Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.159
      1 /*	$NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $");
     71 
     72 #ifdef DEBUG
     73 # define vndebug(vp, str) do {						\
     74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     76 		     VTOI(vp)->i_number, (str), op));			\
     77 } while(0)
     78 #else
     79 # define vndebug(vp, str)
     80 #endif
     81 #define ivndebug(vp, str) \
     82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     83 
     84 #if defined(_KERNEL_OPT)
     85 #include "opt_ddb.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/namei.h>
     91 #include <sys/kernel.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/file.h>
     94 #include <sys/stat.h>
     95 #include <sys/buf.h>
     96 #include <sys/proc.h>
     97 #include <sys/vnode.h>
     98 #include <sys/mount.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 #include <miscfs/fifofs/fifo.h>
    102 
    103 #include <ufs/ufs/inode.h>
    104 #include <ufs/ufs/dir.h>
    105 #include <ufs/ufs/ufsmount.h>
    106 #include <ufs/ufs/ufs_extern.h>
    107 
    108 #include <ufs/lfs/lfs.h>
    109 #include <ufs/lfs/lfs_extern.h>
    110 
    111 #include <uvm/uvm.h>
    112 #include <uvm/uvm_extern.h>
    113 
    114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    115 
    116 extern int count_lock_queue(void);
    117 extern struct simplelock vnode_free_list_slock;		/* XXX */
    118 extern struct simplelock bqueue_slock;			/* XXX */
    119 
    120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    121 static void lfs_super_aiodone(struct buf *);
    122 static void lfs_cluster_aiodone(struct buf *);
    123 static void lfs_cluster_callback(struct buf *);
    124 
    125 /*
    126  * Determine if it's OK to start a partial in this segment, or if we need
    127  * to go on to a new segment.
    128  */
    129 #define	LFS_PARTIAL_FITS(fs) \
    130 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    131 	fragstofsb((fs), (fs)->lfs_frag))
    132 
    133 int	 lfs_match_fake(struct lfs *, struct buf *);
    134 void	 lfs_newseg(struct lfs *);
    135 /* XXX ondisk32 */
    136 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    137 void	 lfs_supercallback(struct buf *);
    138 void	 lfs_updatemeta(struct segment *);
    139 void	 lfs_writesuper(struct lfs *, daddr_t);
    140 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    141 	    struct segment *sp, int dirops);
    142 
    143 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    144 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    145 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    146 int	lfs_dirvcount = 0;		/* # active dirops */
    147 
    148 /* Statistics Counters */
    149 int lfs_dostats = 1;
    150 struct lfs_stats lfs_stats;
    151 
    152 /* op values to lfs_writevnodes */
    153 #define	VN_REG		0
    154 #define	VN_DIROP	1
    155 #define	VN_EMPTY	2
    156 #define VN_CLEAN	3
    157 
    158 /*
    159  * XXX KS - Set modification time on the Ifile, so the cleaner can
    160  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    161  * since we don't really need this to be flushed to disk (and in any
    162  * case that wouldn't happen to the Ifile until we checkpoint).
    163  */
    164 void
    165 lfs_imtime(struct lfs *fs)
    166 {
    167 	struct timespec ts;
    168 	struct inode *ip;
    169 
    170 	ASSERT_MAYBE_SEGLOCK(fs);
    171 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    172 	ip = VTOI(fs->lfs_ivnode);
    173 	ip->i_ffs1_mtime = ts.tv_sec;
    174 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    175 }
    176 
    177 /*
    178  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    179  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    180  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    181  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    182  */
    183 
    184 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    185 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    186 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    187 
    188 int
    189 lfs_vflush(struct vnode *vp)
    190 {
    191 	struct inode *ip;
    192 	struct lfs *fs;
    193 	struct segment *sp;
    194 	struct buf *bp, *nbp, *tbp, *tnbp;
    195 	int error, s;
    196 	int flushed;
    197 #if 0
    198 	int redo;
    199 #endif
    200 
    201 	ip = VTOI(vp);
    202 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    203 
    204 	ASSERT_NO_SEGLOCK(fs);
    205 	if (ip->i_flag & IN_CLEANING) {
    206 		ivndebug(vp,"vflush/in_cleaning");
    207 		LFS_CLR_UINO(ip, IN_CLEANING);
    208 		LFS_SET_UINO(ip, IN_MODIFIED);
    209 
    210 		/*
    211 		 * Toss any cleaning buffers that have real counterparts
    212 		 * to avoid losing new data.
    213 		 */
    214 		s = splbio();
    215 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    216 			nbp = LIST_NEXT(bp, b_vnbufs);
    217 			if (!LFS_IS_MALLOC_BUF(bp))
    218 				continue;
    219 			/*
    220 			 * Look for pages matching the range covered
    221 			 * by cleaning blocks.  It's okay if more dirty
    222 			 * pages appear, so long as none disappear out
    223 			 * from under us.
    224 			 */
    225 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    226 			    vp != fs->lfs_ivnode) {
    227 				struct vm_page *pg;
    228 				voff_t off;
    229 
    230 				simple_lock(&vp->v_interlock);
    231 				for (off = lblktosize(fs, bp->b_lblkno);
    232 				     off < lblktosize(fs, bp->b_lblkno + 1);
    233 				     off += PAGE_SIZE) {
    234 					pg = uvm_pagelookup(&vp->v_uobj, off);
    235 					if (pg == NULL)
    236 						continue;
    237 					if ((pg->flags & PG_CLEAN) == 0 ||
    238 					    pmap_is_modified(pg)) {
    239 						fs->lfs_avail += btofsb(fs,
    240 							bp->b_bcount);
    241 						wakeup(&fs->lfs_avail);
    242 						lfs_freebuf(fs, bp);
    243 						bp = NULL;
    244 						goto nextbp;
    245 					}
    246 				}
    247 				simple_unlock(&vp->v_interlock);
    248 			}
    249 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    250 			    tbp = tnbp)
    251 			{
    252 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    253 				if (tbp->b_vp == bp->b_vp
    254 				   && tbp->b_lblkno == bp->b_lblkno
    255 				   && tbp != bp)
    256 				{
    257 					fs->lfs_avail += btofsb(fs,
    258 						bp->b_bcount);
    259 					wakeup(&fs->lfs_avail);
    260 					lfs_freebuf(fs, bp);
    261 					bp = NULL;
    262 					break;
    263 				}
    264 			}
    265 		    nextbp:
    266 			;
    267 		}
    268 		splx(s);
    269 	}
    270 
    271 	/* If the node is being written, wait until that is done */
    272 	simple_lock(&vp->v_interlock);
    273 	s = splbio();
    274 	if (WRITEINPROG(vp)) {
    275 		ivndebug(vp,"vflush/writeinprog");
    276 		ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
    277 	}
    278 	splx(s);
    279 	simple_unlock(&vp->v_interlock);
    280 
    281 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    282 	lfs_seglock(fs, SEGM_SYNC);
    283 
    284 	/* If we're supposed to flush a freed inode, just toss it */
    285 	/* XXX - seglock, so these buffers can't be gathered, right? */
    286 	if (ip->i_mode == 0) {
    287 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    288 		      ip->i_number));
    289 		s = splbio();
    290 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    291 			nbp = LIST_NEXT(bp, b_vnbufs);
    292 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    293 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    294 				wakeup(&fs->lfs_avail);
    295 			}
    296 			/* Copied from lfs_writeseg */
    297 			if (bp->b_flags & B_CALL) {
    298 				biodone(bp);
    299 			} else {
    300 				bremfree(bp);
    301 				LFS_UNLOCK_BUF(bp);
    302 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    303 					 B_GATHERED);
    304 				bp->b_flags |= B_DONE;
    305 				reassignbuf(bp, vp);
    306 				brelse(bp);
    307 			}
    308 		}
    309 		splx(s);
    310 		LFS_CLR_UINO(ip, IN_CLEANING);
    311 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    312 		ip->i_flag &= ~IN_ALLMOD;
    313 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    314 		      ip->i_number));
    315 		lfs_segunlock(fs);
    316 		return 0;
    317 	}
    318 
    319 	SET_FLUSHING(fs,vp);
    320 	if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
    321 	    (fs->lfs_sp->seg_flags & SEGM_CKP)) {
    322 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    323 		CLR_FLUSHING(fs,vp);
    324 		lfs_segunlock(fs);
    325 		return error;
    326 	}
    327 	sp = fs->lfs_sp;
    328 
    329 	flushed = 0;
    330 	if (VPISEMPTY(vp)) {
    331 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    332 		++flushed;
    333 	} else if ((ip->i_flag & IN_CLEANING) &&
    334 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    335 		ivndebug(vp,"vflush/clean");
    336 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    337 		++flushed;
    338 	} else if (lfs_dostats) {
    339 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    340 			++lfs_stats.vflush_invoked;
    341 		ivndebug(vp,"vflush");
    342 	}
    343 
    344 #ifdef DIAGNOSTIC
    345 	if (vp->v_flag & VDIROP) {
    346 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
    347 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
    348 	}
    349 	if (vp->v_usecount < 0) {
    350 		printf("usecount=%ld\n", (long)vp->v_usecount);
    351 		panic("lfs_vflush: usecount<0");
    352 	}
    353 #endif
    354 
    355 #if 1
    356 	do {
    357 		do {
    358 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    359 				lfs_writefile(fs, sp, vp);
    360 		} while (lfs_writeinode(fs, sp, ip));
    361 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    362 #else
    363 	if (flushed && vp != fs->lfs_ivnode)
    364 		lfs_writeseg(fs, sp);
    365 	else do {
    366 		simple_lock(&fs->lfs_interlock);
    367 		fs->lfs_flags &= ~LFS_IFDIRTY;
    368 		simple_unlock(&fs->lfs_interlock);
    369 		lfs_writefile(fs, sp, vp);
    370 		redo = lfs_writeinode(fs, sp, ip);
    371 		redo += lfs_writeseg(fs, sp);
    372 		simple_lock(&fs->lfs_interlock);
    373 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    374 		simple_unlock(&fs->lfs_interlock);
    375 	} while (redo && vp == fs->lfs_ivnode);
    376 #endif
    377 	if (lfs_dostats) {
    378 		++lfs_stats.nwrites;
    379 		if (sp->seg_flags & SEGM_SYNC)
    380 			++lfs_stats.nsync_writes;
    381 		if (sp->seg_flags & SEGM_CKP)
    382 			++lfs_stats.ncheckpoints;
    383 	}
    384 	/*
    385 	 * If we were called from somewhere that has already held the seglock
    386 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    387 	 * the write to complete because we are still locked.
