lfs_segment.c revision 1.16 1 /* $NetBSD: lfs_segment.c,v 1.16 1999/03/25 21:39:18 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/namei.h>
78 #include <sys/kernel.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/stat.h>
82 #include <sys/buf.h>
83 #include <sys/proc.h>
84 #include <sys/conf.h>
85 #include <sys/vnode.h>
86 #include <sys/malloc.h>
87 #include <sys/mount.h>
88
89 #include <miscfs/specfs/specdev.h>
90 #include <miscfs/fifofs/fifo.h>
91
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 extern int count_lock_queue __P((void));
102 extern struct simplelock vnode_free_list_slock; /* XXX */
103 extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138
139 /* Statistics Counters */
140 int lfs_dostats = 1;
141 struct lfs_stats lfs_stats;
142
143 /* op values to lfs_writevnodes */
144 #define VN_REG 0
145 #define VN_DIROP 1
146 #define VN_EMPTY 2
147 #define VN_CLEAN 3
148
149 #define LFS_MAX_ACTIVE 10
150
151 /*
152 * XXX KS - Set modification time on the Ifile, so the cleaner can
153 * read the fs mod time off of it. We don't set IN_UPDATE here,
154 * since we don't really need this to be flushed to disk (and in any
155 * case that wouldn't happen to the Ifile until we checkpoint).
156 */
157 void
158 lfs_imtime(fs)
159 struct lfs *fs;
160 {
161 struct timespec ts;
162 struct inode *ip;
163
164 TIMEVAL_TO_TIMESPEC(&time, &ts);
165 ip = VTOI(fs->lfs_ivnode);
166 ip->i_ffs_mtime = ts.tv_sec;
167 ip->i_ffs_mtimensec = ts.tv_nsec;
168 }
169
170 /*
171 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
172 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
173 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
174 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
175 */
176
177 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
178 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
179 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
180
181 int
182 lfs_vflush(vp)
183 struct vnode *vp;
184 {
185 struct inode *ip;
186 struct lfs *fs;
187 struct segment *sp;
188 int error;
189 struct buf *bp;
190
191 /* Protect against VXLOCK deadlock in vinvalbuf() */
192 fs = VFSTOUFS(vp->v_mount)->um_lfs;
193 lfs_seglock(fs, SEGM_SYNC);
194 SET_FLUSHING(fs,vp);
195 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
196 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
197 CLR_FLUSHING(fs,vp);
198 lfs_segunlock(fs);
199 return error;
200 }
201 sp = fs->lfs_sp;
202
203 ip = VTOI(vp);
204 if (vp->v_dirtyblkhd.lh_first == NULL) {
205 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
206 }
207 else if(lfs_dostats) {
208 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
209 ++lfs_stats.vflush_invoked;
210 #ifdef DEBUG_LFS
211 printf("V");
212 #endif
213 }
214
215 /* XXX KS - can this ever happen? I think so.... */
216 if(ip->i_flag & IN_CLEANING) {
217 #ifdef DEBUG_LFS
218 printf("C");
219 #endif
220 ip->i_flag &= ~IN_CLEANING;
221 /*
222 * XXX Copyin all of the fake buffers *now* to avoid
223 * a later panic; and take off B_INVAL.
224 */
225 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=bp->b_vnbufs.le_next) {
226 if((bp->b_flags & (B_CALL|B_INVAL))==(B_CALL|B_INVAL)) {
227 bp->b_data = malloc(bp->b_bufsize, M_SEGMENT, M_WAITOK);
228 copyin(bp->b_saveaddr, bp->b_data, bp->b_bcount);
229 bp->b_flags &= ~B_INVAL;
230 }
231 }
232
233 if(ip->i_flag & IN_MODIFIED) {
234 fs->lfs_uinodes--;
235 #ifdef DEBUG_LFS
236 if((int32_t)fs->lfs_uinodes<0) {
237 printf("U4");
238 fs->lfs_uinodes=0;
239 }
240 #endif
241 } else
242 ip->i_flag |= IN_MODIFIED;
243 }
244
245 do {
246 do {
247 if (vp->v_dirtyblkhd.lh_first != NULL)
248 lfs_writefile(fs, sp, vp);
249 } while (lfs_writeinode(fs, sp, ip));
250 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
251
252 if(lfs_dostats) {
253 ++lfs_stats.nwrites;
254 if (sp->seg_flags & SEGM_SYNC)
255 ++lfs_stats.nsync_writes;
256 if (sp->seg_flags & SEGM_CKP)
257 ++lfs_stats.ncheckpoints;
258 }
259 lfs_segunlock(fs);
260
261 CLR_FLUSHING(fs,vp);
262 return (0);
263 }
264
265 #ifdef DEBUG_LFS_VERBOSE
266 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
267 #else
268 # define vndebug(vp,str)
269 #endif
270
271 int
272 lfs_writevnodes(fs, mp, sp, op)
273 struct lfs *fs;
274 struct mount *mp;
275 struct segment *sp;
276 int op;
277 {
278 struct inode *ip;
279 struct vnode *vp;
280 int inodes_written=0;
281
282 #ifndef LFS_NO_BACKVP_HACK
283 /* BEGIN HACK */
284 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
285 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
286 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
287
288 /* Find last vnode. */
289 loop: for (vp = mp->mnt_vnodelist.lh_first;
290 vp && vp->v_mntvnodes.le_next != NULL;
291 vp = vp->v_mntvnodes.le_next);
292 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
293 #else
294 loop:
295 for (vp = mp->mnt_vnodelist.lh_first;
296 vp != NULL;
297 vp = vp->v_mntvnodes.le_next) {
298 #endif
299 /*
300 * If the vnode that we are about to sync is no longer
301 * associated with this mount point, start over.
