lfs_segment.c revision 1.167 1 /* $NetBSD: lfs_segment.c,v 1.167 2005/09/26 13:52:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.167 2005/09/26 13:52:20 yamt Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 int lfs_match_fake(struct lfs *, struct buf *);
134 void lfs_newseg(struct lfs *);
135 /* XXX ondisk32 */
136 void lfs_shellsort(struct buf **, int32_t *, int, int);
137 void lfs_supercallback(struct buf *);
138 void lfs_updatemeta(struct segment *);
139 void lfs_writesuper(struct lfs *, daddr_t);
140 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
141 struct segment *sp, int dirops);
142
143 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
144 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
145 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
146 int lfs_dirvcount = 0; /* # active dirops */
147
148 /* Statistics Counters */
149 int lfs_dostats = 1;
150 struct lfs_stats lfs_stats;
151
152 /* op values to lfs_writevnodes */
153 #define VN_REG 0
154 #define VN_DIROP 1
155 #define VN_EMPTY 2
156 #define VN_CLEAN 3
157
158 /*
159 * XXX KS - Set modification time on the Ifile, so the cleaner can
160 * read the fs mod time off of it. We don't set IN_UPDATE here,
161 * since we don't really need this to be flushed to disk (and in any
162 * case that wouldn't happen to the Ifile until we checkpoint).
163 */
164 void
165 lfs_imtime(struct lfs *fs)
166 {
167 struct timespec ts;
168 struct inode *ip;
169
170 ASSERT_MAYBE_SEGLOCK(fs);
171 nanotime(&ts);
172 ip = VTOI(fs->lfs_ivnode);
173 ip->i_ffs1_mtime = ts.tv_sec;
174 ip->i_ffs1_mtimensec = ts.tv_nsec;
175 }
176
177 /*
178 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
179 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
180 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
181 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
182 */
183
184 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
185 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
186 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
187
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 struct inode *ip;
192 struct lfs *fs;
193 struct segment *sp;
194 struct buf *bp, *nbp, *tbp, *tnbp;
195 int error, s;
196 int flushed;
197 #if 0
198 int redo;
199 #endif
200
201 ip = VTOI(vp);
202 fs = VFSTOUFS(vp->v_mount)->um_lfs;
203
204 ASSERT_NO_SEGLOCK(fs);
205 if (ip->i_flag & IN_CLEANING) {
206 ivndebug(vp,"vflush/in_cleaning");
207 LFS_CLR_UINO(ip, IN_CLEANING);
208 LFS_SET_UINO(ip, IN_MODIFIED);
209
210 /*
211 * Toss any cleaning buffers that have real counterparts
212 * to avoid losing new data.
213 */
214 s = splbio();
215 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
216 nbp = LIST_NEXT(bp, b_vnbufs);
217 if (!LFS_IS_MALLOC_BUF(bp))
218 continue;
219 /*
220 * Look for pages matching the range covered
221 * by cleaning blocks. It's okay if more dirty
222 * pages appear, so long as none disappear out
223 * from under us.
224 */
225 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
226 vp != fs->lfs_ivnode) {
227 struct vm_page *pg;
228 voff_t off;
229
230 simple_lock(&vp->v_interlock);
231 for (off = lblktosize(fs, bp->b_lblkno);
232 off < lblktosize(fs, bp->b_lblkno + 1);
233 off += PAGE_SIZE) {
234 pg = uvm_pagelookup(&vp->v_uobj, off);
235 if (pg == NULL)
236 continue;
237 if ((pg->flags & PG_CLEAN) == 0 ||
238 pmap_is_modified(pg)) {
239 fs->lfs_avail += btofsb(fs,
240 bp->b_bcount);
241 wakeup(&fs->lfs_avail);
242 lfs_freebuf(fs, bp);
243 bp = NULL;
244 goto nextbp;
245 }
246 }
247 simple_unlock(&vp->v_interlock);
248 }
249 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
250 tbp = tnbp)
251 {
252 tnbp = LIST_NEXT(tbp, b_vnbufs);
253 if (tbp->b_vp == bp->b_vp
254 && tbp->b_lblkno == bp->b_lblkno
255 && tbp != bp)
256 {
257 fs->lfs_avail += btofsb(fs,
258 bp->b_bcount);
259 wakeup(&fs->lfs_avail);
260 lfs_freebuf(fs, bp);
261 bp = NULL;
262 break;
263 }
264 }
265 nextbp:
266 ;
267 }
268 splx(s);
269 }
270
271 /* If the node is being written, wait until that is done */
272 simple_lock(&vp->v_interlock);
273 s = splbio();
274 if (WRITEINPROG(vp)) {
275 ivndebug(vp,"vflush/writeinprog");
276 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
277 }
278 splx(s);
279 simple_unlock(&vp->v_interlock);
280
281 /* Protect against VXLOCK deadlock in vinvalbuf() */
282 lfs_seglock(fs, SEGM_SYNC);
283
284 /* If we're supposed to flush a freed inode, just toss it */
285 /* XXX - seglock, so these buffers can't be gathered, right? */
286 if (ip->i_mode == 0) {
287 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
288 ip->i_number));
289 s = splbio();
290 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
291 nbp = LIST_NEXT(bp, b_vnbufs);
292 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
293 fs->lfs_avail += btofsb(fs, bp->b_bcount);
294 wakeup(&fs->lfs_avail);
295 }
296 /* Copied from lfs_writeseg */
297 if (bp->b_flags & B_CALL) {
298 biodone(bp);
299 } else {
300 bremfree(bp);
301 LFS_UNLOCK_BUF(bp);
302 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
303 B_GATHERED);
304 bp->b_flags |= B_DONE;
305 reassignbuf(bp, vp);
306 brelse(bp);
307 }
308 }
309 splx(s);
310 LFS_CLR_UINO(ip, IN_CLEANING);
311 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
312 ip->i_flag &= ~IN_ALLMOD;
313 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
314 ip->i_number));
315 lfs_segunlock(fs);
316 return 0;
317 }
318
319 SET_FLUSHING(fs,vp);
320 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
321 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
322 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
323 CLR_FLUSHING(fs,vp);
324 lfs_segunlock(fs);
325 return error;
326 }
327 sp = fs->lfs_sp;
328
329 flushed = 0;
330 if (VPISEMPTY(vp)) {
331 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
332 ++flushed;
333 } else if ((ip->i_flag & IN_CLEANING) &&
334 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
335 ivndebug(vp,"vflush/clean");
336 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
337 ++flushed;
338 } else if (lfs_dostats) {
339 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
340 ++lfs_stats.vflush_invoked;
341 ivndebug(vp,"vflush");
342 }
343
344 #ifdef DIAGNOSTIC
345 if (vp->v_flag & VDIROP) {
346 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
347 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
348 }
349 if (vp->v_usecount < 0) {
350 printf("usecount=%ld\n", (long)vp->v_usecount);
351 panic("lfs_vflush: usecount<0");
352 }
353 #endif
354
355 #if 1
356 do {
357 do {
358 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
359 lfs_writefile(fs, sp, vp);
360 } while (lfs_writeinode(fs, sp, ip));
361 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
362 #else
363 if (flushed && vp != fs->lfs_ivnode)
364 lfs_writeseg(fs, sp);
365 else do {
366 simple_lock(&fs->lfs_interlock);
367 fs->lfs_flags &= ~LFS_IFDIRTY;
368 simple_unlock(&fs->lfs_interlock);
369 lfs_writefile(fs, sp, vp);
370 redo = lfs_writeinode(fs, sp, ip);
371 redo += lfs_writeseg(fs, sp);
372 simple_lock(&fs->lfs_interlock);
373 redo += (fs->lfs_flags & LFS_IFDIRTY);
374 simple_unlock(&fs->lfs_interlock);
375 } while (redo && vp == fs->lfs_ivnode);
376 #endif
377 if (lfs_dostats) {
378 ++lfs_stats.nwrites;
379 if (sp->seg_flags & SEGM_SYNC)
380 ++lfs_stats.nsync_writes;
381 if (sp->seg_flags & SEGM_CKP)
382 ++lfs_stats.ncheckpoints;
383 }
384 /*
385 * If we were called from somewhere that has already held the seglock
386 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
387 * the write to complete because we are still locked.
388 * Since lfs_vflush() must return the vnode with no dirty buffers,
389 * we must explicitly wait, if that is the case.
390 *
391 * We compare the iocount against 1, not 0, because it is
392 * artificially incremented by lfs_seglock().
393 */
394 simple_lock(&fs->lfs_interlock);
395 if (fs->lfs_seglock > 1) {
396 while (fs->lfs_iocount > 1)
397 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
398 "lfs_vflush", 0, &fs->lfs_interlock);
399 }
400 simple_unlock(&fs->lfs_interlock);
401
402 lfs_segunlock(fs);
403
404 /* Wait for these buffers to be recovered by aiodoned */
405 s = splbio();
406 simple_lock(&global_v_numoutput_slock);
407 while (vp->v_numoutput > 0) {
408 vp->v_flag |= VBWAIT;
409 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
410 &global_v_numoutput_slock);
411 }
412 simple_unlock(&global_v_numoutput_slock);
413 splx(s);
414
415 CLR_FLUSHING(fs,vp);
416 return (0);
417 }
418
419 int
420 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
421 {
422 struct inode *ip;
423 struct vnode *vp, *nvp;
424 int inodes_written = 0, only_cleaning;
425
426 ASSERT_SEGLOCK(fs);
427 #ifndef LFS_NO_BACKVP_HACK
428 /* BEGIN HACK */
429 #define VN_OFFSET \
430 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
431 #define BACK_VP(VP) \
432 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
433 #define BEG_OF_VLIST \
434 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
435 - VN_OFFSET))
436
437 /* Find last vnode. */
438 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
439 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
440 vp = LIST_NEXT(vp, v_mntvnodes));
441 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
442 nvp = BACK_VP(vp);
443 #else
444 loop:
445 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
446 nvp = LIST_NEXT(vp, v_mntvnodes);
447 #endif
448 /*
449 * If the vnode that we are about to sync is no longer
450 * associated with this mount point, start over.
