Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.169.8.3
      1 /*	$NetBSD: lfs_segment.c,v 1.169.8.3 2006/05/11 23:32:03 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.169.8.3 2006/05/11 23:32:03 elad Exp $");
     71 
     72 #ifdef DEBUG
     73 # define vndebug(vp, str) do {						\
     74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     76 		     VTOI(vp)->i_number, (str), op));			\
     77 } while(0)
     78 #else
     79 # define vndebug(vp, str)
     80 #endif
     81 #define ivndebug(vp, str) \
     82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     83 
     84 #if defined(_KERNEL_OPT)
     85 #include "opt_ddb.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/namei.h>
     91 #include <sys/kernel.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/file.h>
     94 #include <sys/stat.h>
     95 #include <sys/buf.h>
     96 #include <sys/proc.h>
     97 #include <sys/vnode.h>
     98 #include <sys/mount.h>
     99 #include <sys/kauth.h>
    100 
    101 #include <miscfs/specfs/specdev.h>
    102 #include <miscfs/fifofs/fifo.h>
    103 
    104 #include <ufs/ufs/inode.h>
    105 #include <ufs/ufs/dir.h>
    106 #include <ufs/ufs/ufsmount.h>
    107 #include <ufs/ufs/ufs_extern.h>
    108 
    109 #include <ufs/lfs/lfs.h>
    110 #include <ufs/lfs/lfs_extern.h>
    111 
    112 #include <uvm/uvm.h>
    113 #include <uvm/uvm_extern.h>
    114 
    115 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    116 
    117 extern int count_lock_queue(void);
    118 extern struct simplelock vnode_free_list_slock;		/* XXX */
    119 extern struct simplelock bqueue_slock;			/* XXX */
    120 
    121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    122 static void lfs_super_aiodone(struct buf *);
    123 static void lfs_cluster_aiodone(struct buf *);
    124 static void lfs_cluster_callback(struct buf *);
    125 
    126 /*
    127  * Determine if it's OK to start a partial in this segment, or if we need
    128  * to go on to a new segment.
    129  */
    130 #define	LFS_PARTIAL_FITS(fs) \
    131 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    132 	fragstofsb((fs), (fs)->lfs_frag))
    133 
    134 /*
    135  * Figure out whether we should do a checkpoint write or go ahead with
    136  * an ordinary write.
    137  */
    138 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
    139 	(fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
    140 	 (flags & SEGM_CKP) ||						\
    141 	 fs->lfs_nclean < LFS_MAX_ACTIVE)
    142 
    143 int	 lfs_match_fake(struct lfs *, struct buf *);
    144 void	 lfs_newseg(struct lfs *);
    145 /* XXX ondisk32 */
    146 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    147 void	 lfs_supercallback(struct buf *);
    148 void	 lfs_updatemeta(struct segment *);
    149 void	 lfs_writesuper(struct lfs *, daddr_t);
    150 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    151 	    struct segment *sp, int dirops);
    152 
    153 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    154 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    155 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    156 int	lfs_dirvcount = 0;		/* # active dirops */
    157 
    158 /* Statistics Counters */
    159 int lfs_dostats = 1;
    160 struct lfs_stats lfs_stats;
    161 
    162 /* op values to lfs_writevnodes */
    163 #define	VN_REG		0
    164 #define	VN_DIROP	1
    165 #define	VN_EMPTY	2
    166 #define VN_CLEAN	3
    167 
    168 /*
    169  * XXX KS - Set modification time on the Ifile, so the cleaner can
    170  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    171  * since we don't really need this to be flushed to disk (and in any
    172  * case that wouldn't happen to the Ifile until we checkpoint).
    173  */
    174 void
    175 lfs_imtime(struct lfs *fs)
    176 {
    177 	struct timespec ts;
    178 	struct inode *ip;
    179 
    180 	ASSERT_MAYBE_SEGLOCK(fs);
    181 	nanotime(&ts);
    182 	ip = VTOI(fs->lfs_ivnode);
    183 	ip->i_ffs1_mtime = ts.tv_sec;
    184 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    185 }
    186 
    187 /*
    188  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    189  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    190  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    191  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    192  */
    193 
    194 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    195 
    196 int
    197 lfs_vflush(struct vnode *vp)
    198 {
    199 	struct inode *ip;
    200 	struct lfs *fs;
    201 	struct segment *sp;
    202 	struct buf *bp, *nbp, *tbp, *tnbp;
    203 	int error, s;
    204 	int flushed;
    205 	int relock;
    206 
    207 	ip = VTOI(vp);
    208 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    209 	relock = 0;
    210 
    211     top:
    212 	ASSERT_NO_SEGLOCK(fs);
    213 	if (ip->i_flag & IN_CLEANING) {
    214 		ivndebug(vp,"vflush/in_cleaning");
    215 		LFS_CLR_UINO(ip, IN_CLEANING);
    216 		LFS_SET_UINO(ip, IN_MODIFIED);
    217 
    218 		/*
    219 		 * Toss any cleaning buffers that have real counterparts
    220 		 * to avoid losing new data.
    221 		 */
    222 		s = splbio();
    223 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    224 			nbp = LIST_NEXT(bp, b_vnbufs);
    225 			if (!LFS_IS_MALLOC_BUF(bp))
    226 				continue;
    227 			/*
    228 			 * Look for pages matching the range covered
    229 			 * by cleaning blocks.  It's okay if more dirty
    230 			 * pages appear, so long as none disappear out
    231 			 * from under us.
    232 			 */
    233 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    234 			    vp != fs->lfs_ivnode) {
    235 				struct vm_page *pg;
    236 				voff_t off;
    237 
    238 				simple_lock(&vp->v_interlock);
    239 				for (off = lblktosize(fs, bp->b_lblkno);
    240 				     off < lblktosize(fs, bp->b_lblkno + 1);
    241 				     off += PAGE_SIZE) {
    242 					pg = uvm_pagelookup(&vp->v_uobj, off);
    243 					if (pg == NULL)
    244 						continue;
    245 					if ((pg->flags & PG_CLEAN) == 0 ||
    246 					    pmap_is_modified(pg)) {
    247 						fs->lfs_avail += btofsb(fs,
    248 							bp->b_bcount);
    249 						wakeup(&fs->lfs_avail);
    250 						lfs_freebuf(fs, bp);
    251 						bp = NULL;
    252 						simple_unlock(&vp->v_interlock);
    253 						goto nextbp;
    254 					}
    255 				}
    256 				simple_unlock(&vp->v_interlock);
    257 			}
    258 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    259 			    tbp = tnbp)
    260 			{
    261 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    262 				if (tbp->b_vp == bp->b_vp
    263 				   && tbp->b_lblkno == bp->b_lblkno
    264 				   && tbp != bp)
    265 				{
    266 					fs->lfs_avail += btofsb(fs,
    267 						bp->b_bcount);
    268 					wakeup(&fs->lfs_avail);
    269 					lfs_freebuf(fs, bp);
    270 					bp = NULL;
    271 					break;
    272 				}
    273 			}
    274 		    nextbp:
    275 			;
    276 		}
    277 		splx(s);
    278 	}
    279 
    280 	/* If the node is being written, wait until that is done */
    281 	simple_lock(&vp->v_interlock);
    282 	s = splbio();
    283 	if (WRITEINPROG(vp)) {
    284 		ivndebug(vp,"vflush/writeinprog");
    285 		ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
    286 	}
    287 	splx(s);
    288 	simple_unlock(&vp->v_interlock);
    289 
    290 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    291 	lfs_seglock(fs, SEGM_SYNC);
    292 
    293 	/* If we're supposed to flush a freed inode, just toss it */
    294 	/* XXX - seglock, so these buffers can't be gathered, right? */
    295 	if (ip->i_mode == 0) {
    296 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    297 		      ip->i_number));
    298 		s = splbio();
    299 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    300 			nbp = LIST_NEXT(bp, b_vnbufs);
    301 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    302 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    303 				wakeup(&fs->lfs_avail);
    304 			}
    305 			/* Copied from lfs_writeseg */
    306 			if (bp->b_flags & B_CALL) {
    307 				biodone(bp);
    308 			} else {
    309 				bremfree(bp);
    310 				LFS_UNLOCK_BUF(bp);
    311 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    312 					 B_GATHERED);
    313 				bp->b_flags |= B_DONE;
    314 				reassignbuf(bp, vp);
    315 				brelse(bp);
    316 			}
    317 		}
    318 		splx(s);
    319 		LFS_CLR_UINO(ip, IN_CLEANING);
    320 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    321 		ip->i_flag &= ~IN_ALLMOD;
    322 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    323 		      ip->i_number));
    324 		lfs_segunlock(fs);
    325 		return 0;
    326 	}
    327 
    328 	fs->lfs_flushvp = vp;
    329 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
    330 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    331 		fs->lfs_flushvp = NULL;
    332 		KASSERT(fs->lfs_flushvp_fakevref == 0);
    333 		lfs_segunlock(fs);
    334 		return error;
    335 	}
    336 	sp = fs->lfs_sp;
    337 
    338 	flushed = 0;
    339 	if (VPISEMPTY(vp)) {
    340 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    341 		++flushed;
    342 	} else if ((ip->i_flag & IN_CLEANING) &&
    343 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    344 		ivndebug(vp,"vflush/clean");
    345 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    346 		++flushed;
    347 	} else if (lfs_dostats) {
    348 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    349 			++lfs_stats.vflush_invoked;
    350 		ivndebug(vp,"vflush");
    351 	}
    352 
    353 #ifdef DIAGNOSTIC
    354 	if (vp->v_flag & VDIROP) {
    355 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
    356 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
    357 	}
    358 	if (vp->v_usecount < 0) {
    359 		printf("usecount=%ld\n", (long)vp->v_usecount);
    360 		panic("lfs_vflush: usecount<0");
    361 	}
    362 #endif
    363 
    364 	do {
    365 		do {
    366 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    367 				relock = lfs_writefile(fs, sp, vp);
    368 				if (relock) {
    369 					/*
    370 					 * Might have to wait for the
    371 					 * cleaner to run; but we're
    372 					 * still not done with this vnode.
    373 					 */
    374 					lfs_writeinode(fs, sp, ip);
    375 					LFS_SET_UINO(ip, IN_MODIFIED);
    376 					lfs_writeseg(fs, sp);
    377 					lfs_segunlock(fs);
    378 					lfs_segunlock_relock(fs);
    379 					goto top;
    380 				}
    381 			}
    382 			/*
    383 			 * If we begin a new segment in the middle of writing
    384 			 * the Ifile, it creates an inconsistent checkpoint,
    385 			 * since the Ifile information for the new segment
    386 			 * is not up-to-date.  Take care of this here by
    387 			 * sending the Ifile through again in case there
    388 			 * are newly dirtied blocks.  But wait, there's more!
    389 			 * This second Ifile write could *also* cross a segment
    390 			 * boundary, if the first one was large.  The second
    391 			 * one is guaranteed to be no more than 8 blocks,
    392 			 * though (two segment blocks and supporting indirects)
    393 			 * so the third write *will not* cross the boundary.