302 */
303 if (vp->v_mount != mp)
304 goto loop;
305
306 ip = VTOI(vp);
307 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
308 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
309 vndebug(vp,"dirop");
310 continue;
311 }
312
313 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
314 vndebug(vp,"empty");
315 continue;
316 }
317
318 if (vp->v_type == VNON) {
319 continue;
320 }
321
322 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
323 && !(ip->i_flag & IN_CLEANING)) {
324 vndebug(vp,"cleaning");
325 continue;
326 }
327
328 if (lfs_vref(vp)) {
329 vndebug(vp,"vref");
330 continue;
331 }
332
333 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
334 if(WRITEINPROG(vp)) {
335 lfs_vunref(vp);
336 #ifdef DEBUG_LFS
337 ivndebug(vp,"writevnodes/writeinprog");
338 #endif
339 continue;
340 }
341 #endif
342 /*
343 * Write the inode/file if dirty and it's not the
344 * the IFILE.
345 */
346 if ((ip->i_flag &
347 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
348 vp->v_dirtyblkhd.lh_first != NULL))
349 {
350 if(ip->i_number != LFS_IFILE_INUM
351 && vp->v_dirtyblkhd.lh_first != NULL)
352 {
353 lfs_writefile(fs, sp, vp);
354 }
355 if(vp->v_dirtyblkhd.lh_first != NULL) {
356 if(WRITEINPROG(vp)) {
357 #ifdef DEBUG_LFS
358 ivndebug(vp,"writevnodes/write2");
359 #endif
360 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
361 #ifdef DEBUG_LFS
362 printf("<%d>",ip->i_number);
363 #endif
364 ip->i_flag |= IN_MODIFIED;
365 ++fs->lfs_uinodes;
366 }
367 }
368 (void) lfs_writeinode(fs, sp, ip);
369 inodes_written++;
370 }
371
372 if(vp->v_flag & VDIROP) {
373 --fs->lfs_dirvcount;
374 vp->v_flag &= ~VDIROP;
375 wakeup(&fs->lfs_dirvcount);
376 lfs_vunref(vp);
377 }
378
379 lfs_vunref(vp);
380 }
381 return inodes_written;
382 }
383
384 /*
385 * There is a distinct difference in the interpretation of SEGM_CLEAN,
386 * depending on whether it is passed *directly* to lfs_segwrite (i.e., we
387 * were called from lfs_markv), or whether it was just in the segment flags
388 * (we were called indirectly through getnewvnode/lfs_vflush). In the former
389 * case, we only want to write vnodes where cleaning is in progress; but
390 * in the latter case, we might want to write all empty vnodes, or possibly
391 * all vnodes.
392 */
393 int
394 lfs_segwrite(mp, flags)
395 struct mount *mp;
396 int flags; /* Do a checkpoint. */
397 {
398 struct buf *bp;
399 struct inode *ip;
400 struct lfs *fs;
401 struct segment *sp;
402 struct vnode *vp;
403 SEGUSE *segusep;
404 ufs_daddr_t ibno;
405 int do_ckp, error, i;
406 int writer_set = 0;
407 int need_unlock = 0;
408
409 fs = VFSTOUFS(mp)->um_lfs;
410
411 lfs_imtime(fs);
412
413 /*
414 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
415 * clean segments, wait until cleaner writes.
416 */
417 if(!(flags & SEGM_CLEAN)
418 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
419 {
420 do {
421 if (fs->lfs_nclean <= MIN_FREE_SEGS
422 || fs->lfs_avail <= 0)
423 {
424 wakeup(&lfs_allclean_wakeup);
425 wakeup(&fs->lfs_nextseg);
426 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
427 "lfs_avail", 0);
428 if (error) {
429 return (error);
430 }
431 }
432 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
433 }
434
435 /*
436 * Allocate a segment structure and enough space to hold pointers to
437 * the maximum possible number of buffers which can be described in a
438 * single summary block.
439 */
440 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
441 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
442 sp = fs->lfs_sp;
443
444 /*
445 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
446 * in which case we have to flush *all* buffers off of this vnode.
447 */
448 if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
449 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
450 else {
451 lfs_writevnodes(fs, mp, sp, VN_REG);
452 /*
453 * XXX KS - If we're cleaning, we can't wait for dirops,
454 * because they might be waiting on us. The downside of this
455 * is that, if we write anything besides cleaning blocks
456 * while cleaning, the checkpoint is not completely
457 * consistent.
458 */
459 if(!(sp->seg_flags & SEGM_CLEAN)) {
460 while(fs->lfs_dirops)
461 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
462 "lfs writer", 0)))
463 {
464 free(sp->bpp, M_SEGMENT);
465 free(sp, M_SEGMENT);
466 return (error);
467 }
468 fs->lfs_writer++;
469 writer_set=1;
470 lfs_writevnodes(fs, mp, sp, VN_DIROP);
471 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
472 }
473 }
474
475 /*
476 * If we are doing a checkpoint, mark everything since the
477 * last checkpoint as no longer ACTIVE.
