlock.
458 */
459 (void)lfs_writeseg(fs, sp);
460 goto loop;
461 }
462
463 if (vp->v_type == VNON) {
464 continue;
465 }
466
467 ip = VTOI(vp);
468 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
469 (op != VN_DIROP && op != VN_CLEAN &&
470 (vp->v_flag & VDIROP))) {
471 vndebug(vp,"dirop");
472 continue;
473 }
474
475 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
476 vndebug(vp,"empty");
477 continue;
478 }
479
480 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
481 && vp != fs->lfs_flushvp
482 && !(ip->i_flag & IN_CLEANING)) {
483 vndebug(vp,"cleaning");
484 continue;
485 }
486
487 if (lfs_vref(vp)) {
488 vndebug(vp,"vref");
489 continue;
490 }
491
492 only_cleaning = 0;
493 /*
494 * Write the inode/file if dirty and it's not the IFILE.
495 */
496 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
497 only_cleaning =
498 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
499
500 if (ip->i_number != LFS_IFILE_INUM) {
501 lfs_writefile(fs, sp, vp);
502 if (!VPISEMPTY(vp)) {
503 if (WRITEINPROG(vp)) {
504 ivndebug(vp,"writevnodes/write2");
505 } else if (!(ip->i_flag & IN_ALLMOD)) {
506 LFS_SET_UINO(ip, IN_MODIFIED);
507 }
508 }
509 (void) lfs_writeinode(fs, sp, ip);
510 inodes_written++;
511 }
512 }
513
514 if (lfs_clean_vnhead && only_cleaning)
515 lfs_vunref_head(vp);
516 else
517 lfs_vunref(vp);
518 }
519 return inodes_written;
520 }
521
522 /*
523 * Do a checkpoint.
524 */
525 int
526 lfs_segwrite(struct mount *mp, int flags)
527 {
528 struct buf *bp;
529 struct inode *ip;
530 struct lfs *fs;
531 struct segment *sp;
532 struct vnode *vp;
533 SEGUSE *segusep;
534 int do_ckp, did_ckp, error, s;
535 unsigned n, segleft, maxseg, sn, i, curseg;
536 int writer_set = 0;
537 int dirty;
538 int redo;
539
540 fs = VFSTOUFS(mp)->um_lfs;
541 ASSERT_MAYBE_SEGLOCK(fs);
542
543 if (fs->lfs_ronly)
544 return EROFS;
545
546 lfs_imtime(fs);
547
548 /*
549 * Allocate a segment structure and enough space to hold pointers to
550 * the maximum possible number of buffers which can be described in a
551 * single summary block.
552 */
553 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
554 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
555 sp = fs->lfs_sp;
556
557 /*
558 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
559 * in which case we have to flush *all* buffers off of this vnode.
560 * We don't care about other nodes, but write any non-dirop nodes
561 * anyway in anticipation of another getnewvnode().
562 *
563 * If we're cleaning we only write cleaning and ifile blocks, and
564 * no dirops, since otherwise we'd risk corruption in a crash.
565 */
566 if (sp->seg_flags & SEGM_CLEAN)
567 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
568 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
569 lfs_writevnodes(fs, mp, sp, VN_REG);
570 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
571 error = lfs_writer_enter(fs, "lfs writer");
572 if (error) {
573 DLOG((DLOG_SEG, "segwrite mysterious error\n"));
574 /* XXX why not segunlock? */
575 pool_put(&fs->lfs_bpppool, sp->bpp);
576 sp->bpp = NULL;
577 pool_put(&fs->lfs_segpool, sp);
578 sp = fs->lfs_sp = NULL;
579 return (error);
580 }
581 writer_set = 1;
582 lfs_writevnodes(fs, mp, sp, VN_DIROP);
583 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
584 }
585 }
586
587 /*
588 * If we are doing a checkpoint, mark everything since the
589 * last checkpoint as no longer ACTIVE.
590 */
591 if (do_ckp) {
592 segleft = fs->lfs_nseg;
593 curseg = 0;
594 for (n = 0; n < fs->lfs_segtabsz; n++) {
595 dirty = 0;
596 if (bread(fs->lfs_ivnode,
597 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
598 panic("lfs_segwrite: ifile read");
599 segusep = (SEGUSE *)bp->b_data;
600 maxseg = min(segleft, fs->lfs_sepb);
601 for (i = 0; i < maxseg; i++) {
602 sn = curseg + i;
603 if (sn != dtosn(fs, fs->lfs_curseg) &&
604 segusep->su_flags & SEGUSE_ACTIVE) {
605 segusep->su_flags &= ~SEGUSE_ACTIVE;
606 --fs->lfs_nactive;
607 ++dirty;
608 }
609 fs->lfs_suflags[fs->lfs_activesb][sn] =
610 segusep->su_flags;
611 if (fs->lfs_version > 1)
612 ++segusep;
613 else
614 segusep = (SEGUSE *)
615 ((SEGUSE_V1 *)segusep + 1);
616 }
617
618 if (dirty)
619 error = LFS_BWRITE_LOG(bp); /* Ifile */
620 else
621 brelse(bp);
622 segleft -= fs->lfs_sepb;
623 curseg += fs->lfs_sepb;
624 }
625 }
626
627 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
628
629 did_ckp = 0;
630 if (do_ckp || fs->lfs_doifile) {
631 vp = fs->lfs_ivnode;
632 vn_lock(vp, LK_EXCLUSIVE);
633 do {
634 #ifdef DEBUG
635 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
636 #endif
637 simple_lock(&fs->lfs_interlock);
638 fs->lfs_flags &= ~LFS_IFDIRTY;
639 simple_unlock(&fs->lfs_interlock);
640
641 ip = VTOI(vp);
642
643 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
644 lfs_writefile(fs, sp, vp);
645
646 if (ip->i_flag & IN_ALLMOD)
647 ++did_ckp;
648 redo = lfs_writeinode(fs, sp, ip);
649 redo += lfs_writeseg(fs, sp);
650 simple_lock(&fs->lfs_interlock);
651 redo += (fs->lfs_flags & LFS_IFDIRTY);
652 simple_unlock(&fs->lfs_interlock);
653 } while (redo && do_ckp);
654
655 /*
656 * Unless we are unmounting, the Ifile may continue to have
657 * dirty blocks even after a checkpoint, due to changes to
658 * inodes' atime. If we're checkpointing, it's "impossible"
659 * for other parts of the Ifile to be dirty after the loop
660 * above, since we hold the segment lock.
661 */
662 s = splbio();
663 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
664 LFS_CLR_UINO(ip, IN_ALLMOD);
665 }
666 #ifdef DIAGNOSTIC
667 else if (do_ckp) {
668 int do_panic = 0;
669 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
670 if (bp->b_lblkno < fs->lfs_cleansz +
671 fs->lfs_segtabsz &&
672 !(bp->b_flags & B_GATHERED)) {
673 printf("ifile lbn %ld still dirty (flags %lx)\n",
674 (long)bp->b_lblkno,
675 (long)bp->b_flags);
676 ++do_panic;
677 }
678 }
679 if (do_panic)
680 panic("dirty blocks");
681 }
682 #endif
683 splx(s);
684 VOP_UNLOCK(vp, 0);
685 } else {
686 (void) lfs_writeseg(fs, sp);
687 }
688
689 /* Note Ifile no longer needs to be written */
690 fs->lfs_doifile = 0;
691 if (writer_set)
692 lfs_writer_leave(fs);
693
694 /*
695 * If we didn't write the Ifile, we didn't really do anything.
696 * That means that (1) there is a checkpoint on disk and (2)
697 * nothing has changed since it was written.
698 *
699 * Take the flags off of the segment so that lfs_segunlock
700 * doesn't have to write the superblock either.
701 */
702 if (do_ckp && !did_ckp) {
703 sp->seg_flags &= ~SEGM_CKP;
704 }
705
706 if (lfs_dostats) {
707 ++lfs_stats.nwrites;
708 if (sp->seg_flags & SEGM_SYNC)
709 ++lfs_stats.nsync_writes;
710 if (sp->seg_flags & SEGM_CKP)
711 ++lfs_stats.ncheckpoints;
712 }
713 lfs_segunlock(fs);
714 return (0);
715 }
716
717 /*
718 * Write the dirty blocks associated with a vnode.