    388 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    389 	 * we must explicitly wait, if that is the case.
    390 	 *
    391 	 * We compare the iocount against 1, not 0, because it is
    392 	 * artificially incremented by lfs_seglock().
    393 	 */
    394 	simple_lock(&fs->lfs_interlock);
    395 	if (fs->lfs_seglock > 1) {
    396 		while (fs->lfs_iocount > 1)
    397 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
    398 				     "lfs_vflush", 0, &fs->lfs_interlock);
    399 	}
    400 	simple_unlock(&fs->lfs_interlock);
    401 
    402 	lfs_segunlock(fs);
    403 
    404 	/* Wait for these buffers to be recovered by aiodoned */
    405 	s = splbio();
    406 	simple_lock(&global_v_numoutput_slock);
    407 	while (vp->v_numoutput > 0) {
    408 		vp->v_flag |= VBWAIT;
    409 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
    410 			&global_v_numoutput_slock);
    411 	}
    412 	simple_unlock(&global_v_numoutput_slock);
    413 	splx(s);
    414 
    415 	CLR_FLUSHING(fs,vp);
    416 	return (0);
    417 }
    418 
    419 int
    420 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    421 {
    422 	struct inode *ip;
    423 	struct vnode *vp, *nvp;
    424 	int inodes_written = 0, only_cleaning;
    425 
    426 	ASSERT_SEGLOCK(fs);
    427 #ifndef LFS_NO_BACKVP_HACK
    428 	/* BEGIN HACK */
    429 #define	VN_OFFSET	\
    430 	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    431 #define	BACK_VP(VP)	\
    432 	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    433 #define	BEG_OF_VLIST	\
    434 	((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
    435 	- VN_OFFSET))
    436 
    437 	/* Find last vnode. */
    438  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    439 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    440 	     vp = LIST_NEXT(vp, v_mntvnodes));
    441 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    442 		nvp = BACK_VP(vp);
    443 #else
    444 	loop:
    445 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    446 		nvp = LIST_NEXT(vp, v_mntvnodes);
    447 #endif
    448 		/*
    449 		 * If the vnode that we are about to sync is no longer
    450 		 * associated with this mount point, start over.
    451 		 */
    452 		if (vp->v_mount != mp) {
    453 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    454 			/*
    455 			 * After this, pages might be busy
    456 			 * due to our own previous putpages.
    457 			 * Start actual segment write here to avoid deadlock.
    458 			 */
    459 			(void)lfs_writeseg(fs, sp);
    460 			goto loop;
    461 		}
    462 
    463 		if (vp->v_type == VNON) {
    464 			continue;
    465 		}
    466 
    467 		ip = VTOI(vp);
    468 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    469 		    (op != VN_DIROP && op != VN_CLEAN &&
    470 		    (vp->v_flag & VDIROP))) {
    471 			vndebug(vp,"dirop");
    472 			continue;
    473 		}
    474 
    475 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    476 			vndebug(vp,"empty");
    477 			continue;
    478 		}
    479 
    480 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    481 		   && vp != fs->lfs_flushvp
    482 		   && !(ip->i_flag & IN_CLEANING)) {
    483 			vndebug(vp,"cleaning");
    484 			continue;
    485 		}
    486 
    487 		if (lfs_vref(vp)) {
    488 			vndebug(vp,"vref");
    489 			continue;
    490 		}
    491 
    492 		only_cleaning = 0;
    493 		/*
    494 		 * Write the inode/file if dirty and it's not the IFILE.
    495 		 */
    496 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    497 			only_cleaning =
    498 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    499 
    500 			if (ip->i_number != LFS_IFILE_INUM) {
    501 				lfs_writefile(fs, sp, vp);
    502 				if (!VPISEMPTY(vp)) {
    503 					if (WRITEINPROG(vp)) {
    504 						ivndebug(vp,"writevnodes/write2");
    505 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    506 						LFS_SET_UINO(ip, IN_MODIFIED);
    507 					}
    508 				}
    509 				(void) lfs_writeinode(fs, sp, ip);
    510 				inodes_written++;
    511 			}
    512 		}
    513 
    514 		if (lfs_clean_vnhead && only_cleaning)
    515 			lfs_vunref_head(vp);
    516 		else
    517 			lfs_vunref(vp);
    518 	}
    519 	return inodes_written;
    520 }
    521 
    522 /*
    523  * Do a checkpoint.
    524  */
    525 int
    526 lfs_segwrite(struct mount *mp, int flags)
    527 {
    528 	struct buf *bp;
    529 	struct inode *ip;
    530 	struct lfs *fs;
    531 	struct segment *sp;
    532 	struct vnode *vp;
    533 	SEGUSE *segusep;
    534 	int do_ckp, did_ckp, error, s;
    535 	unsigned n, segleft, maxseg, sn, i, curseg;
    536 	int writer_set = 0;
    537 	int dirty;
    538 	int redo;
    539 
    540 	fs = VFSTOUFS(mp)->um_lfs;
    541 	ASSERT_MAYBE_SEGLOCK(fs);
    542 
    543 	if (fs->lfs_ronly)
    544 		return EROFS;
    545 
    546 	lfs_imtime(fs);
    547 
    548 	/*
    549 	 * Allocate a segment structure and enough space to hold pointers to
    550 	 * the maximum possible number of buffers which can be described in a
    551 	 * single summary block.
    552 	 */
    553 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    554 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    555 	sp = fs->lfs_sp;
    556 
    557 	/*
    558 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    559 	 * in which case we have to flush *all* buffers off of this vnode.
    560 	 * We don't care about other nodes, but write any non-dirop nodes
    561 	 * anyway in anticipation of another getnewvnode().
    562 	 *
    563 	 * If we're cleaning we only write cleaning and ifile blocks, and
    564 	 * no dirops, since otherwise we'd risk corruption in a crash.
    565 	 */
    566 	if (sp->seg_flags & SEGM_CLEAN)
    567 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    568 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    569 		lfs_writevnodes(fs, mp, sp, VN_REG);
    570 		if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    571 			error = lfs_writer_enter(fs, "lfs writer");
    572 			if (error) {
    573 				DLOG((DLOG_SEG, "segwrite mysterious error\n"));
    574 				/* XXX why not segunlock? */
    575 				pool_put(&fs->lfs_bpppool, sp->bpp);
    576 				sp->bpp = NULL;
    577 				pool_put(&fs->lfs_segpool, sp);
    578 				sp = fs->lfs_sp = NULL;
    579 				return (error);
    580 			}
    581 			writer_set = 1;
    582 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    583 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    584 		}
    585 	}
    586 
    587 	/*
    588 	 * If we are doing a checkpoint, mark everything since the
    589 	 * last checkpoint as no longer ACTIVE.
    590 	 */
    591 	if (do_ckp) {
    592 		segleft = fs->lfs_nseg;
    593 		curseg = 0;
    594 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    595 			dirty = 0;
    596 			if (bread(fs->lfs_ivnode,
    597 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
    598 				panic("lfs_segwrite: ifile read");
    599 			segusep = (SEGUSE *)bp->b_data;
    600 			maxseg = min(segleft, fs->lfs_sepb);
    601 			for (i = 0; i < maxseg; i++) {
    602 				sn = curseg + i;
    603 				if (sn != dtosn(fs, fs->lfs_curseg) &&
    604 				    segusep->su_flags & SEGUSE_ACTIVE) {
    605 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    606 					--fs->lfs_nactive;
    607 					++dirty;
    608 				}
    609 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    610 					segusep->su_flags;
    611 				if (fs->lfs_version > 1)
    612 					++segusep;
    613 				else
    614 					segusep = (SEGUSE *)
    615 						((SEGUSE_V1 *)segusep + 1);
    616 			}
    617 
    618 			if (dirty)
    619 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    620 			else
    621 				brelse(bp);
    622 			segleft -= fs->lfs_sepb;
    623 			curseg += fs->lfs_sepb;
    624 		}
    625 	}
    626 
    627 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
    628 
    629 	did_ckp = 0;
    630 	if (do_ckp || fs->lfs_doifile) {
    631 		vp = fs->lfs_ivnode;
    632 		vn_lock(vp, LK_EXCLUSIVE);
    633 		do {
    634 #ifdef DEBUG
    635 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    636 #endif
    637 			simple_lock(&fs->lfs_interlock);
    638 			fs->lfs_flags &= ~LFS_IFDIRTY;
    639 			simple_unlock(&fs->lfs_interlock);
    640 
    641 			ip = VTOI(vp);
    642 
    643 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    644 				lfs_writefile(fs, sp, vp);
    645 
    646 			if (ip->i_flag & IN_ALLMOD)
    647 				++did_ckp;
    648 			redo = lfs_writeinode(fs, sp, ip);
    649 			redo += lfs_writeseg(fs, sp);
    650 			simple_lock(&fs->lfs_interlock);
    651 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    652 			simple_unlock(&fs->lfs_interlock);
    653 		} while (redo && do_ckp);
    654 
    655 		/*
    656 		 * Unless we are unmounting, the Ifile may continue to have
    657 		 * dirty blocks even after a checkpoint, due to changes to
    658 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    659 		 * for other parts of the Ifile to be dirty after the loop
    660 		 * above, since we hold the segment lock.
    661 		 */
    662 		s = splbio();
    663 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    664 			LFS_CLR_UINO(ip, IN_ALLMOD);
    665 		}
    666 #ifdef DIAGNOSTIC
    667 		else if (do_ckp) {
    668 			int do_panic = 0;
    669 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    670 				if (bp->b_lblkno < fs->lfs_cleansz +
    671 				    fs->lfs_segtabsz &&
    672 				    !(bp->b_flags & B_GATHERED)) {
    673 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    674 						(long)bp->b_lblkno,
    675 						(long)bp->b_flags);
    676 					++do_panic;
    677 				}
    678 			}
    679 			if (do_panic)
    680 				panic("dirty blocks");
    681 		}
    682 #endif
    683 		splx(s);
    684 		VOP_UNLOCK(vp, 0);
    685 	} else {
    686 		(void) lfs_writeseg(fs, sp);
    687 	}
    688 
    689 	/* Note Ifile no longer needs to be written */
    690 	fs->lfs_doifile = 0;
    691 	if (writer_set)
    692 		lfs_writer_leave(fs);
    693 
    694 	/*
    695 	 * If we didn't write the Ifile, we didn't really do anything.
