lfs_segment.c revision 1.171 1 /* $NetBSD: lfs_segment.c,v 1.171 2006/03/24 20:05:32 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.171 2006/03/24 20:05:32 perseant Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 /*
134 * Figure out whether we should do a checkpoint write or go ahead with
135 * an ordinary write.
136 */
137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
138 (fs->lfs_nactive > LFS_MAX_ACTIVE || \
139 (flags & SEGM_CKP) || \
140 fs->lfs_nclean < LFS_MAX_ACTIVE)
141
142 int lfs_match_fake(struct lfs *, struct buf *);
143 void lfs_newseg(struct lfs *);
144 /* XXX ondisk32 */
145 void lfs_shellsort(struct buf **, int32_t *, int, int);
146 void lfs_supercallback(struct buf *);
147 void lfs_updatemeta(struct segment *);
148 void lfs_writesuper(struct lfs *, daddr_t);
149 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
150 struct segment *sp, int dirops);
151
152 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
153 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
154 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
155 int lfs_dirvcount = 0; /* # active dirops */
156
157 /* Statistics Counters */
158 int lfs_dostats = 1;
159 struct lfs_stats lfs_stats;
160
161 /* op values to lfs_writevnodes */
162 #define VN_REG 0
163 #define VN_DIROP 1
164 #define VN_EMPTY 2
165 #define VN_CLEAN 3
166
167 /*
168 * XXX KS - Set modification time on the Ifile, so the cleaner can
169 * read the fs mod time off of it. We don't set IN_UPDATE here,
170 * since we don't really need this to be flushed to disk (and in any
171 * case that wouldn't happen to the Ifile until we checkpoint).
172 */
173 void
174 lfs_imtime(struct lfs *fs)
175 {
176 struct timespec ts;
177 struct inode *ip;
178
179 ASSERT_MAYBE_SEGLOCK(fs);
180 nanotime(&ts);
181 ip = VTOI(fs->lfs_ivnode);
182 ip->i_ffs1_mtime = ts.tv_sec;
183 ip->i_ffs1_mtimensec = ts.tv_nsec;
184 }
185
186 /*
187 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
188 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
189 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
190 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
191 */
192
193 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
194 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
195 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
196
197 int
198 lfs_vflush(struct vnode *vp)
199 {
200 struct inode *ip;
201 struct lfs *fs;
202 struct segment *sp;
203 struct buf *bp, *nbp, *tbp, *tnbp;
204 int error, s;
205 int flushed;
206 int relock;
207
208 ip = VTOI(vp);
209 fs = VFSTOUFS(vp->v_mount)->um_lfs;
210 relock = 0;
211
212 top:
213 ASSERT_NO_SEGLOCK(fs);
214 if (ip->i_flag & IN_CLEANING) {
215 ivndebug(vp,"vflush/in_cleaning");
216 LFS_CLR_UINO(ip, IN_CLEANING);
217 LFS_SET_UINO(ip, IN_MODIFIED);
218
219 /*
220 * Toss any cleaning buffers that have real counterparts
221 * to avoid losing new data.
222 */
223 s = splbio();
224 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
225 nbp = LIST_NEXT(bp, b_vnbufs);
226 if (!LFS_IS_MALLOC_BUF(bp))
227 continue;
228 /*
229 * Look for pages matching the range covered
230 * by cleaning blocks. It's okay if more dirty
231 * pages appear, so long as none disappear out
232 * from under us.