719 */
720 void
721 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
722 {
723 struct buf *bp;
724 struct finfo *fip;
725 struct inode *ip;
726 IFILE *ifp;
727 int i, frag;
728
729 ASSERT_SEGLOCK(fs);
730 ip = VTOI(vp);
731
732 if (sp->seg_bytes_left < fs->lfs_bsize ||
733 sp->sum_bytes_left < sizeof(struct finfo))
734 (void) lfs_writeseg(fs, sp);
735
736 sp->sum_bytes_left -= FINFOSIZE;
737 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
738
739 if (vp->v_flag & VDIROP)
740 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
741
742 fip = sp->fip;
743 fip->fi_nblocks = 0;
744 fip->fi_ino = ip->i_number;
745 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
746 fip->fi_version = ifp->if_version;
747 brelse(bp);
748
749 if (sp->seg_flags & SEGM_CLEAN) {
750 lfs_gather(fs, sp, vp, lfs_match_fake);
751 /*
752 * For a file being flushed, we need to write *all* blocks.
753 * This means writing the cleaning blocks first, and then
754 * immediately following with any non-cleaning blocks.
755 * The same is true of the Ifile since checkpoints assume
756 * that all valid Ifile blocks are written.
757 */
758 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
759 lfs_gather(fs, sp, vp, lfs_match_data);
760 /*
761 * Don't call VOP_PUTPAGES: if we're flushing,
762 * we've already done it, and the Ifile doesn't
763 * use the page cache.
764 */
765 }
766 } else {
767 lfs_gather(fs, sp, vp, lfs_match_data);
768 /*
769 * If we're flushing, we've already called VOP_PUTPAGES
770 * so don't do it again. Otherwise, we want to write
771 * everything we've got.
772 */
773 if (!IS_FLUSHING(fs, vp)) {
774 simple_lock(&vp->v_interlock);
775 VOP_PUTPAGES(vp, 0, 0,
776 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
777 }
778 }
779
780 /*
781 * It may not be necessary to write the meta-data blocks at this point,
782 * as the roll-forward recovery code should be able to reconstruct the
783 * list.
784 *
785 * We have to write them anyway, though, under two conditions: (1) the
786 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
787 * checkpointing.
788 *
789 * BUT if we are cleaning, we might have indirect blocks that refer to
790 * new blocks not being written yet, in addition to fragments being
791 * moved out of a cleaned segment. If that is the case, don't
792 * write the indirect blocks, or the finfo will have a small block
793 * in the middle of it!
794 * XXX in this case isn't the inode size wrong too?
795 */
796 frag = 0;
797 if (sp->seg_flags & SEGM_CLEAN) {
798 for (i = 0; i < NDADDR; i++)
799 if (ip->i_lfs_fragsize[i] > 0 &&
800 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
801 ++frag;
802 }
803 #ifdef DIAGNOSTIC
804 if (frag > 1)
805 panic("lfs_writefile: more than one fragment!");
806 #endif
807 if (IS_FLUSHING(fs, vp) ||
808 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
809 lfs_gather(fs, sp, vp, lfs_match_indir);
810 lfs_gather(fs, sp, vp, lfs_match_dindir);
811 lfs_gather(fs, sp, vp, lfs_match_tindir);
812 }
813 fip = sp->fip;
814 if (fip->fi_nblocks != 0) {
815 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
816 sizeof(int32_t) * (fip->fi_nblocks));
817 sp->start_lbp = &sp->fip->fi_blocks[0];
818 } else {
819 sp->sum_bytes_left += FINFOSIZE;
820 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
821 }
822 }
823
824 int
825 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
826 {
827 struct buf *bp, *ibp;
828 struct ufs1_dinode *cdp;
829 IFILE *ifp;
830 SEGUSE *sup;
831 daddr_t daddr;
832 int32_t *daddrp; /* XXX ondisk32 */
833 ino_t ino;
834 int error, i, ndx, fsb = 0;
835 int redo_ifile = 0;
836 struct timespec ts;
837 int gotblk = 0;
838
839 ASSERT_SEGLOCK(fs);
840 if (!(ip->i_flag & IN_ALLMOD))
841 return (0);
842
843 /* Allocate a new inode block if necessary. */
844 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
845 sp->ibp == NULL) {
846 /* Allocate a new segment if necessary. */
847 if (sp->seg_bytes_left < fs->lfs_ibsize ||
848 sp->sum_bytes_left < sizeof(int32_t))
849 (void) lfs_writeseg(fs, sp);
850
851 /* Get next inode block. */
852 daddr = fs->lfs_offset;
853 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
854 sp->ibp = *sp->cbpp++ =
855 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
856 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
857 gotblk++;
858
859 /* Zero out inode numbers */
860 for (i = 0; i < INOPB(fs); ++i)
861 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
862 0;
863
864 ++sp->start_bpp;
865 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
866 /* Set remaining space counters. */
867 sp->seg_bytes_left -= fs->lfs_ibsize;
868 sp->sum_bytes_left -= sizeof(int32_t);
869 ndx = fs->lfs_sumsize / sizeof(int32_t) -
870 sp->ninodes / INOPB(fs) - 1;
871 ((int32_t *)(sp->segsum))[ndx] = daddr;
872 }
873
874 /* Update the inode times and copy the inode onto the inode page. */
875 TIMEVAL_TO_TIMESPEC(&time, &ts);
876 /* XXX kludge --- don't redirty the ifile just to put times on it */
877 if (ip->i_number != LFS_IFILE_INUM)
878 LFS_ITIMES(ip, &ts, &ts, &ts);
879
880 /*
881 * If this is the Ifile, and we've already written the Ifile in this
882 * partial segment, just overwrite it (it's not on disk yet) and
883 * continue.
884 *
885 * XXX we know that the bp that we get the second time around has
886 * already been gathered.
887 */
888 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
889 *(sp->idp) = *ip->i_din.ffs1_din;
890 ip->i_lfs_osize = ip->i_size;
891 return 0;
892 }
893
894 bp = sp->ibp;
895 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
896 *cdp = *ip->i_din.ffs1_din;
897
898 /*
899 * If we are cleaning, ensure that we don't write UNWRITTEN disk
900 * addresses to disk; possibly revert the inode size.
901 * XXX By not writing these blocks, we are making the lfs_avail
902 * XXX count on disk wrong by the same amount. We should be
903 * XXX able to "borrow" from lfs_avail and return it after the
904 * XXX Ifile is written. See also in lfs_writeseg.
905 */
906 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
907 cdp->di_size = ip->i_lfs_osize;
908 DLOG((DLOG_VNODE, "lfs_writeinode: cleansing ino %d (%d != %d)\n",
909 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks));
910 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
911 daddrp++) {
912 if (*daddrp == UNWRITTEN) {
913 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
914 *daddrp = 0;
915 }
916 }
917 } else {
918 /* If all blocks are goig to disk, update the "size on disk" */
919 ip->i_lfs_osize = ip->i_size;
920 }
921
922 if (ip->i_flag & IN_CLEANING)
923 LFS_CLR_UINO(ip, IN_CLEANING);
924 else {
925 /* XXX IN_ALLMOD */
926 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
927 IN_UPDATE | IN_MODIFY);
928 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
929 LFS_CLR_UINO(ip, IN_MODIFIED);
930 else
931 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
932 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
933 ip->i_lfs_effnblks));
934 }
935
936 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
937 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
938 (sp->ninodes % INOPB(fs));
939 if (gotblk) {
940 LFS_LOCK_BUF(bp);
941 brelse(bp);
942 }
943
944 /* Increment inode count in segment summary block. */
945 ++((SEGSUM *)(sp->segsum))->ss_ninos;
946
947 /* If this page is full, set flag to allocate a new page. */
948 if (++sp->ninodes % INOPB(fs) == 0)
949 sp->ibp = NULL;
950
951 /*
952 * If updating the ifile, update the super-block. Update the disk
953 * address and access times for this inode in the ifile.