    696 	 * That means that (1) there is a checkpoint on disk and (2)
    697 	 * nothing has changed since it was written.
    698 	 *
    699 	 * Take the flags off of the segment so that lfs_segunlock
    700 	 * doesn't have to write the superblock either.
    701 	 */
    702 	if (do_ckp && !did_ckp) {
    703 		sp->seg_flags &= ~SEGM_CKP;
    704 	}
    705 
    706 	if (lfs_dostats) {
    707 		++lfs_stats.nwrites;
    708 		if (sp->seg_flags & SEGM_SYNC)
    709 			++lfs_stats.nsync_writes;
    710 		if (sp->seg_flags & SEGM_CKP)
    711 			++lfs_stats.ncheckpoints;
    712 	}
    713 	lfs_segunlock(fs);
    714 	return (0);
    715 }
    716 
    717 /*
    718  * Write the dirty blocks associated with a vnode.
    719  */
    720 void
    721 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    722 {
    723 	struct buf *bp;
    724 	struct finfo *fip;
    725 	struct inode *ip;
    726 	IFILE *ifp;
    727 	int i, frag;
    728 
    729 	ASSERT_SEGLOCK(fs);
    730 	ip = VTOI(vp);
    731 
    732 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    733 	    sp->sum_bytes_left < sizeof(struct finfo))
    734 		(void) lfs_writeseg(fs, sp);
    735 
    736 	sp->sum_bytes_left -= FINFOSIZE;
    737 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    738 
    739 	if (vp->v_flag & VDIROP)
    740 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    741 
    742 	fip = sp->fip;
    743 	fip->fi_nblocks = 0;
    744 	fip->fi_ino = ip->i_number;
    745 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    746 	fip->fi_version = ifp->if_version;
    747 	brelse(bp);
    748 
    749 	if (sp->seg_flags & SEGM_CLEAN) {
    750 		lfs_gather(fs, sp, vp, lfs_match_fake);
    751 		/*
    752 		 * For a file being flushed, we need to write *all* blocks.
    753 		 * This means writing the cleaning blocks first, and then
    754 		 * immediately following with any non-cleaning blocks.
    755 		 * The same is true of the Ifile since checkpoints assume
    756 		 * that all valid Ifile blocks are written.
    757 		 */
    758 		if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
    759 			lfs_gather(fs, sp, vp, lfs_match_data);
    760 			/*
    761 			 * Don't call VOP_PUTPAGES: if we're flushing,
    762 			 * we've already done it, and the Ifile doesn't
    763 			 * use the page cache.
    764 			 */
    765 		}
    766 	} else {
    767 		lfs_gather(fs, sp, vp, lfs_match_data);
    768 		/*
    769 		 * If we're flushing, we've already called VOP_PUTPAGES
    770 		 * so don't do it again.  Otherwise, we want to write
    771 		 * everything we've got.
    772 		 */
    773 		if (!IS_FLUSHING(fs, vp)) {
    774 			simple_lock(&vp->v_interlock);
    775 			VOP_PUTPAGES(vp, 0, 0,
    776 				     PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    777 		}
    778 	}
    779 
    780 	/*
    781 	 * It may not be necessary to write the meta-data blocks at this point,
    782 	 * as the roll-forward recovery code should be able to reconstruct the
    783 	 * list.
    784 	 *
    785 	 * We have to write them anyway, though, under two conditions: (1) the
    786 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    787 	 * checkpointing.
    788 	 *
    789 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    790 	 * new blocks not being written yet, in addition to fragments being
    791 	 * moved out of a cleaned segment.  If that is the case, don't
    792 	 * write the indirect blocks, or the finfo will have a small block
    793 	 * in the middle of it!
    794 	 * XXX in this case isn't the inode size wrong too?
    795 	 */
    796 	frag = 0;
    797 	if (sp->seg_flags & SEGM_CLEAN) {
    798 		for (i = 0; i < NDADDR; i++)
    799 			if (ip->i_lfs_fragsize[i] > 0 &&
    800 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    801 				++frag;
    802 	}
    803 #ifdef DIAGNOSTIC
    804 	if (frag > 1)
    805 		panic("lfs_writefile: more than one fragment!");
    806 #endif
    807 	if (IS_FLUSHING(fs, vp) ||
    808 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    809 		lfs_gather(fs, sp, vp, lfs_match_indir);
    810 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    811 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    812 	}
    813 	fip = sp->fip;
    814 	if (fip->fi_nblocks != 0) {
    815 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    816 				   sizeof(int32_t) * (fip->fi_nblocks));
    817 		sp->start_lbp = &sp->fip->fi_blocks[0];
    818 	} else {
    819 		sp->sum_bytes_left += FINFOSIZE;
    820 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    821 	}
    822 }
    823 
    824 int
    825 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    826 {
    827 	struct buf *bp, *ibp;
    828 	struct ufs1_dinode *cdp;
    829 	IFILE *ifp;
    830 	SEGUSE *sup;
    831 	daddr_t daddr;
    832 	int32_t *daddrp;	/* XXX ondisk32 */
    833 	ino_t ino;
    834 	int error, i, ndx, fsb = 0;
    835 	int redo_ifile = 0;
    836 	struct timespec ts;
    837 	int gotblk = 0;
    838 
    839 	ASSERT_SEGLOCK(fs);
    840 	if (!(ip->i_flag & IN_ALLMOD))
    841 		return (0);
    842 
    843 	/* Allocate a new inode block if necessary. */
    844 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    845 	    sp->ibp == NULL) {
    846 		/* Allocate a new segment if necessary. */
    847 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    848 		    sp->sum_bytes_left < sizeof(int32_t))
    849 			(void) lfs_writeseg(fs, sp);
    850 
    851 		/* Get next inode block. */
    852 		daddr = fs->lfs_offset;
    853 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    854 		sp->ibp = *sp->cbpp++ =
    855 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
    856 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
    857 		gotblk++;
    858 
    859 		/* Zero out inode numbers */
    860 		for (i = 0; i < INOPB(fs); ++i)
    861 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
    862 			    0;
    863 
    864 		++sp->start_bpp;
    865 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    866 		/* Set remaining space counters. */
    867 		sp->seg_bytes_left -= fs->lfs_ibsize;
    868 		sp->sum_bytes_left -= sizeof(int32_t);
    869 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    870 			sp->ninodes / INOPB(fs) - 1;
    871 		((int32_t *)(sp->segsum))[ndx] = daddr;
    872 	}
    873 
    874 	/* Update the inode times and copy the inode onto the inode page. */
    875 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    876 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    877 	if (ip->i_number != LFS_IFILE_INUM)
    878 		LFS_ITIMES(ip, &ts, &ts, &ts);
    879 
    880 	/*
    881 	 * If this is the Ifile, and we've already written the Ifile in this
    882 	 * partial segment, just overwrite it (it's not on disk yet) and
    883 	 * continue.
    884 	 *
    885 	 * XXX we know that the bp that we get the second time around has
    886 	 * already been gathered.
    887 	 */
    888 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    889 		*(sp->idp) = *ip->i_din.ffs1_din;
    890 		ip->i_lfs_osize = ip->i_size;
    891 		return 0;
    892 	}
    893 
    894 	bp = sp->ibp;
    895 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    896 	*cdp = *ip->i_din.ffs1_din;
    897 
    898 	/*
    899 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
    900 	 * addresses to disk; possibly revert the inode size.
    901 	 * XXX By not writing these blocks, we are making the lfs_avail
    902 	 * XXX count on disk wrong by the same amount.	We should be
    903 	 * XXX able to "borrow" from lfs_avail and return it after the
    904 	 * XXX Ifile is written.  See also in lfs_writeseg.
    905 	 */
    906 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
    907 		cdp->di_size = ip->i_lfs_osize;
    908 		DLOG((DLOG_VNODE, "lfs_writeinode: cleansing ino %d (%d != %d)\n",
    909 		      ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks));
    910 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
    911 		     daddrp++) {
    912 			if (*daddrp == UNWRITTEN) {
    913 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
    914 				*daddrp = 0;
    915 			}
    916 		}
    917 	} else {
    918 		/* If all blocks are goig to disk, update the "size on disk" */
    919 		ip->i_lfs_osize = ip->i_size;
    920 	}
    921 
    922 	if (ip->i_flag & IN_CLEANING)
    923 		LFS_CLR_UINO(ip, IN_CLEANING);
    924 	else {
    925 		/* XXX IN_ALLMOD */
    926 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
    927 			     IN_UPDATE | IN_MODIFY);
    928 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
    929 			LFS_CLR_UINO(ip, IN_MODIFIED);
    930 		else
    931 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
    932 			      "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
    933 			      ip->i_lfs_effnblks));
    934 	}
    935 
    936 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
    937 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
    938 			(sp->ninodes % INOPB(fs));
    939 	if (gotblk) {
    940 		LFS_LOCK_BUF(bp);
    941 		brelse(bp);
    942 	}
    943 
    944 	/* Increment inode count in segment summary block. */
    945 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    946 
    947 	/* If this page is full, set flag to allocate a new page. */
    948 	if (++sp->ninodes % INOPB(fs) == 0)
    949 		sp->ibp = NULL;
    950 
    951 	/*
    952 	 * If updating the ifile, update the super-block.  Update the disk
    953 	 * address and access times for this inode in the ifile.
    954 	 */
    955 	ino = ip->i_number;
    956 	if (ino == LFS_IFILE_INUM) {
    957 		daddr = fs->lfs_idaddr;
    958 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    959 	} else {
    960 		LFS_IENTRY(ifp, fs, ino, ibp);
    961 		daddr = ifp->if_daddr;
    962 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    963 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
    964 	}
    965 
    966 	/*
    967 	 * The inode's last address should not be in the current partial
    968 	 * segment, except under exceptional circumstances (lfs_writevnodes
    969 	 * had to start over, and in the meantime more blocks were written
    970 	 * to a vnode).	 Both inodes will be accounted to this segment
    971 	 * in lfs_writeseg so we need to subtract the earlier version
    972 	 * here anyway.	 The segment count can temporarily dip below
    973 	 * zero here; keep track of how many duplicates we have in
    974 	 * "dupino" so we don't panic below.