478 */
479 if (do_ckp) {
480 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
481 --ibno >= fs->lfs_cleansz; ) {
482 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
483
484 panic("lfs_segwrite: ifile read");
485 segusep = (SEGUSE *)bp->b_data;
486 for (i = fs->lfs_sepb; i--; segusep++)
487 segusep->su_flags &= ~SEGUSE_ACTIVE;
488
489 /* But the current segment is still ACTIVE */
490 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
491 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
492 error = VOP_BWRITE(bp);
493 }
494 }
495
496 if (do_ckp || fs->lfs_doifile) {
497 redo:
498 vp = fs->lfs_ivnode;
499 /*
500 * Depending on the circumstances of our calling, the ifile
501 * inode might be locked. If it is, and if it is locked by
502 * us, we should VREF instead of vget here.
503 */
504 need_unlock = 0;
505 if(VOP_ISLOCKED(vp)
506 && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
507 VREF(vp);
508 } else {
509 while (vget(vp, LK_EXCLUSIVE))
510 continue;
511 need_unlock = 1;
512 }
513 ip = VTOI(vp);
514 if (vp->v_dirtyblkhd.lh_first != NULL)
515 lfs_writefile(fs, sp, vp);
516 (void)lfs_writeinode(fs, sp, ip);
517
518 /* Only vput if we used vget() above. */
519 if(need_unlock)
520 vput(vp);
521 else
522 vrele(vp);
523
524 if (lfs_writeseg(fs, sp) && do_ckp)
525 goto redo;
526 } else {
527 (void) lfs_writeseg(fs, sp);
528 }
529
530 /*
531 * If the I/O count is non-zero, sleep until it reaches zero.
532 * At the moment, the user's process hangs around so we can
533 * sleep.
534 */
535 fs->lfs_doifile = 0;
536 if(writer_set && --fs->lfs_writer==0)
537 wakeup(&fs->lfs_dirops);
538
539 if(lfs_dostats) {
540 ++lfs_stats.nwrites;
541 if (sp->seg_flags & SEGM_SYNC)
542 ++lfs_stats.nsync_writes;
543 if (sp->seg_flags & SEGM_CKP)
544 ++lfs_stats.ncheckpoints;
545 }
546 lfs_segunlock(fs);
547 return (0);
548 }
549
550 /*
551 * Write the dirty blocks associated with a vnode.
552 */
553 void
554 lfs_writefile(fs, sp, vp)
555 struct lfs *fs;
556 struct segment *sp;
557 struct vnode *vp;
558 {
559 struct buf *bp;
560 struct finfo *fip;
561 IFILE *ifp;
562
563
564 if (sp->seg_bytes_left < fs->lfs_bsize ||
565 sp->sum_bytes_left < sizeof(struct finfo))
566 (void) lfs_writeseg(fs, sp);
567
568 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
569 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
570
571 if(vp->v_flag & VDIROP)
572 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
573
574 fip = sp->fip;
575 fip->fi_nblocks = 0;
576 fip->fi_ino = VTOI(vp)->i_number;
577 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
578 fip->fi_version = ifp->if_version;
579 brelse(bp);
580
581 /*
582 * It may not be necessary to write the meta-data blocks at this point,
583 * as the roll-forward recovery code should be able to reconstruct the
584 * list.
585 *
586 * We have to write them anyway, though, under two conditions: (1) the
587 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
588 * checkpointing.
589 */
590 if((sp->seg_flags & SEGM_CLEAN)
591 && VTOI(vp)->i_number != LFS_IFILE_INUM
592 && !IS_FLUSHING(fs,vp))
593 {
594 lfs_gather(fs, sp, vp, lfs_match_fake);
595 } else
596 lfs_gather(fs, sp, vp, lfs_match_data);
597
598 if(lfs_writeindir
599 || IS_FLUSHING(fs,vp)
600 || (sp->seg_flags & SEGM_CKP))
601 {
602 lfs_gather(fs, sp, vp, lfs_match_indir);
603 lfs_gather(fs, sp, vp, lfs_match_dindir);
604 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
605 lfs_gather(fs, sp, vp, lfs_match_tindir);
606 /* #endif */
607 }
608 fip = sp->fip;
609 if (fip->fi_nblocks != 0) {
610 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
611 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
612 sp->start_lbp = &sp->fip->fi_blocks[0];
613 } else {
614 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
615 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
616 }
617 }
618
619 int
620 lfs_writeinode(fs, sp, ip)
621 struct lfs *fs;
622 struct segment *sp;
623 struct inode *ip;
624 {
625 struct buf *bp, *ibp;
626 IFILE *ifp;
627 SEGUSE *sup;
628 ufs_daddr_t daddr;
629 ino_t ino;
630 int error, i, ndx;
631 int redo_ifile = 0;
632 struct timespec ts;
633
634 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
635 return(0);
636
637 /* Allocate a new inode block if necessary. */
638 if (sp->ibp == NULL) {
639 /* Allocate a new segment if necessary. */
640 if (sp->seg_bytes_left < fs->lfs_bsize ||
641 sp->sum_bytes_left < sizeof(ufs_daddr_t))
642 (void) lfs_writeseg(fs, sp);
643
644 /* Get next inode block. */
645 daddr = fs->lfs_offset;
646 fs->lfs_offset += fsbtodb(fs, 1);
647 sp->ibp = *sp->cbpp++ =
648 lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
649 fs->lfs_bsize);
650 /* Zero out inode numbers */
651 for (i = 0; i < INOPB(fs); ++i)
652 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
653
654 ++sp->start_bpp;
655 fs->lfs_avail -= fsbtodb(fs, 1);
656 /* Set remaining space counters. */
657 sp->seg_bytes_left -= fs->lfs_bsize;
658 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
659 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
660 sp->ninodes / INOPB(fs) - 1;
661 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
662 }
663
664 /* Update the inode times and copy the inode onto the inode page. */
665 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
666 --fs->lfs_uinodes;
667 TIMEVAL_TO_TIMESPEC(&time, &ts);
668 LFS_ITIMES(ip, &ts, &ts, &ts);
669
670 if(ip->i_flag & IN_CLEANING)
671 ip->i_flag &= ~IN_CLEANING;
672 else
673 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
674
675 bp = sp->ibp;
676 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
677 ip->i_din.ffs_din;
678
679 /* Increment inode count in segment summary block. */
680 ++((SEGSUM *)(sp->segsum))->ss_ninos;
681
682 /* If this page is full, set flag to allocate a new page. */
683 if (++sp->ninodes % INOPB(fs) == 0)
684 sp->ibp = NULL;
685
686 /*
687 * If updating the ifile, update the super-block. Update the disk
688 * address and access times for this inode in the ifile.