954 */
955 ino = ip->i_number;
956 if (ino == LFS_IFILE_INUM) {
957 daddr = fs->lfs_idaddr;
958 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
959 } else {
960 LFS_IENTRY(ifp, fs, ino, ibp);
961 daddr = ifp->if_daddr;
962 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
963 error = LFS_BWRITE_LOG(ibp); /* Ifile */
964 }
965
966 /*
967 * The inode's last address should not be in the current partial
968 * segment, except under exceptional circumstances (lfs_writevnodes
969 * had to start over, and in the meantime more blocks were written
970 * to a vnode). Both inodes will be accounted to this segment
971 * in lfs_writeseg so we need to subtract the earlier version
972 * here anyway. The segment count can temporarily dip below
973 * zero here; keep track of how many duplicates we have in
974 * "dupino" so we don't panic below.
975 */
976 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
977 ++sp->ndupino;
978 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
979 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
980 (long long)daddr, sp->ndupino));
981 }
982 /*
983 * Account the inode: it no longer belongs to its former segment,
984 * though it will not belong to the new segment until that segment
985 * is actually written.
986 */
987 if (daddr != LFS_UNUSED_DADDR) {
988 u_int32_t oldsn = dtosn(fs, daddr);
989 #ifdef DIAGNOSTIC
990 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
991 #endif
992 LFS_SEGENTRY(sup, fs, oldsn, bp);
993 #ifdef DIAGNOSTIC
994 if (sup->su_nbytes +
995 sizeof (struct ufs1_dinode) * ndupino
996 < sizeof (struct ufs1_dinode)) {
997 printf("lfs_writeinode: negative bytes "
998 "(segment %" PRIu32 " short by %d, "
999 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1000 ", daddr=%" PRId64 ", su_nbytes=%u, "
1001 "ndupino=%d)\n",
1002 dtosn(fs, daddr),
1003 (int)sizeof (struct ufs1_dinode) *
1004 (1 - sp->ndupino) - sup->su_nbytes,
1005 oldsn, sp->seg_number, daddr,
1006 (unsigned int)sup->su_nbytes,
1007 sp->ndupino);
1008 panic("lfs_writeinode: negative bytes");
1009 sup->su_nbytes = sizeof (struct ufs1_dinode);
1010 }
1011 #endif
1012 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1013 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1014 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1015 redo_ifile =
1016 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1017 if (redo_ifile) {
1018 simple_lock(&fs->lfs_interlock);
1019 fs->lfs_flags |= LFS_IFDIRTY;
1020 simple_unlock(&fs->lfs_interlock);
1021 }
1022 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1023 }
1024 return (redo_ifile);
1025 }
1026
1027 int
1028 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1029 {
1030 struct lfs *fs;
1031 int version;
1032 int j, blksinblk;
1033
1034 ASSERT_SEGLOCK(sp->fs);
1035 /*
1036 * If full, finish this segment. We may be doing I/O, so
1037 * release and reacquire the splbio().
1038 */
1039 #ifdef DIAGNOSTIC
1040 if (sp->vp == NULL)
1041 panic ("lfs_gatherblock: Null vp in segment");
1042 #endif
1043 fs = sp->fs;
1044 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1045 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1046 sp->seg_bytes_left < bp->b_bcount) {
1047 if (sptr)
1048 splx(*sptr);
1049 lfs_updatemeta(sp);
1050
1051 version = sp->fip->fi_version;
1052 (void) lfs_writeseg(fs, sp);
1053
1054 sp->fip->fi_version = version;
1055 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1056 /* Add the current file to the segment summary. */
1057 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1058 sp->sum_bytes_left -= FINFOSIZE;
1059
1060 if (sptr)
1061 *sptr = splbio();
1062 return (1);
1063 }
1064
1065 if (bp->b_flags & B_GATHERED) {
1066 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1067 " lbn %" PRId64 "\n",
1068 sp->fip->fi_ino, bp->b_lblkno));
1069 return (0);
1070 }
1071
1072 /* Insert into the buffer list, update the FINFO block. */
1073 bp->b_flags |= B_GATHERED;
1074
1075 /* This block's accounting moves from lfs_favail to lfs_avail */
1076 lfs_deregister_block(sp->vp, bp->b_lblkno);
1077
1078 *sp->cbpp++ = bp;
1079 for (j = 0; j < blksinblk; j++)
1080 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1081
1082 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1083 sp->seg_bytes_left -= bp->b_bcount;
1084 return (0);
1085 }
1086
1087 int
1088 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1089 int (*match)(struct lfs *, struct buf *))
1090 {
1091 struct buf *bp, *nbp;
1092 int s, count = 0;
1093
1094 ASSERT_SEGLOCK(fs);
1095 KASSERT(sp->vp == NULL);
1096 sp->vp = vp;
1097 s = splbio();
1098
1099 #ifndef LFS_NO_BACKBUF_HACK
1100 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1101 # define BUF_OFFSET \
1102 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1103 # define BACK_BUF(BP) \
1104 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1105 # define BEG_OF_LIST \
1106 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1107
1108 loop:
1109 /* Find last buffer. */
1110 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1111 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1112 bp = LIST_NEXT(bp, b_vnbufs))
1113 /* nothing */;
1114 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1115 nbp = BACK_BUF(bp);
1116 #else /* LFS_NO_BACKBUF_HACK */
1117 loop:
1118 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1119 nbp = LIST_NEXT(bp, b_vnbufs);
1120 #endif /* LFS_NO_BACKBUF_HACK */
1121 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1122 #ifdef DEBUG
1123 if (vp == fs->lfs_ivnode &&
1124 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1125 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1126 PRId64 " busy (%x)",
1127 bp->b_lblkno, bp->b_flags));
1128 #endif
1129 continue;
1130 }
1131 if (vp->v_type == VBLK) {
1132 /* For block devices, just write the blocks. */
1133 /* XXX Do we even need to do this? */
1134 /*
1135 * Get the block before bwrite,
1136 * so we don't corrupt the free list
1137 */
1138 bp->b_flags |= B_BUSY;
1139 bremfree(bp);
1140 bwrite(bp);
1141 } else {
1142 #ifdef DIAGNOSTIC
1143 # ifdef LFS_USE_B_INVAL
1144 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1145 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1146 " is B_INVAL\n", bp->b_lblkno));
1147 VOP_PRINT(bp->b_vp);
1148 }
1149 # endif /* LFS_USE_B_INVAL */
1150 if (!(bp->b_flags & B_DELWRI))
1151 panic("lfs_gather: bp not B_DELWRI");
1152 if (!(bp->b_flags & B_LOCKED)) {
1153 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1154 " blk %" PRId64 " not B_LOCKED\n",
1155 bp->b_lblkno,
1156 dbtofsb(fs, bp->b_blkno)));
1157 VOP_PRINT(bp->b_vp);
1158 panic("lfs_gather: bp not B_LOCKED");
1159 }
1160 #endif
1161 if (lfs_gatherblock(sp, bp, &s)) {
1162 goto loop;
1163 }
1164 }
1165 count++;
1166 }
1167 splx(s);
1168 lfs_updatemeta(sp);
1169 KASSERT(sp->vp == vp);
1170 sp->vp = NULL;
1171 return count;
1172 }
1173
1174 #if DEBUG
1175 # define DEBUG_OOFF(n) do { \
1176 if (ooff == 0) { \
1177 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1178 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1179 ", was 0x0 (or %" PRId64 ")\n", \
1180 (n), ip->i_number, lbn, ndaddr, daddr)); \
1181 } \
1182 } while (0)
1183 #else
1184 # define DEBUG_OOFF(n)
1185 #endif
1186
1187 /*
1188 * Change the given block's address to ndaddr, finding its previous
1189 * location using ufs_bmaparray().
1190 *
1191 * Account for this change in the segment table.
1192 *
1193 * called with sp == NULL by roll-forwarding code.