    975 	 */
    976 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
    977 		++sp->ndupino;
    978 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
    979 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
    980 		      (long long)daddr, sp->ndupino));
    981 	}
    982 	/*
    983 	 * Account the inode: it no longer belongs to its former segment,
    984 	 * though it will not belong to the new segment until that segment
    985 	 * is actually written.
    986 	 */
    987 	if (daddr != LFS_UNUSED_DADDR) {
    988 		u_int32_t oldsn = dtosn(fs, daddr);
    989 #ifdef DIAGNOSTIC
    990 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
    991 #endif
    992 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    993 #ifdef DIAGNOSTIC
    994 		if (sup->su_nbytes +
    995 		    sizeof (struct ufs1_dinode) * ndupino
    996 		      < sizeof (struct ufs1_dinode)) {
    997 			printf("lfs_writeinode: negative bytes "
    998 			       "(segment %" PRIu32 " short by %d, "
    999 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1000 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1001 			       "ndupino=%d)\n",
   1002 			       dtosn(fs, daddr),
   1003 			       (int)sizeof (struct ufs1_dinode) *
   1004 				   (1 - sp->ndupino) - sup->su_nbytes,
   1005 			       oldsn, sp->seg_number, daddr,
   1006 			       (unsigned int)sup->su_nbytes,
   1007 			       sp->ndupino);
   1008 			panic("lfs_writeinode: negative bytes");
   1009 			sup->su_nbytes = sizeof (struct ufs1_dinode);
   1010 		}
   1011 #endif
   1012 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1013 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
   1014 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
   1015 		redo_ifile =
   1016 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1017 		if (redo_ifile) {
   1018 			simple_lock(&fs->lfs_interlock);
   1019 			fs->lfs_flags |= LFS_IFDIRTY;
   1020 			simple_unlock(&fs->lfs_interlock);
   1021 		}
   1022 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1023 	}
   1024 	return (redo_ifile);
   1025 }
   1026 
   1027 int
   1028 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1029 {
   1030 	struct lfs *fs;
   1031 	int version;
   1032 	int j, blksinblk;
   1033 
   1034 	ASSERT_SEGLOCK(sp->fs);
   1035 	/*
   1036 	 * If full, finish this segment.  We may be doing I/O, so
   1037 	 * release and reacquire the splbio().
   1038 	 */
   1039 #ifdef DIAGNOSTIC
   1040 	if (sp->vp == NULL)
   1041 		panic ("lfs_gatherblock: Null vp in segment");
   1042 #endif
   1043 	fs = sp->fs;
   1044 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1045 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1046 	    sp->seg_bytes_left < bp->b_bcount) {
   1047 		if (sptr)
   1048 			splx(*sptr);
   1049 		lfs_updatemeta(sp);
   1050 
   1051 		version = sp->fip->fi_version;
   1052 		(void) lfs_writeseg(fs, sp);
   1053 
   1054 		sp->fip->fi_version = version;
   1055 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1056 		/* Add the current file to the segment summary. */
   1057 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1058 		sp->sum_bytes_left -= FINFOSIZE;
   1059 
   1060 		if (sptr)
   1061 			*sptr = splbio();
   1062 		return (1);
   1063 	}
   1064 
   1065 	if (bp->b_flags & B_GATHERED) {
   1066 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1067 		      " lbn %" PRId64 "\n",
   1068 		      sp->fip->fi_ino, bp->b_lblkno));
   1069 		return (0);
   1070 	}
   1071 
   1072 	/* Insert into the buffer list, update the FINFO block. */
   1073 	bp->b_flags |= B_GATHERED;
   1074 
   1075 	/* This block's accounting moves from lfs_favail to lfs_avail */
   1076 	lfs_deregister_block(sp->vp, bp->b_lblkno);
   1077 
   1078 	*sp->cbpp++ = bp;
   1079 	for (j = 0; j < blksinblk; j++)
   1080 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1081 
   1082 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1083 	sp->seg_bytes_left -= bp->b_bcount;
   1084 	return (0);
   1085 }
   1086 
   1087 int
   1088 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1089     int (*match)(struct lfs *, struct buf *))
   1090 {
   1091 	struct buf *bp, *nbp;
   1092 	int s, count = 0;
   1093 
   1094 	ASSERT_SEGLOCK(fs);
   1095 	KASSERT(sp->vp == NULL);
   1096 	sp->vp = vp;
   1097 	s = splbio();
   1098 
   1099 #ifndef LFS_NO_BACKBUF_HACK
   1100 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1101 # define	BUF_OFFSET	\
   1102 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1103 # define	BACK_BUF(BP)	\
   1104 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1105 # define	BEG_OF_LIST	\
   1106 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1107 
   1108 loop:
   1109 	/* Find last buffer. */
   1110 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1111 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1112 	     bp = LIST_NEXT(bp, b_vnbufs))
   1113 		/* nothing */;
   1114 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1115 		nbp = BACK_BUF(bp);
   1116 #else /* LFS_NO_BACKBUF_HACK */
   1117 loop:
   1118 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1119 		nbp = LIST_NEXT(bp, b_vnbufs);
   1120 #endif /* LFS_NO_BACKBUF_HACK */
   1121 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1122 #ifdef DEBUG
   1123 			if (vp == fs->lfs_ivnode &&
   1124 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1125 				DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
   1126 				      PRId64 " busy (%x)",
   1127 				      bp->b_lblkno, bp->b_flags));
   1128 #endif
   1129 			continue;
   1130 		}
   1131 		if (vp->v_type == VBLK) {
   1132 			/* For block devices, just write the blocks. */
   1133 			/* XXX Do we even need to do this? */
   1134 			/*
   1135 			 * Get the block before bwrite,
   1136 			 * so we don't corrupt the free list
   1137 			 */
   1138 			bp->b_flags |= B_BUSY;
   1139 			bremfree(bp);
   1140 			bwrite(bp);
   1141 		} else {
   1142 #ifdef DIAGNOSTIC
   1143 # ifdef LFS_USE_B_INVAL
   1144 			if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1145 				DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1146 				      " is B_INVAL\n", bp->b_lblkno));
   1147 				VOP_PRINT(bp->b_vp);
   1148 			}
   1149 # endif /* LFS_USE_B_INVAL */
   1150 			if (!(bp->b_flags & B_DELWRI))
   1151 				panic("lfs_gather: bp not B_DELWRI");
   1152 			if (!(bp->b_flags & B_LOCKED)) {
   1153 				DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1154 				      " blk %" PRId64 " not B_LOCKED\n",
   1155 				      bp->b_lblkno,
   1156 				      dbtofsb(fs, bp->b_blkno)));
   1157 				VOP_PRINT(bp->b_vp);
   1158 				panic("lfs_gather: bp not B_LOCKED");
   1159 			}
   1160 #endif
   1161 			if (lfs_gatherblock(sp, bp, &s)) {
   1162 				goto loop;
   1163 			}
   1164 		}
   1165 		count++;
   1166 	}
   1167 	splx(s);
   1168 	lfs_updatemeta(sp);
   1169 	KASSERT(sp->vp == vp);
   1170 	sp->vp = NULL;
   1171 	return count;
   1172 }
   1173 
   1174 #if DEBUG
   1175 # define DEBUG_OOFF(n) do {						\
   1176 	if (ooff == 0) {						\
   1177 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1178 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1179 			", was 0x0 (or %" PRId64 ")\n",			\
   1180 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1181 	}								\
   1182 } while (0)
   1183 #else
   1184 # define DEBUG_OOFF(n)
   1185 #endif
   1186 
   1187 /*
   1188  * Change the given block's address to ndaddr, finding its previous
   1189  * location using ufs_bmaparray().
   1190  *
   1191  * Account for this change in the segment table.
   1192  *
   1193  * called with sp == NULL by roll-forwarding code.
   1194  */
   1195 void
   1196 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1197     daddr_t lbn, int32_t ndaddr, int size)
   1198 {
   1199 	SEGUSE *sup;
   1200 	struct buf *bp;
   1201 	struct indir a[NIADDR + 2], *ap;
   1202 	struct inode *ip;
   1203 	daddr_t daddr, ooff;
   1204 	int num, error;
   1205 	int bb, osize, obb;
   1206 
   1207 	ASSERT_SEGLOCK(fs);
   1208 	KASSERT(sp == NULL || sp->vp == vp);
   1209 	ip = VTOI(vp);
   1210 
   1211 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1212 	if (error)
   1213 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1214 
   1215 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1216 	KASSERT(daddr <= LFS_MAX_DADDR);
   1217 	if (daddr > 0)
   1218 		daddr = dbtofsb(fs, daddr);
   1219 
   1220 	bb = fragstofsb(fs, numfrags(fs, size));
   1221 	switch (num) {
   1222 	    case 0:
   1223 		    ooff = ip->i_ffs1_db[lbn];
   1224 		    DEBUG_OOFF(0);
   1225 		    if (ooff == UNWRITTEN)
   1226 			    ip->i_ffs1_blocks += bb;
   1227 		    else {
   1228 			    /* possible fragment truncation or extension */
   1229 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1230 			    ip->i_ffs1_blocks += (bb - obb);
   1231 		    }
   1232 		    ip->i_ffs1_db[lbn] = ndaddr;
   1233 		    break;
   1234 	    case 1:
   1235 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1236 		    DEBUG_OOFF(1);
   1237 		    if (ooff == UNWRITTEN)
   1238 			    ip->i_ffs1_blocks += bb;
   1239 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1240 		    break;
   1241 	    default:
   1242 		    ap = &a[num - 1];
   1243 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1244 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1245 				  ap->in_lbn);
   1246 
   1247 		    /* XXX ondisk32 */
   1248 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1249 		    DEBUG_OOFF(num);
   1250 		    if (ooff == UNWRITTEN)
   1251 			    ip->i_ffs1_blocks += bb;
   1252 		    /* XXX ondisk32 */
   1253 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1254 		    (void) VOP_BWRITE(bp);
   1255 	}
   1256 
   1257 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1258 
   1259 	/*
   1260 	 * Though we'd rather it couldn't, this *can* happen right now
   1261 	 * if cleaning blocks and regular blocks coexist.