451 */
452 if (vp->v_mount != mp) {
453 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
454 /*
455 * After this, pages might be busy
456 * due to our own previous putpages.
457 * Start actual segment write here to avoid deadlock.
458 */
459 (void)lfs_writeseg(fs, sp);
460 goto loop;
461 }
462
463 if (vp->v_type == VNON) {
464 continue;
465 }
466
467 ip = VTOI(vp);
468 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
469 (op != VN_DIROP && op != VN_CLEAN &&
470 (vp->v_flag & VDIROP))) {
471 vndebug(vp,"dirop");
472 continue;
473 }
474
475 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
476 vndebug(vp,"empty");
477 continue;
478 }
479
480 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
481 && vp != fs->lfs_flushvp
482 && !(ip->i_flag & IN_CLEANING)) {
483 vndebug(vp,"cleaning");
484 continue;
485 }
486
487 if (lfs_vref(vp)) {
488 vndebug(vp,"vref");
489 continue;
490 }
491
492 only_cleaning = 0;
493 /*
494 * Write the inode/file if dirty and it's not the IFILE.
495 */
496 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
497 only_cleaning =
498 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
499
500 if (ip->i_number != LFS_IFILE_INUM) {
501 lfs_writefile(fs, sp, vp);
502 if (!VPISEMPTY(vp)) {
503 if (WRITEINPROG(vp)) {
504 ivndebug(vp,"writevnodes/write2");
505 } else if (!(ip->i_flag & IN_ALLMOD)) {
506 LFS_SET_UINO(ip, IN_MODIFIED);
507 }
508 }
509 (void) lfs_writeinode(fs, sp, ip);
510 inodes_written++;
511 }
512 }
513
514 if (lfs_clean_vnhead && only_cleaning)
515 lfs_vunref_head(vp);
516 else
517 lfs_vunref(vp);
518 }
519 return inodes_written;
520 }
521
522 /*
523 * Do a checkpoint.
524 */
525 int
526 lfs_segwrite(struct mount *mp, int flags)
527 {
528 struct buf *bp;
529 struct inode *ip;
530 struct lfs *fs;
531 struct segment *sp;
532 struct vnode *vp;
533 SEGUSE *segusep;
534 int do_ckp, did_ckp, error, s;
535 unsigned n, segleft, maxseg, sn, i, curseg;
536 int writer_set = 0;
537 int dirty;
538 int redo;
539
540 fs = VFSTOUFS(mp)->um_lfs;
541 ASSERT_MAYBE_SEGLOCK(fs);
542
543 if (fs->lfs_ronly)
544 return EROFS;
545
546 lfs_imtime(fs);
547
548 /*
549 * Allocate a segment structure and enough space to hold pointers to
550 * the maximum possible number of buffers which can be described in a
551 * single summary block.
552 */
553 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
554 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
555 sp = fs->lfs_sp;
556
557 /*
558 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
559 * in which case we have to flush *all* buffers off of this vnode.
560 * We don't care about other nodes, but write any non-dirop nodes
561 * anyway in anticipation of another getnewvnode().
562 *
563 * If we're cleaning we only write cleaning and ifile blocks, and
564 * no dirops, since otherwise we'd risk corruption in a crash.
565 */
566 if (sp->seg_flags & SEGM_CLEAN)
567 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
568 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
569 lfs_writevnodes(fs, mp, sp, VN_REG);
570 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
571 error = lfs_writer_enter(fs, "lfs writer");
572 if (error) {
573 DLOG((DLOG_SEG, "segwrite mysterious error\n"));
574 /* XXX why not segunlock? */
575 pool_put(&fs->lfs_bpppool, sp->bpp);
576 sp->bpp = NULL;
577 pool_put(&fs->lfs_segpool, sp);
578 sp = fs->lfs_sp = NULL;
579 return (error);
580 }
581 writer_set = 1;
582 lfs_writevnodes(fs, mp, sp, VN_DIROP);
583 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
584 }
585 }
586
587 /*
588 * If we are doing a checkpoint, mark everything since the
589 * last checkpoint as no longer ACTIVE.
590 */
591 if (do_ckp) {
592 segleft = fs->lfs_nseg;
593 curseg = 0;
594 for (n = 0; n < fs->lfs_segtabsz; n++) {
595 dirty = 0;
596 if (bread(fs->lfs_ivnode,
597 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
598 panic("lfs_segwrite: ifile read");
599 segusep = (SEGUSE *)bp->b_data;
600 maxseg = min(segleft, fs->lfs_sepb);
601 for (i = 0; i < maxseg; i++) {
602 sn = curseg + i;
603 if (sn != dtosn(fs, fs->lfs_curseg) &&
604 segusep->su_flags & SEGUSE_ACTIVE) {
605 segusep->su_flags &= ~SEGUSE_ACTIVE;
606 --fs->lfs_nactive;
607 ++dirty;
608 }
609 fs->lfs_suflags[fs->lfs_activesb][sn] =
610 segusep->su_flags;
611 if (fs->lfs_version > 1)
612 ++segusep;
613 else
614 segusep = (SEGUSE *)
615 ((SEGUSE_V1 *)segusep + 1);
616 }
617
618 if (dirty)
619 error = LFS_BWRITE_LOG(bp); /* Ifile */
620 else
621 brelse(bp);
622 segleft -= fs->lfs_sepb;
623 curseg += fs->lfs_sepb;
624 }
625 }
626
627 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
628
629 did_ckp = 0;
630 if (do_ckp || fs->lfs_doifile) {
631 vp = fs->lfs_ivnode;
632 vn_lock(vp, LK_EXCLUSIVE);
633 do {
634 #ifdef DEBUG
635 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
636 #endif
637 simple_lock(&fs->lfs_interlock);
638 fs->lfs_flags &= ~LFS_IFDIRTY;
639 simple_unlock(&fs->lfs_interlock);
640
641 ip = VTOI(vp);
642
643 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
644 lfs_writefile(fs, sp, vp);
645
646 if (ip->i_flag & IN_ALLMOD)
647 ++did_ckp;
648 redo = lfs_writeinode(fs, sp, ip);
649 redo += lfs_writeseg(fs, sp);
650 simple_lock(&fs->lfs_interlock);
651 redo += (fs->lfs_flags & LFS_IFDIRTY);
652 simple_unlock(&fs->lfs_interlock);
653 } while (redo && do_ckp);
654
655 /*
656 * Unless we are unmounting, the Ifile may continue to have
657 * dirty blocks even after a checkpoint, due to changes to
658 * inodes' atime. If we're checkpointing, it's "impossible"
659 * for other parts of the Ifile to be dirty after the loop
660 * above, since we hold the segment lock.
661 */
662 s = splbio();
663 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
664 LFS_CLR_UINO(ip, IN_ALLMOD);
665 }
666 #ifdef DIAGNOSTIC
667 else if (do_ckp) {
668 int do_panic = 0;
669 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
670 if (bp->b_lblkno < fs->lfs_cleansz +
671 fs->lfs_segtabsz &&
672 !(bp->b_flags & B_GATHERED)) {
673 printf("ifile lbn %ld still dirty (flags %lx)\n",
674 (long)bp->b_lblkno,
675 (long)bp->b_flags);
676 ++do_panic;
677 }
678 }
679 if (do_panic)
680 panic("dirty blocks");
681 }
682 #endif
683 splx(s);
684 VOP_UNLOCK(vp, 0);
685 } else {
686 (void) lfs_writeseg(fs, sp);
687 }
688
689 /* Note Ifile no longer needs to be written */
690 fs->lfs_doifile = 0;
691 if (writer_set)
692 lfs_writer_leave(fs);
693
694 /*
695 * If we didn't write the Ifile, we didn't really do anything.
696 * That means that (1) there is a checkpoint on disk and (2)
697 * nothing has changed since it was written.
698 *
699 * Take the flags off of the segment so that lfs_segunlock
700 * doesn't have to write the superblock either.
701 */
702 if (do_ckp && !did_ckp) {
703 sp->seg_flags &= ~SEGM_CKP;
704 }
705
706 if (lfs_dostats) {
707 ++lfs_stats.nwrites;
708 if (sp->seg_flags & SEGM_SYNC)
709 ++lfs_stats.nsync_writes;
710 if (sp->seg_flags & SEGM_CKP)
711 ++lfs_stats.ncheckpoints;
712 }
713 lfs_segunlock(fs);
714 return (0);
715 }
716
717 /*
718 * Write the dirty blocks associated with a vnode.
719 */
720 void
721 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
722 {
723 struct buf *bp;
724 struct finfo *fip;
725 struct inode *ip;
726 IFILE *ifp;
727 int i, frag;
728
729 ASSERT_SEGLOCK(fs);
730 ip = VTOI(vp);
731
732 if (sp->seg_bytes_left < fs->lfs_bsize ||
733 sp->sum_bytes_left < sizeof(struct finfo))
734 (void) lfs_writeseg(fs, sp);
735
736 sp->sum_bytes_left -= FINFOSIZE;
737 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
738
739 if (vp->v_flag & VDIROP)
740 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
741
742 fip = sp->fip;
743 fip->fi_nblocks = 0;
744 fip->fi_ino = ip->i_number;
745 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
746 fip->fi_version = ifp->if_version;
747 brelse(bp);
748
749 if (sp->seg_flags & SEGM_CLEAN) {
750 lfs_gather(fs, sp, vp, lfs_match_fake);
751 /*
752 * For a file being flushed, we need to write *all* blocks.