    394 			 */
    395 			if (vp == fs->lfs_ivnode) {
    396 				lfs_writefile(fs, sp, vp);
    397 				lfs_writefile(fs, sp, vp);
    398 			}
    399 		} while (lfs_writeinode(fs, sp, ip));
    400 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    401 
    402 	if (lfs_dostats) {
    403 		++lfs_stats.nwrites;
    404 		if (sp->seg_flags & SEGM_SYNC)
    405 			++lfs_stats.nsync_writes;
    406 		if (sp->seg_flags & SEGM_CKP)
    407 			++lfs_stats.ncheckpoints;
    408 	}
    409 	/*
    410 	 * If we were called from somewhere that has already held the seglock
    411 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    412 	 * the write to complete because we are still locked.
    413 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    414 	 * we must explicitly wait, if that is the case.
    415 	 *
    416 	 * We compare the iocount against 1, not 0, because it is
    417 	 * artificially incremented by lfs_seglock().
    418 	 */
    419 	simple_lock(&fs->lfs_interlock);
    420 	if (fs->lfs_seglock > 1) {
    421 		while (fs->lfs_iocount > 1)
    422 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
    423 				     "lfs_vflush", 0, &fs->lfs_interlock);
    424 	}
    425 	simple_unlock(&fs->lfs_interlock);
    426 
    427 	lfs_segunlock(fs);
    428 
    429 	/* Wait for these buffers to be recovered by aiodoned */
    430 	s = splbio();
    431 	simple_lock(&global_v_numoutput_slock);
    432 	while (vp->v_numoutput > 0) {
    433 		vp->v_flag |= VBWAIT;
    434 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
    435 			&global_v_numoutput_slock);
    436 	}
    437 	simple_unlock(&global_v_numoutput_slock);
    438 	splx(s);
    439 
    440 	fs->lfs_flushvp = NULL;
    441 	KASSERT(fs->lfs_flushvp_fakevref == 0);
    442 
    443 	return (0);
    444 }
    445 
    446 int
    447 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    448 {
    449 	struct inode *ip;
    450 	struct vnode *vp, *nvp;
    451 	int inodes_written = 0, only_cleaning;
    452 	int error = 0;
    453 
    454 	ASSERT_SEGLOCK(fs);
    455 #ifndef LFS_NO_BACKVP_HACK
    456 	/* BEGIN HACK */
    457 #define	VN_OFFSET	\
    458 	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    459 #define	BACK_VP(VP)	\
    460 	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    461 #define	BEG_OF_VLIST	\
    462 	((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
    463 	- VN_OFFSET))
    464 
    465 	/* Find last vnode. */
    466  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    467 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    468 	     vp = LIST_NEXT(vp, v_mntvnodes));
    469 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    470 		nvp = BACK_VP(vp);
    471 #else
    472 	loop:
    473 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    474 		nvp = LIST_NEXT(vp, v_mntvnodes);
    475 #endif
    476 		/*
    477 		 * If the vnode that we are about to sync is no longer
    478 		 * associated with this mount point, start over.
    479 		 */
    480 		if (vp->v_mount != mp) {
    481 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    482 			/*
    483 			 * After this, pages might be busy
    484 			 * due to our own previous putpages.
    485 			 * Start actual segment write here to avoid deadlock.
    486 			 */
    487 			(void)lfs_writeseg(fs, sp);
    488 			goto loop;
    489 		}
    490 
    491 		if (vp->v_type == VNON) {
    492 			continue;
    493 		}
    494 
    495 		ip = VTOI(vp);
    496 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    497 		    (op != VN_DIROP && op != VN_CLEAN &&
    498 		    (vp->v_flag & VDIROP))) {
    499 			vndebug(vp,"dirop");
    500 			continue;
    501 		}
    502 
    503 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    504 			vndebug(vp,"empty");
    505 			continue;
    506 		}
    507 
    508 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    509 		   && vp != fs->lfs_flushvp
    510 		   && !(ip->i_flag & IN_CLEANING)) {
    511 			vndebug(vp,"cleaning");
    512 			continue;
    513 		}
    514 
    515 		if (lfs_vref(vp)) {
    516 			vndebug(vp,"vref");
    517 			continue;
    518 		}
    519 
    520 		only_cleaning = 0;
    521 		/*
    522 		 * Write the inode/file if dirty and it's not the IFILE.
    523 		 */
    524 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    525 			only_cleaning =
    526 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    527 
    528 			if (ip->i_number != LFS_IFILE_INUM) {
    529 				error = lfs_writefile(fs, sp, vp);
    530 				if (error) {
    531 					lfs_vunref(vp);
    532 					if (error == EAGAIN) {
    533 						/*
    534 						 * This error from lfs_putpages
    535 						 * indicates we need to drop
    536 						 * the segment lock and start
    537 						 * over after the cleaner has
    538 						 * had a chance to run.
    539 						 */
    540 						lfs_writeinode(fs, sp, ip);
    541 						lfs_writeseg(fs, sp);
    542 						if (!VPISEMPTY(vp) &&
    543 						    !WRITEINPROG(vp) &&
    544 						    !(ip->i_flag & IN_ALLMOD))
    545 							LFS_SET_UINO(ip, IN_MODIFIED);
    546 						break;
    547 					}
    548 					error = 0; /* XXX not quite right */
    549 					continue;
    550 				}
    551 
    552 				if (!VPISEMPTY(vp)) {
    553 					if (WRITEINPROG(vp)) {
    554 						ivndebug(vp,"writevnodes/write2");
    555 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    556 						LFS_SET_UINO(ip, IN_MODIFIED);
    557 					}
    558 				}
    559 				(void) lfs_writeinode(fs, sp, ip);
    560 				inodes_written++;
    561 			}
    562 		}
    563 
    564 		if (lfs_clean_vnhead && only_cleaning)
    565 			lfs_vunref_head(vp);
    566 		else
    567 			lfs_vunref(vp);
    568 	}
    569 	return error;
    570 }
    571 
    572 /*
    573  * Do a checkpoint.
    574  */
    575 int
    576 lfs_segwrite(struct mount *mp, int flags)
    577 {
    578 	struct buf *bp;
    579 	struct inode *ip;
    580 	struct lfs *fs;
    581 	struct segment *sp;
    582 	struct vnode *vp;
    583 	SEGUSE *segusep;
    584 	int do_ckp, did_ckp, error, s;
    585 	unsigned n, segleft, maxseg, sn, i, curseg;
    586 	int writer_set = 0;
    587 	int dirty;
    588 	int redo;
    589 	int um_error;
    590 
    591 	fs = VFSTOUFS(mp)->um_lfs;
    592 	ASSERT_MAYBE_SEGLOCK(fs);
    593 
    594 	if (fs->lfs_ronly)
    595 		return EROFS;
    596 
    597 	lfs_imtime(fs);
    598 
    599 	/*
    600 	 * Allocate a segment structure and enough space to hold pointers to
    601 	 * the maximum possible number of buffers which can be described in a
    602 	 * single summary block.
    603 	 */
    604 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
    605 
    606 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    607 	sp = fs->lfs_sp;
    608 
    609 	/*
    610 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    611 	 * in which case we have to flush *all* buffers off of this vnode.
    612 	 * We don't care about other nodes, but write any non-dirop nodes
    613 	 * anyway in anticipation of another getnewvnode().
    614 	 *
    615 	 * If we're cleaning we only write cleaning and ifile blocks, and
    616 	 * no dirops, since otherwise we'd risk corruption in a crash.
    617 	 */
    618 	if (sp->seg_flags & SEGM_CLEAN)
    619 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    620 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    621 		do {
    622 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
    623 			if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    624 				if (!writer_set) {
    625 					lfs_writer_enter(fs, "lfs writer");
    626 					writer_set = 1;
    627 				}
    628 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
    629 				if (um_error == 0)
    630 					um_error = error;
    631 				/* In case writevnodes errored out */
    632 				lfs_flush_dirops(fs);
    633 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    634 				lfs_finalize_fs_seguse(fs);
    635 			}
    636 			if (do_ckp && um_error) {
    637 				lfs_segunlock_relock(fs);
    638 				sp = fs->lfs_sp;
    639 			}
    640 		} while (do_ckp && um_error != 0);
    641 	}
    642 
    643 	/*
    644 	 * If we are doing a checkpoint, mark everything since the
    645 	 * last checkpoint as no longer ACTIVE.
    646 	 */
    647 	if (do_ckp) {
    648 		segleft = fs->lfs_nseg;
    649 		curseg = 0;
    650 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    651 			dirty = 0;
    652 			if (bread(fs->lfs_ivnode,
    653 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
    654 				panic("lfs_segwrite: ifile read");
    655 			segusep = (SEGUSE *)bp->b_data;
    656 			maxseg = min(segleft, fs->lfs_sepb);
    657 			for (i = 0; i < maxseg; i++) {
    658 				sn = curseg + i;
    659 				if (sn != dtosn(fs, fs->lfs_curseg) &&
    660 				    segusep->su_flags & SEGUSE_ACTIVE) {
    661 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    662 					--fs->lfs_nactive;
    663 					++dirty;
    664 				}
    665 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    666 					segusep->su_flags;
    667 				if (fs->lfs_version > 1)
    668 					++segusep;
    669 				else
    670 					segusep = (SEGUSE *)
    671 						((SEGUSE_V1 *)segusep + 1);
    672 			}
    673 
    674 			if (dirty)
    675 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    676 			else
    677 				brelse(bp);
    678 			segleft -= fs->lfs_sepb;
    679 			curseg += fs->lfs_sepb;
    680 		}
    681 	}
    682 
    683 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
    684 
    685 	did_ckp = 0;
    686 	if (do_ckp || fs->lfs_doifile) {
    687 		vp = fs->lfs_ivnode;
    688 		vn_lock(vp, LK_EXCLUSIVE);
    689 		do {
    690 #ifdef DEBUG
    691 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    692 #endif
    693 			simple_lock(&fs->lfs_interlock);
    694 			fs->lfs_flags &= ~LFS_IFDIRTY;
    695 			simple_unlock(&fs->lfs_interlock);
    696 
    697 			ip = VTOI(vp);
    698 
    699 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    700 				/*
    701 				 * Ifile has no pages, so we don't need
    702 				 * to check error return here.
    703 				 */
    704 				lfs_writefile(fs, sp, vp);
    705 				/*
    706 				 * Ensure the Ifile takes the current segment
    707 				 * into account.  See comment in lfs_vflush.
    708 				 */
    709 				lfs_writefile(fs, sp, vp);
    710 				lfs_writefile(fs, sp, vp);
    711 			}
    712 
    713 			if (ip->i_flag & IN_ALLMOD)
    714 				++did_ckp;
    715 			redo = lfs_writeinode(fs, sp, ip);
    716 			redo += lfs_writeseg(fs, sp);
    717 			simple_lock(&fs->lfs_interlock);
    718 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    719 			simple_unlock(&fs->lfs_interlock);
    720 		} while (redo && do_ckp);
    721 
    722 		/*
    723 		 * Unless we are unmounting, the Ifile may continue to have
    724 		 * dirty blocks even after a checkpoint, due to changes to
    725 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    726 		 * for other parts of the Ifile to be dirty after the loop
    727 		 * above, since we hold the segment lock.