   1262 	 */
   1263 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1264 
   1265 	/*
   1266 	 * Update segment usage information, based on old size
   1267 	 * and location.
   1268 	 */
   1269 	if (daddr > 0) {
   1270 		u_int32_t oldsn = dtosn(fs, daddr);
   1271 #ifdef DIAGNOSTIC
   1272 		int ndupino;
   1273 
   1274 		if (sp && sp->seg_number == oldsn) {
   1275 			ndupino = sp->ndupino;
   1276 		} else {
   1277 			ndupino = 0;
   1278 		}
   1279 #endif
   1280 		KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
   1281 		if (lbn >= 0 && lbn < NDADDR)
   1282 			osize = ip->i_lfs_fragsize[lbn];
   1283 		else
   1284 			osize = fs->lfs_bsize;
   1285 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1286 #ifdef DIAGNOSTIC
   1287 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
   1288 		    < osize) {
   1289 			printf("lfs_updatemeta: negative bytes "
   1290 			       "(segment %" PRIu32 " short by %" PRId64
   1291 			       ")\n", dtosn(fs, daddr),
   1292 			       (int64_t)osize -
   1293 			       (sizeof (struct ufs1_dinode) * ndupino +
   1294 				sup->su_nbytes));
   1295 			printf("lfs_updatemeta: ino %d, lbn %" PRId64
   1296 			       ", addr = 0x%" PRIx64 "\n",
   1297 			       ip->i_number, lbn, daddr);
   1298 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1299 			panic("lfs_updatemeta: negative bytes");
   1300 			sup->su_nbytes = osize -
   1301 			    sizeof (struct ufs1_dinode) * ndupino;
   1302 		}
   1303 #endif
   1304 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1305 		      " db 0x%" PRIx64 "\n",
   1306 		      dtosn(fs, daddr), osize,
   1307 		      ip->i_number, lbn, daddr));
   1308 		sup->su_nbytes -= osize;
   1309 		if (!(bp->b_flags & B_GATHERED)) {
   1310 			simple_lock(&fs->lfs_interlock);
   1311 			fs->lfs_flags |= LFS_IFDIRTY;
   1312 			simple_unlock(&fs->lfs_interlock);
   1313 		}
   1314 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1315 	}
   1316 	/*
   1317 	 * Now that this block has a new address, and its old
   1318 	 * segment no longer owns it, we can forget about its
   1319 	 * old size.
   1320 	 */
   1321 	if (lbn >= 0 && lbn < NDADDR)
   1322 		ip->i_lfs_fragsize[lbn] = size;
   1323 }
   1324 
   1325 /*
   1326  * Update the metadata that points to the blocks listed in the FINFO
   1327  * array.
   1328  */
   1329 void
   1330 lfs_updatemeta(struct segment *sp)
   1331 {
   1332 	struct buf *sbp;
   1333 	struct lfs *fs;
   1334 	struct vnode *vp;
   1335 	daddr_t lbn;
   1336 	int i, nblocks, num;
   1337 	int bb;
   1338 	int bytesleft, size;
   1339 
   1340 	ASSERT_SEGLOCK(sp->fs);
   1341 	vp = sp->vp;
   1342 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1343 	KASSERT(nblocks >= 0);
   1344 	KASSERT(vp != NULL);
   1345 	if (nblocks == 0)
   1346 		return;
   1347 
   1348 	/*
   1349 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1350 	 * Correct for this. (XXX we should be able to keep track of these.)
   1351 	 */
   1352 	fs = sp->fs;
   1353 	for (i = 0; i < nblocks; i++) {
   1354 		if (sp->start_bpp[i] == NULL) {
   1355 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1356 			nblocks = i;
   1357 			break;
   1358 		}
   1359 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1360 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1361 		nblocks -= num - 1;
   1362 	}
   1363 
   1364 	KASSERT(vp->v_type == VREG ||
   1365 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1366 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1367 
   1368 	/*
   1369 	 * Sort the blocks.
   1370 	 *
   1371 	 * We have to sort even if the blocks come from the
   1372 	 * cleaner, because there might be other pending blocks on the
   1373 	 * same inode...and if we don't sort, and there are fragments
   1374 	 * present, blocks may be written in the wrong place.
   1375 	 */
   1376 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1377 
   1378 	/*
   1379 	 * Record the length of the last block in case it's a fragment.
   1380 	 * If there are indirect blocks present, they sort last.  An
   1381 	 * indirect block will be lfs_bsize and its presence indicates
   1382 	 * that you cannot have fragments.
   1383 	 *
   1384 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1385 	 * XXX a later indirect block.	This will continue to be
   1386 	 * XXX true until lfs_markv is fixed to do everything with
   1387 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1388 	 */
   1389 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1390 		fs->lfs_bmask) + 1;
   1391 
   1392 	/*
   1393 	 * Assign disk addresses, and update references to the logical
   1394 	 * block and the segment usage information.
   1395 	 */
   1396 	for (i = nblocks; i--; ++sp->start_bpp) {
   1397 		sbp = *sp->start_bpp;
   1398 		lbn = *sp->start_lbp;
   1399 		KASSERT(sbp->b_lblkno == lbn);
   1400 
   1401 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1402 
   1403 		/*
   1404 		 * If we write a frag in the wrong place, the cleaner won't
   1405 		 * be able to correctly identify its size later, and the
   1406 		 * segment will be uncleanable.	 (Even worse, it will assume
   1407 		 * that the indirect block that actually ends the list
   1408 		 * is of a smaller size!)
   1409 		 */
   1410 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1411 			panic("lfs_updatemeta: fragment is not last block");
   1412 
   1413 		/*
   1414 		 * For each subblock in this possibly oversized block,
   1415 		 * update its address on disk.
   1416 		 */
   1417 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1418 		KASSERT(vp == sbp->b_vp);
   1419 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1420 		     bytesleft -= fs->lfs_bsize) {
   1421 			size = MIN(bytesleft, fs->lfs_bsize);
   1422 			bb = fragstofsb(fs, numfrags(fs, size));
   1423 			lbn = *sp->start_lbp++;
   1424 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1425 			    size);
   1426 			fs->lfs_offset += bb;
   1427 		}
   1428 
   1429 	}
   1430 }
   1431 
   1432 /*
   1433  * Start a new partial segment.
   1434  *
   1435  * Return 1 when we entered to a new segment.
   1436  * Otherwise, return 0.
   1437  */
   1438 int
   1439 lfs_initseg(struct lfs *fs)
   1440 {
   1441 	struct segment *sp = fs->lfs_sp;
   1442 	SEGSUM *ssp;
   1443 	struct buf *sbp;	/* buffer for SEGSUM */
   1444 	int repeat = 0;		/* return value */
   1445 
   1446 	ASSERT_SEGLOCK(fs);
   1447 	/* Advance to the next segment. */
   1448 	if (!LFS_PARTIAL_FITS(fs)) {
   1449 		SEGUSE *sup;
   1450 		struct buf *bp;
   1451 
   1452 		/* lfs_avail eats the remaining space */
   1453 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1454 						   fs->lfs_curseg);
   1455 		/* Wake up any cleaning procs waiting on this file system. */
   1456 		wakeup(&lfs_allclean_wakeup);
   1457 		wakeup(&fs->lfs_nextseg);
   1458 		lfs_newseg(fs);
   1459 		repeat = 1;
   1460 		fs->lfs_offset = fs->lfs_curseg;
   1461 
   1462 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1463 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1464 
   1465 		/*
   1466 		 * If the segment contains a superblock, update the offset
   1467 		 * and summary address to skip over it.
   1468 		 */
   1469 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1470 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1471 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1472 			sp->seg_bytes_left -= LFS_SBPAD;
   1473 		}
   1474 		brelse(bp);
   1475 		/* Segment zero could also contain the labelpad */
   1476 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1477 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1478 			fs->lfs_offset +=
   1479 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1480 			sp->seg_bytes_left -=
   1481 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1482 		}
   1483 	} else {
   1484 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1485 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1486 				      (fs->lfs_offset - fs->lfs_curseg));
   1487 	}
   1488 	fs->lfs_lastpseg = fs->lfs_offset;
   1489 
   1490 	/* Record first address of this partial segment */
   1491 	if (sp->seg_flags & SEGM_CLEAN) {
   1492 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1493 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1494 			/* "1" is the artificial inc in lfs_seglock */
   1495 			simple_lock(&fs->lfs_interlock);
   1496 			while (fs->lfs_iocount > 1) {
   1497 				ltsleep(&fs->lfs_iocount, PRIBIO + 1,
   1498 				    "lfs_initseg", 0, &fs->lfs_interlock);
   1499 			}
   1500 			simple_unlock(&fs->lfs_interlock);
   1501 			fs->lfs_cleanind = 0;
   1502 		}
   1503 	}
   1504 
   1505 	sp->fs = fs;
   1506 	sp->ibp = NULL;
   1507 	sp->idp = NULL;
   1508 	sp->ninodes = 0;
   1509 	sp->ndupino = 0;
   1510 
   1511 	sp->cbpp = sp->bpp;
   1512 
   1513 	/* Get a new buffer for SEGSUM */
   1514 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1515 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1516 
   1517 	/* ... and enter it into the buffer list. */
   1518 	*sp->cbpp = sbp;
   1519 	sp->cbpp++;
   1520 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1521 
   1522 	sp->start_bpp = sp->cbpp;
   1523 
   1524 	/* Set point to SEGSUM, initialize it. */
   1525 	ssp = sp->segsum = sbp->b_data;
   1526 	memset(ssp, 0, fs->lfs_sumsize);
   1527 	ssp->ss_next = fs->lfs_nextseg;
   1528 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1529 	ssp->ss_magic = SS_MAGIC;
   1530 
   1531 	/* Set pointer to first FINFO, initialize it. */
   1532 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1533 	sp->fip->fi_nblocks = 0;
   1534 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1535 	sp->fip->fi_lastlength = 0;
   1536 
   1537 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1538 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1539 
   1540 	return (repeat);
   1541 }
   1542 
   1543 /*
   1544  * Return the next segment to write.