753 * This means writing the cleaning blocks first, and then
754 * immediately following with any non-cleaning blocks.
755 * The same is true of the Ifile since checkpoints assume
756 * that all valid Ifile blocks are written.
757 */
758 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
759 lfs_gather(fs, sp, vp, lfs_match_data);
760 /*
761 * Don't call VOP_PUTPAGES: if we're flushing,
762 * we've already done it, and the Ifile doesn't
763 * use the page cache.
764 */
765 }
766 } else {
767 lfs_gather(fs, sp, vp, lfs_match_data);
768 /*
769 * If we're flushing, we've already called VOP_PUTPAGES
770 * so don't do it again. Otherwise, we want to write
771 * everything we've got.
772 */
773 if (!IS_FLUSHING(fs, vp)) {
774 simple_lock(&vp->v_interlock);
775 VOP_PUTPAGES(vp, 0, 0,
776 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
777 }
778 }
779
780 /*
781 * It may not be necessary to write the meta-data blocks at this point,
782 * as the roll-forward recovery code should be able to reconstruct the
783 * list.
784 *
785 * We have to write them anyway, though, under two conditions: (1) the
786 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
787 * checkpointing.
788 *
789 * BUT if we are cleaning, we might have indirect blocks that refer to
790 * new blocks not being written yet, in addition to fragments being
791 * moved out of a cleaned segment. If that is the case, don't
792 * write the indirect blocks, or the finfo will have a small block
793 * in the middle of it!
794 * XXX in this case isn't the inode size wrong too?
795 */
796 frag = 0;
797 if (sp->seg_flags & SEGM_CLEAN) {
798 for (i = 0; i < NDADDR; i++)
799 if (ip->i_lfs_fragsize[i] > 0 &&
800 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
801 ++frag;
802 }
803 #ifdef DIAGNOSTIC
804 if (frag > 1)
805 panic("lfs_writefile: more than one fragment!");
806 #endif
807 if (IS_FLUSHING(fs, vp) ||
808 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
809 lfs_gather(fs, sp, vp, lfs_match_indir);
810 lfs_gather(fs, sp, vp, lfs_match_dindir);
811 lfs_gather(fs, sp, vp, lfs_match_tindir);
812 }
813 fip = sp->fip;
814 if (fip->fi_nblocks != 0) {
815 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
816 sizeof(int32_t) * (fip->fi_nblocks));
817 sp->start_lbp = &sp->fip->fi_blocks[0];
818 } else {
819 sp->sum_bytes_left += FINFOSIZE;
820 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
821 }
822 }
823
824 int
825 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
826 {
827 struct buf *bp, *ibp;
828 struct ufs1_dinode *cdp;
829 IFILE *ifp;
830 SEGUSE *sup;
831 daddr_t daddr;
832 int32_t *daddrp; /* XXX ondisk32 */
833 ino_t ino;
834 int error, i, ndx, fsb = 0;
835 int redo_ifile = 0;
836 int gotblk = 0;
837
838 ASSERT_SEGLOCK(fs);
839 if (!(ip->i_flag & IN_ALLMOD))
840 return (0);
841
842 /* Allocate a new inode block if necessary. */
843 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
844 sp->ibp == NULL) {
845 /* Allocate a new segment if necessary. */
846 if (sp->seg_bytes_left < fs->lfs_ibsize ||
847 sp->sum_bytes_left < sizeof(int32_t))
848 (void) lfs_writeseg(fs, sp);
849
850 /* Get next inode block. */
851 daddr = fs->lfs_offset;
852 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
853 sp->ibp = *sp->cbpp++ =
854 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
855 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
856 gotblk++;
857
858 /* Zero out inode numbers */
859 for (i = 0; i < INOPB(fs); ++i)
860 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
861 0;
862
863 ++sp->start_bpp;
864 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
865 /* Set remaining space counters. */
866 sp->seg_bytes_left -= fs->lfs_ibsize;
867 sp->sum_bytes_left -= sizeof(int32_t);
868 ndx = fs->lfs_sumsize / sizeof(int32_t) -
869 sp->ninodes / INOPB(fs) - 1;
870 ((int32_t *)(sp->segsum))[ndx] = daddr;
871 }
872
873 /* Update the inode times and copy the inode onto the inode page. */
874 /* XXX kludge --- don't redirty the ifile just to put times on it */
875 if (ip->i_number != LFS_IFILE_INUM)
876 LFS_ITIMES(ip, NULL, NULL, NULL);
877
878 /*
879 * If this is the Ifile, and we've already written the Ifile in this
880 * partial segment, just overwrite it (it's not on disk yet) and
881 * continue.
882 *
883 * XXX we know that the bp that we get the second time around has
884 * already been gathered.
885 */
886 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
887 *(sp->idp) = *ip->i_din.ffs1_din;
888 ip->i_lfs_osize = ip->i_size;
889 return 0;
890 }
891
892 bp = sp->ibp;
893 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
894 *cdp = *ip->i_din.ffs1_din;
895
896 /*
897 * If we are cleaning, ensure that we don't write UNWRITTEN disk
898 * addresses to disk; possibly change the on-disk record of
899 * the inode size, either by reverting to the previous size
900 * (in the case of cleaning) or by verifying the inode's block
901 * holdings (in the case of files being allocated as they are being
902 * written).
903 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
904 * XXX count on disk wrong by the same amount. We should be
905 * XXX able to "borrow" from lfs_avail and return it after the
906 * XXX Ifile is written. See also in lfs_writeseg.
907 */
908
909 /* Check file size based on highest allocated block */
910 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
911 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
912 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
913 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
914 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
915 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
916 }
917 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
918 if (ip->i_flags & IN_CLEANING)
919 cdp->di_size = ip->i_lfs_osize;
920 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
921 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
922 ip->i_ffs1_blocks, fs->lfs_offset));
923 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
924 daddrp++) {
925 if (*daddrp == UNWRITTEN) {
926 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
927 *daddrp = 0;
928 }
929 }
930 } else {
931 /* If all blocks are going to disk, update "size on disk" */
932 ip->i_lfs_osize = ip->i_size;
933 }
934
935 #ifdef DIAGNOSTIC
936 /*
937 * Check dinode held blocks against dinode size.
938 * This should be identical to the check in lfs_vget().
939 */
940 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
941 i < NDADDR; i++) {
942 KASSERT(i >= 0);
943 if ((cdp->di_mode & IFMT) == IFLNK)
944 continue;
945 if (((cdp->di_mode & IFMT) == IFBLK ||
946 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
947 continue;
948 if (cdp->di_db[i] != 0) {
949 # ifdef DEBUG
950 lfs_dump_dinode(cdp);
951 # endif
952 panic("writing inconsistent inode");
953 }
954 }
955 #endif /* DIAGNOSTIC */
956
957 if (ip->i_flag & IN_CLEANING)
958 LFS_CLR_UINO(ip, IN_CLEANING);
959 else {
960 /* XXX IN_ALLMOD */
961 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
962 IN_UPDATE | IN_MODIFY);
963 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
964 LFS_CLR_UINO(ip, IN_MODIFIED);
965 else
966 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
967 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
968 ip->i_lfs_effnblks));
969 }
970
971 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
972 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
973 (sp->ninodes % INOPB(fs));
974 if (gotblk) {
975 LFS_LOCK_BUF(bp);
976 brelse(bp);
977 }
978
979 /* Increment inode count in segment summary block. */
980 ++((SEGSUM *)(sp->segsum))->ss_ninos;
981
982 /* If this page is full, set flag to allocate a new page. */
983 if (++sp->ninodes % INOPB(fs) == 0)
984 sp->ibp = NULL;
985
986 /*
987 * If updating the ifile, update the super-block. Update the disk
988 * address and access times for this inode in the ifile.
989 */
990 ino = ip->i_number;
991 if (ino == LFS_IFILE_INUM) {
992 daddr = fs->lfs_idaddr;
993 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
994 } else {
995 LFS_IENTRY(ifp, fs, ino, ibp);
996 daddr = ifp->if_daddr;
997 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
998 error = LFS_BWRITE_LOG(ibp); /* Ifile */
999 }
1000
1001 /*
1002 * The inode's last address should not be in the current partial
1003 * segment, except under exceptional circumstances (lfs_writevnodes
1004 * had to start over, and in the meantime more blocks were written
1005 * to a vnode). Both inodes will be accounted to this segment
1006 * in lfs_writeseg so we need to subtract the earlier version
1007 * here anyway. The segment count can temporarily dip below
1008 * zero here; keep track of how many duplicates we have in
1009 * "dupino" so we don't panic below.
1010 */
1011 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1012 ++sp->ndupino;
1013 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1014 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1015 (long long)daddr, sp->ndupino));
1016 }
1017 /*
1018 * Account the inode: it no longer belongs to its former segment,
1019 * though it will not belong to the new segment until that segment
1020 * is actually written.