    728 		 */
    729 		s = splbio();
    730 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    731 			LFS_CLR_UINO(ip, IN_ALLMOD);
    732 		}
    733 #ifdef DIAGNOSTIC
    734 		else if (do_ckp) {
    735 			int do_panic = 0;
    736 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    737 				if (bp->b_lblkno < fs->lfs_cleansz +
    738 				    fs->lfs_segtabsz &&
    739 				    !(bp->b_flags & B_GATHERED)) {
    740 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    741 						(long)bp->b_lblkno,
    742 						(long)bp->b_flags);
    743 					++do_panic;
    744 				}
    745 			}
    746 			if (do_panic)
    747 				panic("dirty blocks");
    748 		}
    749 #endif
    750 		splx(s);
    751 		VOP_UNLOCK(vp, 0);
    752 	} else {
    753 		(void) lfs_writeseg(fs, sp);
    754 	}
    755 
    756 	/* Note Ifile no longer needs to be written */
    757 	fs->lfs_doifile = 0;
    758 	if (writer_set)
    759 		lfs_writer_leave(fs);
    760 
    761 	/*
    762 	 * If we didn't write the Ifile, we didn't really do anything.
    763 	 * That means that (1) there is a checkpoint on disk and (2)
    764 	 * nothing has changed since it was written.
    765 	 *
    766 	 * Take the flags off of the segment so that lfs_segunlock
    767 	 * doesn't have to write the superblock either.
    768 	 */
    769 	if (do_ckp && !did_ckp) {
    770 		sp->seg_flags &= ~SEGM_CKP;
    771 	}
    772 
    773 	if (lfs_dostats) {
    774 		++lfs_stats.nwrites;
    775 		if (sp->seg_flags & SEGM_SYNC)
    776 			++lfs_stats.nsync_writes;
    777 		if (sp->seg_flags & SEGM_CKP)
    778 			++lfs_stats.ncheckpoints;
    779 	}
    780 	lfs_segunlock(fs);
    781 	return (0);
    782 }
    783 
    784 /*
    785  * Write the dirty blocks associated with a vnode.
    786  */
    787 int
    788 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    789 {
    790 	struct buf *bp;
    791 	struct finfo *fip;
    792 	struct inode *ip;
    793 	IFILE *ifp;
    794 	int i, frag;
    795 	int error;
    796 
    797 	ASSERT_SEGLOCK(fs);
    798 	error = 0;
    799 	ip = VTOI(vp);
    800 
    801 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    802 	    sp->sum_bytes_left < sizeof(struct finfo))
    803 		(void) lfs_writeseg(fs, sp);
    804 
    805 	sp->sum_bytes_left -= FINFOSIZE;
    806 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    807 
    808 	if (vp->v_flag & VDIROP)
    809 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    810 
    811 	fip = sp->fip;
    812 	fip->fi_nblocks = 0;
    813 	fip->fi_ino = ip->i_number;
    814 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    815 	fip->fi_version = ifp->if_version;
    816 	brelse(bp);
    817 
    818 	if (sp->seg_flags & SEGM_CLEAN) {
    819 		lfs_gather(fs, sp, vp, lfs_match_fake);
    820 		/*
    821 		 * For a file being flushed, we need to write *all* blocks.
    822 		 * This means writing the cleaning blocks first, and then
    823 		 * immediately following with any non-cleaning blocks.
    824 		 * The same is true of the Ifile since checkpoints assume
    825 		 * that all valid Ifile blocks are written.
    826 		 */
    827 		if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
    828 			lfs_gather(fs, sp, vp, lfs_match_data);
    829 			/*
    830 			 * Don't call VOP_PUTPAGES: if we're flushing,
    831 			 * we've already done it, and the Ifile doesn't
    832 			 * use the page cache.
    833 			 */
    834 		}
    835 	} else {
    836 		lfs_gather(fs, sp, vp, lfs_match_data);
    837 		/*
    838 		 * If we're flushing, we've already called VOP_PUTPAGES
    839 		 * so don't do it again.  Otherwise, we want to write
    840 		 * everything we've got.
    841 		 */
    842 		if (!IS_FLUSHING(fs, vp)) {
    843 			simple_lock(&vp->v_interlock);
    844 			error = VOP_PUTPAGES(vp, 0, 0,
    845 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    846 		}
    847 	}
    848 
    849 	/*
    850 	 * It may not be necessary to write the meta-data blocks at this point,
    851 	 * as the roll-forward recovery code should be able to reconstruct the
    852 	 * list.
    853 	 *
    854 	 * We have to write them anyway, though, under two conditions: (1) the
    855 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    856 	 * checkpointing.
    857 	 *
    858 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    859 	 * new blocks not being written yet, in addition to fragments being
    860 	 * moved out of a cleaned segment.  If that is the case, don't
    861 	 * write the indirect blocks, or the finfo will have a small block
    862 	 * in the middle of it!
    863 	 * XXX in this case isn't the inode size wrong too?
    864 	 */
    865 	frag = 0;
    866 	if (sp->seg_flags & SEGM_CLEAN) {
    867 		for (i = 0; i < NDADDR; i++)
    868 			if (ip->i_lfs_fragsize[i] > 0 &&
    869 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    870 				++frag;
    871 	}
    872 #ifdef DIAGNOSTIC
    873 	if (frag > 1)
    874 		panic("lfs_writefile: more than one fragment!");
    875 #endif
    876 	if (IS_FLUSHING(fs, vp) ||
    877 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    878 		lfs_gather(fs, sp, vp, lfs_match_indir);
    879 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    880 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    881 	}
    882 	fip = sp->fip;
    883 	if (fip->fi_nblocks != 0) {
    884 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    885 				   sizeof(int32_t) * (fip->fi_nblocks));
    886 		sp->start_lbp = &sp->fip->fi_blocks[0];
    887 	} else {
    888 		sp->sum_bytes_left += FINFOSIZE;
    889 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    890 	}
    891 
    892 	return error;
    893 }
    894 
    895 int
    896 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    897 {
    898 	struct buf *bp, *ibp;
    899 	struct ufs1_dinode *cdp;
    900 	IFILE *ifp;
    901 	SEGUSE *sup;
    902 	daddr_t daddr;
    903 	int32_t *daddrp;	/* XXX ondisk32 */
    904 	ino_t ino;
    905 	int error, i, ndx, fsb = 0;
    906 	int redo_ifile = 0;
    907 	int gotblk = 0;
    908 
    909 	ASSERT_SEGLOCK(fs);
    910 	if (!(ip->i_flag & IN_ALLMOD))
    911 		return (0);
    912 
    913 	/* Allocate a new inode block if necessary. */
    914 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    915 	    sp->ibp == NULL) {
    916 		/* Allocate a new segment if necessary. */
    917 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    918 		    sp->sum_bytes_left < sizeof(int32_t))
    919 			(void) lfs_writeseg(fs, sp);
    920 
    921 		/* Get next inode block. */
    922 		daddr = fs->lfs_offset;
    923 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    924 		sp->ibp = *sp->cbpp++ =
    925 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
    926 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
    927 		gotblk++;
    928 
    929 		/* Zero out inode numbers */
    930 		for (i = 0; i < INOPB(fs); ++i)
    931 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
    932 			    0;
    933 
    934 		++sp->start_bpp;
    935 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    936 		/* Set remaining space counters. */
    937 		sp->seg_bytes_left -= fs->lfs_ibsize;
    938 		sp->sum_bytes_left -= sizeof(int32_t);
    939 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    940 			sp->ninodes / INOPB(fs) - 1;
    941 		((int32_t *)(sp->segsum))[ndx] = daddr;
    942 	}
    943 
    944 	/* Update the inode times and copy the inode onto the inode page. */
    945 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    946 	if (ip->i_number != LFS_IFILE_INUM)
    947 		LFS_ITIMES(ip, NULL, NULL, NULL);
    948 
    949 	/*
    950 	 * If this is the Ifile, and we've already written the Ifile in this
    951 	 * partial segment, just overwrite it (it's not on disk yet) and
    952 	 * continue.
    953 	 *
    954 	 * XXX we know that the bp that we get the second time around has
    955 	 * already been gathered.
    956 	 */
    957 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    958 		*(sp->idp) = *ip->i_din.ffs1_din;
    959 		ip->i_lfs_osize = ip->i_size;
    960 		return 0;
    961 	}
    962 
    963 	bp = sp->ibp;
    964 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    965 	*cdp = *ip->i_din.ffs1_din;
    966 
    967 	/* We can finish the segment accounting for truncations now */
    968 	lfs_finalize_ino_seguse(fs, ip);
    969 
    970 	/*
    971 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
    972 	 * addresses to disk; possibly change the on-disk record of
    973 	 * the inode size, either by reverting to the previous size
    974 	 * (in the case of cleaning) or by verifying the inode's block
    975 	 * holdings (in the case of files being allocated as they are being
    976 	 * written).
    977 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
    978 	 * XXX count on disk wrong by the same amount.	We should be
    979 	 * XXX able to "borrow" from lfs_avail and return it after the
    980 	 * XXX Ifile is written.  See also in lfs_writeseg.
    981 	 */
    982 
    983 	/* Check file size based on highest allocated block */
    984 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
    985 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
    986 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
    987 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
    988 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
    989 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
    990 	}
    991 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
    992 		if (ip->i_flags & IN_CLEANING)
    993 			cdp->di_size = ip->i_lfs_osize;
    994 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
    995 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
    996 		      ip->i_ffs1_blocks, fs->lfs_offset));
    997 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
    998 		     daddrp++) {
    999 			if (*daddrp == UNWRITTEN) {
   1000 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
   1001 				*daddrp = 0;
   1002 			}
   1003 		}
   1004 	} else {
   1005 		/* If all blocks are going to disk, update "size on disk" */
   1006 		ip->i_lfs_osize = ip->i_size;
   1007 	}
   1008 
   1009 #ifdef DIAGNOSTIC
   1010 	/*
   1011 	 * Check dinode held blocks against dinode size.
   1012 	 * This should be identical to the check in lfs_vget().
   1013 	 */
   1014 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1015 	     i < NDADDR; i++) {
   1016 		KASSERT(i >= 0);
   1017 		if ((cdp->di_mode & IFMT) == IFLNK)
   1018 			continue;
   1019 		if (((cdp->di_mode & IFMT) == IFBLK ||
   1020 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
   1021 			continue;
   1022 		if (cdp->di_db[i] != 0) {
   1023 # ifdef DEBUG
   1024 			lfs_dump_dinode(cdp);
   1025 # endif
   1026 			panic("writing inconsistent inode");
   1027 		}
   1028 	}
   1029 #endif /* DIAGNOSTIC */
   1030 
   1031 	if (ip->i_flag & IN_CLEANING)
   1032 		LFS_CLR_UINO(ip, IN_CLEANING);
   1033 	else {
   1034 		/* XXX IN_ALLMOD */
   1035 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
   1036 			     IN_UPDATE | IN_MODIFY);
   1037 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
   1038 			LFS_CLR_UINO(ip, IN_MODIFIED);
   1039 		else
   1040 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
   1041 			      "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
   1042 			      ip->i_lfs_effnblks));
   1043 	}
   1044 
   1045 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
   1046 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
   1047 			(sp->ninodes % INOPB(fs));
   1048 	if (gotblk) {
   1049 		LFS_LOCK_BUF(bp);
   1050 		brelse(bp);
   1051 	}
   1052 
   1053 	/* Increment inode count in segment summary block. */
   1054 	++((SEGSUM *)(sp->segsum))->ss_ninos;
   1055 
   1056 	/* If this page is full, set flag to allocate a new page. */
   1057 	if (++sp->ninodes % INOPB(fs) == 0)
   1058 		sp->ibp = NULL;
   1059 
   1060 	/*
   1061 	 * If updating the ifile, update the super-block.  Update the disk
   1062 	 * address and access times for this inode in the ifile.