1194 */
1195 void
1196 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1197 daddr_t lbn, int32_t ndaddr, int size)
1198 {
1199 SEGUSE *sup;
1200 struct buf *bp;
1201 struct indir a[NIADDR + 2], *ap;
1202 struct inode *ip;
1203 daddr_t daddr, ooff;
1204 int num, error;
1205 int bb, osize, obb;
1206
1207 ASSERT_SEGLOCK(fs);
1208 KASSERT(sp == NULL || sp->vp == vp);
1209 ip = VTOI(vp);
1210
1211 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1212 if (error)
1213 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1214
1215 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1216 KASSERT(daddr <= LFS_MAX_DADDR);
1217 if (daddr > 0)
1218 daddr = dbtofsb(fs, daddr);
1219
1220 bb = fragstofsb(fs, numfrags(fs, size));
1221 switch (num) {
1222 case 0:
1223 ooff = ip->i_ffs1_db[lbn];
1224 DEBUG_OOFF(0);
1225 if (ooff == UNWRITTEN)
1226 ip->i_ffs1_blocks += bb;
1227 else {
1228 /* possible fragment truncation or extension */
1229 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1230 ip->i_ffs1_blocks += (bb - obb);
1231 }
1232 ip->i_ffs1_db[lbn] = ndaddr;
1233 break;
1234 case 1:
1235 ooff = ip->i_ffs1_ib[a[0].in_off];
1236 DEBUG_OOFF(1);
1237 if (ooff == UNWRITTEN)
1238 ip->i_ffs1_blocks += bb;
1239 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1240 break;
1241 default:
1242 ap = &a[num - 1];
1243 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1244 panic("lfs_updatemeta: bread bno %" PRId64,
1245 ap->in_lbn);
1246
1247 /* XXX ondisk32 */
1248 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1249 DEBUG_OOFF(num);
1250 if (ooff == UNWRITTEN)
1251 ip->i_ffs1_blocks += bb;
1252 /* XXX ondisk32 */
1253 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1254 (void) VOP_BWRITE(bp);
1255 }
1256
1257 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1258
1259 /*
1260 * Though we'd rather it couldn't, this *can* happen right now
1261 * if cleaning blocks and regular blocks coexist.
1262 */
1263 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1264
1265 /*
1266 * Update segment usage information, based on old size
1267 * and location.
1268 */
1269 if (daddr > 0) {
1270 u_int32_t oldsn = dtosn(fs, daddr);
1271 #ifdef DIAGNOSTIC
1272 int ndupino;
1273
1274 if (sp && sp->seg_number == oldsn) {
1275 ndupino = sp->ndupino;
1276 } else {
1277 ndupino = 0;
1278 }
1279 #endif
1280 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1281 if (lbn >= 0 && lbn < NDADDR)
1282 osize = ip->i_lfs_fragsize[lbn];
1283 else
1284 osize = fs->lfs_bsize;
1285 LFS_SEGENTRY(sup, fs, oldsn, bp);
1286 #ifdef DIAGNOSTIC
1287 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1288 < osize) {
1289 printf("lfs_updatemeta: negative bytes "
1290 "(segment %" PRIu32 " short by %" PRId64
1291 ")\n", dtosn(fs, daddr),
1292 (int64_t)osize -
1293 (sizeof (struct ufs1_dinode) * ndupino +
1294 sup->su_nbytes));
1295 printf("lfs_updatemeta: ino %d, lbn %" PRId64
1296 ", addr = 0x%" PRIx64 "\n",
1297 ip->i_number, lbn, daddr);
1298 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1299 panic("lfs_updatemeta: negative bytes");
1300 sup->su_nbytes = osize -
1301 sizeof (struct ufs1_dinode) * ndupino;
1302 }
1303 #endif
1304 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1305 " db 0x%" PRIx64 "\n",
1306 dtosn(fs, daddr), osize,
1307 ip->i_number, lbn, daddr));
1308 sup->su_nbytes -= osize;
1309 if (!(bp->b_flags & B_GATHERED)) {
1310 simple_lock(&fs->lfs_interlock);
1311 fs->lfs_flags |= LFS_IFDIRTY;
1312 simple_unlock(&fs->lfs_interlock);
1313 }
1314 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1315 }
1316 /*
1317 * Now that this block has a new address, and its old
1318 * segment no longer owns it, we can forget about its
1319 * old size.
1320 */
1321 if (lbn >= 0 && lbn < NDADDR)
1322 ip->i_lfs_fragsize[lbn] = size;
1323 }
1324
1325 /*
1326 * Update the metadata that points to the blocks listed in the FINFO
1327 * array.
1328 */
1329 void
1330 lfs_updatemeta(struct segment *sp)
1331 {
1332 struct buf *sbp;
1333 struct lfs *fs;
1334 struct vnode *vp;
1335 daddr_t lbn;
1336 int i, nblocks, num;
1337 int bb;
1338 int bytesleft, size;
1339
1340 ASSERT_SEGLOCK(sp->fs);
1341 vp = sp->vp;
1342 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1343 KASSERT(nblocks >= 0);
1344 KASSERT(vp != NULL);
1345 if (nblocks == 0)
1346 return;
1347
1348 /*
1349 * This count may be high due to oversize blocks from lfs_gop_write.
1350 * Correct for this. (XXX we should be able to keep track of these.)
1351 */
1352 fs = sp->fs;
1353 for (i = 0; i < nblocks; i++) {
1354 if (sp->start_bpp[i] == NULL) {
1355 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1356 nblocks = i;
1357 break;
1358 }
1359 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1360 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1361 nblocks -= num - 1;
1362 }
1363
1364 KASSERT(vp->v_type == VREG ||
1365 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1366 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1367
1368 /*
1369 * Sort the blocks.
1370 *
1371 * We have to sort even if the blocks come from the
1372 * cleaner, because there might be other pending blocks on the
1373 * same inode...and if we don't sort, and there are fragments
1374 * present, blocks may be written in the wrong place.
1375 */
1376 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1377
1378 /*
1379 * Record the length of the last block in case it's a fragment.
1380 * If there are indirect blocks present, they sort last. An
1381 * indirect block will be lfs_bsize and its presence indicates
1382 * that you cannot have fragments.
1383 *
1384 * XXX This last is a lie. A cleaned fragment can coexist with
1385 * XXX a later indirect block. This will continue to be
1386 * XXX true until lfs_markv is fixed to do everything with
1387 * XXX fake blocks (including fake inodes and fake indirect blocks).
1388 */
1389 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1390 fs->lfs_bmask) + 1;
1391
1392 /*
1393 * Assign disk addresses, and update references to the logical
1394 * block and the segment usage information.
1395 */
1396 for (i = nblocks; i--; ++sp->start_bpp) {
1397 sbp = *sp->start_bpp;
1398 lbn = *sp->start_lbp;
1399 KASSERT(sbp->b_lblkno == lbn);
1400
1401 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1402
1403 /*
1404 * If we write a frag in the wrong place, the cleaner won't
1405 * be able to correctly identify its size later, and the
1406 * segment will be uncleanable. (Even worse, it will assume
1407 * that the indirect block that actually ends the list
1408 * is of a smaller size!)
1409 */
1410 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1411 panic("lfs_updatemeta: fragment is not last block");
1412
1413 /*
1414 * For each subblock in this possibly oversized block,
1415 * update its address on disk.
1416 */
1417 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1418 KASSERT(vp == sbp->b_vp);
1419 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1420 bytesleft -= fs->lfs_bsize) {
1421 size = MIN(bytesleft, fs->lfs_bsize);
1422 bb = fragstofsb(fs, numfrags(fs, size));
1423 lbn = *sp->start_lbp++;
1424 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1425 size);
1426 fs->lfs_offset += bb;
1427 }
1428
1429 }
1430 }
1431
1432 /*
1433 * Start a new partial segment.
1434 *
1435 * Return 1 when we entered to a new segment.
1436 * Otherwise, return 0.