   1545  */
   1546 void
   1547 lfs_newseg(struct lfs *fs)
   1548 {
   1549 	CLEANERINFO *cip;
   1550 	SEGUSE *sup;
   1551 	struct buf *bp;
   1552 	int curseg, isdirty, sn;
   1553 
   1554 	ASSERT_SEGLOCK(fs);
   1555 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1556 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1557 	      dtosn(fs, fs->lfs_nextseg)));
   1558 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1559 	sup->su_nbytes = 0;
   1560 	sup->su_nsums = 0;
   1561 	sup->su_ninos = 0;
   1562 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1563 
   1564 	LFS_CLEANERINFO(cip, fs, bp);
   1565 	--cip->clean;
   1566 	++cip->dirty;
   1567 	fs->lfs_nclean = cip->clean;
   1568 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1569 
   1570 	fs->lfs_lastseg = fs->lfs_curseg;
   1571 	fs->lfs_curseg = fs->lfs_nextseg;
   1572 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1573 		sn = (sn + 1) % fs->lfs_nseg;
   1574 		if (sn == curseg)
   1575 			panic("lfs_nextseg: no clean segments");
   1576 		LFS_SEGENTRY(sup, fs, sn, bp);
   1577 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1578 		/* Check SEGUSE_EMPTY as we go along */
   1579 		if (isdirty && sup->su_nbytes == 0 &&
   1580 		    !(sup->su_flags & SEGUSE_EMPTY))
   1581 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1582 		else
   1583 			brelse(bp);
   1584 
   1585 		if (!isdirty)
   1586 			break;
   1587 	}
   1588 
   1589 	++fs->lfs_nactive;
   1590 	fs->lfs_nextseg = sntod(fs, sn);
   1591 	if (lfs_dostats) {
   1592 		++lfs_stats.segsused;
   1593 	}
   1594 }
   1595 
   1596 static struct buf *
   1597 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1598 {
   1599 	struct lfs_cluster *cl;
   1600 	struct buf **bpp, *bp;
   1601 	int s;
   1602 
   1603 	ASSERT_SEGLOCK(fs);
   1604 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1605 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1606 	memset(cl, 0, sizeof(*cl));
   1607 	cl->fs = fs;
   1608 	cl->bpp = bpp;
   1609 	cl->bufcount = 0;
   1610 	cl->bufsize = 0;
   1611 
   1612 	/* If this segment is being written synchronously, note that */
   1613 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1614 		cl->flags |= LFS_CL_SYNC;
   1615 		cl->seg = fs->lfs_sp;
   1616 		++cl->seg->seg_iocount;
   1617 	}
   1618 
   1619 	/* Get an empty buffer header, or maybe one with something on it */
   1620 	s = splbio();
   1621 	bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
   1622 	splx(s);
   1623 	memset(bp, 0, sizeof(*bp));
   1624 	BUF_INIT(bp);
   1625 
   1626 	bp->b_flags = B_BUSY | B_CALL;
   1627 	bp->b_dev = NODEV;
   1628 	bp->b_blkno = bp->b_lblkno = addr;
   1629 	bp->b_iodone = lfs_cluster_callback;
   1630 	bp->b_private = cl;
   1631 	bp->b_vp = vp;
   1632 
   1633 	return bp;
   1634 }
   1635 
   1636 int
   1637 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1638 {
   1639 	struct buf **bpp, *bp, *cbp, *newbp;
   1640 	SEGUSE *sup;
   1641 	SEGSUM *ssp;
   1642 	int i, s;
   1643 	int do_again, nblocks, byteoffset;
   1644 	size_t el_size;
   1645 	struct lfs_cluster *cl;
   1646 	u_short ninos;
   1647 	struct vnode *devvp;
   1648 	char *p = NULL;
   1649 	struct vnode *vp;
   1650 	int32_t *daddrp;	/* XXX ondisk32 */
   1651 	int changed;
   1652 	u_int32_t sum;
   1653 
   1654 	ASSERT_SEGLOCK(fs);
   1655 	/*
   1656 	 * If there are no buffers other than the segment summary to write
   1657 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1658 	 * even if there aren't any buffers, you need to write the superblock.
   1659 	 */
   1660 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1661 		return (0);
   1662 
   1663 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1664 
   1665 	/* Update the segment usage information. */
   1666 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1667 
   1668 	/* Loop through all blocks, except the segment summary. */
   1669 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1670 		if ((*bpp)->b_vp != devvp) {
   1671 			sup->su_nbytes += (*bpp)->b_bcount;
   1672 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   1673 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   1674 			      sp->seg_number, (*bpp)->b_bcount,
   1675 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1676 			      (*bpp)->b_blkno));
   1677 		}
   1678 	}
   1679 
   1680 	ssp = (SEGSUM *)sp->segsum;
   1681 
   1682 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1683 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   1684 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
   1685 	      ssp->ss_ninos));
   1686 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
   1687 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1688 	if (fs->lfs_version == 1)
   1689 		sup->su_olastmod = time.tv_sec;
   1690 	else
   1691 		sup->su_lastmod = time.tv_sec;
   1692 	sup->su_ninos += ninos;
   1693 	++sup->su_nsums;
   1694 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
   1695 							 fs->lfs_ibsize));
   1696 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1697 
   1698 	do_again = !(bp->b_flags & B_GATHERED);
   1699 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1700 
   1701 	/*
   1702 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1703 	 * the checksum computation and the actual write.
   1704 	 *
   1705 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1706 	 * there are any, replace them with copies that have UNASSIGNED
   1707 	 * instead.
   1708 	 */
   1709 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1710 		++bpp;
   1711 		bp = *bpp;
   1712 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1713 			bp->b_flags |= B_BUSY;
   1714 			continue;
   1715 		}
   1716 
   1717 		simple_lock(&bp->b_interlock);
   1718 		s = splbio();
   1719 		while (bp->b_flags & B_BUSY) {
   1720 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   1721 			      " data summary corruption for ino %d, lbn %"
   1722 			      PRId64 "\n",
   1723 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   1724 			bp->b_flags |= B_WANTED;
   1725 			ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
   1726 				&bp->b_interlock);
   1727 			splx(s);
   1728 			s = splbio();
   1729 		}
   1730 		bp->b_flags |= B_BUSY;
   1731 		splx(s);
   1732 		simple_unlock(&bp->b_interlock);
   1733 
   1734 		/*
   1735 		 * Check and replace indirect block UNWRITTEN bogosity.
   1736 		 * XXX See comment in lfs_writefile.
   1737 		 */
   1738 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1739 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   1740 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1741 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1742 			      VTOI(bp->b_vp)->i_number,
   1743 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   1744 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   1745 			/* Make a copy we'll make changes to */
   1746 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1747 					   bp->b_bcount, LFS_NB_IBLOCK);
   1748 			newbp->b_blkno = bp->b_blkno;
   1749 			memcpy(newbp->b_data, bp->b_data,
   1750 			       newbp->b_bcount);
   1751 
   1752 			changed = 0;
   1753 			/* XXX ondisk32 */
   1754 			for (daddrp = (int32_t *)(newbp->b_data);
   1755 			     daddrp < (int32_t *)(newbp->b_data +
   1756 						  newbp->b_bcount); daddrp++) {
   1757 				if (*daddrp == UNWRITTEN) {
   1758 					++changed;
   1759 					*daddrp = 0;
   1760 				}
   1761 			}
   1762 			/*
   1763 			 * Get rid of the old buffer.  Don't mark it clean,
   1764 			 * though, if it still has dirty data on it.
   1765 			 */
   1766 			if (changed) {
   1767 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   1768 				      " bp = %p newbp = %p\n", changed, bp,
   1769 				      newbp));
   1770 				*bpp = newbp;
   1771 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1772 				if (bp->b_flags & B_CALL) {
   1773 					DLOG((DLOG_SEG, "lfs_writeseg: "
   1774 					      "indir bp should not be B_CALL\n"));
   1775 					s = splbio();
   1776 					biodone(bp);
   1777 					splx(s);
   1778 					bp = NULL;
   1779 				} else {
   1780 					/* Still on free list, leave it there */
   1781 					s = splbio();
   1782 					bp->b_flags &= ~B_BUSY;
   1783 					if (bp->b_flags & B_WANTED)
   1784 						wakeup(bp);
   1785 					splx(s);
   1786 					/*
   1787 					 * We have to re-decrement lfs_avail
   1788 					 * since this block is going to come
   1789 					 * back around to us in the next
   1790 					 * segment.
   1791 					 */
   1792 					fs->lfs_avail -=
   1793 					    btofsb(fs, bp->b_bcount);
   1794 				}
   1795 			} else {
   1796 				lfs_freebuf(fs, newbp);
   1797 			}
   1798 		}
   1799 	}
   1800 	/*
   1801 	 * Compute checksum across data and then across summary; the first
   1802 	 * block (the summary block) is skipped.  Set the create time here
   1803 	 * so that it's guaranteed to be later than the inode mod times.
   1804 	 */
   1805 	sum = 0;
   1806 	if (fs->lfs_version == 1)
   1807 		el_size = sizeof(u_long);
   1808 	else
   1809 		el_size = sizeof(u_int32_t);
   1810 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   1811 		++bpp;
   1812 		/* Loop through gop_write cluster blocks */
   1813 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   1814 		     byteoffset += fs->lfs_bsize) {
   1815 #ifdef LFS_USE_B_INVAL
   1816 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   1817 			    (B_CALL | B_INVAL)) {
   1818 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   1819 					   byteoffset, dp, el_size)) {
   1820 					panic("lfs_writeseg: copyin failed [1]:"
   1821 						" ino %d blk %" PRId64,
   1822 						VTOI((*bpp)->b_vp)->i_number,
   1823 						(*bpp)->b_lblkno);
   1824 				}
   1825 			} else
   1826 #endif /* LFS_USE_B_INVAL */
   1827 			{
   1828 				sum = lfs_cksum_part(
   1829 				    (*bpp)->b_data + byteoffset, el_size, sum);
   1830 			}
   1831 		}
   1832 	}
   1833 	if (fs->lfs_version == 1)
   1834 		ssp->ss_ocreate = time.tv_sec;
   1835 	else {
   1836 		ssp->ss_create = time.tv_sec;
   1837 		ssp->ss_serial = ++fs->lfs_serial;
   1838 		ssp->ss_ident  = fs->lfs_ident;
   1839 	}
   1840 	ssp->ss_datasum = lfs_cksum_fold(sum);
   1841 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   1842 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   1843 
   1844 	simple_lock(&fs->lfs_interlock);
   1845 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   1846 			  btofsb(fs, fs->lfs_sumsize));
   1847 	simple_unlock(&fs->lfs_interlock);
   1848 
   1849 	/*
   1850 	 * When we simply write the blocks we lose a rotation for every block
   1851 	 * written.  To avoid this problem, we cluster the buffers into a
   1852 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   1853 	 * devices can handle, use that for the size of the chunks.