   1063 	 */
   1064 	ino = ip->i_number;
   1065 	if (ino == LFS_IFILE_INUM) {
   1066 		daddr = fs->lfs_idaddr;
   1067 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
   1068 	} else {
   1069 		LFS_IENTRY(ifp, fs, ino, ibp);
   1070 		daddr = ifp->if_daddr;
   1071 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
   1072 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
   1073 	}
   1074 
   1075 	/*
   1076 	 * The inode's last address should not be in the current partial
   1077 	 * segment, except under exceptional circumstances (lfs_writevnodes
   1078 	 * had to start over, and in the meantime more blocks were written
   1079 	 * to a vnode).	 Both inodes will be accounted to this segment
   1080 	 * in lfs_writeseg so we need to subtract the earlier version
   1081 	 * here anyway.	 The segment count can temporarily dip below
   1082 	 * zero here; keep track of how many duplicates we have in
   1083 	 * "dupino" so we don't panic below.
   1084 	 */
   1085 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
   1086 		++sp->ndupino;
   1087 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
   1088 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
   1089 		      (long long)daddr, sp->ndupino));
   1090 	}
   1091 	/*
   1092 	 * Account the inode: it no longer belongs to its former segment,
   1093 	 * though it will not belong to the new segment until that segment
   1094 	 * is actually written.
   1095 	 */
   1096 	if (daddr != LFS_UNUSED_DADDR) {
   1097 		u_int32_t oldsn = dtosn(fs, daddr);
   1098 #ifdef DIAGNOSTIC
   1099 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1100 #endif
   1101 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1102 #ifdef DIAGNOSTIC
   1103 		if (sup->su_nbytes +
   1104 		    sizeof (struct ufs1_dinode) * ndupino
   1105 		      < sizeof (struct ufs1_dinode)) {
   1106 			printf("lfs_writeinode: negative bytes "
   1107 			       "(segment %" PRIu32 " short by %d, "
   1108 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1109 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1110 			       "ndupino=%d)\n",
   1111 			       dtosn(fs, daddr),
   1112 			       (int)sizeof (struct ufs1_dinode) *
   1113 				   (1 - sp->ndupino) - sup->su_nbytes,
   1114 			       oldsn, sp->seg_number, daddr,
   1115 			       (unsigned int)sup->su_nbytes,
   1116 			       sp->ndupino);
   1117 			panic("lfs_writeinode: negative bytes");
   1118 			sup->su_nbytes = sizeof (struct ufs1_dinode);
   1119 		}
   1120 #endif
   1121 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1122 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
   1123 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
   1124 		redo_ifile =
   1125 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1126 		if (redo_ifile) {
   1127 			simple_lock(&fs->lfs_interlock);
   1128 			fs->lfs_flags |= LFS_IFDIRTY;
   1129 			simple_unlock(&fs->lfs_interlock);
   1130 		}
   1131 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1132 	}
   1133 	return (redo_ifile);
   1134 }
   1135 
   1136 int
   1137 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1138 {
   1139 	struct lfs *fs;
   1140 	int vers;
   1141 	int j, blksinblk;
   1142 
   1143 	ASSERT_SEGLOCK(sp->fs);
   1144 	/*
   1145 	 * If full, finish this segment.  We may be doing I/O, so
   1146 	 * release and reacquire the splbio().
   1147 	 */
   1148 #ifdef DIAGNOSTIC
   1149 	if (sp->vp == NULL)
   1150 		panic ("lfs_gatherblock: Null vp in segment");
   1151 #endif
   1152 	fs = sp->fs;
   1153 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1154 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1155 	    sp->seg_bytes_left < bp->b_bcount) {
   1156 		if (sptr)
   1157 			splx(*sptr);
   1158 		lfs_updatemeta(sp);
   1159 
   1160 		vers = sp->fip->fi_version;
   1161 		(void) lfs_writeseg(fs, sp);
   1162 
   1163 		sp->fip->fi_version = vers;
   1164 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1165 		/* Add the current file to the segment summary. */
   1166 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1167 		sp->sum_bytes_left -= FINFOSIZE;
   1168 
   1169 		if (sptr)
   1170 			*sptr = splbio();
   1171 		return (1);
   1172 	}
   1173 
   1174 	if (bp->b_flags & B_GATHERED) {
   1175 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1176 		      " lbn %" PRId64 "\n",
   1177 		      sp->fip->fi_ino, bp->b_lblkno));
   1178 		return (0);
   1179 	}
   1180 
   1181 	/* Insert into the buffer list, update the FINFO block. */
   1182 	bp->b_flags |= B_GATHERED;
   1183 
   1184 	*sp->cbpp++ = bp;
   1185 	for (j = 0; j < blksinblk; j++) {
   1186 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1187 		/* This block's accounting moves from lfs_favail to lfs_avail */
   1188 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
   1189 	}
   1190 
   1191 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1192 	sp->seg_bytes_left -= bp->b_bcount;
   1193 	return (0);
   1194 }
   1195 
   1196 int
   1197 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1198     int (*match)(struct lfs *, struct buf *))
   1199 {
   1200 	struct buf *bp, *nbp;
   1201 	int s, count = 0;
   1202 
   1203 	ASSERT_SEGLOCK(fs);
   1204 	if (vp->v_type == VBLK)
   1205 		return 0;
   1206 	KASSERT(sp->vp == NULL);
   1207 	sp->vp = vp;
   1208 	s = splbio();
   1209 
   1210 #ifndef LFS_NO_BACKBUF_HACK
   1211 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1212 # define	BUF_OFFSET	\
   1213 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1214 # define	BACK_BUF(BP)	\
   1215 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1216 # define	BEG_OF_LIST	\
   1217 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1218 
   1219 loop:
   1220 	/* Find last buffer. */
   1221 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1222 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1223 	     bp = LIST_NEXT(bp, b_vnbufs))
   1224 		/* nothing */;
   1225 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1226 		nbp = BACK_BUF(bp);
   1227 #else /* LFS_NO_BACKBUF_HACK */
   1228 loop:
   1229 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1230 		nbp = LIST_NEXT(bp, b_vnbufs);
   1231 #endif /* LFS_NO_BACKBUF_HACK */
   1232 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1233 #ifdef DEBUG
   1234 			if (vp == fs->lfs_ivnode &&
   1235 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1236 				DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
   1237 				      PRId64 " busy (%x)",
   1238 				      bp->b_lblkno, bp->b_flags));
   1239 #endif
   1240 			continue;
   1241 		}
   1242 #ifdef DIAGNOSTIC
   1243 # ifdef LFS_USE_B_INVAL
   1244 		if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1245 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1246 			      " is B_INVAL\n", bp->b_lblkno));
   1247 			VOP_PRINT(bp->b_vp);
   1248 		}
   1249 # endif /* LFS_USE_B_INVAL */
   1250 		if (!(bp->b_flags & B_DELWRI))
   1251 			panic("lfs_gather: bp not B_DELWRI");
   1252 		if (!(bp->b_flags & B_LOCKED)) {
   1253 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1254 			      " blk %" PRId64 " not B_LOCKED\n",
   1255 			      bp->b_lblkno,
   1256 			      dbtofsb(fs, bp->b_blkno)));
   1257 			VOP_PRINT(bp->b_vp);
   1258 			panic("lfs_gather: bp not B_LOCKED");
   1259 		}
   1260 #endif
   1261 		if (lfs_gatherblock(sp, bp, &s)) {
   1262 			goto loop;
   1263 		}
   1264 		count++;
   1265 	}
   1266 	splx(s);
   1267 	lfs_updatemeta(sp);
   1268 	KASSERT(sp->vp == vp);
   1269 	sp->vp = NULL;
   1270 	return count;
   1271 }
   1272 
   1273 #if DEBUG
   1274 # define DEBUG_OOFF(n) do {						\
   1275 	if (ooff == 0) {						\
   1276 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1277 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1278 			", was 0x0 (or %" PRId64 ")\n",			\
   1279 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1280 	}								\
   1281 } while (0)
   1282 #else
   1283 # define DEBUG_OOFF(n)
   1284 #endif
   1285 
   1286 /*
   1287  * Change the given block's address to ndaddr, finding its previous
   1288  * location using ufs_bmaparray().
   1289  *
   1290  * Account for this change in the segment table.
   1291  *
   1292  * called with sp == NULL by roll-forwarding code.
   1293  */
   1294 void
   1295 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1296     daddr_t lbn, int32_t ndaddr, int size)
   1297 {
   1298 	SEGUSE *sup;
   1299 	struct buf *bp;
   1300 	struct indir a[NIADDR + 2], *ap;
   1301 	struct inode *ip;
   1302 	daddr_t daddr, ooff;
   1303 	int num, error;
   1304 	int bb, osize, obb;
   1305 
   1306 	ASSERT_SEGLOCK(fs);
   1307 	KASSERT(sp == NULL || sp->vp == vp);
   1308 	ip = VTOI(vp);
   1309 
   1310 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1311 	if (error)
   1312 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1313 
   1314 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1315 	KASSERT(daddr <= LFS_MAX_DADDR);
   1316 	if (daddr > 0)
   1317 		daddr = dbtofsb(fs, daddr);
   1318 
   1319 	bb = fragstofsb(fs, numfrags(fs, size));
   1320 	switch (num) {
   1321 	    case 0:
   1322 		    ooff = ip->i_ffs1_db[lbn];
   1323 		    DEBUG_OOFF(0);
   1324 		    if (ooff == UNWRITTEN)
   1325 			    ip->i_ffs1_blocks += bb;
   1326 		    else {
   1327 			    /* possible fragment truncation or extension */
   1328 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1329 			    ip->i_ffs1_blocks += (bb - obb);
   1330 		    }
   1331 		    ip->i_ffs1_db[lbn] = ndaddr;
   1332 		    break;
   1333 	    case 1:
   1334 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1335 		    DEBUG_OOFF(1);
   1336 		    if (ooff == UNWRITTEN)
   1337 			    ip->i_ffs1_blocks += bb;
   1338 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1339 		    break;
   1340 	    default:
   1341 		    ap = &a[num - 1];
   1342 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1343 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1344 				  ap->in_lbn);
   1345 
   1346 		    /* XXX ondisk32 */
   1347 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1348 		    DEBUG_OOFF(num);
   1349 		    if (ooff == UNWRITTEN)
   1350 			    ip->i_ffs1_blocks += bb;
   1351 		    /* XXX ondisk32 */
   1352 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1353 		    (void) VOP_BWRITE(bp);
   1354 	}
   1355 
   1356 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1357 
   1358 	/* Update hiblk when extending the file */
   1359 	if (lbn > ip->i_lfs_hiblk)
   1360 		ip->i_lfs_hiblk = lbn;
   1361 
   1362 	/*
   1363 	 * Though we'd rather it couldn't, this *can* happen right now
   1364 	 * if cleaning blocks and regular blocks coexist.