1437 */
1438 int
1439 lfs_initseg(struct lfs *fs)
1440 {
1441 struct segment *sp = fs->lfs_sp;
1442 SEGSUM *ssp;
1443 struct buf *sbp; /* buffer for SEGSUM */
1444 int repeat = 0; /* return value */
1445
1446 ASSERT_SEGLOCK(fs);
1447 /* Advance to the next segment. */
1448 if (!LFS_PARTIAL_FITS(fs)) {
1449 SEGUSE *sup;
1450 struct buf *bp;
1451
1452 /* lfs_avail eats the remaining space */
1453 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1454 fs->lfs_curseg);
1455 /* Wake up any cleaning procs waiting on this file system. */
1456 wakeup(&lfs_allclean_wakeup);
1457 wakeup(&fs->lfs_nextseg);
1458 lfs_newseg(fs);
1459 repeat = 1;
1460 fs->lfs_offset = fs->lfs_curseg;
1461
1462 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1463 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1464
1465 /*
1466 * If the segment contains a superblock, update the offset
1467 * and summary address to skip over it.
1468 */
1469 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1470 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1471 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1472 sp->seg_bytes_left -= LFS_SBPAD;
1473 }
1474 brelse(bp);
1475 /* Segment zero could also contain the labelpad */
1476 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1477 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1478 fs->lfs_offset +=
1479 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1480 sp->seg_bytes_left -=
1481 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1482 }
1483 } else {
1484 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1485 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1486 (fs->lfs_offset - fs->lfs_curseg));
1487 }
1488 fs->lfs_lastpseg = fs->lfs_offset;
1489
1490 /* Record first address of this partial segment */
1491 if (sp->seg_flags & SEGM_CLEAN) {
1492 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1493 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1494 /* "1" is the artificial inc in lfs_seglock */
1495 simple_lock(&fs->lfs_interlock);
1496 while (fs->lfs_iocount > 1) {
1497 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1498 "lfs_initseg", 0, &fs->lfs_interlock);
1499 }
1500 simple_unlock(&fs->lfs_interlock);
1501 fs->lfs_cleanind = 0;
1502 }
1503 }
1504
1505 sp->fs = fs;
1506 sp->ibp = NULL;
1507 sp->idp = NULL;
1508 sp->ninodes = 0;
1509 sp->ndupino = 0;
1510
1511 sp->cbpp = sp->bpp;
1512
1513 /* Get a new buffer for SEGSUM */
1514 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1515 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1516
1517 /* ... and enter it into the buffer list. */
1518 *sp->cbpp = sbp;
1519 sp->cbpp++;
1520 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1521
1522 sp->start_bpp = sp->cbpp;
1523
1524 /* Set point to SEGSUM, initialize it. */
1525 ssp = sp->segsum = sbp->b_data;
1526 memset(ssp, 0, fs->lfs_sumsize);
1527 ssp->ss_next = fs->lfs_nextseg;
1528 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1529 ssp->ss_magic = SS_MAGIC;
1530
1531 /* Set pointer to first FINFO, initialize it. */
1532 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1533 sp->fip->fi_nblocks = 0;
1534 sp->start_lbp = &sp->fip->fi_blocks[0];
1535 sp->fip->fi_lastlength = 0;
1536
1537 sp->seg_bytes_left -= fs->lfs_sumsize;
1538 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1539
1540 return (repeat);
1541 }
1542
1543 /*
1544 * Return the next segment to write.
1545 */
1546 void
1547 lfs_newseg(struct lfs *fs)
1548 {
1549 CLEANERINFO *cip;
1550 SEGUSE *sup;
1551 struct buf *bp;
1552 int curseg, isdirty, sn;
1553
1554 ASSERT_SEGLOCK(fs);
1555 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1556 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1557 dtosn(fs, fs->lfs_nextseg)));
1558 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1559 sup->su_nbytes = 0;
1560 sup->su_nsums = 0;
1561 sup->su_ninos = 0;
1562 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1563
1564 LFS_CLEANERINFO(cip, fs, bp);
1565 --cip->clean;
1566 ++cip->dirty;
1567 fs->lfs_nclean = cip->clean;
1568 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1569
1570 fs->lfs_lastseg = fs->lfs_curseg;
1571 fs->lfs_curseg = fs->lfs_nextseg;
1572 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1573 sn = (sn + 1) % fs->lfs_nseg;
1574 if (sn == curseg)
1575 panic("lfs_nextseg: no clean segments");
1576 LFS_SEGENTRY(sup, fs, sn, bp);
1577 isdirty = sup->su_flags & SEGUSE_DIRTY;
1578 /* Check SEGUSE_EMPTY as we go along */
1579 if (isdirty && sup->su_nbytes == 0 &&
1580 !(sup->su_flags & SEGUSE_EMPTY))
1581 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1582 else
1583 brelse(bp);
1584
1585 if (!isdirty)
1586 break;
1587 }
1588
1589 ++fs->lfs_nactive;
1590 fs->lfs_nextseg = sntod(fs, sn);
1591 if (lfs_dostats) {
1592 ++lfs_stats.segsused;
1593 }
1594 }
1595
1596 static struct buf *
1597 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1598 {
1599 struct lfs_cluster *cl;
1600 struct buf **bpp, *bp;
1601 int s;
1602
1603 ASSERT_SEGLOCK(fs);
1604 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1605 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1606 memset(cl, 0, sizeof(*cl));
1607 cl->fs = fs;
1608 cl->bpp = bpp;
1609 cl->bufcount = 0;
1610 cl->bufsize = 0;
1611
1612 /* If this segment is being written synchronously, note that */
1613 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1614 cl->flags |= LFS_CL_SYNC;
1615 cl->seg = fs->lfs_sp;
1616 ++cl->seg->seg_iocount;
1617 }
1618
1619 /* Get an empty buffer header, or maybe one with something on it */
1620 s = splbio();
1621 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1622 splx(s);
1623 memset(bp, 0, sizeof(*bp));
1624 BUF_INIT(bp);
1625
1626 bp->b_flags = B_BUSY | B_CALL;
1627 bp->b_dev = NODEV;
1628 bp->b_blkno = bp->b_lblkno = addr;
1629 bp->b_iodone = lfs_cluster_callback;
1630 bp->b_private = cl;
1631 bp->b_vp = vp;
1632
1633 return bp;
1634 }
1635
1636 int
1637 lfs_writeseg(struct lfs *fs, struct segment *sp)
1638 {
1639 struct buf **bpp, *bp, *cbp, *newbp;
1640 SEGUSE *sup;
1641 SEGSUM *ssp;
1642 int i, s;
1643 int do_again, nblocks, byteoffset;
1644 size_t el_size;
1645 struct lfs_cluster *cl;
1646 u_short ninos;
1647 struct vnode *devvp;
1648 char *p = NULL;
1649 struct vnode *vp;
1650 int32_t *daddrp; /* XXX ondisk32 */
1651 int changed;
1652 u_int32_t sum;
1653
1654 ASSERT_SEGLOCK(fs);
1655 /*
1656 * If there are no buffers other than the segment summary to write
1657 * and it is not a checkpoint, don't do anything. On a checkpoint,
1658 * even if there aren't any buffers, you need to write the superblock.
1659 */
1660 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1661 return (0);
1662
1663 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1664
1665 /* Update the segment usage information. */
1666 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1667
1668 /* Loop through all blocks, except the segment summary. */
1669 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1670 if ((*bpp)->b_vp != devvp) {
1671 sup->su_nbytes += (*bpp)->b_bcount;
1672 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1673 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1674 sp->seg_number, (*bpp)->b_bcount,
1675 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1676 (*bpp)->b_blkno));
1677 }
1678 }
1679
1680 ssp = (SEGSUM *)sp->segsum;
1681
1682 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1683 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1684 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1685 ssp->ss_ninos));
1686 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1687 /* sup->su_nbytes += fs->lfs_sumsize; */
1688 if (fs->lfs_version == 1)
1689 sup->su_olastmod = time.tv_sec;
1690 else
1691 sup->su_lastmod = time.tv_sec;
1692 sup->su_ninos += ninos;
1693 ++sup->su_nsums;
1694 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1695 fs->lfs_ibsize));
1696 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1697
1698 do_again = !(bp->b_flags & B_GATHERED);
1699 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1700
1701 /*
1702 * Mark blocks B_BUSY, to prevent then from being changed between
1703 * the checksum computation and the actual write.