1021 */
1022 if (daddr != LFS_UNUSED_DADDR) {
1023 u_int32_t oldsn = dtosn(fs, daddr);
1024 #ifdef DIAGNOSTIC
1025 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1026 #endif
1027 LFS_SEGENTRY(sup, fs, oldsn, bp);
1028 #ifdef DIAGNOSTIC
1029 if (sup->su_nbytes +
1030 sizeof (struct ufs1_dinode) * ndupino
1031 < sizeof (struct ufs1_dinode)) {
1032 printf("lfs_writeinode: negative bytes "
1033 "(segment %" PRIu32 " short by %d, "
1034 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1035 ", daddr=%" PRId64 ", su_nbytes=%u, "
1036 "ndupino=%d)\n",
1037 dtosn(fs, daddr),
1038 (int)sizeof (struct ufs1_dinode) *
1039 (1 - sp->ndupino) - sup->su_nbytes,
1040 oldsn, sp->seg_number, daddr,
1041 (unsigned int)sup->su_nbytes,
1042 sp->ndupino);
1043 panic("lfs_writeinode: negative bytes");
1044 sup->su_nbytes = sizeof (struct ufs1_dinode);
1045 }
1046 #endif
1047 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1048 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1049 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1050 redo_ifile =
1051 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1052 if (redo_ifile) {
1053 simple_lock(&fs->lfs_interlock);
1054 fs->lfs_flags |= LFS_IFDIRTY;
1055 simple_unlock(&fs->lfs_interlock);
1056 }
1057 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1058 }
1059 return (redo_ifile);
1060 }
1061
1062 int
1063 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1064 {
1065 struct lfs *fs;
1066 int vers;
1067 int j, blksinblk;
1068
1069 ASSERT_SEGLOCK(sp->fs);
1070 /*
1071 * If full, finish this segment. We may be doing I/O, so
1072 * release and reacquire the splbio().
1073 */
1074 #ifdef DIAGNOSTIC
1075 if (sp->vp == NULL)
1076 panic ("lfs_gatherblock: Null vp in segment");
1077 #endif
1078 fs = sp->fs;
1079 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1080 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1081 sp->seg_bytes_left < bp->b_bcount) {
1082 if (sptr)
1083 splx(*sptr);
1084 lfs_updatemeta(sp);
1085
1086 vers = sp->fip->fi_version;
1087 (void) lfs_writeseg(fs, sp);
1088
1089 sp->fip->fi_version = vers;
1090 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1091 /* Add the current file to the segment summary. */
1092 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1093 sp->sum_bytes_left -= FINFOSIZE;
1094
1095 if (sptr)
1096 *sptr = splbio();
1097 return (1);
1098 }
1099
1100 if (bp->b_flags & B_GATHERED) {
1101 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1102 " lbn %" PRId64 "\n",
1103 sp->fip->fi_ino, bp->b_lblkno));
1104 return (0);
1105 }
1106
1107 /* Insert into the buffer list, update the FINFO block. */
1108 bp->b_flags |= B_GATHERED;
1109
1110 *sp->cbpp++ = bp;
1111 for (j = 0; j < blksinblk; j++) {
1112 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1113 /* This block's accounting moves from lfs_favail to lfs_avail */
1114 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1115 }
1116
1117 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1118 sp->seg_bytes_left -= bp->b_bcount;
1119 return (0);
1120 }
1121
1122 int
1123 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1124 int (*match)(struct lfs *, struct buf *))
1125 {
1126 struct buf *bp, *nbp;
1127 int s, count = 0;
1128
1129 ASSERT_SEGLOCK(fs);
1130 KASSERT(sp->vp == NULL);
1131 sp->vp = vp;
1132 s = splbio();
1133
1134 #ifndef LFS_NO_BACKBUF_HACK
1135 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1136 # define BUF_OFFSET \
1137 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1138 # define BACK_BUF(BP) \
1139 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1140 # define BEG_OF_LIST \
1141 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1142
1143 loop:
1144 /* Find last buffer. */
1145 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1146 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1147 bp = LIST_NEXT(bp, b_vnbufs))
1148 /* nothing */;
1149 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1150 nbp = BACK_BUF(bp);
1151 #else /* LFS_NO_BACKBUF_HACK */
1152 loop:
1153 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1154 nbp = LIST_NEXT(bp, b_vnbufs);
1155 #endif /* LFS_NO_BACKBUF_HACK */
1156 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1157 #ifdef DEBUG
1158 if (vp == fs->lfs_ivnode &&
1159 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1160 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1161 PRId64 " busy (%x)",
1162 bp->b_lblkno, bp->b_flags));
1163 #endif
1164 continue;
1165 }
1166 if (vp->v_type == VBLK) {
1167 /* For block devices, just write the blocks. */
1168 /* XXX Do we even need to do this? */
1169 /*
1170 * Get the block before bwrite,
1171 * so we don't corrupt the free list
1172 */
1173 bp->b_flags |= B_BUSY;
1174 bremfree(bp);
1175 bwrite(bp);
1176 } else {
1177 #ifdef DIAGNOSTIC
1178 # ifdef LFS_USE_B_INVAL
1179 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1180 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1181 " is B_INVAL\n", bp->b_lblkno));
1182 VOP_PRINT(bp->b_vp);
1183 }
1184 # endif /* LFS_USE_B_INVAL */
1185 if (!(bp->b_flags & B_DELWRI))
1186 panic("lfs_gather: bp not B_DELWRI");
1187 if (!(bp->b_flags & B_LOCKED)) {
1188 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1189 " blk %" PRId64 " not B_LOCKED\n",
1190 bp->b_lblkno,
1191 dbtofsb(fs, bp->b_blkno)));
1192 VOP_PRINT(bp->b_vp);
1193 panic("lfs_gather: bp not B_LOCKED");
1194 }
1195 #endif
1196 if (lfs_gatherblock(sp, bp, &s)) {
1197 goto loop;
1198 }
1199 }
1200 count++;
1201 }
1202 splx(s);
1203 lfs_updatemeta(sp);
1204 KASSERT(sp->vp == vp);
1205 sp->vp = NULL;
1206 return count;
1207 }
1208
1209 #if DEBUG
1210 # define DEBUG_OOFF(n) do { \
1211 if (ooff == 0) { \
1212 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1213 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1214 ", was 0x0 (or %" PRId64 ")\n", \
1215 (n), ip->i_number, lbn, ndaddr, daddr)); \
1216 } \
1217 } while (0)
1218 #else
1219 # define DEBUG_OOFF(n)
1220 #endif
1221
1222 /*
1223 * Change the given block's address to ndaddr, finding its previous
1224 * location using ufs_bmaparray().
1225 *
1226 * Account for this change in the segment table.
1227 *
1228 * called with sp == NULL by roll-forwarding code.
1229 */
1230 void
1231 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1232 daddr_t lbn, int32_t ndaddr, int size)
1233 {
1234 SEGUSE *sup;
1235 struct buf *bp;
1236 struct indir a[NIADDR + 2], *ap;
1237 struct inode *ip;
1238 daddr_t daddr, ooff;
1239 int num, error;
1240 int bb, osize, obb;
1241
1242 ASSERT_SEGLOCK(fs);
1243 KASSERT(sp == NULL || sp->vp == vp);
1244 ip = VTOI(vp);
1245
1246 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1247 if (error)
1248 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1249
1250 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1251 KASSERT(daddr <= LFS_MAX_DADDR);
1252 if (daddr > 0)
1253 daddr = dbtofsb(fs, daddr);
1254
1255 bb = fragstofsb(fs, numfrags(fs, size));
1256 switch (num) {
1257 case 0:
1258 ooff = ip->i_ffs1_db[lbn];
1259 DEBUG_OOFF(0);
1260 if (ooff == UNWRITTEN)
1261 ip->i_ffs1_blocks += bb;
1262 else {
1263 /* possible fragment truncation or extension */
1264 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1265 ip->i_ffs1_blocks += (bb - obb);
1266 }
1267 ip->i_ffs1_db[lbn] = ndaddr;
1268 break;
1269 case 1:
1270 ooff = ip->i_ffs1_ib[a[0].in_off];
1271 DEBUG_OOFF(1);
1272 if (ooff == UNWRITTEN)
1273 ip->i_ffs1_blocks += bb;
1274 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1275 break;
1276 default:
1277 ap = &a[num - 1];
1278 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1279 panic("lfs_updatemeta: bread bno %" PRId64,
1280 ap->in_lbn);
1281
1282 /* XXX ondisk32 */
1283 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1284 DEBUG_OOFF(num);
1285 if (ooff == UNWRITTEN)
1286 ip->i_ffs1_blocks += bb;
1287 /* XXX ondisk32 */
1288 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1289 (void) VOP_BWRITE(bp);
1290 }
1291
1292 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1293
1294 /* Update hiblk when extending the file */
1295 if (lbn > ip->i_lfs_hiblk)
1296 ip->i_lfs_hiblk = lbn;
1297
1298 /*
1299 * Though we'd rather it couldn't, this *can* happen right now
1300 * if cleaning blocks and regular blocks coexist.
1301 */
1302 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1303
1304 /*
1305 * Update segment usage information, based on old size
1306 * and location.
1307 */
1308 if (daddr > 0) {
1309 u_int32_t oldsn = dtosn(fs, daddr);
1310 #ifdef DIAGNOSTIC
1311 int ndupino;
1312
1313 if (sp && sp->seg_number == oldsn) {
1314 ndupino = sp->ndupino;
1315 } else {
1316 ndupino = 0;
1317 }
1318 #endif
1319 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1320 if (lbn >= 0 && lbn < NDADDR)
1321 osize = ip->i_lfs_fragsize[lbn];
1322 else
1323 osize = fs->lfs_bsize;
1324 LFS_SEGENTRY(sup, fs, oldsn, bp);
1325 #ifdef DIAGNOSTIC
1326 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1327 < osize) {
1328 printf("lfs_updatemeta: negative bytes "
1329 "(segment %" PRIu32 " short by %" PRId64
1330 ")\n", dtosn(fs, daddr),
1331 (int64_t)osize -
1332 (sizeof (struct ufs1_dinode) * ndupino +
1333 sup->su_nbytes));
1334 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1335 ", addr = 0x%" PRIx64 "\n",
1336 (unsigned long long)ip->i_number, lbn, daddr);
1337 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1338 panic("lfs_updatemeta: negative bytes");
1339 sup->su_nbytes = osize -
1340 sizeof (struct ufs1_dinode) * ndupino;
1341 }
1342 #endif
1343 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1344 " db 0x%" PRIx64 "\n",
1345 dtosn(fs, daddr), osize,
1346 ip->i_number, lbn, daddr));
1347 sup->su_nbytes -= osize;
1348 if (!(bp->b_flags & B_GATHERED)) {
1349 simple_lock(&fs->lfs_interlock);
1350 fs->lfs_flags |= LFS_IFDIRTY;
1351 simple_unlock(&fs->lfs_interlock);
1352 }
1353 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1354 }
1355 /*
1356 * Now that this block has a new address, and its old
1357 * segment no longer owns it, we can forget about its
1358 * old size.