   1365 	 */
   1366 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1367 
   1368 	/*
   1369 	 * Update segment usage information, based on old size
   1370 	 * and location.
   1371 	 */
   1372 	if (daddr > 0) {
   1373 		u_int32_t oldsn = dtosn(fs, daddr);
   1374 #ifdef DIAGNOSTIC
   1375 		int ndupino;
   1376 
   1377 		if (sp && sp->seg_number == oldsn) {
   1378 			ndupino = sp->ndupino;
   1379 		} else {
   1380 			ndupino = 0;
   1381 		}
   1382 #endif
   1383 		KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
   1384 		if (lbn >= 0 && lbn < NDADDR)
   1385 			osize = ip->i_lfs_fragsize[lbn];
   1386 		else
   1387 			osize = fs->lfs_bsize;
   1388 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1389 #ifdef DIAGNOSTIC
   1390 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
   1391 		    < osize) {
   1392 			printf("lfs_updatemeta: negative bytes "
   1393 			       "(segment %" PRIu32 " short by %" PRId64
   1394 			       ")\n", dtosn(fs, daddr),
   1395 			       (int64_t)osize -
   1396 			       (sizeof (struct ufs1_dinode) * ndupino +
   1397 				sup->su_nbytes));
   1398 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
   1399 			       ", addr = 0x%" PRIx64 "\n",
   1400 			       (unsigned long long)ip->i_number, lbn, daddr);
   1401 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1402 			panic("lfs_updatemeta: negative bytes");
   1403 			sup->su_nbytes = osize -
   1404 			    sizeof (struct ufs1_dinode) * ndupino;
   1405 		}
   1406 #endif
   1407 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1408 		      " db 0x%" PRIx64 "\n",
   1409 		      dtosn(fs, daddr), osize,
   1410 		      ip->i_number, lbn, daddr));
   1411 		sup->su_nbytes -= osize;
   1412 		if (!(bp->b_flags & B_GATHERED)) {
   1413 			simple_lock(&fs->lfs_interlock);
   1414 			fs->lfs_flags |= LFS_IFDIRTY;
   1415 			simple_unlock(&fs->lfs_interlock);
   1416 		}
   1417 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1418 	}
   1419 	/*
   1420 	 * Now that this block has a new address, and its old
   1421 	 * segment no longer owns it, we can forget about its
   1422 	 * old size.
   1423 	 */
   1424 	if (lbn >= 0 && lbn < NDADDR)
   1425 		ip->i_lfs_fragsize[lbn] = size;
   1426 }
   1427 
   1428 /*
   1429  * Update the metadata that points to the blocks listed in the FINFO
   1430  * array.
   1431  */
   1432 void
   1433 lfs_updatemeta(struct segment *sp)
   1434 {
   1435 	struct buf *sbp;
   1436 	struct lfs *fs;
   1437 	struct vnode *vp;
   1438 	daddr_t lbn;
   1439 	int i, nblocks, num;
   1440 	int bb;
   1441 	int bytesleft, size;
   1442 
   1443 	ASSERT_SEGLOCK(sp->fs);
   1444 	vp = sp->vp;
   1445 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1446 	KASSERT(nblocks >= 0);
   1447 	KASSERT(vp != NULL);
   1448 	if (nblocks == 0)
   1449 		return;
   1450 
   1451 	/*
   1452 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1453 	 * Correct for this. (XXX we should be able to keep track of these.)
   1454 	 */
   1455 	fs = sp->fs;
   1456 	for (i = 0; i < nblocks; i++) {
   1457 		if (sp->start_bpp[i] == NULL) {
   1458 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1459 			nblocks = i;
   1460 			break;
   1461 		}
   1462 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1463 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1464 		nblocks -= num - 1;
   1465 	}
   1466 
   1467 	KASSERT(vp->v_type == VREG ||
   1468 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1469 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1470 
   1471 	/*
   1472 	 * Sort the blocks.
   1473 	 *
   1474 	 * We have to sort even if the blocks come from the
   1475 	 * cleaner, because there might be other pending blocks on the
   1476 	 * same inode...and if we don't sort, and there are fragments
   1477 	 * present, blocks may be written in the wrong place.
   1478 	 */
   1479 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1480 
   1481 	/*
   1482 	 * Record the length of the last block in case it's a fragment.
   1483 	 * If there are indirect blocks present, they sort last.  An
   1484 	 * indirect block will be lfs_bsize and its presence indicates
   1485 	 * that you cannot have fragments.
   1486 	 *
   1487 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1488 	 * XXX a later indirect block.	This will continue to be
   1489 	 * XXX true until lfs_markv is fixed to do everything with
   1490 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1491 	 */
   1492 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1493 		fs->lfs_bmask) + 1;
   1494 
   1495 	/*
   1496 	 * Assign disk addresses, and update references to the logical
   1497 	 * block and the segment usage information.
   1498 	 */
   1499 	for (i = nblocks; i--; ++sp->start_bpp) {
   1500 		sbp = *sp->start_bpp;
   1501 		lbn = *sp->start_lbp;
   1502 		KASSERT(sbp->b_lblkno == lbn);
   1503 
   1504 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1505 
   1506 		/*
   1507 		 * If we write a frag in the wrong place, the cleaner won't
   1508 		 * be able to correctly identify its size later, and the
   1509 		 * segment will be uncleanable.	 (Even worse, it will assume
   1510 		 * that the indirect block that actually ends the list
   1511 		 * is of a smaller size!)
   1512 		 */
   1513 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1514 			panic("lfs_updatemeta: fragment is not last block");
   1515 
   1516 		/*
   1517 		 * For each subblock in this possibly oversized block,
   1518 		 * update its address on disk.
   1519 		 */
   1520 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1521 		KASSERT(vp == sbp->b_vp);
   1522 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1523 		     bytesleft -= fs->lfs_bsize) {
   1524 			size = MIN(bytesleft, fs->lfs_bsize);
   1525 			bb = fragstofsb(fs, numfrags(fs, size));
   1526 			lbn = *sp->start_lbp++;
   1527 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1528 			    size);
   1529 			fs->lfs_offset += bb;
   1530 		}
   1531 
   1532 	}
   1533 }
   1534 
   1535 /*
   1536  * Move lfs_offset to a segment earlier than sn.
   1537  */
   1538 int
   1539 lfs_rewind(struct lfs *fs, int newsn)
   1540 {
   1541 	int sn, osn, isdirty;
   1542 	struct buf *bp;
   1543 	SEGUSE *sup;
   1544 
   1545 	ASSERT_SEGLOCK(fs);
   1546 
   1547 	osn = dtosn(fs, fs->lfs_offset);
   1548 	if (osn < newsn)
   1549 		return 0;
   1550 
   1551 	/* lfs_avail eats the remaining space in this segment */
   1552 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
   1553 
   1554 	/* Find a low-numbered segment */
   1555 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
   1556 		LFS_SEGENTRY(sup, fs, sn, bp);
   1557 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1558 		brelse(bp);
   1559 
   1560 		if (!isdirty)
   1561 			break;
   1562 	}
   1563 	if (sn == fs->lfs_nseg)
   1564 		panic("lfs_rewind: no clean segments");
   1565 	if (sn >= newsn)
   1566 		return ENOENT;
   1567 	fs->lfs_nextseg = sn;
   1568 	lfs_newseg(fs);
   1569 	fs->lfs_offset = fs->lfs_curseg;
   1570 
   1571 	return 0;
   1572 }
   1573 
   1574 /*
   1575  * Start a new partial segment.
   1576  *
   1577  * Return 1 when we entered to a new segment.
   1578  * Otherwise, return 0.
   1579  */
   1580 int
   1581 lfs_initseg(struct lfs *fs)
   1582 {
   1583 	struct segment *sp = fs->lfs_sp;
   1584 	SEGSUM *ssp;
   1585 	struct buf *sbp;	/* buffer for SEGSUM */
   1586 	int repeat = 0;		/* return value */
   1587 
   1588 	ASSERT_SEGLOCK(fs);
   1589 	/* Advance to the next segment. */
   1590 	if (!LFS_PARTIAL_FITS(fs)) {
   1591 		SEGUSE *sup;
   1592 		struct buf *bp;
   1593 
   1594 		/* lfs_avail eats the remaining space */
   1595 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1596 						   fs->lfs_curseg);
   1597 		/* Wake up any cleaning procs waiting on this file system. */
   1598 		wakeup(&lfs_allclean_wakeup);
   1599 		wakeup(&fs->lfs_nextseg);
   1600 		lfs_newseg(fs);
   1601 		repeat = 1;
   1602 		fs->lfs_offset = fs->lfs_curseg;
   1603 
   1604 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1605 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1606 
   1607 		/*
   1608 		 * If the segment contains a superblock, update the offset
   1609 		 * and summary address to skip over it.
   1610 		 */
   1611 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1612 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1613 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1614 			sp->seg_bytes_left -= LFS_SBPAD;
   1615 		}
   1616 		brelse(bp);
   1617 		/* Segment zero could also contain the labelpad */
   1618 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1619 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1620 			fs->lfs_offset +=
   1621 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1622 			sp->seg_bytes_left -=
   1623 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1624 		}
   1625 	} else {
   1626 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1627 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1628 				      (fs->lfs_offset - fs->lfs_curseg));
   1629 	}
   1630 	fs->lfs_lastpseg = fs->lfs_offset;
   1631 
   1632 	/* Record first address of this partial segment */
   1633 	if (sp->seg_flags & SEGM_CLEAN) {
   1634 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1635 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1636 			/* "1" is the artificial inc in lfs_seglock */
   1637 			simple_lock(&fs->lfs_interlock);
   1638 			while (fs->lfs_iocount > 1) {
   1639 				ltsleep(&fs->lfs_iocount, PRIBIO + 1,
   1640 				    "lfs_initseg", 0, &fs->lfs_interlock);
   1641 			}
   1642 			simple_unlock(&fs->lfs_interlock);
   1643 			fs->lfs_cleanind = 0;
   1644 		}
   1645 	}
   1646 
   1647 	sp->fs = fs;
   1648 	sp->ibp = NULL;
   1649 	sp->idp = NULL;
   1650 	sp->ninodes = 0;
   1651 	sp->ndupino = 0;
   1652 
   1653 	sp->cbpp = sp->bpp;
   1654 
   1655 	/* Get a new buffer for SEGSUM */
   1656 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1657 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1658 
   1659 	/* ... and enter it into the buffer list. */
   1660 	*sp->cbpp = sbp;
   1661 	sp->cbpp++;
   1662 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1663 
   1664 	sp->start_bpp = sp->cbpp;
   1665 
   1666 	/* Set point to SEGSUM, initialize it. */
   1667 	ssp = sp->segsum = sbp->b_data;
   1668 	memset(ssp, 0, fs->lfs_sumsize);
   1669 	ssp->ss_next = fs->lfs_nextseg;
   1670 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1671 	ssp->ss_magic = SS_MAGIC;
   1672 
   1673 	/* Set pointer to first FINFO, initialize it. */
   1674 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1675 	sp->fip->fi_nblocks = 0;
   1676 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1677 	sp->fip->fi_lastlength = 0;
   1678 
   1679 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1680 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1681 
   1682 	return (repeat);
   1683 }
   1684 
   1685 /*
   1686  * Remove SEGUSE_INVAL from all segments.