1704 *
1705 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1706 * there are any, replace them with copies that have UNASSIGNED
1707 * instead.
1708 */
1709 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1710 ++bpp;
1711 bp = *bpp;
1712 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1713 bp->b_flags |= B_BUSY;
1714 continue;
1715 }
1716
1717 simple_lock(&bp->b_interlock);
1718 s = splbio();
1719 while (bp->b_flags & B_BUSY) {
1720 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1721 " data summary corruption for ino %d, lbn %"
1722 PRId64 "\n",
1723 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1724 bp->b_flags |= B_WANTED;
1725 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1726 &bp->b_interlock);
1727 splx(s);
1728 s = splbio();
1729 }
1730 bp->b_flags |= B_BUSY;
1731 splx(s);
1732 simple_unlock(&bp->b_interlock);
1733
1734 /*
1735 * Check and replace indirect block UNWRITTEN bogosity.
1736 * XXX See comment in lfs_writefile.
1737 */
1738 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1739 VTOI(bp->b_vp)->i_ffs1_blocks !=
1740 VTOI(bp->b_vp)->i_lfs_effnblks) {
1741 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1742 VTOI(bp->b_vp)->i_number,
1743 VTOI(bp->b_vp)->i_lfs_effnblks,
1744 VTOI(bp->b_vp)->i_ffs1_blocks));
1745 /* Make a copy we'll make changes to */
1746 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1747 bp->b_bcount, LFS_NB_IBLOCK);
1748 newbp->b_blkno = bp->b_blkno;
1749 memcpy(newbp->b_data, bp->b_data,
1750 newbp->b_bcount);
1751
1752 changed = 0;
1753 /* XXX ondisk32 */
1754 for (daddrp = (int32_t *)(newbp->b_data);
1755 daddrp < (int32_t *)(newbp->b_data +
1756 newbp->b_bcount); daddrp++) {
1757 if (*daddrp == UNWRITTEN) {
1758 ++changed;
1759 *daddrp = 0;
1760 }
1761 }
1762 /*
1763 * Get rid of the old buffer. Don't mark it clean,
1764 * though, if it still has dirty data on it.
1765 */
1766 if (changed) {
1767 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1768 " bp = %p newbp = %p\n", changed, bp,
1769 newbp));
1770 *bpp = newbp;
1771 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1772 if (bp->b_flags & B_CALL) {
1773 DLOG((DLOG_SEG, "lfs_writeseg: "
1774 "indir bp should not be B_CALL\n"));
1775 s = splbio();
1776 biodone(bp);
1777 splx(s);
1778 bp = NULL;
1779 } else {
1780 /* Still on free list, leave it there */
1781 s = splbio();
1782 bp->b_flags &= ~B_BUSY;
1783 if (bp->b_flags & B_WANTED)
1784 wakeup(bp);
1785 splx(s);
1786 /*
1787 * We have to re-decrement lfs_avail
1788 * since this block is going to come
1789 * back around to us in the next
1790 * segment.
1791 */
1792 fs->lfs_avail -=
1793 btofsb(fs, bp->b_bcount);
1794 }
1795 } else {
1796 lfs_freebuf(fs, newbp);
1797 }
1798 }
1799 }
1800 /*
1801 * Compute checksum across data and then across summary; the first
1802 * block (the summary block) is skipped. Set the create time here
1803 * so that it's guaranteed to be later than the inode mod times.
1804 */
1805 sum = 0;
1806 if (fs->lfs_version == 1)
1807 el_size = sizeof(u_long);
1808 else
1809 el_size = sizeof(u_int32_t);
1810 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1811 ++bpp;
1812 /* Loop through gop_write cluster blocks */
1813 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1814 byteoffset += fs->lfs_bsize) {
1815 #ifdef LFS_USE_B_INVAL
1816 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1817 (B_CALL | B_INVAL)) {
1818 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1819 byteoffset, dp, el_size)) {
1820 panic("lfs_writeseg: copyin failed [1]:"
1821 " ino %d blk %" PRId64,
1822 VTOI((*bpp)->b_vp)->i_number,
1823 (*bpp)->b_lblkno);
1824 }
1825 } else
1826 #endif /* LFS_USE_B_INVAL */
1827 {
1828 sum = lfs_cksum_part(
1829 (*bpp)->b_data + byteoffset, el_size, sum);
1830 }
1831 }
1832 }
1833 if (fs->lfs_version == 1)
1834 ssp->ss_ocreate = time.tv_sec;
1835 else {
1836 ssp->ss_create = time.tv_sec;
1837 ssp->ss_serial = ++fs->lfs_serial;
1838 ssp->ss_ident = fs->lfs_ident;
1839 }
1840 ssp->ss_datasum = lfs_cksum_fold(sum);
1841 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
1842 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1843
1844 simple_lock(&fs->lfs_interlock);
1845 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1846 btofsb(fs, fs->lfs_sumsize));
1847 simple_unlock(&fs->lfs_interlock);
1848
1849 /*
1850 * When we simply write the blocks we lose a rotation for every block
1851 * written. To avoid this problem, we cluster the buffers into a
1852 * chunk and write the chunk. MAXPHYS is the largest size I/O
1853 * devices can handle, use that for the size of the chunks.
1854 *
1855 * Blocks that are already clusters (from GOP_WRITE), however, we
1856 * don't bother to copy into other clusters.
1857 */
1858
1859 #define CHUNKSIZE MAXPHYS
1860
1861 if (devvp == NULL)
1862 panic("devvp is NULL");
1863 for (bpp = sp->bpp, i = nblocks; i;) {
1864 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1865 cl = cbp->b_private;
1866
1867 cbp->b_flags |= B_ASYNC | B_BUSY;
1868 cbp->b_bcount = 0;
1869
1870 #if defined(DEBUG) && defined(DIAGNOSTIC)
1871 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1872 / sizeof(int32_t)) {
1873 panic("lfs_writeseg: real bpp overwrite");
1874 }
1875 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
1876 panic("lfs_writeseg: theoretical bpp overwrite");
1877 }
1878 #endif
1879
1880 /*
1881 * Construct the cluster.
1882 */
1883 simple_lock(&fs->lfs_interlock);
1884 ++fs->lfs_iocount;
1885 simple_unlock(&fs->lfs_interlock);
1886 while (i && cbp->b_bcount < CHUNKSIZE) {
1887 bp = *bpp;
1888
1889 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1890 break;
1891 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1892 break;
1893
1894 /* Clusters from GOP_WRITE are expedited */
1895 if (bp->b_bcount > fs->lfs_bsize) {
1896 if (cbp->b_bcount > 0)
1897 /* Put in its own buffer */
1898 break;
1899 else {
1900 cbp->b_data = bp->b_data;
1901 }
1902 } else if (cbp->b_bcount == 0) {
1903 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
1904 LFS_NB_CLUSTER);
1905 cl->flags |= LFS_CL_MALLOC;
1906 }
1907 #ifdef DIAGNOSTIC
1908 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
1909 btodb(bp->b_bcount - 1))) !=
1910 sp->seg_number) {
1911 printf("blk size %d daddr %" PRIx64
1912 " not in seg %d\n",
1913 bp->b_bcount, bp->b_blkno,
1914 sp->seg_number);
1915 panic("segment overwrite");
1916 }
1917 #endif
1918
1919 #ifdef LFS_USE_B_INVAL
1920 /*
1921 * Fake buffers from the cleaner are marked as B_INVAL.
1922 * We need to copy the data from user space rather than
1923 * from the buffer indicated.
1924 * XXX == what do I do on an error?