   1854 	 *
   1855 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   1856 	 * don't bother to copy into other clusters.
   1857 	 */
   1858 
   1859 #define CHUNKSIZE MAXPHYS
   1860 
   1861 	if (devvp == NULL)
   1862 		panic("devvp is NULL");
   1863 	for (bpp = sp->bpp, i = nblocks; i;) {
   1864 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   1865 		cl = cbp->b_private;
   1866 
   1867 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1868 		cbp->b_bcount = 0;
   1869 
   1870 #if defined(DEBUG) && defined(DIAGNOSTIC)
   1871 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   1872 		    / sizeof(int32_t)) {
   1873 			panic("lfs_writeseg: real bpp overwrite");
   1874 		}
   1875 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
   1876 			panic("lfs_writeseg: theoretical bpp overwrite");
   1877 		}
   1878 #endif
   1879 
   1880 		/*
   1881 		 * Construct the cluster.
   1882 		 */
   1883 		simple_lock(&fs->lfs_interlock);
   1884 		++fs->lfs_iocount;
   1885 		simple_unlock(&fs->lfs_interlock);
   1886 		while (i && cbp->b_bcount < CHUNKSIZE) {
   1887 			bp = *bpp;
   1888 
   1889 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1890 				break;
   1891 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   1892 				break;
   1893 
   1894 			/* Clusters from GOP_WRITE are expedited */
   1895 			if (bp->b_bcount > fs->lfs_bsize) {
   1896 				if (cbp->b_bcount > 0)
   1897 					/* Put in its own buffer */
   1898 					break;
   1899 				else {
   1900 					cbp->b_data = bp->b_data;
   1901 				}
   1902 			} else if (cbp->b_bcount == 0) {
   1903 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   1904 							     LFS_NB_CLUSTER);
   1905 				cl->flags |= LFS_CL_MALLOC;
   1906 			}
   1907 #ifdef DIAGNOSTIC
   1908 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   1909 					      btodb(bp->b_bcount - 1))) !=
   1910 			    sp->seg_number) {
   1911 				printf("blk size %d daddr %" PRIx64
   1912 				    " not in seg %d\n",
   1913 				    bp->b_bcount, bp->b_blkno,
   1914 				    sp->seg_number);
   1915 				panic("segment overwrite");
   1916 			}
   1917 #endif
   1918 
   1919 #ifdef LFS_USE_B_INVAL
   1920 			/*
   1921 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1922 			 * We need to copy the data from user space rather than
   1923 			 * from the buffer indicated.
   1924 			 * XXX == what do I do on an error?
   1925 			 */
   1926 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
   1927 			    (B_CALL|B_INVAL)) {
   1928 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1929 					panic("lfs_writeseg: "
   1930 					    "copyin failed [2]");
   1931 			} else
   1932 #endif /* LFS_USE_B_INVAL */
   1933 			if (cl->flags & LFS_CL_MALLOC) {
   1934 				/* copy data into our cluster. */
   1935 				memcpy(p, bp->b_data, bp->b_bcount);
   1936 				p += bp->b_bcount;
   1937 			}
   1938 
   1939 			cbp->b_bcount += bp->b_bcount;
   1940 			cl->bufsize += bp->b_bcount;
   1941 
   1942 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   1943 			cl->bpp[cl->bufcount++] = bp;
   1944 			vp = bp->b_vp;
   1945 			s = splbio();
   1946 			reassignbuf(bp, vp);
   1947 			V_INCR_NUMOUTPUT(vp);
   1948 			splx(s);
   1949 
   1950 			bpp++;
   1951 			i--;
   1952 		}
   1953 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1954 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   1955 		else
   1956 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   1957 		s = splbio();
   1958 		V_INCR_NUMOUTPUT(devvp);
   1959 		splx(s);
   1960 		VOP_STRATEGY(devvp, cbp);
   1961 		curproc->p_stats->p_ru.ru_oublock++;
   1962 	}
   1963 
   1964 	if (lfs_dostats) {
   1965 		++lfs_stats.psegwrites;
   1966 		lfs_stats.blocktot += nblocks - 1;
   1967 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1968 			++lfs_stats.psyncwrites;
   1969 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1970 			++lfs_stats.pcleanwrites;
   1971 			lfs_stats.cleanblocks += nblocks - 1;
   1972 		}
   1973 	}
   1974 	return (lfs_initseg(fs) || do_again);
   1975 }
   1976 
   1977 void
   1978 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   1979 {
   1980 	struct buf *bp;
   1981 	int s;
   1982 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1983 
   1984 	ASSERT_MAYBE_SEGLOCK(fs);
   1985 #ifdef DIAGNOSTIC
   1986 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   1987 #endif
   1988 	/*
   1989 	 * If we can write one superblock while another is in
   1990 	 * progress, we risk not having a complete checkpoint if we crash.
   1991 	 * So, block here if a superblock write is in progress.
   1992 	 */
   1993 	simple_lock(&fs->lfs_interlock);
   1994 	s = splbio();
   1995 	while (fs->lfs_sbactive) {
   1996 		ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   1997 			&fs->lfs_interlock);
   1998 	}
   1999 	fs->lfs_sbactive = daddr;
   2000 	splx(s);
   2001 	simple_unlock(&fs->lfs_interlock);
   2002 
   2003 	/* Set timestamp of this version of the superblock */
   2004 	if (fs->lfs_version == 1)
   2005 		fs->lfs_otstamp = time.tv_sec;
   2006 	fs->lfs_tstamp = time.tv_sec;
   2007 
   2008 	/* Checksum the superblock and copy it into a buffer. */
   2009 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2010 	bp = lfs_newbuf(fs, devvp,
   2011 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2012 	memset(bp->b_data + sizeof(struct dlfs), 0,
   2013 	    LFS_SBPAD - sizeof(struct dlfs));
   2014 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2015 
   2016 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2017 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2018 	bp->b_iodone = lfs_supercallback;
   2019 
   2020 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2021 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2022 	else
   2023 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2024 	curproc->p_stats->p_ru.ru_oublock++;
   2025 	s = splbio();
   2026 	V_INCR_NUMOUTPUT(bp->b_vp);
   2027 	splx(s);
   2028 	simple_lock(&fs->lfs_interlock);
   2029 	++fs->lfs_iocount;
   2030 	simple_unlock(&fs->lfs_interlock);
   2031 	VOP_STRATEGY(devvp, bp);
   2032 }
   2033 
   2034 /*
   2035  * Logical block number match routines used when traversing the dirty block
   2036  * chain.
   2037  */
   2038 int
   2039 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2040 {
   2041 
   2042 	ASSERT_SEGLOCK(fs);
   2043 	return LFS_IS_MALLOC_BUF(bp);
   2044 }
   2045 
   2046 #if 0
   2047 int
   2048 lfs_match_real(struct lfs *fs, struct buf *bp)
   2049 {
   2050 
   2051 	ASSERT_SEGLOCK(fs);
   2052 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2053 }
   2054 #endif
   2055 
   2056 int
   2057 lfs_match_data(struct lfs *fs, struct buf *bp)
   2058 {
   2059 
   2060 	ASSERT_SEGLOCK(fs);
   2061 	return (bp->b_lblkno >= 0);
   2062 }
   2063 
   2064 int
   2065 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2066 {
   2067 	daddr_t lbn;
   2068 
   2069 	ASSERT_SEGLOCK(fs);
   2070 	lbn = bp->b_lblkno;
   2071 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2072 }
   2073 
   2074 int
   2075 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2076 {
   2077 	daddr_t lbn;
   2078 
   2079 	ASSERT_SEGLOCK(fs);
   2080 	lbn = bp->b_lblkno;
   2081 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2082 }
   2083 
   2084 int
   2085 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2086 {
   2087 	daddr_t lbn;
   2088 
   2089 	ASSERT_SEGLOCK(fs);
   2090 	lbn = bp->b_lblkno;
   2091 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2092 }
   2093 
   2094 /*
   2095  * XXX - The only buffers that are going to hit these functions are the
   2096  * segment write blocks, or the segment summaries, or the superblocks.
   2097  *
   2098  * All of the above are created by lfs_newbuf, and so do not need to be
   2099  * released via brelse.
   2100  */
   2101 void
   2102 lfs_callback(struct buf *bp)
   2103 {
   2104 	struct lfs *fs;
   2105 
   2106 	fs = bp->b_private;
   2107 	ASSERT_NO_SEGLOCK(fs);
   2108 	lfs_freebuf(fs, bp);
   2109 }
   2110 
   2111 static void
   2112 lfs_super_aiodone(struct buf *bp)
   2113 {
   2114 	struct lfs *fs;
   2115 
   2116 	fs = bp->b_private;
   2117 	ASSERT_NO_SEGLOCK(fs);
   2118 	simple_lock(&fs->lfs_interlock);
   2119 	fs->lfs_sbactive = 0;
   2120 	if (--fs->lfs_iocount <= 1)
   2121 		wakeup(&fs->lfs_iocount);
   2122 	simple_unlock(&fs->lfs_interlock);
   2123 	wakeup(&fs->lfs_sbactive);
   2124 	lfs_freebuf(fs, bp);
   2125 }
   2126 
   2127 static void
   2128 lfs_cluster_aiodone(struct buf *bp)
   2129 {
   2130 	struct lfs_cluster *cl;
   2131 	struct lfs *fs;
   2132 	struct buf *tbp, *fbp;
   2133 	struct vnode *vp, *devvp;
   2134 	struct inode *ip;
   2135 	int s, error=0;
   2136 
   2137 	if (bp->b_flags & B_ERROR)
   2138 		error = bp->b_error;
   2139 
   2140 	cl = bp->b_private;
   2141 	fs = cl->fs;
   2142 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2143 	ASSERT_NO_SEGLOCK(fs);
   2144 
   2145 	/* Put the pages back, and release the buffer */
   2146 	while (cl->bufcount--) {
   2147 		tbp = cl->bpp[cl->bufcount];
   2148 		KASSERT(tbp->b_flags & B_BUSY);
   2149 		if (error) {
   2150 			tbp->b_flags |= B_ERROR;
   2151 			tbp->b_error = error;
   2152 		}
   2153 
   2154 		/*
   2155 		 * We're done with tbp.	 If it has not been re-dirtied since
   2156 		 * the cluster was written, free it.  Otherwise, keep it on
   2157 		 * the locked list to be written again.