1359 */
1360 if (lbn >= 0 && lbn < NDADDR)
1361 ip->i_lfs_fragsize[lbn] = size;
1362 }
1363
1364 /*
1365 * Update the metadata that points to the blocks listed in the FINFO
1366 * array.
1367 */
1368 void
1369 lfs_updatemeta(struct segment *sp)
1370 {
1371 struct buf *sbp;
1372 struct lfs *fs;
1373 struct vnode *vp;
1374 daddr_t lbn;
1375 int i, nblocks, num;
1376 int bb;
1377 int bytesleft, size;
1378
1379 ASSERT_SEGLOCK(sp->fs);
1380 vp = sp->vp;
1381 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1382 KASSERT(nblocks >= 0);
1383 KASSERT(vp != NULL);
1384 if (nblocks == 0)
1385 return;
1386
1387 /*
1388 * This count may be high due to oversize blocks from lfs_gop_write.
1389 * Correct for this. (XXX we should be able to keep track of these.)
1390 */
1391 fs = sp->fs;
1392 for (i = 0; i < nblocks; i++) {
1393 if (sp->start_bpp[i] == NULL) {
1394 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1395 nblocks = i;
1396 break;
1397 }
1398 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1399 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1400 nblocks -= num - 1;
1401 }
1402
1403 KASSERT(vp->v_type == VREG ||
1404 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1405 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1406
1407 /*
1408 * Sort the blocks.
1409 *
1410 * We have to sort even if the blocks come from the
1411 * cleaner, because there might be other pending blocks on the
1412 * same inode...and if we don't sort, and there are fragments
1413 * present, blocks may be written in the wrong place.
1414 */
1415 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1416
1417 /*
1418 * Record the length of the last block in case it's a fragment.
1419 * If there are indirect blocks present, they sort last. An
1420 * indirect block will be lfs_bsize and its presence indicates
1421 * that you cannot have fragments.
1422 *
1423 * XXX This last is a lie. A cleaned fragment can coexist with
1424 * XXX a later indirect block. This will continue to be
1425 * XXX true until lfs_markv is fixed to do everything with
1426 * XXX fake blocks (including fake inodes and fake indirect blocks).
1427 */
1428 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1429 fs->lfs_bmask) + 1;
1430
1431 /*
1432 * Assign disk addresses, and update references to the logical
1433 * block and the segment usage information.
1434 */
1435 for (i = nblocks; i--; ++sp->start_bpp) {
1436 sbp = *sp->start_bpp;
1437 lbn = *sp->start_lbp;
1438 KASSERT(sbp->b_lblkno == lbn);
1439
1440 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1441
1442 /*
1443 * If we write a frag in the wrong place, the cleaner won't
1444 * be able to correctly identify its size later, and the
1445 * segment will be uncleanable. (Even worse, it will assume
1446 * that the indirect block that actually ends the list
1447 * is of a smaller size!)
1448 */
1449 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1450 panic("lfs_updatemeta: fragment is not last block");
1451
1452 /*
1453 * For each subblock in this possibly oversized block,
1454 * update its address on disk.
1455 */
1456 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1457 KASSERT(vp == sbp->b_vp);
1458 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1459 bytesleft -= fs->lfs_bsize) {
1460 size = MIN(bytesleft, fs->lfs_bsize);
1461 bb = fragstofsb(fs, numfrags(fs, size));
1462 lbn = *sp->start_lbp++;
1463 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1464 size);
1465 fs->lfs_offset += bb;
1466 }
1467
1468 }
1469 }
1470
1471 /*
1472 * Move lfs_offset to a segment earlier than sn.
1473 */
1474 int
1475 lfs_rewind(struct lfs *fs, int newsn)
1476 {
1477 int sn, osn, isdirty;
1478 struct buf *bp;
1479 SEGUSE *sup;
1480
1481 ASSERT_SEGLOCK(fs);
1482
1483 osn = dtosn(fs, fs->lfs_offset);
1484 if (osn < newsn)
1485 return 0;
1486
1487 /* lfs_avail eats the remaining space in this segment */
1488 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1489
1490 /* Find a low-numbered segment */
1491 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1492 LFS_SEGENTRY(sup, fs, sn, bp);
1493 isdirty = sup->su_flags & SEGUSE_DIRTY;
1494 brelse(bp);
1495
1496 if (!isdirty)
1497 break;
1498 }
1499 if (sn == fs->lfs_nseg)
1500 panic("lfs_rewind: no clean segments");
1501 if (sn >= newsn)
1502 return ENOENT;
1503 fs->lfs_nextseg = sn;
1504 lfs_newseg(fs);
1505 fs->lfs_offset = fs->lfs_curseg;
1506
1507 return 0;
1508 }
1509
1510 /*
1511 * Start a new partial segment.
1512 *
1513 * Return 1 when we entered to a new segment.
1514 * Otherwise, return 0.
1515 */
1516 int
1517 lfs_initseg(struct lfs *fs)
1518 {
1519 struct segment *sp = fs->lfs_sp;
1520 SEGSUM *ssp;
1521 struct buf *sbp; /* buffer for SEGSUM */
1522 int repeat = 0; /* return value */
1523
1524 ASSERT_SEGLOCK(fs);
1525 /* Advance to the next segment. */
1526 if (!LFS_PARTIAL_FITS(fs)) {
1527 SEGUSE *sup;
1528 struct buf *bp;
1529
1530 /* lfs_avail eats the remaining space */
1531 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1532 fs->lfs_curseg);
1533 /* Wake up any cleaning procs waiting on this file system. */
1534 wakeup(&lfs_allclean_wakeup);
1535 wakeup(&fs->lfs_nextseg);
1536 lfs_newseg(fs);
1537 repeat = 1;
1538 fs->lfs_offset = fs->lfs_curseg;
1539
1540 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1541 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1542
1543 /*
1544 * If the segment contains a superblock, update the offset
1545 * and summary address to skip over it.
1546 */
1547 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1548 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1549 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1550 sp->seg_bytes_left -= LFS_SBPAD;
1551 }
1552 brelse(bp);
1553 /* Segment zero could also contain the labelpad */
1554 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1555 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1556 fs->lfs_offset +=
1557 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1558 sp->seg_bytes_left -=
1559 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1560 }
1561 } else {
1562 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1563 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1564 (fs->lfs_offset - fs->lfs_curseg));
1565 }
1566 fs->lfs_lastpseg = fs->lfs_offset;
1567
1568 /* Record first address of this partial segment */
1569 if (sp->seg_flags & SEGM_CLEAN) {
1570 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1571 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1572 /* "1" is the artificial inc in lfs_seglock */
1573 simple_lock(&fs->lfs_interlock);
1574 while (fs->lfs_iocount > 1) {
1575 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1576 "lfs_initseg", 0, &fs->lfs_interlock);
1577 }
1578 simple_unlock(&fs->lfs_interlock);
1579 fs->lfs_cleanind = 0;
1580 }
1581 }
1582
1583 sp->fs = fs;
1584 sp->ibp = NULL;
1585 sp->idp = NULL;
1586 sp->ninodes = 0;
1587 sp->ndupino = 0;
1588
1589 sp->cbpp = sp->bpp;
1590
1591 /* Get a new buffer for SEGSUM */
1592 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1593 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1594
1595 /* ... and enter it into the buffer list. */
1596 *sp->cbpp = sbp;
1597 sp->cbpp++;
1598 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1599
1600 sp->start_bpp = sp->cbpp;
1601
1602 /* Set point to SEGSUM, initialize it. */
1603 ssp = sp->segsum = sbp->b_data;
1604 memset(ssp, 0, fs->lfs_sumsize);
1605 ssp->ss_next = fs->lfs_nextseg;
1606 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1607 ssp->ss_magic = SS_MAGIC;
1608
1609 /* Set pointer to first FINFO, initialize it. */
1610 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1611 sp->fip->fi_nblocks = 0;
1612 sp->start_lbp = &sp->fip->fi_blocks[0];
1613 sp->fip->fi_lastlength = 0;
1614
1615 sp->seg_bytes_left -= fs->lfs_sumsize;
1616 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1617
1618 return (repeat);
1619 }
1620
1621 /*
1622 * Remove SEGUSE_INVAL from all segments.
1623 */
1624 void
1625 lfs_unset_inval_all(struct lfs *fs)
1626 {
1627 SEGUSE *sup;
1628 struct buf *bp;
1629 int i;
1630
1631 for (i = 0; i < fs->lfs_nseg; i++) {
1632 LFS_SEGENTRY(sup, fs, i, bp);
1633 if (sup->su_flags & SEGUSE_INVAL) {
1634 sup->su_flags &= ~SEGUSE_INVAL;
1635 VOP_BWRITE(bp);
1636 } else
1637 brelse(bp);
1638 }
1639 }
1640
1641 /*
1642 * Return the next segment to write.