1925 */
1926 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
1927 (B_CALL|B_INVAL)) {
1928 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1929 panic("lfs_writeseg: "
1930 "copyin failed [2]");
1931 } else
1932 #endif /* LFS_USE_B_INVAL */
1933 if (cl->flags & LFS_CL_MALLOC) {
1934 /* copy data into our cluster. */
1935 memcpy(p, bp->b_data, bp->b_bcount);
1936 p += bp->b_bcount;
1937 }
1938
1939 cbp->b_bcount += bp->b_bcount;
1940 cl->bufsize += bp->b_bcount;
1941
1942 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1943 cl->bpp[cl->bufcount++] = bp;
1944 vp = bp->b_vp;
1945 s = splbio();
1946 reassignbuf(bp, vp);
1947 V_INCR_NUMOUTPUT(vp);
1948 splx(s);
1949
1950 bpp++;
1951 i--;
1952 }
1953 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1954 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
1955 else
1956 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
1957 s = splbio();
1958 V_INCR_NUMOUTPUT(devvp);
1959 splx(s);
1960 VOP_STRATEGY(devvp, cbp);
1961 curproc->p_stats->p_ru.ru_oublock++;
1962 }
1963
1964 if (lfs_dostats) {
1965 ++lfs_stats.psegwrites;
1966 lfs_stats.blocktot += nblocks - 1;
1967 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1968 ++lfs_stats.psyncwrites;
1969 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1970 ++lfs_stats.pcleanwrites;
1971 lfs_stats.cleanblocks += nblocks - 1;
1972 }
1973 }
1974 return (lfs_initseg(fs) || do_again);
1975 }
1976
1977 void
1978 lfs_writesuper(struct lfs *fs, daddr_t daddr)
1979 {
1980 struct buf *bp;
1981 int s;
1982 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1983
1984 ASSERT_MAYBE_SEGLOCK(fs);
1985 #ifdef DIAGNOSTIC
1986 KASSERT(fs->lfs_magic == LFS_MAGIC);
1987 #endif
1988 /*
1989 * If we can write one superblock while another is in
1990 * progress, we risk not having a complete checkpoint if we crash.
1991 * So, block here if a superblock write is in progress.
1992 */
1993 simple_lock(&fs->lfs_interlock);
1994 s = splbio();
1995 while (fs->lfs_sbactive) {
1996 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
1997 &fs->lfs_interlock);
1998 }
1999 fs->lfs_sbactive = daddr;
2000 splx(s);
2001 simple_unlock(&fs->lfs_interlock);
2002
2003 /* Set timestamp of this version of the superblock */
2004 if (fs->lfs_version == 1)
2005 fs->lfs_otstamp = time.tv_sec;
2006 fs->lfs_tstamp = time.tv_sec;
2007
2008 /* Checksum the superblock and copy it into a buffer. */
2009 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2010 bp = lfs_newbuf(fs, devvp,
2011 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2012 memset(bp->b_data + sizeof(struct dlfs), 0,
2013 LFS_SBPAD - sizeof(struct dlfs));
2014 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2015
2016 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2017 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2018 bp->b_iodone = lfs_supercallback;
2019
2020 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2021 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2022 else
2023 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2024 curproc->p_stats->p_ru.ru_oublock++;
2025 s = splbio();
2026 V_INCR_NUMOUTPUT(bp->b_vp);
2027 splx(s);
2028 simple_lock(&fs->lfs_interlock);
2029 ++fs->lfs_iocount;
2030 simple_unlock(&fs->lfs_interlock);
2031 VOP_STRATEGY(devvp, bp);
2032 }
2033
2034 /*
2035 * Logical block number match routines used when traversing the dirty block
2036 * chain.
2037 */
2038 int
2039 lfs_match_fake(struct lfs *fs, struct buf *bp)
2040 {
2041
2042 ASSERT_SEGLOCK(fs);
2043 return LFS_IS_MALLOC_BUF(bp);
2044 }
2045
2046 #if 0
2047 int
2048 lfs_match_real(struct lfs *fs, struct buf *bp)
2049 {
2050
2051 ASSERT_SEGLOCK(fs);
2052 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2053 }
2054 #endif
2055
2056 int
2057 lfs_match_data(struct lfs *fs, struct buf *bp)
2058 {
2059
2060 ASSERT_SEGLOCK(fs);
2061 return (bp->b_lblkno >= 0);
2062 }
2063
2064 int
2065 lfs_match_indir(struct lfs *fs, struct buf *bp)
2066 {
2067 daddr_t lbn;
2068
2069 ASSERT_SEGLOCK(fs);
2070 lbn = bp->b_lblkno;
2071 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2072 }
2073
2074 int
2075 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2076 {
2077 daddr_t lbn;
2078
2079 ASSERT_SEGLOCK(fs);
2080 lbn = bp->b_lblkno;
2081 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2082 }
2083
2084 int
2085 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2086 {
2087 daddr_t lbn;
2088
2089 ASSERT_SEGLOCK(fs);
2090 lbn = bp->b_lblkno;
2091 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2092 }
2093
2094 /*
2095 * XXX - The only buffers that are going to hit these functions are the
2096 * segment write blocks, or the segment summaries, or the superblocks.
2097 *
2098 * All of the above are created by lfs_newbuf, and so do not need to be
2099 * released via brelse.
2100 */
2101 void
2102 lfs_callback(struct buf *bp)
2103 {
2104 struct lfs *fs;
2105
2106 fs = bp->b_private;
2107 ASSERT_NO_SEGLOCK(fs);
2108 lfs_freebuf(fs, bp);
2109 }
2110
2111 static void
2112 lfs_super_aiodone(struct buf *bp)
2113 {
2114 struct lfs *fs;
2115
2116 fs = bp->b_private;
2117 ASSERT_NO_SEGLOCK(fs);
2118 simple_lock(&fs->lfs_interlock);
2119 fs->lfs_sbactive = 0;
2120 if (--fs->lfs_iocount <= 1)
2121 wakeup(&fs->lfs_iocount);
2122 simple_unlock(&fs->lfs_interlock);
2123 wakeup(&fs->lfs_sbactive);
2124 lfs_freebuf(fs, bp);
2125 }
2126
2127 static void
2128 lfs_cluster_aiodone(struct buf *bp)
2129 {
2130 struct lfs_cluster *cl;
2131 struct lfs *fs;
2132 struct buf *tbp, *fbp;
2133 struct vnode *vp, *devvp;
2134 struct inode *ip;
2135 int s, error=0;
2136
2137 if (bp->b_flags & B_ERROR)
2138 error = bp->b_error;
2139
2140 cl = bp->b_private;
2141 fs = cl->fs;
2142 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2143 ASSERT_NO_SEGLOCK(fs);
2144
2145 /* Put the pages back, and release the buffer */
2146 while (cl->bufcount--) {
2147 tbp = cl->bpp[cl->bufcount];
2148 KASSERT(tbp->b_flags & B_BUSY);
2149 if (error) {
2150 tbp->b_flags |= B_ERROR;
2151 tbp->b_error = error;
2152 }
2153
2154 /*
2155 * We're done with tbp. If it has not been re-dirtied since
2156 * the cluster was written, free it. Otherwise, keep it on
2157 * the locked list to be written again.
2158 */
2159 vp = tbp->b_vp;
2160
2161 tbp->b_flags &= ~B_GATHERED;
2162
2163 LFS_BCLEAN_LOG(fs, tbp);
2164
2165 if (!(tbp->b_flags & B_CALL)) {
2166 KASSERT(tbp->b_flags & B_LOCKED);
2167 s = splbio();
2168 simple_lock(&bqueue_slock);
2169 bremfree(tbp);
2170 simple_unlock(&bqueue_slock);
2171 if (vp)
2172 reassignbuf(tbp, vp);
2173 splx(s);
2174 tbp->b_flags |= B_ASYNC; /* for biodone */
2175 }
2176
2177 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2178 LFS_UNLOCK_BUF(tbp);
2179
2180 if (tbp->b_flags & B_DONE) {
2181 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2182 cl->bufcount, (long)tbp->b_flags));
2183 }
2184
2185 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2186 /*
2187 * A buffer from the page daemon.
2188 * We use the same iodone as it does,
2189 * so we must manually disassociate its
2190 * buffers from the vp.