689 */
690 ino = ip->i_number;
691 if (ino == LFS_IFILE_INUM) {
692 daddr = fs->lfs_idaddr;
693 fs->lfs_idaddr = bp->b_blkno;
694 } else {
695 LFS_IENTRY(ifp, fs, ino, ibp);
696 daddr = ifp->if_daddr;
697 ifp->if_daddr = bp->b_blkno;
698 error = VOP_BWRITE(ibp);
699 }
700
701 /*
702 * No need to update segment usage if there was no former inode address
703 * or if the last inode address is in the current partial segment.
704 */
705 if (daddr != LFS_UNUSED_DADDR &&
706 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
707 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
708 #ifdef DIAGNOSTIC
709 if (sup->su_nbytes < DINODE_SIZE) {
710 /* XXX -- Change to a panic. */
711 printf("lfs_writeinode: negative bytes (segment %d)\n",
712 datosn(fs, daddr));
713 panic("negative bytes");
714 }
715 #endif
716 sup->su_nbytes -= DINODE_SIZE;
717 redo_ifile =
718 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
719 error = VOP_BWRITE(bp);
720 }
721 return (redo_ifile);
722 }
723
724 int
725 lfs_gatherblock(sp, bp, sptr)
726 struct segment *sp;
727 struct buf *bp;
728 int *sptr;
729 {
730 struct lfs *fs;
731 int version;
732
733 /*
734 * If full, finish this segment. We may be doing I/O, so
735 * release and reacquire the splbio().
736 */
737 #ifdef DIAGNOSTIC
738 if (sp->vp == NULL)
739 panic ("lfs_gatherblock: Null vp in segment");
740 #endif
741 fs = sp->fs;
742 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
743 sp->seg_bytes_left < bp->b_bcount) {
744 if (sptr)
745 splx(*sptr);
746 lfs_updatemeta(sp);
747
748 version = sp->fip->fi_version;
749 (void) lfs_writeseg(fs, sp);
750
751 sp->fip->fi_version = version;
752 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
753 /* Add the current file to the segment summary. */
754 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
755 sp->sum_bytes_left -=
756 sizeof(struct finfo) - sizeof(ufs_daddr_t);
757
758 if (sptr)
759 *sptr = splbio();
760 return(1);
761 }
762
763 #ifdef DEBUG
764 if(bp->b_flags & B_GATHERED) {
765 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
766 sp->fip->fi_ino, bp->b_lblkno);
767 return(0);
768 }
769 #endif
770 /* Insert into the buffer list, update the FINFO block. */
771 bp->b_flags |= B_GATHERED;
772 *sp->cbpp++ = bp;
773 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
774
775 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
776 sp->seg_bytes_left -= bp->b_bcount;
777 return(0);
778 }
779
780 int
781 lfs_gather(fs, sp, vp, match)
782 struct lfs *fs;
783 struct segment *sp;
784 struct vnode *vp;
785 int (*match) __P((struct lfs *, struct buf *));
786 {
787 struct buf *bp;
788 int s, count=0;
789
790 sp->vp = vp;
791 s = splbio();
792
793 #ifndef LFS_NO_BACKBUF_HACK
794 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
795 #else /* LFS_NO_BACKBUF_HACK */
796 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
797 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
798 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
799 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
800 /* Find last buffer. */
801 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
802 bp = bp->b_vnbufs.le_next);
803 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
804 #endif /* LFS_NO_BACKBUF_HACK */
805 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
806 continue;
807 #ifdef DIAGNOSTIC
808 if (!(bp->b_flags & B_DELWRI))
809 panic("lfs_gather: bp not B_DELWRI");
810 if (!(bp->b_flags & B_LOCKED))
811 panic("lfs_gather: bp not B_LOCKED");
812 #endif
813 count++;
814 if (lfs_gatherblock(sp, bp, &s)) {
815 goto loop;
816 }
817 }
818 splx(s);
819 lfs_updatemeta(sp);
820 sp->vp = NULL;
821 return count;
822 }
823
824 /*
825 * Update the metadata that points to the blocks listed in the FINFO
826 * array.
827 */
828 void
829 lfs_updatemeta(sp)
830 struct segment *sp;
831 {
832 SEGUSE *sup;
833 struct buf *bp;
834 struct lfs *fs;
835 struct vnode *vp;
836 struct indir a[NIADDR + 2], *ap;
837 struct inode *ip;
838 ufs_daddr_t daddr, lbn, off;
839 int error, i, nblocks, num;
840
841 vp = sp->vp;
842 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
843 if (nblocks < 0)
844 panic("This is a bad thing\n");
845 if (vp == NULL || nblocks == 0)
846 return;
847
848 /* Sort the blocks. */
849 /*
850 * XXX KS - We have to sort even if the blocks come from the
851 * cleaner, because there might be other pending blocks on the
852 * same inode...and if we don't sort, and there are fragments
853 * present, blocks may be written in the wrong place.