1643 */
1644 void
1645 lfs_newseg(struct lfs *fs)
1646 {
1647 CLEANERINFO *cip;
1648 SEGUSE *sup;
1649 struct buf *bp;
1650 int curseg, isdirty, sn, skip_inval;
1651
1652 ASSERT_SEGLOCK(fs);
1653 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1654 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1655 dtosn(fs, fs->lfs_nextseg)));
1656 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1657 sup->su_nbytes = 0;
1658 sup->su_nsums = 0;
1659 sup->su_ninos = 0;
1660 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1661
1662 LFS_CLEANERINFO(cip, fs, bp);
1663 --cip->clean;
1664 ++cip->dirty;
1665 fs->lfs_nclean = cip->clean;
1666 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1667
1668 fs->lfs_lastseg = fs->lfs_curseg;
1669 fs->lfs_curseg = fs->lfs_nextseg;
1670 skip_inval = 1;
1671 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1672 sn = (sn + 1) % fs->lfs_nseg;
1673 if (sn == curseg) {
1674 if (skip_inval)
1675 skip_inval = 0;
1676 else
1677 panic("lfs_nextseg: no clean segments");
1678 }
1679 LFS_SEGENTRY(sup, fs, sn, bp);
1680 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1681 /* Check SEGUSE_EMPTY as we go along */
1682 if (isdirty && sup->su_nbytes == 0 &&
1683 !(sup->su_flags & SEGUSE_EMPTY))
1684 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1685 else
1686 brelse(bp);
1687
1688 if (!isdirty)
1689 break;
1690 }
1691 if (skip_inval == 0)
1692 lfs_unset_inval_all(fs);
1693
1694 ++fs->lfs_nactive;
1695 fs->lfs_nextseg = sntod(fs, sn);
1696 if (lfs_dostats) {
1697 ++lfs_stats.segsused;
1698 }
1699 }
1700
1701 static struct buf *
1702 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1703 {
1704 struct lfs_cluster *cl;
1705 struct buf **bpp, *bp;
1706 int s;
1707
1708 ASSERT_SEGLOCK(fs);
1709 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1710 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1711 memset(cl, 0, sizeof(*cl));
1712 cl->fs = fs;
1713 cl->bpp = bpp;
1714 cl->bufcount = 0;
1715 cl->bufsize = 0;
1716
1717 /* If this segment is being written synchronously, note that */
1718 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1719 cl->flags |= LFS_CL_SYNC;
1720 cl->seg = fs->lfs_sp;
1721 ++cl->seg->seg_iocount;
1722 }
1723
1724 /* Get an empty buffer header, or maybe one with something on it */
1725 s = splbio();
1726 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */
1727 splx(s);
1728 memset(bp, 0, sizeof(*bp));
1729 BUF_INIT(bp);
1730
1731 bp->b_flags = B_BUSY | B_CALL;
1732 bp->b_dev = NODEV;
1733 bp->b_blkno = bp->b_lblkno = addr;
1734 bp->b_iodone = lfs_cluster_callback;
1735 bp->b_private = cl;
1736 bp->b_vp = vp;
1737
1738 return bp;
1739 }
1740
1741 int
1742 lfs_writeseg(struct lfs *fs, struct segment *sp)
1743 {
1744 struct buf **bpp, *bp, *cbp, *newbp;
1745 SEGUSE *sup;
1746 SEGSUM *ssp;
1747 int i, s;
1748 int do_again, nblocks, byteoffset;
1749 size_t el_size;
1750 struct lfs_cluster *cl;
1751 u_short ninos;
1752 struct vnode *devvp;
1753 char *p = NULL;
1754 struct vnode *vp;
1755 int32_t *daddrp; /* XXX ondisk32 */
1756 int changed;
1757 u_int32_t sum;
1758
1759 ASSERT_SEGLOCK(fs);
1760 /*
1761 * If there are no buffers other than the segment summary to write
1762 * and it is not a checkpoint, don't do anything. On a checkpoint,
1763 * even if there aren't any buffers, you need to write the superblock.
1764 */
1765 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1766 return (0);
1767
1768 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1769
1770 /* Update the segment usage information. */
1771 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1772
1773 /* Loop through all blocks, except the segment summary. */
1774 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1775 if ((*bpp)->b_vp != devvp) {
1776 sup->su_nbytes += (*bpp)->b_bcount;
1777 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1778 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1779 sp->seg_number, (*bpp)->b_bcount,
1780 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1781 (*bpp)->b_blkno));
1782 }
1783 }
1784
1785 ssp = (SEGSUM *)sp->segsum;
1786
1787 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1788 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1789 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1790 ssp->ss_ninos));
1791 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1792 /* sup->su_nbytes += fs->lfs_sumsize; */
1793 if (fs->lfs_version == 1)
1794 sup->su_olastmod = time.tv_sec;
1795 else
1796 sup->su_lastmod = time.tv_sec;
1797 sup->su_ninos += ninos;
1798 ++sup->su_nsums;
1799 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1800 fs->lfs_ibsize));
1801 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1802
1803 do_again = !(bp->b_flags & B_GATHERED);
1804 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1805
1806 /*
1807 * Mark blocks B_BUSY, to prevent then from being changed between
1808 * the checksum computation and the actual write.
1809 *
1810 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1811 * there are any, replace them with copies that have UNASSIGNED
1812 * instead.
1813 */
1814 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1815 ++bpp;
1816 bp = *bpp;
1817 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1818 bp->b_flags |= B_BUSY;
1819 continue;
1820 }
1821
1822 simple_lock(&bp->b_interlock);
1823 s = splbio();
1824 while (bp->b_flags & B_BUSY) {
1825 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1826 " data summary corruption for ino %d, lbn %"
1827 PRId64 "\n",
1828 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1829 bp->b_flags |= B_WANTED;
1830 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1831 &bp->b_interlock);
1832 splx(s);
1833 s = splbio();
1834 }
1835 bp->b_flags |= B_BUSY;
1836 splx(s);
1837 simple_unlock(&bp->b_interlock);
1838
1839 /*
1840 * Check and replace indirect block UNWRITTEN bogosity.
1841 * XXX See comment in lfs_writefile.
1842 */
1843 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1844 VTOI(bp->b_vp)->i_ffs1_blocks !=
1845 VTOI(bp->b_vp)->i_lfs_effnblks) {
1846 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1847 VTOI(bp->b_vp)->i_number,
1848 VTOI(bp->b_vp)->i_lfs_effnblks,
1849 VTOI(bp->b_vp)->i_ffs1_blocks));
1850 /* Make a copy we'll make changes to */
1851 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1852 bp->b_bcount, LFS_NB_IBLOCK);
1853 newbp->b_blkno = bp->b_blkno;
1854 memcpy(newbp->b_data, bp->b_data,
1855 newbp->b_bcount);
1856
1857 changed = 0;
1858 /* XXX ondisk32 */
1859 for (daddrp = (int32_t *)(newbp->b_data);
1860 daddrp < (int32_t *)(newbp->b_data +
1861 newbp->b_bcount); daddrp++) {
1862 if (*daddrp == UNWRITTEN) {
1863 ++changed;
1864 *daddrp = 0;
1865 }
1866 }
1867 /*
1868 * Get rid of the old buffer. Don't mark it clean,
1869 * though, if it still has dirty data on it.
1870 */
1871 if (changed) {
1872 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1873 " bp = %p newbp = %p\n", changed, bp,
1874 newbp));
1875 *bpp = newbp;
1876 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1877 if (bp->b_flags & B_CALL) {
1878 DLOG((DLOG_SEG, "lfs_writeseg: "
1879 "indir bp should not be B_CALL\n"));
1880 s = splbio();
1881 biodone(bp);
1882 splx(s);
1883 bp = NULL;
1884 } else {
1885 /* Still on free list, leave it there */
1886 s = splbio();
1887 bp->b_flags &= ~B_BUSY;
1888 if (bp->b_flags & B_WANTED)
1889 wakeup(bp);
1890 splx(s);
1891 /*
1892 * We have to re-decrement lfs_avail
1893 * since this block is going to come
1894 * back around to us in the next
1895 * segment.
1896 */
1897 fs->lfs_avail -=
1898 btofsb(fs, bp->b_bcount);
1899 }
1900 } else {
1901 lfs_freebuf(fs, newbp);
1902 }
1903 }
1904 }
1905 /*
1906 * Compute checksum across data and then across summary; the first
1907 * block (the summary block) is skipped. Set the create time here
1908 * so that it's guaranteed to be later than the inode mod times.
1909 */
1910 sum = 0;
1911 if (fs->lfs_version == 1)
1912 el_size = sizeof(u_long);
1913 else
1914 el_size = sizeof(u_int32_t);
1915 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1916 ++bpp;
1917 /* Loop through gop_write cluster blocks */
1918 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1919 byteoffset += fs->lfs_bsize) {
1920 #ifdef LFS_USE_B_INVAL
1921 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1922 (B_CALL | B_INVAL)) {
1923 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1924 byteoffset, dp, el_size)) {
1925 panic("lfs_writeseg: copyin failed [1]:"
1926 " ino %d blk %" PRId64,
1927 VTOI((*bpp)->b_vp)->i_number,
1928 (*bpp)->b_lblkno);
1929 }
1930 } else
1931 #endif /* LFS_USE_B_INVAL */
1932 {
1933 sum = lfs_cksum_part(
1934 (*bpp)->b_data + byteoffset, el_size, sum);
1935 }
1936 }
1937 }
1938 if (fs->lfs_version == 1)
1939 ssp->ss_ocreate = time.tv_sec;
1940 else {
1941 ssp->ss_create = time.tv_sec;
1942 ssp->ss_serial = ++fs->lfs_serial;
1943 ssp->ss_ident = fs->lfs_ident;
1944 }
1945 ssp->ss_datasum = lfs_cksum_fold(sum);
1946 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
1947 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1948
1949 simple_lock(&fs->lfs_interlock);
1950 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1951 btofsb(fs, fs->lfs_sumsize));
1952 simple_unlock(&fs->lfs_interlock);
1953
1954 /*
1955 * When we simply write the blocks we lose a rotation for every block
1956 * written. To avoid this problem, we cluster the buffers into a
1957 * chunk and write the chunk. MAXPHYS is the largest size I/O
1958 * devices can handle, use that for the size of the chunks.