   2158 		 */
   2159 		vp = tbp->b_vp;
   2160 
   2161 		tbp->b_flags &= ~B_GATHERED;
   2162 
   2163 		LFS_BCLEAN_LOG(fs, tbp);
   2164 
   2165 		if (!(tbp->b_flags & B_CALL)) {
   2166 			KASSERT(tbp->b_flags & B_LOCKED);
   2167 			s = splbio();
   2168 			simple_lock(&bqueue_slock);
   2169 			bremfree(tbp);
   2170 			simple_unlock(&bqueue_slock);
   2171 			if (vp)
   2172 				reassignbuf(tbp, vp);
   2173 			splx(s);
   2174 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2175 		}
   2176 
   2177 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2178 			LFS_UNLOCK_BUF(tbp);
   2179 
   2180 		if (tbp->b_flags & B_DONE) {
   2181 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2182 				cl->bufcount, (long)tbp->b_flags));
   2183 		}
   2184 
   2185 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2186 			/*
   2187 			 * A buffer from the page daemon.
   2188 			 * We use the same iodone as it does,
   2189 			 * so we must manually disassociate its
   2190 			 * buffers from the vp.
   2191 			 */
   2192 			if (tbp->b_vp) {
   2193 				/* This is just silly */
   2194 				s = splbio();
   2195 				brelvp(tbp);
   2196 				tbp->b_vp = vp;
   2197 				splx(s);
   2198 			}
   2199 			/* Put it back the way it was */
   2200 			tbp->b_flags |= B_ASYNC;
   2201 			/* Master buffers have B_AGE */
   2202 			if (tbp->b_private == tbp)
   2203 				tbp->b_flags |= B_AGE;
   2204 		}
   2205 		s = splbio();
   2206 		biodone(tbp);
   2207 
   2208 		/*
   2209 		 * If this is the last block for this vnode, but
   2210 		 * there are other blocks on its dirty list,
   2211 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2212 		 * sort of block.  Only do this for our mount point,
   2213 		 * not for, e.g., inode blocks that are attached to
   2214 		 * the devvp.
   2215 		 * XXX KS - Shouldn't we set *both* if both types
   2216 		 * of blocks are present (traverse the dirty list?)
   2217 		 */
   2218 		simple_lock(&global_v_numoutput_slock);
   2219 		if (vp != devvp && vp->v_numoutput == 0 &&
   2220 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2221 			ip = VTOI(vp);
   2222 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2223 			       ip->i_number));
   2224 			if (LFS_IS_MALLOC_BUF(fbp))
   2225 				LFS_SET_UINO(ip, IN_CLEANING);
   2226 			else
   2227 				LFS_SET_UINO(ip, IN_MODIFIED);
   2228 		}
   2229 		simple_unlock(&global_v_numoutput_slock);
   2230 		splx(s);
   2231 		wakeup(vp);
   2232 	}
   2233 
   2234 	/* Fix up the cluster buffer, and release it */
   2235 	if (cl->flags & LFS_CL_MALLOC)
   2236 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2237 	s = splbio();
   2238 	pool_put(&bufpool, bp); /* XXX should use lfs_free? */
   2239 	splx(s);
   2240 
   2241 	/* Note i/o done */
   2242 	if (cl->flags & LFS_CL_SYNC) {
   2243 		if (--cl->seg->seg_iocount == 0)
   2244 			wakeup(&cl->seg->seg_iocount);
   2245 	}
   2246 	simple_lock(&fs->lfs_interlock);
   2247 #ifdef DIAGNOSTIC
   2248 	if (fs->lfs_iocount == 0)
   2249 		panic("lfs_cluster_aiodone: zero iocount");
   2250 #endif
   2251 	if (--fs->lfs_iocount <= 1)
   2252 		wakeup(&fs->lfs_iocount);
   2253 	simple_unlock(&fs->lfs_interlock);
   2254 
   2255 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2256 	cl->bpp = NULL;
   2257 	pool_put(&fs->lfs_clpool, cl);
   2258 }
   2259 
   2260 static void
   2261 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2262 {
   2263 	/* reset b_iodone for when this is a single-buf i/o. */
   2264 	bp->b_iodone = aiodone;
   2265 
   2266 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2267 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2268 	wakeup(&uvm.aiodoned);
   2269 	simple_unlock(&uvm.aiodoned_lock);
   2270 }
   2271 
   2272 static void
   2273 lfs_cluster_callback(struct buf *bp)
   2274 {
   2275 
   2276 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2277 }
   2278 
   2279 void
   2280 lfs_supercallback(struct buf *bp)
   2281 {
   2282 
   2283 	lfs_generic_callback(bp, lfs_super_aiodone);
   2284 }
   2285 
   2286 /*
   2287  * Shellsort (diminishing increment sort) from Data Structures and
   2288  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2289  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2290  * formula (8), page 95.  Roughly O(N^3/2).
   2291  */
   2292 /*
   2293  * This is our own private copy of shellsort because we want to sort
   2294  * two parallel arrays (the array of buffer pointers and the array of
   2295  * logical block numbers) simultaneously.  Note that we cast the array
   2296  * of logical block numbers to a unsigned in this routine so that the
   2297  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2298  */
   2299 
   2300 void
   2301 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2302 {
   2303 	static int __rsshell_increments[] = { 4, 1, 0 };
   2304 	int incr, *incrp, t1, t2;
   2305 	struct buf *bp_temp;
   2306 
   2307 #ifdef DEBUG
   2308 	incr = 0;
   2309 	for (t1 = 0; t1 < nmemb; t1++) {
   2310 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2311 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2312 				/* dump before panic */
   2313 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2314 				    nmemb, size);
   2315 				incr = 0;
   2316 				for (t1 = 0; t1 < nmemb; t1++) {
   2317 					const struct buf *bp = bp_array[t1];
   2318 
   2319 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2320 					    PRIu64 "\n", t1,
   2321 					    (uint64_t)bp->b_bcount,
   2322 					    (uint64_t)bp->b_lblkno);
   2323 					printf("lbns:");
   2324 					for (t2 = 0; t2 * size < bp->b_bcount;
   2325 					    t2++) {
   2326 						printf(" %" PRId32,
   2327 						    lb_array[incr++]);
   2328 					}
   2329 					printf("\n");
   2330 				}
   2331 				panic("lfs_shellsort: inconsistent input");
   2332 			}
   2333 		}
   2334 	}
   2335 #endif
   2336 
   2337 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2338 		for (t1 = incr; t1 < nmemb; ++t1)
   2339 			for (t2 = t1 - incr; t2 >= 0;)
   2340 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2341 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2342 					bp_temp = bp_array[t2];
   2343 					bp_array[t2] = bp_array[t2 + incr];
   2344 					bp_array[t2 + incr] = bp_temp;
   2345 					t2 -= incr;
   2346 				} else
   2347 					break;
   2348 
   2349 	/* Reform the list of logical blocks */
   2350 	incr = 0;
   2351 	for (t1 = 0; t1 < nmemb; t1++) {
   2352 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2353 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2354 		}
   2355 	}
   2356 }
   2357 
   2358 /*
   2359  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   2360  */
   2361 int
   2362 lfs_vref(struct vnode *vp)
   2363 {
   2364 	ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
   2365 	/*
   2366 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2367 	 * being able to flush all of the pages from this vnode, which
   2368 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2369 	 */
   2370 	if (vp->v_flag & VXLOCK) {
   2371 		if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2372 			return 0;
   2373 		}
   2374 		return (1);
   2375 	}
   2376 	return (vget(vp, 0));
   2377 }
   2378 
   2379 /*
   2380  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2381  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2382  */
   2383 void
   2384 lfs_vunref(struct vnode *vp)
   2385 {
   2386 	ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
   2387 	/*
   2388 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2389 	 */
   2390 	if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2391 		return;
   2392 	}
   2393 
   2394 	simple_lock(&vp->v_interlock);
   2395 #ifdef DIAGNOSTIC
   2396 	if (vp->v_usecount <= 0) {
   2397 		printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
   2398 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2399 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2400 		panic("lfs_vunref: v_usecount < 0");
   2401 	}
   2402 #endif
   2403 	vp->v_usecount--;
   2404 	if (vp->v_usecount > 0) {
   2405 		simple_unlock(&vp->v_interlock);
   2406 		return;
   2407 	}
   2408 	/*
   2409 	 * insert at tail of LRU list
   2410 	 */
   2411 	simple_lock(&vnode_free_list_slock);
   2412 	if (vp->v_holdcnt > 0)
   2413 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2414 	else
   2415 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2416 	simple_unlock(&vnode_free_list_slock);
   2417 	simple_unlock(&vp->v_interlock);
   2418 }
   2419 
   2420 /*
   2421  * We use this when we have vnodes that were loaded in solely for cleaning.
   2422  * There is no reason to believe that these vnodes will be referenced again
   2423  * soon, since the cleaning process is unrelated to normal filesystem
   2424  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2425  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2426  * cleaning at the head of the list, instead.
   2427  */
   2428 void
   2429 lfs_vunref_head(struct vnode *vp)
   2430 {
   2431 
   2432 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2433 	simple_lock(&vp->v_interlock);
   2434 #ifdef DIAGNOSTIC
   2435 	if (vp->v_usecount == 0) {
   2436 		panic("lfs_vunref: v_usecount<0");
   2437 	}
   2438 #endif
   2439 	vp->v_usecount--;
   2440 	if (vp->v_usecount > 0) {
   2441 		simple_unlock(&vp->v_interlock);
   2442 		return;
   2443 	}
   2444 	/*
   2445 	 * insert at head of LRU list
   2446 	 */
   2447 	simple_lock(&vnode_free_list_slock);
   2448 	if (vp->v_holdcnt > 0)
   2449 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2450 	else
   2451 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2452 	simple_unlock(&vnode_free_list_slock);
   2453 	simple_unlock(&vp->v_interlock);
   2454 }
   2455 
   2456