854 */
855 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
856 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
857
858 /*
859 * Record the length of the last block in case it's a fragment.
860 * If there are indirect blocks present, they sort last. An
861 * indirect block will be lfs_bsize and its presence indicates
862 * that you cannot have fragments.
863 */
864 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
865
866 /*
867 * Assign disk addresses, and update references to the logical
868 * block and the segment usage information.
869 */
870 fs = sp->fs;
871 for (i = nblocks; i--; ++sp->start_bpp) {
872 lbn = *sp->start_lbp++;
873
874 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
875 fs->lfs_offset +=
876 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
877
878 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
879 if (error)
880 panic("lfs_updatemeta: ufs_bmaparray %d", error);
881 ip = VTOI(vp);
882 switch (num) {
883 case 0:
884 ip->i_ffs_db[lbn] = off;
885 break;
886 case 1:
887 ip->i_ffs_ib[a[0].in_off] = off;
888 break;
889 default:
890 ap = &a[num - 1];
891 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
892 panic("lfs_updatemeta: bread bno %d",
893 ap->in_lbn);
894 /*
895 * Bread may create a new (indirect) block which needs
896 * to get counted for the inode.
897 */
898 if (/* bp->b_blkno == -1 && */
899 !(bp->b_flags & (B_DELWRI|B_DONE))) {
900 ip->i_ffs_blocks += fsbtodb(fs, 1);
901 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
902 }
903 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
904 VOP_BWRITE(bp);
905 }
906 /* Update segment usage information. */
907 if (daddr != UNASSIGNED &&
908 !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
909 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
910 #ifdef DIAGNOSTIC
911 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
912 /* XXX -- Change to a panic. */
913 printf("lfs_updatemeta: negative bytes (segment %d)\n",
914 datosn(fs, daddr));
915 printf("lfs_updatemeta: bp = 0x%p, addr = 0x%p\n",
916 bp, bp->b_un.b_addr);
917 /* panic ("Negative Bytes"); */
918 }
919 #endif
920 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
921 error = VOP_BWRITE(bp);
922 }
923 }
924 }
925
926 /*
927 * Start a new segment.
928 */
929 int
930 lfs_initseg(fs)
931 struct lfs *fs;
932 {
933 struct segment *sp;
934 SEGUSE *sup;
935 SEGSUM *ssp;
936 struct buf *bp;
937 int repeat;
938
939 sp = fs->lfs_sp;
940
941 repeat = 0;
942 /* Advance to the next segment. */
943 if (!LFS_PARTIAL_FITS(fs)) {
944 /* Wake up any cleaning procs waiting on this file system. */
945 wakeup(&lfs_allclean_wakeup);
946 wakeup(&fs->lfs_nextseg);
947 lfs_newseg(fs);
948 repeat = 1;
949 fs->lfs_offset = fs->lfs_curseg;
950 sp->seg_number = datosn(fs, fs->lfs_curseg);
951 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
952 /*
953 * If the segment contains a superblock, update the offset
954 * and summary address to skip over it.
955 */
956 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
957 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
958 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
959 sp->seg_bytes_left -= LFS_SBPAD;
960 }
961 brelse(bp);
962 } else {
963 sp->seg_number = datosn(fs, fs->lfs_curseg);
964 sp->seg_bytes_left = (fs->lfs_dbpseg -
965 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
966 }
967 fs->lfs_lastpseg = fs->lfs_offset;
968
969 sp->fs = fs;
970 sp->ibp = NULL;
971 sp->ninodes = 0;
972
973 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
974 sp->cbpp = sp->bpp;
975 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
976 fs->lfs_offset, LFS_SUMMARY_SIZE);
977 sp->segsum = (*sp->cbpp)->b_data;
978 bzero(sp->segsum, LFS_SUMMARY_SIZE);
979 sp->start_bpp = ++sp->cbpp;
980 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
981
982 /* Set point to SEGSUM, initialize it. */
983 ssp = sp->segsum;
984 ssp->ss_next = fs->lfs_nextseg;
985 ssp->ss_nfinfo = ssp->ss_ninos = 0;
986 ssp->ss_magic = SS_MAGIC;
987
988 /* Set pointer to first FINFO, initialize it. */
989 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
990 sp->fip->fi_nblocks = 0;
991 sp->start_lbp = &sp->fip->fi_blocks[0];
992 sp->fip->fi_lastlength = 0;
993
994 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
995 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
996
997 return(repeat);
998 }
999
1000 /*
1001 * Return the next segment to write.