1959 *
1960 * Blocks that are already clusters (from GOP_WRITE), however, we
1961 * don't bother to copy into other clusters.
1962 */
1963
1964 #define CHUNKSIZE MAXPHYS
1965
1966 if (devvp == NULL)
1967 panic("devvp is NULL");
1968 for (bpp = sp->bpp, i = nblocks; i;) {
1969 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1970 cl = cbp->b_private;
1971
1972 cbp->b_flags |= B_ASYNC | B_BUSY;
1973 cbp->b_bcount = 0;
1974
1975 #if defined(DEBUG) && defined(DIAGNOSTIC)
1976 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
1977 / sizeof(int32_t)) {
1978 panic("lfs_writeseg: real bpp overwrite");
1979 }
1980 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
1981 panic("lfs_writeseg: theoretical bpp overwrite");
1982 }
1983 #endif
1984
1985 /*
1986 * Construct the cluster.
1987 */
1988 simple_lock(&fs->lfs_interlock);
1989 ++fs->lfs_iocount;
1990 simple_unlock(&fs->lfs_interlock);
1991 while (i && cbp->b_bcount < CHUNKSIZE) {
1992 bp = *bpp;
1993
1994 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1995 break;
1996 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
1997 break;
1998
1999 /* Clusters from GOP_WRITE are expedited */
2000 if (bp->b_bcount > fs->lfs_bsize) {
2001 if (cbp->b_bcount > 0)
2002 /* Put in its own buffer */
2003 break;
2004 else {
2005 cbp->b_data = bp->b_data;
2006 }
2007 } else if (cbp->b_bcount == 0) {
2008 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2009 LFS_NB_CLUSTER);
2010 cl->flags |= LFS_CL_MALLOC;
2011 }
2012 #ifdef DIAGNOSTIC
2013 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2014 btodb(bp->b_bcount - 1))) !=
2015 sp->seg_number) {
2016 printf("blk size %d daddr %" PRIx64
2017 " not in seg %d\n",
2018 bp->b_bcount, bp->b_blkno,
2019 sp->seg_number);
2020 panic("segment overwrite");
2021 }
2022 #endif
2023
2024 #ifdef LFS_USE_B_INVAL
2025 /*
2026 * Fake buffers from the cleaner are marked as B_INVAL.
2027 * We need to copy the data from user space rather than
2028 * from the buffer indicated.
2029 * XXX == what do I do on an error?
2030 */
2031 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2032 (B_CALL|B_INVAL)) {
2033 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2034 panic("lfs_writeseg: "
2035 "copyin failed [2]");
2036 } else
2037 #endif /* LFS_USE_B_INVAL */
2038 if (cl->flags & LFS_CL_MALLOC) {
2039 /* copy data into our cluster. */
2040 memcpy(p, bp->b_data, bp->b_bcount);
2041 p += bp->b_bcount;
2042 }
2043
2044 cbp->b_bcount += bp->b_bcount;
2045 cl->bufsize += bp->b_bcount;
2046
2047 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2048 cl->bpp[cl->bufcount++] = bp;
2049 vp = bp->b_vp;
2050 s = splbio();
2051 reassignbuf(bp, vp);
2052 V_INCR_NUMOUTPUT(vp);
2053 splx(s);
2054
2055 bpp++;
2056 i--;
2057 }
2058 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2059 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2060 else
2061 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2062 s = splbio();
2063 V_INCR_NUMOUTPUT(devvp);
2064 splx(s);
2065 VOP_STRATEGY(devvp, cbp);
2066 curproc->p_stats->p_ru.ru_oublock++;
2067 }
2068
2069 if (lfs_dostats) {
2070 ++lfs_stats.psegwrites;
2071 lfs_stats.blocktot += nblocks - 1;
2072 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2073 ++lfs_stats.psyncwrites;
2074 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2075 ++lfs_stats.pcleanwrites;
2076 lfs_stats.cleanblocks += nblocks - 1;
2077 }
2078 }
2079 return (lfs_initseg(fs) || do_again);
2080 }
2081
2082 void
2083 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2084 {
2085 struct buf *bp;
2086 int s;
2087 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2088
2089 ASSERT_MAYBE_SEGLOCK(fs);
2090 #ifdef DIAGNOSTIC
2091 KASSERT(fs->lfs_magic == LFS_MAGIC);
2092 #endif
2093 /*
2094 * If we can write one superblock while another is in
2095 * progress, we risk not having a complete checkpoint if we crash.
2096 * So, block here if a superblock write is in progress.
2097 */
2098 simple_lock(&fs->lfs_interlock);
2099 s = splbio();
2100 while (fs->lfs_sbactive) {
2101 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2102 &fs->lfs_interlock);
2103 }
2104 fs->lfs_sbactive = daddr;
2105 splx(s);
2106 simple_unlock(&fs->lfs_interlock);
2107
2108 /* Set timestamp of this version of the superblock */
2109 if (fs->lfs_version == 1)
2110 fs->lfs_otstamp = time.tv_sec;
2111 fs->lfs_tstamp = time.tv_sec;
2112
2113 /* Checksum the superblock and copy it into a buffer. */
2114 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2115 bp = lfs_newbuf(fs, devvp,
2116 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2117 memset(bp->b_data + sizeof(struct dlfs), 0,
2118 LFS_SBPAD - sizeof(struct dlfs));
2119 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2120
2121 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2122 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2123 bp->b_iodone = lfs_supercallback;
2124
2125 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2126 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2127 else
2128 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2129 curproc->p_stats->p_ru.ru_oublock++;
2130 s = splbio();
2131 V_INCR_NUMOUTPUT(bp->b_vp);
2132 splx(s);
2133 simple_lock(&fs->lfs_interlock);
2134 ++fs->lfs_iocount;
2135 simple_unlock(&fs->lfs_interlock);
2136 VOP_STRATEGY(devvp, bp);
2137 }
2138
2139 /*
2140 * Logical block number match routines used when traversing the dirty block
2141 * chain.
2142 */
2143 int
2144 lfs_match_fake(struct lfs *fs, struct buf *bp)
2145 {
2146
2147 ASSERT_SEGLOCK(fs);
2148 return LFS_IS_MALLOC_BUF(bp);
2149 }
2150
2151 #if 0
2152 int
2153 lfs_match_real(struct lfs *fs, struct buf *bp)
2154 {
2155
2156 ASSERT_SEGLOCK(fs);
2157 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2158 }
2159 #endif
2160
2161 int
2162 lfs_match_data(struct lfs *fs, struct buf *bp)
2163 {
2164
2165 ASSERT_SEGLOCK(fs);
2166 return (bp->b_lblkno >= 0);
2167 }
2168
2169 int
2170 lfs_match_indir(struct lfs *fs, struct buf *bp)
2171 {
2172 daddr_t lbn;
2173
2174 ASSERT_SEGLOCK(fs);
2175 lbn = bp->b_lblkno;
2176 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2177 }
2178
2179 int
2180 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2181 {
2182 daddr_t lbn;
2183
2184 ASSERT_SEGLOCK(fs);
2185 lbn = bp->b_lblkno;
2186 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2187 }
2188
2189 int
2190 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2191 {
2192 daddr_t lbn;
2193
2194 ASSERT_SEGLOCK(fs);
2195 lbn = bp->b_lblkno;
2196 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2197 }
2198
2199 /*
2200 * XXX - The only buffers that are going to hit these functions are the
2201 * segment write blocks, or the segment summaries, or the superblocks.
2202 *
2203 * All of the above are created by lfs_newbuf, and so do not need to be
2204 * released via brelse.
2205 */
2206 void
2207 lfs_callback(struct buf *bp)
2208 {
2209 struct lfs *fs;
2210
2211 fs = bp->b_private;
2212 ASSERT_NO_SEGLOCK(fs);
2213 lfs_freebuf(fs, bp);
2214 }
2215
2216 static void
2217 lfs_super_aiodone(struct buf *bp)
2218 {
2219 struct lfs *fs;
2220
2221 fs = bp->b_private;
2222 ASSERT_NO_SEGLOCK(fs);
2223 simple_lock(&fs->lfs_interlock);
2224 fs->lfs_sbactive = 0;
2225 if (--fs->lfs_iocount <= 1)
2226 wakeup(&fs->lfs_iocount);
2227 simple_unlock(&fs->lfs_interlock);
2228 wakeup(&fs->lfs_sbactive);
2229 lfs_freebuf(fs, bp);
2230 }
2231
2232 static void
2233 lfs_cluster_aiodone(struct buf *bp)
2234 {
2235 struct lfs_cluster *cl;
2236 struct lfs *fs;
2237 struct buf *tbp, *fbp;
2238 struct vnode *vp, *devvp;
2239 struct inode *ip;
2240 int s, error=0;
2241
2242 if (bp->b_flags & B_ERROR)
2243 error = bp->b_error;
2244
2245 cl = bp->b_private;
2246 fs = cl->fs;
2247 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2248 ASSERT_NO_SEGLOCK(fs);
2249
2250 /* Put the pages back, and release the buffer */
2251 while (cl->bufcount--) {
2252 tbp = cl->bpp[cl->bufcount];
2253 KASSERT(tbp->b_flags & B_BUSY);
2254 if (error) {
2255 tbp->b_flags |= B_ERROR;
2256 tbp->b_error = error;
2257 }
2258
2259 /*
2260 * We're done with tbp. If it has not been re-dirtied since
2261 * the cluster was written, free it. Otherwise, keep it on
2262 * the locked list to be written again.