   1687  */
   1688 void
   1689 lfs_unset_inval_all(struct lfs *fs)
   1690 {
   1691 	SEGUSE *sup;
   1692 	struct buf *bp;
   1693 	int i;
   1694 
   1695 	for (i = 0; i < fs->lfs_nseg; i++) {
   1696 		LFS_SEGENTRY(sup, fs, i, bp);
   1697 		if (sup->su_flags & SEGUSE_INVAL) {
   1698 			sup->su_flags &= ~SEGUSE_INVAL;
   1699 			VOP_BWRITE(bp);
   1700 		} else
   1701 			brelse(bp);
   1702 	}
   1703 }
   1704 
   1705 /*
   1706  * Return the next segment to write.
   1707  */
   1708 void
   1709 lfs_newseg(struct lfs *fs)
   1710 {
   1711 	CLEANERINFO *cip;
   1712 	SEGUSE *sup;
   1713 	struct buf *bp;
   1714 	int curseg, isdirty, sn, skip_inval;
   1715 
   1716 	ASSERT_SEGLOCK(fs);
   1717 
   1718 	/* Honor LFCNWRAPSTOP */
   1719 	simple_lock(&fs->lfs_interlock);
   1720 	if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
   1721 		wakeup(&fs->lfs_nowrap);
   1722 		ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
   1723 			&fs->lfs_interlock);
   1724 	}
   1725 	simple_unlock(&fs->lfs_interlock);
   1726 
   1727 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1728 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1729 	      dtosn(fs, fs->lfs_nextseg)));
   1730 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1731 	sup->su_nbytes = 0;
   1732 	sup->su_nsums = 0;
   1733 	sup->su_ninos = 0;
   1734 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1735 
   1736 	LFS_CLEANERINFO(cip, fs, bp);
   1737 	--cip->clean;
   1738 	++cip->dirty;
   1739 	fs->lfs_nclean = cip->clean;
   1740 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1741 
   1742 	fs->lfs_lastseg = fs->lfs_curseg;
   1743 	fs->lfs_curseg = fs->lfs_nextseg;
   1744 	skip_inval = 1;
   1745 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1746 		sn = (sn + 1) % fs->lfs_nseg;
   1747 
   1748 		if (sn == curseg) {
   1749 			if (skip_inval)
   1750 				skip_inval = 0;
   1751 			else
   1752 				panic("lfs_nextseg: no clean segments");
   1753 		}
   1754 		LFS_SEGENTRY(sup, fs, sn, bp);
   1755 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
   1756 		/* Check SEGUSE_EMPTY as we go along */
   1757 		if (isdirty && sup->su_nbytes == 0 &&
   1758 		    !(sup->su_flags & SEGUSE_EMPTY))
   1759 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1760 		else
   1761 			brelse(bp);
   1762 
   1763 		if (!isdirty)
   1764 			break;
   1765 	}
   1766 	if (skip_inval == 0)
   1767 		lfs_unset_inval_all(fs);
   1768 
   1769 	++fs->lfs_nactive;
   1770 	fs->lfs_nextseg = sntod(fs, sn);
   1771 	if (lfs_dostats) {
   1772 		++lfs_stats.segsused;
   1773 	}
   1774 }
   1775 
   1776 static struct buf *
   1777 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1778 {
   1779 	struct lfs_cluster *cl;
   1780 	struct buf **bpp, *bp;
   1781 
   1782 	ASSERT_SEGLOCK(fs);
   1783 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1784 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1785 	memset(cl, 0, sizeof(*cl));
   1786 	cl->fs = fs;
   1787 	cl->bpp = bpp;
   1788 	cl->bufcount = 0;
   1789 	cl->bufsize = 0;
   1790 
   1791 	/* If this segment is being written synchronously, note that */
   1792 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1793 		cl->flags |= LFS_CL_SYNC;
   1794 		cl->seg = fs->lfs_sp;
   1795 		++cl->seg->seg_iocount;
   1796 	}
   1797 
   1798 	/* Get an empty buffer header, or maybe one with something on it */
   1799 	bp = getiobuf();
   1800 	bp->b_flags = B_BUSY | B_CALL;
   1801 	bp->b_dev = NODEV;
   1802 	bp->b_blkno = bp->b_lblkno = addr;
   1803 	bp->b_iodone = lfs_cluster_callback;
   1804 	bp->b_private = cl;
   1805 	bp->b_vp = vp;
   1806 
   1807 	return bp;
   1808 }
   1809 
   1810 int
   1811 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1812 {
   1813 	struct buf **bpp, *bp, *cbp, *newbp;
   1814 	SEGUSE *sup;
   1815 	SEGSUM *ssp;
   1816 	int i, s;
   1817 	int do_again, nblocks, byteoffset;
   1818 	size_t el_size;
   1819 	struct lfs_cluster *cl;
   1820 	u_short ninos;
   1821 	struct vnode *devvp;
   1822 	char *p = NULL;
   1823 	struct vnode *vp;
   1824 	int32_t *daddrp;	/* XXX ondisk32 */
   1825 	int changed;
   1826 	u_int32_t sum;
   1827 
   1828 	ASSERT_SEGLOCK(fs);
   1829 	/*
   1830 	 * If there are no buffers other than the segment summary to write
   1831 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1832 	 * even if there aren't any buffers, you need to write the superblock.
   1833 	 */
   1834 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1835 		return (0);
   1836 
   1837 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1838 
   1839 	/* Update the segment usage information. */
   1840 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1841 
   1842 	/* Loop through all blocks, except the segment summary. */
   1843 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1844 		if ((*bpp)->b_vp != devvp) {
   1845 			sup->su_nbytes += (*bpp)->b_bcount;
   1846 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   1847 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   1848 			      sp->seg_number, (*bpp)->b_bcount,
   1849 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1850 			      (*bpp)->b_blkno));
   1851 		}
   1852 	}
   1853 
   1854 	ssp = (SEGSUM *)sp->segsum;
   1855 
   1856 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1857 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   1858 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
   1859 	      ssp->ss_ninos));
   1860 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
   1861 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1862 	if (fs->lfs_version == 1)
   1863 		sup->su_olastmod = time.tv_sec;
   1864 	else
   1865 		sup->su_lastmod = time.tv_sec;
   1866 	sup->su_ninos += ninos;
   1867 	++sup->su_nsums;
   1868 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1869 
   1870 	do_again = !(bp->b_flags & B_GATHERED);
   1871 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1872 
   1873 	/*
   1874 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1875 	 * the checksum computation and the actual write.
   1876 	 *
   1877 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1878 	 * there are any, replace them with copies that have UNASSIGNED
   1879 	 * instead.
   1880 	 */
   1881 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1882 		++bpp;
   1883 		bp = *bpp;
   1884 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1885 			bp->b_flags |= B_BUSY;
   1886 			continue;
   1887 		}
   1888 
   1889 		simple_lock(&bp->b_interlock);
   1890 		s = splbio();
   1891 		while (bp->b_flags & B_BUSY) {
   1892 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   1893 			      " data summary corruption for ino %d, lbn %"
   1894 			      PRId64 "\n",
   1895 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   1896 			bp->b_flags |= B_WANTED;
   1897 			ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
   1898 				&bp->b_interlock);
   1899 			splx(s);
   1900 			s = splbio();
   1901 		}
   1902 		bp->b_flags |= B_BUSY;
   1903 		splx(s);
   1904 		simple_unlock(&bp->b_interlock);
   1905 
   1906 		/*
   1907 		 * Check and replace indirect block UNWRITTEN bogosity.
   1908 		 * XXX See comment in lfs_writefile.
   1909 		 */
   1910 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1911 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   1912 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1913 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1914 			      VTOI(bp->b_vp)->i_number,
   1915 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   1916 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   1917 			/* Make a copy we'll make changes to */
   1918 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1919 					   bp->b_bcount, LFS_NB_IBLOCK);
   1920 			newbp->b_blkno = bp->b_blkno;
   1921 			memcpy(newbp->b_data, bp->b_data,
   1922 			       newbp->b_bcount);
   1923 
   1924 			changed = 0;
   1925 			/* XXX ondisk32 */
   1926 			for (daddrp = (int32_t *)(newbp->b_data);
   1927 			     daddrp < (int32_t *)(newbp->b_data +
   1928 						  newbp->b_bcount); daddrp++) {
   1929 				if (*daddrp == UNWRITTEN) {
   1930 					++changed;
   1931 					*daddrp = 0;
   1932 				}
   1933 			}
   1934 			/*
   1935 			 * Get rid of the old buffer.  Don't mark it clean,
   1936 			 * though, if it still has dirty data on it.
   1937 			 */
   1938 			if (changed) {
   1939 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   1940 				      " bp = %p newbp = %p\n", changed, bp,
   1941 				      newbp));
   1942 				*bpp = newbp;
   1943 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1944 				if (bp->b_flags & B_CALL) {
   1945 					DLOG((DLOG_SEG, "lfs_writeseg: "
   1946 					      "indir bp should not be B_CALL\n"));
   1947 					s = splbio();
   1948 					biodone(bp);
   1949 					splx(s);
   1950 					bp = NULL;
   1951 				} else {
   1952 					/* Still on free list, leave it there */
   1953 					s = splbio();
   1954 					bp->b_flags &= ~B_BUSY;
   1955 					if (bp->b_flags & B_WANTED)
   1956 						wakeup(bp);
   1957 					splx(s);
   1958 					/*
   1959 					 * We have to re-decrement lfs_avail
   1960 					 * since this block is going to come
   1961 					 * back around to us in the next
   1962 					 * segment.
   1963 					 */
   1964 					fs->lfs_avail -=
   1965 					    btofsb(fs, bp->b_bcount);
   1966 				}
   1967 			} else {
   1968 				lfs_freebuf(fs, newbp);
   1969 			}
   1970 		}
   1971 	}
   1972 	/*
   1973 	 * Compute checksum across data and then across summary; the first
   1974 	 * block (the summary block) is skipped.  Set the create time here
   1975 	 * so that it's guaranteed to be later than the inode mod times.