1002 */
1003 void
1004 lfs_newseg(fs)
1005 struct lfs *fs;
1006 {
1007 CLEANERINFO *cip;
1008 SEGUSE *sup;
1009 struct buf *bp;
1010 int curseg, isdirty, sn;
1011
1012 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1013 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1014 sup->su_nbytes = 0;
1015 sup->su_nsums = 0;
1016 sup->su_ninos = 0;
1017 (void) VOP_BWRITE(bp);
1018
1019 LFS_CLEANERINFO(cip, fs, bp);
1020 --cip->clean;
1021 ++cip->dirty;
1022 fs->lfs_nclean = cip->clean;
1023 (void) VOP_BWRITE(bp);
1024
1025 fs->lfs_lastseg = fs->lfs_curseg;
1026 fs->lfs_curseg = fs->lfs_nextseg;
1027 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1028 sn = (sn + 1) % fs->lfs_nseg;
1029 if (sn == curseg)
1030 panic("lfs_nextseg: no clean segments");
1031 LFS_SEGENTRY(sup, fs, sn, bp);
1032 isdirty = sup->su_flags & SEGUSE_DIRTY;
1033 brelse(bp);
1034 if (!isdirty)
1035 break;
1036 }
1037
1038 ++fs->lfs_nactive;
1039 fs->lfs_nextseg = sntoda(fs, sn);
1040 if(lfs_dostats) {
1041 ++lfs_stats.segsused;
1042 }
1043 }
1044
1045 int
1046 lfs_writeseg(fs, sp)
1047 struct lfs *fs;
1048 struct segment *sp;
1049 {
1050 extern int locked_queue_count;
1051 extern long locked_queue_bytes;
1052 struct buf **bpp, *bp, *cbp;
1053 SEGUSE *sup;
1054 SEGSUM *ssp;
1055 dev_t i_dev;
1056 u_long *datap, *dp;
1057 int do_again, i, nblocks, s;
1058 #ifdef LFS_TRACK_IOS
1059 int j;
1060 #endif
1061 int (*strategy)__P((void *));
1062 struct vop_strategy_args vop_strategy_a;
1063 u_short ninos;
1064 struct vnode *devvp;
1065 char *p;
1066 struct vnode *vn;
1067 #if defined(DEBUG) && defined(LFS_PROPELLER)
1068 static int propeller;
1069 char propstring[4] = "-\\|/";
1070
1071 printf("%c\b",propstring[propeller++]);
1072 if(propeller==4)
1073 propeller = 0;
1074 #endif
1075
1076 /*
1077 * If there are no buffers other than the segment summary to write
1078 * and it is not a checkpoint, don't do anything. On a checkpoint,
1079 * even if there aren't any buffers, you need to write the superblock.
1080 */
1081 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1082 return (0);
1083
1084 #ifdef DEBUG_LFS
1085 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1086 #endif
1087
1088 /* Update the segment usage information. */
1089 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1090
1091 /* Loop through all blocks, except the segment summary. */
1092 for (bpp = sp->bpp; ++bpp < sp->cbpp; )
1093 sup->su_nbytes += (*bpp)->b_bcount;
1094
1095 ssp = (SEGSUM *)sp->segsum;
1096
1097 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1098 /* sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE; */
1099 sup->su_nbytes += LFS_SUMMARY_SIZE;
1100 sup->su_lastmod = time.tv_sec;
1101 sup->su_ninos += ninos;
1102 ++sup->su_nsums;
1103
1104 do_again = !(bp->b_flags & B_GATHERED);
1105 (void)VOP_BWRITE(bp);
1106 /*
1107 * Compute checksum across data and then across summary; the first
1108 * block (the summary block) is skipped. Set the create time here
1109 * so that it's guaranteed to be later than the inode mod times.
1110 *
1111 * XXX
1112 * Fix this to do it inline, instead of malloc/copy.
1113 */
1114 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1115 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1116 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1117 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1118 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1119 } else
1120 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1121 }
1122 ssp->ss_create = time.tv_sec;
1123 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1124 ssp->ss_sumsum =
1125 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1126 free(datap, M_SEGMENT);
1127 #ifdef DIAGNOSTIC
1128 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1129 panic("lfs_writeseg: No diskspace for summary");
1130 #endif
1131 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1132
1133 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1134 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1135 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1136
1137 /*
1138 * When we simply write the blocks we lose a rotation for every block
1139 * written. To avoid this problem, we allocate memory in chunks, copy
1140 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1141 * largest size I/O devices can handle.
1142 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1143 * and brelse the buffer (which will move them to the LRU list). Add
1144 * the B_CALL flag to the buffer header so we can count I/O's for the
1145 * checkpoints and so we can release the allocated memory.
1146 *
1147 * XXX
1148 * This should be removed if the new virtual memory system allows us to
1149 * easily make the buffers contiguous in kernel memory and if that's
1150 * fast enough.
1151 */
1152
1153 #define CHUNKSIZE MAXPHYS
1154
1155 if(devvp==NULL)
1156 panic("devvp is NULL");
1157 for (bpp = sp->bpp,i = nblocks; i;) {
1158 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1159 cbp->b_dev = i_dev;
1160 cbp->b_flags |= B_ASYNC | B_BUSY;
1161 cbp->b_bcount = 0;
1162
1163 if(fs->lfs_iocount >= LFS_THROTTLE) {
1164 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1165 }
1166 s = splbio();
1167 ++fs->lfs_iocount;
1168 #ifdef LFS_TRACK_IOS
1169 for(j=0;j<LFS_THROTTLE;j++) {
1170 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1171 fs->lfs_pending[j] = cbp->b_blkno;
1172 break;
1173 }
1174 }
1175 #endif /* LFS_TRACK_IOS */
1176 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1177 bp = *bpp;
1178
1179 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1180 break;
1181
1182 /*
1183 * Fake buffers from the cleaner are marked as B_INVAL.
1184 * We need to copy the data from user space rather than
1185 * from the buffer indicated.
1186 * XXX == what do I do on an error?