2191 */
2192 if (tbp->b_vp) {
2193 /* This is just silly */
2194 s = splbio();
2195 brelvp(tbp);
2196 tbp->b_vp = vp;
2197 splx(s);
2198 }
2199 /* Put it back the way it was */
2200 tbp->b_flags |= B_ASYNC;
2201 /* Master buffers have B_AGE */
2202 if (tbp->b_private == tbp)
2203 tbp->b_flags |= B_AGE;
2204 }
2205 s = splbio();
2206 biodone(tbp);
2207
2208 /*
2209 * If this is the last block for this vnode, but
2210 * there are other blocks on its dirty list,
2211 * set IN_MODIFIED/IN_CLEANING depending on what
2212 * sort of block. Only do this for our mount point,
2213 * not for, e.g., inode blocks that are attached to
2214 * the devvp.
2215 * XXX KS - Shouldn't we set *both* if both types
2216 * of blocks are present (traverse the dirty list?)
2217 */
2218 simple_lock(&global_v_numoutput_slock);
2219 if (vp != devvp && vp->v_numoutput == 0 &&
2220 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2221 ip = VTOI(vp);
2222 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2223 ip->i_number));
2224 if (LFS_IS_MALLOC_BUF(fbp))
2225 LFS_SET_UINO(ip, IN_CLEANING);
2226 else
2227 LFS_SET_UINO(ip, IN_MODIFIED);
2228 }
2229 simple_unlock(&global_v_numoutput_slock);
2230 splx(s);
2231 wakeup(vp);
2232 }
2233
2234 /* Fix up the cluster buffer, and release it */
2235 if (cl->flags & LFS_CL_MALLOC)
2236 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2237 s = splbio();
2238 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2239 splx(s);
2240
2241 /* Note i/o done */
2242 if (cl->flags & LFS_CL_SYNC) {
2243 if (--cl->seg->seg_iocount == 0)
2244 wakeup(&cl->seg->seg_iocount);
2245 }
2246 simple_lock(&fs->lfs_interlock);
2247 #ifdef DIAGNOSTIC
2248 if (fs->lfs_iocount == 0)
2249 panic("lfs_cluster_aiodone: zero iocount");
2250 #endif
2251 if (--fs->lfs_iocount <= 1)
2252 wakeup(&fs->lfs_iocount);
2253 simple_unlock(&fs->lfs_interlock);
2254
2255 pool_put(&fs->lfs_bpppool, cl->bpp);
2256 cl->bpp = NULL;
2257 pool_put(&fs->lfs_clpool, cl);
2258 }
2259
2260 static void
2261 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2262 {
2263 /* reset b_iodone for when this is a single-buf i/o. */
2264 bp->b_iodone = aiodone;
2265
2266 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2267 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2268 wakeup(&uvm.aiodoned);
2269 simple_unlock(&uvm.aiodoned_lock);
2270 }
2271
2272 static void
2273 lfs_cluster_callback(struct buf *bp)
2274 {
2275
2276 lfs_generic_callback(bp, lfs_cluster_aiodone);
2277 }
2278
2279 void
2280 lfs_supercallback(struct buf *bp)
2281 {
2282
2283 lfs_generic_callback(bp, lfs_super_aiodone);
2284 }
2285
2286 /*
2287 * Shellsort (diminishing increment sort) from Data Structures and
2288 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2289 * see also Knuth Vol. 3, page 84. The increments are selected from
2290 * formula (8), page 95. Roughly O(N^3/2).
2291 */
2292 /*
2293 * This is our own private copy of shellsort because we want to sort
2294 * two parallel arrays (the array of buffer pointers and the array of
2295 * logical block numbers) simultaneously. Note that we cast the array
2296 * of logical block numbers to a unsigned in this routine so that the
2297 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2298 */
2299
2300 void
2301 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2302 {
2303 static int __rsshell_increments[] = { 4, 1, 0 };
2304 int incr, *incrp, t1, t2;
2305 struct buf *bp_temp;
2306
2307 #ifdef DEBUG
2308 incr = 0;
2309 for (t1 = 0; t1 < nmemb; t1++) {
2310 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2311 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2312 /* dump before panic */
2313 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2314 nmemb, size);
2315 incr = 0;
2316 for (t1 = 0; t1 < nmemb; t1++) {
2317 const struct buf *bp = bp_array[t1];
2318
2319 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2320 PRIu64 "\n", t1,
2321 (uint64_t)bp->b_bcount,
2322 (uint64_t)bp->b_lblkno);
2323 printf("lbns:");
2324 for (t2 = 0; t2 * size < bp->b_bcount;
2325 t2++) {
2326 printf(" %" PRId32,
2327 lb_array[incr++]);
2328 }
2329 printf("\n");
2330 }
2331 panic("lfs_shellsort: inconsistent input");
2332 }
2333 }
2334 }
2335 #endif
2336
2337 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2338 for (t1 = incr; t1 < nmemb; ++t1)
2339 for (t2 = t1 - incr; t2 >= 0;)
2340 if ((u_int32_t)bp_array[t2]->b_lblkno >
2341 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2342 bp_temp = bp_array[t2];
2343 bp_array[t2] = bp_array[t2 + incr];
2344 bp_array[t2 + incr] = bp_temp;
2345 t2 -= incr;
2346 } else
2347 break;
2348
2349 /* Reform the list of logical blocks */
2350 incr = 0;
2351 for (t1 = 0; t1 < nmemb; t1++) {
2352 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2353 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2354 }
2355 }
2356 }
2357
2358 /*
2359 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2360 */
2361 int
2362 lfs_vref(struct vnode *vp)
2363 {
2364 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2365 /*
2366 * If we return 1 here during a flush, we risk vinvalbuf() not
2367 * being able to flush all of the pages from this vnode, which
2368 * will cause it to panic. So, return 0 if a flush is in progress.
2369 */
2370 if (vp->v_flag & VXLOCK) {
2371 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2372 return 0;
2373 }
2374 return (1);
2375 }
2376 return (vget(vp, 0));
2377 }
2378
2379 /*
2380 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2381 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2382 */
2383 void
2384 lfs_vunref(struct vnode *vp)
2385 {
2386 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2387 /*
2388 * Analogous to lfs_vref, if the node is flushing, fake it.
2389 */
2390 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2391 return;
2392 }
2393
2394 simple_lock(&vp->v_interlock);
2395 #ifdef DIAGNOSTIC
2396 if (vp->v_usecount <= 0) {
2397 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2398 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2399 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2400 panic("lfs_vunref: v_usecount < 0");
2401 }
2402 #endif
2403 vp->v_usecount--;
2404 if (vp->v_usecount > 0) {
2405 simple_unlock(&vp->v_interlock);
2406 return;
2407 }
2408 /*
2409 * insert at tail of LRU list
2410 */
2411 simple_lock(&vnode_free_list_slock);
2412 if (vp->v_holdcnt > 0)
2413 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2414 else
2415 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2416 simple_unlock(&vnode_free_list_slock);
2417 simple_unlock(&vp->v_interlock);
2418 }
2419
2420 /*
2421 * We use this when we have vnodes that were loaded in solely for cleaning.
2422 * There is no reason to believe that these vnodes will be referenced again
2423 * soon, since the cleaning process is unrelated to normal filesystem
2424 * activity. Putting cleaned vnodes at the tail of the list has the effect
2425 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2426 * cleaning at the head of the list, instead.
2427 */
2428 void
2429 lfs_vunref_head(struct vnode *vp)
2430 {
2431
2432 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2433 simple_lock(&vp->v_interlock);
2434 #ifdef DIAGNOSTIC
2435 if (vp->v_usecount == 0) {
2436 panic("lfs_vunref: v_usecount<0");
2437 }
2438 #endif
2439 vp->v_usecount--;
2440 if (vp->v_usecount > 0) {
2441 simple_unlock(&vp->v_interlock);
2442 return;
2443 }
2444 /*
2445 * insert at head of LRU list
2446 */
2447 simple_lock(&vnode_free_list_slock);
2448 if (vp->v_holdcnt > 0)
2449 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2450 else
2451 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2452 simple_unlock(&vnode_free_list_slock);
2453 simple_unlock(&vp->v_interlock);
2454 }
2455
2456