   1976 	 */
   1977 	sum = 0;
   1978 	if (fs->lfs_version == 1)
   1979 		el_size = sizeof(u_long);
   1980 	else
   1981 		el_size = sizeof(u_int32_t);
   1982 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   1983 		++bpp;
   1984 		/* Loop through gop_write cluster blocks */
   1985 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   1986 		     byteoffset += fs->lfs_bsize) {
   1987 #ifdef LFS_USE_B_INVAL
   1988 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   1989 			    (B_CALL | B_INVAL)) {
   1990 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   1991 					   byteoffset, dp, el_size)) {
   1992 					panic("lfs_writeseg: copyin failed [1]:"
   1993 						" ino %d blk %" PRId64,
   1994 						VTOI((*bpp)->b_vp)->i_number,
   1995 						(*bpp)->b_lblkno);
   1996 				}
   1997 			} else
   1998 #endif /* LFS_USE_B_INVAL */
   1999 			{
   2000 				sum = lfs_cksum_part(
   2001 				    (*bpp)->b_data + byteoffset, el_size, sum);
   2002 			}
   2003 		}
   2004 	}
   2005 	if (fs->lfs_version == 1)
   2006 		ssp->ss_ocreate = time.tv_sec;
   2007 	else {
   2008 		ssp->ss_create = time.tv_sec;
   2009 		ssp->ss_serial = ++fs->lfs_serial;
   2010 		ssp->ss_ident  = fs->lfs_ident;
   2011 	}
   2012 	ssp->ss_datasum = lfs_cksum_fold(sum);
   2013 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   2014 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   2015 
   2016 	simple_lock(&fs->lfs_interlock);
   2017 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   2018 			  btofsb(fs, fs->lfs_sumsize));
   2019 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
   2020 			  btofsb(fs, fs->lfs_sumsize));
   2021 	simple_unlock(&fs->lfs_interlock);
   2022 
   2023 	/*
   2024 	 * When we simply write the blocks we lose a rotation for every block
   2025 	 * written.  To avoid this problem, we cluster the buffers into a
   2026 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   2027 	 * devices can handle, use that for the size of the chunks.
   2028 	 *
   2029 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   2030 	 * don't bother to copy into other clusters.
   2031 	 */
   2032 
   2033 #define CHUNKSIZE MAXPHYS
   2034 
   2035 	if (devvp == NULL)
   2036 		panic("devvp is NULL");
   2037 	for (bpp = sp->bpp, i = nblocks; i;) {
   2038 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   2039 		cl = cbp->b_private;
   2040 
   2041 		cbp->b_flags |= B_ASYNC | B_BUSY;
   2042 		cbp->b_bcount = 0;
   2043 
   2044 #if defined(DEBUG) && defined(DIAGNOSTIC)
   2045 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   2046 		    / sizeof(int32_t)) {
   2047 			panic("lfs_writeseg: real bpp overwrite");
   2048 		}
   2049 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
   2050 			panic("lfs_writeseg: theoretical bpp overwrite");
   2051 		}
   2052 #endif
   2053 
   2054 		/*
   2055 		 * Construct the cluster.
   2056 		 */
   2057 		simple_lock(&fs->lfs_interlock);
   2058 		++fs->lfs_iocount;
   2059 		simple_unlock(&fs->lfs_interlock);
   2060 		while (i && cbp->b_bcount < CHUNKSIZE) {
   2061 			bp = *bpp;
   2062 
   2063 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   2064 				break;
   2065 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   2066 				break;
   2067 
   2068 			/* Clusters from GOP_WRITE are expedited */
   2069 			if (bp->b_bcount > fs->lfs_bsize) {
   2070 				if (cbp->b_bcount > 0)
   2071 					/* Put in its own buffer */
   2072 					break;
   2073 				else {
   2074 					cbp->b_data = bp->b_data;
   2075 				}
   2076 			} else if (cbp->b_bcount == 0) {
   2077 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   2078 							     LFS_NB_CLUSTER);
   2079 				cl->flags |= LFS_CL_MALLOC;
   2080 			}
   2081 #ifdef DIAGNOSTIC
   2082 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   2083 					      btodb(bp->b_bcount - 1))) !=
   2084 			    sp->seg_number) {
   2085 				printf("blk size %d daddr %" PRIx64
   2086 				    " not in seg %d\n",
   2087 				    bp->b_bcount, bp->b_blkno,
   2088 				    sp->seg_number);
   2089 				panic("segment overwrite");
   2090 			}
   2091 #endif
   2092 
   2093 #ifdef LFS_USE_B_INVAL
   2094 			/*
   2095 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2096 			 * We need to copy the data from user space rather than
   2097 			 * from the buffer indicated.
   2098 			 * XXX == what do I do on an error?
   2099 			 */
   2100 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
   2101 			    (B_CALL|B_INVAL)) {
   2102 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2103 					panic("lfs_writeseg: "
   2104 					    "copyin failed [2]");
   2105 			} else
   2106 #endif /* LFS_USE_B_INVAL */
   2107 			if (cl->flags & LFS_CL_MALLOC) {
   2108 				/* copy data into our cluster. */
   2109 				memcpy(p, bp->b_data, bp->b_bcount);
   2110 				p += bp->b_bcount;
   2111 			}
   2112 
   2113 			cbp->b_bcount += bp->b_bcount;
   2114 			cl->bufsize += bp->b_bcount;
   2115 
   2116 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   2117 			cl->bpp[cl->bufcount++] = bp;
   2118 			vp = bp->b_vp;
   2119 			s = splbio();
   2120 			reassignbuf(bp, vp);
   2121 			V_INCR_NUMOUTPUT(vp);
   2122 			splx(s);
   2123 
   2124 			bpp++;
   2125 			i--;
   2126 		}
   2127 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2128 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   2129 		else
   2130 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   2131 		s = splbio();
   2132 		V_INCR_NUMOUTPUT(devvp);
   2133 		splx(s);
   2134 		VOP_STRATEGY(devvp, cbp);
   2135 		curproc->p_stats->p_ru.ru_oublock++;
   2136 	}
   2137 
   2138 	if (lfs_dostats) {
   2139 		++lfs_stats.psegwrites;
   2140 		lfs_stats.blocktot += nblocks - 1;
   2141 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2142 			++lfs_stats.psyncwrites;
   2143 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2144 			++lfs_stats.pcleanwrites;
   2145 			lfs_stats.cleanblocks += nblocks - 1;
   2146 		}
   2147 	}
   2148 	return (lfs_initseg(fs) || do_again);
   2149 }
   2150 
   2151 void
   2152 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2153 {
   2154 	struct buf *bp;
   2155 	int s;
   2156 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2157 
   2158 	ASSERT_MAYBE_SEGLOCK(fs);
   2159 #ifdef DIAGNOSTIC
   2160 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   2161 #endif
   2162 	/*
   2163 	 * If we can write one superblock while another is in
   2164 	 * progress, we risk not having a complete checkpoint if we crash.
   2165 	 * So, block here if a superblock write is in progress.
   2166 	 */
   2167 	simple_lock(&fs->lfs_interlock);
   2168 	s = splbio();
   2169 	while (fs->lfs_sbactive) {
   2170 		ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   2171 			&fs->lfs_interlock);
   2172 	}
   2173 	fs->lfs_sbactive = daddr;
   2174 	splx(s);
   2175 	simple_unlock(&fs->lfs_interlock);
   2176 
   2177 	/* Set timestamp of this version of the superblock */
   2178 	if (fs->lfs_version == 1)
   2179 		fs->lfs_otstamp = time.tv_sec;
   2180 	fs->lfs_tstamp = time.tv_sec;
   2181 
   2182 	/* Checksum the superblock and copy it into a buffer. */
   2183 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2184 	bp = lfs_newbuf(fs, devvp,
   2185 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2186 	memset(bp->b_data + sizeof(struct dlfs), 0,
   2187 	    LFS_SBPAD - sizeof(struct dlfs));
   2188 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2189 
   2190 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2191 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2192 	bp->b_iodone = lfs_supercallback;
   2193 
   2194 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2195 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2196 	else
   2197 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2198 	curproc->p_stats->p_ru.ru_oublock++;
   2199 	s = splbio();
   2200 	V_INCR_NUMOUTPUT(bp->b_vp);
   2201 	splx(s);
   2202 	simple_lock(&fs->lfs_interlock);
   2203 	++fs->lfs_iocount;
   2204 	simple_unlock(&fs->lfs_interlock);
   2205 	VOP_STRATEGY(devvp, bp);
   2206 }
   2207 
   2208 /*
   2209  * Logical block number match routines used when traversing the dirty block
   2210  * chain.
   2211  */
   2212 int
   2213 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2214 {
   2215 
   2216 	ASSERT_SEGLOCK(fs);
   2217 	return LFS_IS_MALLOC_BUF(bp);
   2218 }
   2219 
   2220 #if 0
   2221 int
   2222 lfs_match_real(struct lfs *fs, struct buf *bp)
   2223 {
   2224 
   2225 	ASSERT_SEGLOCK(fs);
   2226 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2227 }
   2228 #endif
   2229 
   2230 int
   2231 lfs_match_data(struct lfs *fs, struct buf *bp)
   2232 {
   2233 
   2234 	ASSERT_SEGLOCK(fs);
   2235 	return (bp->b_lblkno >= 0);
   2236 }
   2237 
   2238 int
   2239 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2240 {
   2241 	daddr_t lbn;
   2242 
   2243 	ASSERT_SEGLOCK(fs);
   2244 	lbn = bp->b_lblkno;
   2245 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2246 }
   2247 
   2248 int
   2249 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2250 {
   2251 	daddr_t lbn;
   2252 
   2253 	ASSERT_SEGLOCK(fs);
   2254 	lbn = bp->b_lblkno;
   2255 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2256 }
   2257 
   2258 int
   2259 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2260 {
   2261 	daddr_t lbn;
   2262 
   2263 	ASSERT_SEGLOCK(fs);
   2264 	lbn = bp->b_lblkno;
   2265 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2266 }
   2267 
   2268 /*
   2269  * XXX - The only buffers that are going to hit these functions are the
   2270  * segment write blocks, or the segment summaries, or the superblocks.
   2271  *
   2272  * All of the above are created by lfs_newbuf, and so do not need to be
   2273  * released via brelse.
   2274  */
   2275 void
   2276 lfs_callback(struct buf *bp)
   2277 {
   2278 	struct lfs *fs;
   2279 
   2280 	fs = bp->b_private;
   2281 	ASSERT_NO_SEGLOCK(fs);
   2282 	lfs_freebuf(fs, bp);
   2283 }
   2284 
   2285 static void
   2286 lfs_super_aiodone(struct buf *bp)
   2287 {
   2288 	struct lfs *fs;
   2289 
   2290 	fs = bp->b_private;
   2291 	ASSERT_NO_SEGLOCK(fs);
   2292 	simple_lock(&fs->lfs_interlock);
   2293 	fs->lfs_sbactive = 0;
   2294 	if (--fs->lfs_iocount <= 1)
   2295 		wakeup(&fs->lfs_iocount);
   2296 	simple_unlock(&fs->lfs_interlock);
   2297 	wakeup(&fs->lfs_sbactive);
   2298 	lfs_freebuf(fs, bp);
   2299 }
   2300 
   2301 static void
   2302 lfs_cluster_aiodone(struct buf *bp)
   2303 {
   2304 	struct lfs_cluster *cl;
   2305 	struct lfs *fs;
   2306 	struct buf *tbp, *fbp;
   2307 	struct vnode *vp, *devvp;
   2308 	struct inode *ip;
   2309 	int s, error=0;
   2310 
   2311 	if (bp->b_flags & B_ERROR)
   2312 		error = bp->b_error;
   2313 
   2314 	cl = bp->b_private;
   2315 	fs = cl->fs;
   2316 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2317 	ASSERT_NO_SEGLOCK(fs);
   2318 
   2319 	/* Put the pages back, and release the buffer */
   2320 	while (cl->bufcount--) {
   2321 		tbp = cl->bpp[cl->bufcount];
   2322 		KASSERT(tbp->b_flags & B_BUSY);
   2323 		if (error) {
   2324 			tbp->b_flags |= B_ERROR;
   2325 			tbp->b_error = error;
   2326 		}
   2327 
   2328 		/*
   2329 		 * We're done with tbp.	 If it has not been re-dirtied since
   2330 		 * the cluster was written, free it.  Otherwise, keep it on
   2331 		 * the locked list to be written again.