1187 */
1188 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1189 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1190 panic("lfs_writeseg: copyin failed [2]");
1191 } else
1192 bcopy(bp->b_data, p, bp->b_bcount);
1193 p += bp->b_bcount;
1194 cbp->b_bcount += bp->b_bcount;
1195 if (bp->b_flags & B_LOCKED) {
1196 --locked_queue_count;
1197 locked_queue_bytes -= bp->b_bufsize;
1198 }
1199 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1200 B_LOCKED | B_GATHERED);
1201 vn = bp->b_vp;
1202 if (bp->b_flags & B_CALL) {
1203 /* if B_CALL, it was created with newbuf */
1204 lfs_freebuf(bp);
1205 } else {
1206 bremfree(bp);
1207 bp->b_flags |= B_DONE;
1208 if(vn)
1209 reassignbuf(bp, vn);
1210 brelse(bp);
1211 }
1212 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1213 bp->b_flags &= ~B_NEEDCOMMIT;
1214 wakeup(bp);
1215 }
1216 bpp++;
1217 }
1218 ++cbp->b_vp->v_numoutput;
1219 splx(s);
1220 /*
1221 * XXXX This is a gross and disgusting hack. Since these
1222 * buffers are physically addressed, they hang off the
1223 * device vnode (devvp). As a result, they have no way
1224 * of getting to the LFS superblock or lfs structure to
1225 * keep track of the number of I/O's pending. So, I am
1226 * going to stuff the fs into the saveaddr field of
1227 * the buffer (yuk).
1228 */
1229 cbp->b_saveaddr = (caddr_t)fs;
1230 vop_strategy_a.a_desc = VDESC(vop_strategy);
1231 vop_strategy_a.a_bp = cbp;
1232 (strategy)(&vop_strategy_a);
1233 }
1234 /*
1235 * XXX
1236 * Vinvalbuf can move locked buffers off the locked queue
1237 * and we have no way of knowing about this. So, after
1238 * doing a big write, we recalculate how many buffers are
1239 * really still left on the locked queue.
1240 */
1241 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1242 wakeup(&locked_queue_count);
1243 if(lfs_dostats) {
1244 ++lfs_stats.psegwrites;
1245 lfs_stats.blocktot += nblocks - 1;
1246 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1247 ++lfs_stats.psyncwrites;
1248 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1249 ++lfs_stats.pcleanwrites;
1250 lfs_stats.cleanblocks += nblocks - 1;
1251 }
1252 }
1253 return (lfs_initseg(fs) || do_again);
1254 }
1255
1256 void
1257 lfs_writesuper(fs, daddr)
1258 struct lfs *fs;
1259 daddr_t daddr;
1260 {
1261 struct buf *bp;
1262 dev_t i_dev;
1263 int (*strategy) __P((void *));
1264 int s;
1265 struct vop_strategy_args vop_strategy_a;
1266
1267 #ifdef LFS_CANNOT_ROLLFW
1268 /*
1269 * If we can write one superblock while another is in
1270 * progress, we risk not having a complete checkpoint if we crash.
1271 * So, block here if a superblock write is in progress.
1272 *
1273 * XXX - should be a proper lock, not this hack
1274 */
1275 while(fs->lfs_sbactive) {
1276 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1277 }
1278 fs->lfs_sbactive = daddr;
1279 #endif
1280 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1281 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1282
1283 /* Set timestamp of this version of the superblock */
1284 fs->lfs_tstamp = time.tv_sec;
1285
1286 /* Checksum the superblock and copy it into a buffer. */
1287 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1288 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1289 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1290
1291 bp->b_dev = i_dev;
1292 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1293 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1294 bp->b_iodone = lfs_supercallback;
1295 /* XXX KS - same nasty hack as above */
1296 bp->b_saveaddr = (caddr_t)fs;
1297
1298 vop_strategy_a.a_desc = VDESC(vop_strategy);
1299 vop_strategy_a.a_bp = bp;
1300 s = splbio();
1301 ++bp->b_vp->v_numoutput;
1302 splx(s);
1303 (strategy)(&vop_strategy_a);
1304 }
1305
1306 /*
1307 * Logical block number match routines used when traversing the dirty block
1308 * chain.
1309 */
1310 int
1311 lfs_match_fake(fs, bp)
1312 struct lfs *fs;
1313 struct buf *bp;
1314 {
1315 return (bp->b_flags & (B_CALL|B_INVAL))==(B_CALL|B_INVAL);
1316 }
1317
1318 int
1319 lfs_match_data(fs, bp)
1320 struct lfs *fs;
1321 struct buf *bp;
1322 {
1323 return (bp->b_lblkno >= 0);
1324 }
1325
1326 int
1327 lfs_match_indir(fs, bp)
1328 struct lfs *fs;
1329 struct buf *bp;
1330 {
1331 int lbn;
1332
1333 lbn = bp->b_lblkno;
1334 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1335 }
1336
1337 int
1338 lfs_match_dindir(fs, bp)
1339 struct lfs *fs;
1340 struct buf *bp;
1341 {
1342 int lbn;
1343
1344 lbn = bp->b_lblkno;
1345 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1346 }
1347
1348 int
1349 lfs_match_tindir(fs, bp)
1350 struct lfs *fs;
1351 struct buf *bp;
1352 {
1353 int lbn;
1354
1355 lbn = bp->b_lblkno;
1356 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1357 }
1358
1359 /*
1360 * XXX - The only buffers that are going to hit these functions are the
1361 * segment write blocks, or the segment summaries, or the superblocks.
1362 *
1363 * All of the above are created by lfs_newbuf, and so do not need to be
1364 * released via brelse.