2263 */
2264 vp = tbp->b_vp;
2265
2266 tbp->b_flags &= ~B_GATHERED;
2267
2268 LFS_BCLEAN_LOG(fs, tbp);
2269
2270 if (!(tbp->b_flags & B_CALL)) {
2271 KASSERT(tbp->b_flags & B_LOCKED);
2272 s = splbio();
2273 simple_lock(&bqueue_slock);
2274 bremfree(tbp);
2275 simple_unlock(&bqueue_slock);
2276 if (vp)
2277 reassignbuf(tbp, vp);
2278 splx(s);
2279 tbp->b_flags |= B_ASYNC; /* for biodone */
2280 }
2281
2282 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2283 LFS_UNLOCK_BUF(tbp);
2284
2285 if (tbp->b_flags & B_DONE) {
2286 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2287 cl->bufcount, (long)tbp->b_flags));
2288 }
2289
2290 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2291 /*
2292 * A buffer from the page daemon.
2293 * We use the same iodone as it does,
2294 * so we must manually disassociate its
2295 * buffers from the vp.
2296 */
2297 if (tbp->b_vp) {
2298 /* This is just silly */
2299 s = splbio();
2300 brelvp(tbp);
2301 tbp->b_vp = vp;
2302 splx(s);
2303 }
2304 /* Put it back the way it was */
2305 tbp->b_flags |= B_ASYNC;
2306 /* Master buffers have B_AGE */
2307 if (tbp->b_private == tbp)
2308 tbp->b_flags |= B_AGE;
2309 }
2310 s = splbio();
2311 biodone(tbp);
2312
2313 /*
2314 * If this is the last block for this vnode, but
2315 * there are other blocks on its dirty list,
2316 * set IN_MODIFIED/IN_CLEANING depending on what
2317 * sort of block. Only do this for our mount point,
2318 * not for, e.g., inode blocks that are attached to
2319 * the devvp.
2320 * XXX KS - Shouldn't we set *both* if both types
2321 * of blocks are present (traverse the dirty list?)
2322 */
2323 simple_lock(&global_v_numoutput_slock);
2324 if (vp != devvp && vp->v_numoutput == 0 &&
2325 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2326 ip = VTOI(vp);
2327 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2328 ip->i_number));
2329 if (LFS_IS_MALLOC_BUF(fbp))
2330 LFS_SET_UINO(ip, IN_CLEANING);
2331 else
2332 LFS_SET_UINO(ip, IN_MODIFIED);
2333 }
2334 simple_unlock(&global_v_numoutput_slock);
2335 splx(s);
2336 wakeup(vp);
2337 }
2338
2339 /* Fix up the cluster buffer, and release it */
2340 if (cl->flags & LFS_CL_MALLOC)
2341 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2342 s = splbio();
2343 pool_put(&bufpool, bp); /* XXX should use lfs_free? */
2344 splx(s);
2345
2346 /* Note i/o done */
2347 if (cl->flags & LFS_CL_SYNC) {
2348 if (--cl->seg->seg_iocount == 0)
2349 wakeup(&cl->seg->seg_iocount);
2350 }
2351 simple_lock(&fs->lfs_interlock);
2352 #ifdef DIAGNOSTIC
2353 if (fs->lfs_iocount == 0)
2354 panic("lfs_cluster_aiodone: zero iocount");
2355 #endif
2356 if (--fs->lfs_iocount <= 1)
2357 wakeup(&fs->lfs_iocount);
2358 simple_unlock(&fs->lfs_interlock);
2359
2360 pool_put(&fs->lfs_bpppool, cl->bpp);
2361 cl->bpp = NULL;
2362 pool_put(&fs->lfs_clpool, cl);
2363 }
2364
2365 static void
2366 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2367 {
2368 /* reset b_iodone for when this is a single-buf i/o. */
2369 bp->b_iodone = aiodone;
2370
2371 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2372 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2373 wakeup(&uvm.aiodoned);
2374 simple_unlock(&uvm.aiodoned_lock);
2375 }
2376
2377 static void
2378 lfs_cluster_callback(struct buf *bp)
2379 {
2380
2381 lfs_generic_callback(bp, lfs_cluster_aiodone);
2382 }
2383
2384 void
2385 lfs_supercallback(struct buf *bp)
2386 {
2387
2388 lfs_generic_callback(bp, lfs_super_aiodone);
2389 }
2390
2391 /*
2392 * Shellsort (diminishing increment sort) from Data Structures and
2393 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2394 * see also Knuth Vol. 3, page 84. The increments are selected from
2395 * formula (8), page 95. Roughly O(N^3/2).
2396 */
2397 /*
2398 * This is our own private copy of shellsort because we want to sort
2399 * two parallel arrays (the array of buffer pointers and the array of
2400 * logical block numbers) simultaneously. Note that we cast the array
2401 * of logical block numbers to a unsigned in this routine so that the
2402 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2403 */
2404
2405 void
2406 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2407 {
2408 static int __rsshell_increments[] = { 4, 1, 0 };
2409 int incr, *incrp, t1, t2;
2410 struct buf *bp_temp;
2411
2412 #ifdef DEBUG
2413 incr = 0;
2414 for (t1 = 0; t1 < nmemb; t1++) {
2415 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2416 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2417 /* dump before panic */
2418 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2419 nmemb, size);
2420 incr = 0;
2421 for (t1 = 0; t1 < nmemb; t1++) {
2422 const struct buf *bp = bp_array[t1];
2423
2424 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2425 PRIu64 "\n", t1,
2426 (uint64_t)bp->b_bcount,
2427 (uint64_t)bp->b_lblkno);
2428 printf("lbns:");
2429 for (t2 = 0; t2 * size < bp->b_bcount;
2430 t2++) {
2431 printf(" %" PRId32,
2432 lb_array[incr++]);
2433 }
2434 printf("\n");
2435 }
2436 panic("lfs_shellsort: inconsistent input");
2437 }
2438 }
2439 }
2440 #endif
2441
2442 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2443 for (t1 = incr; t1 < nmemb; ++t1)
2444 for (t2 = t1 - incr; t2 >= 0;)
2445 if ((u_int32_t)bp_array[t2]->b_lblkno >
2446 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2447 bp_temp = bp_array[t2];
2448 bp_array[t2] = bp_array[t2 + incr];
2449 bp_array[t2 + incr] = bp_temp;
2450 t2 -= incr;
2451 } else
2452 break;
2453
2454 /* Reform the list of logical blocks */
2455 incr = 0;
2456 for (t1 = 0; t1 < nmemb; t1++) {
2457 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2458 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2459 }
2460 }
2461 }
2462
2463 /*
2464 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2465 */
2466 int
2467 lfs_vref(struct vnode *vp)
2468 {
2469 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2470 /*
2471 * If we return 1 here during a flush, we risk vinvalbuf() not
2472 * being able to flush all of the pages from this vnode, which
2473 * will cause it to panic. So, return 0 if a flush is in progress.
2474 */
2475 if (vp->v_flag & VXLOCK) {
2476 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2477 return 0;
2478 }
2479 return (1);
2480 }
2481 return (vget(vp, 0));
2482 }
2483
2484 /*
2485 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2486 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2487 */
2488 void
2489 lfs_vunref(struct vnode *vp)
2490 {
2491 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2492 /*
2493 * Analogous to lfs_vref, if the node is flushing, fake it.
2494 */
2495 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2496 return;
2497 }
2498
2499 simple_lock(&vp->v_interlock);
2500 #ifdef DIAGNOSTIC
2501 if (vp->v_usecount <= 0) {
2502 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2503 VTOI(vp)->i_number);
2504 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2505 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2506 panic("lfs_vunref: v_usecount < 0");
2507 }
2508 #endif
2509 vp->v_usecount--;
2510 if (vp->v_usecount > 0) {
2511 simple_unlock(&vp->v_interlock);
2512 return;
2513 }
2514 /*
2515 * insert at tail of LRU list
2516 */
2517 simple_lock(&vnode_free_list_slock);
2518 if (vp->v_holdcnt > 0)
2519 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2520 else
2521 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2522 simple_unlock(&vnode_free_list_slock);
2523 simple_unlock(&vp->v_interlock);
2524 }
2525
2526 /*
2527 * We use this when we have vnodes that were loaded in solely for cleaning.
2528 * There is no reason to believe that these vnodes will be referenced again
2529 * soon, since the cleaning process is unrelated to normal filesystem
2530 * activity. Putting cleaned vnodes at the tail of the list has the effect
2531 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2532 * cleaning at the head of the list, instead.
2533 */
2534 void
2535 lfs_vunref_head(struct vnode *vp)
2536 {
2537
2538 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2539 simple_lock(&vp->v_interlock);
2540 #ifdef DIAGNOSTIC
2541 if (vp->v_usecount == 0) {
2542 panic("lfs_vunref: v_usecount<0");
2543 }
2544 #endif
2545 vp->v_usecount--;
2546 if (vp->v_usecount > 0) {
2547 simple_unlock(&vp->v_interlock);
2548 return;
2549 }
2550 /*
2551 * insert at head of LRU list
2552 */
2553 simple_lock(&vnode_free_list_slock);
2554 if (vp->v_holdcnt > 0)
2555 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2556 else
2557 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2558 simple_unlock(&vnode_free_list_slock);
2559 simple_unlock(&vp->v_interlock);
2560 }
2561
2562