   2332 		 */
   2333 		vp = tbp->b_vp;
   2334 
   2335 		tbp->b_flags &= ~B_GATHERED;
   2336 
   2337 		LFS_BCLEAN_LOG(fs, tbp);
   2338 
   2339 		if (!(tbp->b_flags & B_CALL)) {
   2340 			KASSERT(tbp->b_flags & B_LOCKED);
   2341 			s = splbio();
   2342 			simple_lock(&bqueue_slock);
   2343 			bremfree(tbp);
   2344 			simple_unlock(&bqueue_slock);
   2345 			if (vp)
   2346 				reassignbuf(tbp, vp);
   2347 			splx(s);
   2348 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2349 		}
   2350 
   2351 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2352 			LFS_UNLOCK_BUF(tbp);
   2353 
   2354 		if (tbp->b_flags & B_DONE) {
   2355 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2356 				cl->bufcount, (long)tbp->b_flags));
   2357 		}
   2358 
   2359 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2360 			/*
   2361 			 * A buffer from the page daemon.
   2362 			 * We use the same iodone as it does,
   2363 			 * so we must manually disassociate its
   2364 			 * buffers from the vp.
   2365 			 */
   2366 			if (tbp->b_vp) {
   2367 				/* This is just silly */
   2368 				s = splbio();
   2369 				brelvp(tbp);
   2370 				tbp->b_vp = vp;
   2371 				splx(s);
   2372 			}
   2373 			/* Put it back the way it was */
   2374 			tbp->b_flags |= B_ASYNC;
   2375 			/* Master buffers have B_AGE */
   2376 			if (tbp->b_private == tbp)
   2377 				tbp->b_flags |= B_AGE;
   2378 		}
   2379 		s = splbio();
   2380 		biodone(tbp);
   2381 
   2382 		/*
   2383 		 * If this is the last block for this vnode, but
   2384 		 * there are other blocks on its dirty list,
   2385 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2386 		 * sort of block.  Only do this for our mount point,
   2387 		 * not for, e.g., inode blocks that are attached to
   2388 		 * the devvp.
   2389 		 * XXX KS - Shouldn't we set *both* if both types
   2390 		 * of blocks are present (traverse the dirty list?)
   2391 		 */
   2392 		simple_lock(&global_v_numoutput_slock);
   2393 		if (vp != devvp && vp->v_numoutput == 0 &&
   2394 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2395 			ip = VTOI(vp);
   2396 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2397 			       ip->i_number));
   2398 			if (LFS_IS_MALLOC_BUF(fbp))
   2399 				LFS_SET_UINO(ip, IN_CLEANING);
   2400 			else
   2401 				LFS_SET_UINO(ip, IN_MODIFIED);
   2402 		}
   2403 		simple_unlock(&global_v_numoutput_slock);
   2404 		splx(s);
   2405 		wakeup(vp);
   2406 	}
   2407 
   2408 	/* Fix up the cluster buffer, and release it */
   2409 	if (cl->flags & LFS_CL_MALLOC)
   2410 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2411 	putiobuf(bp);
   2412 
   2413 	/* Note i/o done */
   2414 	if (cl->flags & LFS_CL_SYNC) {
   2415 		if (--cl->seg->seg_iocount == 0)
   2416 			wakeup(&cl->seg->seg_iocount);
   2417 	}
   2418 	simple_lock(&fs->lfs_interlock);
   2419 #ifdef DIAGNOSTIC
   2420 	if (fs->lfs_iocount == 0)
   2421 		panic("lfs_cluster_aiodone: zero iocount");
   2422 #endif
   2423 	if (--fs->lfs_iocount <= 1)
   2424 		wakeup(&fs->lfs_iocount);
   2425 	simple_unlock(&fs->lfs_interlock);
   2426 
   2427 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2428 	cl->bpp = NULL;
   2429 	pool_put(&fs->lfs_clpool, cl);
   2430 }
   2431 
   2432 static void
   2433 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2434 {
   2435 	/* reset b_iodone for when this is a single-buf i/o. */
   2436 	bp->b_iodone = aiodone;
   2437 
   2438 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2439 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2440 	wakeup(&uvm.aiodoned);
   2441 	simple_unlock(&uvm.aiodoned_lock);
   2442 }
   2443 
   2444 static void
   2445 lfs_cluster_callback(struct buf *bp)
   2446 {
   2447 
   2448 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2449 }
   2450 
   2451 void
   2452 lfs_supercallback(struct buf *bp)
   2453 {
   2454 
   2455 	lfs_generic_callback(bp, lfs_super_aiodone);
   2456 }
   2457 
   2458 /*
   2459  * Shellsort (diminishing increment sort) from Data Structures and
   2460  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2461  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2462  * formula (8), page 95.  Roughly O(N^3/2).
   2463  */
   2464 /*
   2465  * This is our own private copy of shellsort because we want to sort
   2466  * two parallel arrays (the array of buffer pointers and the array of
   2467  * logical block numbers) simultaneously.  Note that we cast the array
   2468  * of logical block numbers to a unsigned in this routine so that the
   2469  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2470  */
   2471 
   2472 void
   2473 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2474 {
   2475 	static int __rsshell_increments[] = { 4, 1, 0 };
   2476 	int incr, *incrp, t1, t2;
   2477 	struct buf *bp_temp;
   2478 
   2479 #ifdef DEBUG
   2480 	incr = 0;
   2481 	for (t1 = 0; t1 < nmemb; t1++) {
   2482 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2483 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2484 				/* dump before panic */
   2485 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2486 				    nmemb, size);
   2487 				incr = 0;
   2488 				for (t1 = 0; t1 < nmemb; t1++) {
   2489 					const struct buf *bp = bp_array[t1];
   2490 
   2491 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2492 					    PRIu64 "\n", t1,
   2493 					    (uint64_t)bp->b_bcount,
   2494 					    (uint64_t)bp->b_lblkno);
   2495 					printf("lbns:");
   2496 					for (t2 = 0; t2 * size < bp->b_bcount;
   2497 					    t2++) {
   2498 						printf(" %" PRId32,
   2499 						    lb_array[incr++]);
   2500 					}
   2501 					printf("\n");
   2502 				}
   2503 				panic("lfs_shellsort: inconsistent input");
   2504 			}
   2505 		}
   2506 	}
   2507 #endif
   2508 
   2509 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2510 		for (t1 = incr; t1 < nmemb; ++t1)
   2511 			for (t2 = t1 - incr; t2 >= 0;)
   2512 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2513 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2514 					bp_temp = bp_array[t2];
   2515 					bp_array[t2] = bp_array[t2 + incr];
   2516 					bp_array[t2 + incr] = bp_temp;
   2517 					t2 -= incr;
   2518 				} else
   2519 					break;
   2520 
   2521 	/* Reform the list of logical blocks */
   2522 	incr = 0;
   2523 	for (t1 = 0; t1 < nmemb; t1++) {
   2524 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2525 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2526 		}
   2527 	}
   2528 }
   2529 
   2530 /*
   2531  * Call vget with LK_NOWAIT.  If we are the one who holds VXLOCK/VFREEING,
   2532  * however, we must press on.  Just fake success in that case.
   2533  */
   2534 int
   2535 lfs_vref(struct vnode *vp)
   2536 {
   2537 	int error;
   2538 	struct lfs *fs;
   2539 
   2540 	fs = VTOI(vp)->i_lfs;
   2541 
   2542 	ASSERT_MAYBE_SEGLOCK(fs);
   2543 
   2544 	/*
   2545 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2546 	 * being able to flush all of the pages from this vnode, which
   2547 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2548 	 */
   2549 	error = vget(vp, LK_NOWAIT);
   2550 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2551 		++fs->lfs_flushvp_fakevref;
   2552 		return 0;
   2553 	}
   2554 	return error;
   2555 }
   2556 
   2557 /*
   2558  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2559  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2560  */
   2561 void
   2562 lfs_vunref(struct vnode *vp)
   2563 {
   2564 	struct lfs *fs;
   2565 
   2566 	fs = VTOI(vp)->i_lfs;
   2567 	ASSERT_MAYBE_SEGLOCK(fs);
   2568 
   2569 	/*
   2570 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2571 	 */
   2572 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
   2573 		--fs->lfs_flushvp_fakevref;
   2574 		return;
   2575 	}
   2576 
   2577 	simple_lock(&vp->v_interlock);
   2578 #ifdef DIAGNOSTIC
   2579 	if (vp->v_usecount <= 0) {
   2580 		printf("lfs_vunref: inum is %llu\n", (unsigned long long)
   2581 		    VTOI(vp)->i_number);
   2582 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2583 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2584 		panic("lfs_vunref: v_usecount < 0");
   2585 	}
   2586 #endif
   2587 	vp->v_usecount--;
   2588 	if (vp->v_usecount > 0) {
   2589 		simple_unlock(&vp->v_interlock);
   2590 		return;
   2591 	}
   2592 	/*
   2593 	 * insert at tail of LRU list
   2594 	 */
   2595 	simple_lock(&vnode_free_list_slock);
   2596 	if (vp->v_holdcnt > 0)
   2597 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2598 	else
   2599 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2600 	simple_unlock(&vnode_free_list_slock);
   2601 	simple_unlock(&vp->v_interlock);
   2602 }
   2603 
   2604 /*
   2605  * We use this when we have vnodes that were loaded in solely for cleaning.
   2606  * There is no reason to believe that these vnodes will be referenced again
   2607  * soon, since the cleaning process is unrelated to normal filesystem
   2608  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2609  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2610  * cleaning at the head of the list, instead.
   2611  */
   2612 void
   2613 lfs_vunref_head(struct vnode *vp)
   2614 {
   2615 
   2616 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2617 	simple_lock(&vp->v_interlock);
   2618 #ifdef DIAGNOSTIC
   2619 	if (vp->v_usecount == 0) {
   2620 		panic("lfs_vunref: v_usecount<0");
   2621 	}
   2622 #endif
   2623 	vp->v_usecount--;
   2624 	if (vp->v_usecount > 0) {
   2625 		simple_unlock(&vp->v_interlock);
   2626 		return;
   2627 	}
   2628 	/*
   2629 	 * insert at head of LRU list
   2630 	 */
   2631 	simple_lock(&vnode_free_list_slock);
   2632 	if (vp->v_holdcnt > 0)
   2633 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2634 	else
   2635 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2636 	simple_unlock(&vnode_free_list_slock);
   2637 	simple_unlock(&vp->v_interlock);
   2638 }
   2639 
   2640