1365 */
1366 void
1367 lfs_callback(bp)
1368 struct buf *bp;
1369 {
1370 struct lfs *fs;
1371 #ifdef LFS_TRACK_IOS
1372 int j;
1373 #endif
1374
1375 fs = (struct lfs *)bp->b_saveaddr;
1376 #ifdef DIAGNOSTIC
1377 if (fs->lfs_iocount == 0)
1378 panic("lfs_callback: zero iocount\n");
1379 #endif
1380 if (--fs->lfs_iocount < LFS_THROTTLE)
1381 wakeup(&fs->lfs_iocount);
1382 #ifdef LFS_TRACK_IOS
1383 for(j=0;j<LFS_THROTTLE;j++) {
1384 if(fs->lfs_pending[j]==bp->b_blkno) {
1385 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1386 wakeup(&(fs->lfs_pending[j]));
1387 break;
1388 }
1389 }
1390 #endif /* LFS_TRACK_IOS */
1391
1392 lfs_freebuf(bp);
1393 }
1394
1395 void
1396 lfs_supercallback(bp)
1397 struct buf *bp;
1398 {
1399 #ifdef LFS_CANNOT_ROLLFW
1400 struct lfs *fs;
1401
1402 fs = (struct lfs *)bp->b_saveaddr;
1403 fs->lfs_sbactive=NULL;
1404 wakeup(&fs->lfs_sbactive);
1405 #endif
1406 lfs_freebuf(bp);
1407 }
1408
1409 /*
1410 * Shellsort (diminishing increment sort) from Data Structures and
1411 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1412 * see also Knuth Vol. 3, page 84. The increments are selected from
1413 * formula (8), page 95. Roughly O(N^3/2).
1414 */
1415 /*
1416 * This is our own private copy of shellsort because we want to sort
1417 * two parallel arrays (the array of buffer pointers and the array of
1418 * logical block numbers) simultaneously. Note that we cast the array
1419 * of logical block numbers to a unsigned in this routine so that the
1420 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1421 */
1422
1423 void
1424 lfs_shellsort(bp_array, lb_array, nmemb)
1425 struct buf **bp_array;
1426 ufs_daddr_t *lb_array;
1427 register int nmemb;
1428 {
1429 static int __rsshell_increments[] = { 4, 1, 0 };
1430 register int incr, *incrp, t1, t2;
1431 struct buf *bp_temp;
1432 u_long lb_temp;
1433
1434 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1435 for (t1 = incr; t1 < nmemb; ++t1)
1436 for (t2 = t1 - incr; t2 >= 0;)
1437 if (lb_array[t2] > lb_array[t2 + incr]) {
1438 lb_temp = lb_array[t2];
1439 lb_array[t2] = lb_array[t2 + incr];
1440 lb_array[t2 + incr] = lb_temp;
1441 bp_temp = bp_array[t2];
1442 bp_array[t2] = bp_array[t2 + incr];
1443 bp_array[t2 + incr] = bp_temp;
1444 t2 -= incr;
1445 } else
1446 break;
1447 }
1448
1449 /*
1450 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1451 */
1452 int
1453 lfs_vref(vp)
1454 register struct vnode *vp;
1455 {
1456 /*
1457 * If we return 1 here during a flush, we risk vinvalbuf() not
1458 * being able to flush all of the pages from this vnode, which
1459 * will cause it to panic. So, return 0 if a flush is in progress.
1460 */
1461 if (vp->v_flag & VXLOCK) {
1462 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1463 vp->v_usecount++;
1464 return 0;
1465 }
1466 return(1);
1467 }
1468 return (vget(vp, 0));
1469 }
1470
1471 /*
1472 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1473 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1474 */
1475 void
1476 lfs_vunref(vp)
1477 register struct vnode *vp;
1478 {
1479 simple_lock(&vp->v_interlock);
1480 #ifdef DIAGNOSTIC
1481 if(vp->v_usecount==0) {
1482 panic("lfs_vunref: v_usecount<0");
1483 }
1484 #endif
1485 vp->v_usecount--;
1486 if (vp->v_usecount > 0) {
1487 simple_unlock(&vp->v_interlock);
1488 return;
1489 }
1490 /*
1491 * We also don't want to vrele() here during a flush, since
1492 * that will be done again later, causing us serious problems.
1493 */
1494 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1495 simple_unlock(&vp->v_interlock);
1496 return;
1497 }
1498
1499 /*
1500 * insert at tail of LRU list
1501 */
1502 simple_lock(&vnode_free_list_slock);
1503 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1504 simple_unlock(&vnode_free_list_slock);
1505 simple_unlock(&vp->v_interlock);
1506 }
1507
1508 /*
1509 * We use this when we have vnodes that were loaded in solely for cleaning.
1510 * There is no reason to believe that these vnodes will be referenced again
1511 * soon, since the cleaning process is unrelated to normal filesystem
1512 * activity. Putting cleaned vnodes at the tail of the list has the effect
1513 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1514 * cleaning at the head of the list, instead.
1515 */
1516 void
1517 lfs_vunref_head(vp)
1518 register struct vnode *vp;
1519 {
1520 simple_lock(&vp->v_interlock);
1521 #ifdef DIAGNOSTIC
1522 if(vp->v_usecount==0) {
1523 panic("lfs_vunref: v_usecount<0");
1524 }
1525 #endif
1526 vp->v_usecount--;
1527 if (vp->v_usecount > 0) {
1528 simple_unlock(&vp->v_interlock);
1529 return;
1530 }
1531 /*
1532 * insert at head of LRU list
1533 */
1534 simple_lock(&vnode_free_list_slock);
1535 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1536 simple_unlock(&vnode_free_list_slock);
1537 simple_unlock(&vp->v_interlock);
1538 }
1539
1540