233 */
234 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
235 vp != fs->lfs_ivnode) {
236 struct vm_page *pg;
237 voff_t off;
238
239 simple_lock(&vp->v_interlock);
240 for (off = lblktosize(fs, bp->b_lblkno);
241 off < lblktosize(fs, bp->b_lblkno + 1);
242 off += PAGE_SIZE) {
243 pg = uvm_pagelookup(&vp->v_uobj, off);
244 if (pg == NULL)
245 continue;
246 if ((pg->flags & PG_CLEAN) == 0 ||
247 pmap_is_modified(pg)) {
248 fs->lfs_avail += btofsb(fs,
249 bp->b_bcount);
250 wakeup(&fs->lfs_avail);
251 lfs_freebuf(fs, bp);
252 bp = NULL;
253 goto nextbp;
254 }
255 }
256 simple_unlock(&vp->v_interlock);
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 fs->lfs_avail += btofsb(fs,
267 bp->b_bcount);
268 wakeup(&fs->lfs_avail);
269 lfs_freebuf(fs, bp);
270 bp = NULL;
271 break;
272 }
273 }
274 nextbp:
275 ;
276 }
277 splx(s);
278 }
279
280 /* If the node is being written, wait until that is done */
281 simple_lock(&vp->v_interlock);
282 s = splbio();
283 if (WRITEINPROG(vp)) {
284 ivndebug(vp,"vflush/writeinprog");
285 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
286 }
287 splx(s);
288 simple_unlock(&vp->v_interlock);
289
290 /* Protect against VXLOCK deadlock in vinvalbuf() */
291 lfs_seglock(fs, SEGM_SYNC);
292
293 /* If we're supposed to flush a freed inode, just toss it */
294 /* XXX - seglock, so these buffers can't be gathered, right? */
295 if (ip->i_mode == 0) {
296 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
297 ip->i_number));
298 s = splbio();
299 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
300 nbp = LIST_NEXT(bp, b_vnbufs);
301 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
302 fs->lfs_avail += btofsb(fs, bp->b_bcount);
303 wakeup(&fs->lfs_avail);
304 }
305 /* Copied from lfs_writeseg */
306 if (bp->b_flags & B_CALL) {
307 biodone(bp);
308 } else {
309 bremfree(bp);
310 LFS_UNLOCK_BUF(bp);
311 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
312 B_GATHERED);
313 bp->b_flags |= B_DONE;
314 reassignbuf(bp, vp);
315 brelse(bp);
316 }
317 }
318 splx(s);
319 LFS_CLR_UINO(ip, IN_CLEANING);
320 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
321 ip->i_flag &= ~IN_ALLMOD;
322 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
323 ip->i_number));
324 lfs_segunlock(fs);
325 return 0;
326 }
327
328 SET_FLUSHING(fs,vp);
329 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
330 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
331 CLR_FLUSHING(fs,vp);
332 lfs_segunlock(fs);
333 return error;
334 }
335 sp = fs->lfs_sp;
336
337 flushed = 0;
338 if (VPISEMPTY(vp)) {
339 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
340 ++flushed;
341 } else if ((ip->i_flag & IN_CLEANING) &&
342 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
343 ivndebug(vp,"vflush/clean");
344 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
345 ++flushed;
346 } else if (lfs_dostats) {
347 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
348 ++lfs_stats.vflush_invoked;
349 ivndebug(vp,"vflush");
350 }
351
352 #ifdef DIAGNOSTIC
353 if (vp->v_flag & VDIROP) {
354 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
355 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
356 }
357 if (vp->v_usecount < 0) {
358 printf("usecount=%ld\n", (long)vp->v_usecount);
359 panic("lfs_vflush: usecount<0");
360 }
361 #endif
362
363 do {
364 do {
365 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
366 relock = lfs_writefile(fs, sp, vp);
367 if (relock) {
368 /*
369 * Might have to wait for the
370 * cleaner to run; but we're
371 * still not done with this vnode.
372 */
373 lfs_writeseg(fs, sp);
374 lfs_segunlock(fs);
375 lfs_segunlock_relock(fs);
376 goto top;
377 }
378 }
379 } while (lfs_writeinode(fs, sp, ip));
380 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
381
382 if (lfs_dostats) {
383 ++lfs_stats.nwrites;
384 if (sp->seg_flags & SEGM_SYNC)
385 ++lfs_stats.nsync_writes;
386 if (sp->seg_flags & SEGM_CKP)
387 ++lfs_stats.ncheckpoints;
388 }
389 /*
390 * If we were called from somewhere that has already held the seglock
391 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
392 * the write to complete because we are still locked.
393 * Since lfs_vflush() must return the vnode with no dirty buffers,
394 * we must explicitly wait, if that is the case.
395 *
396 * We compare the iocount against 1, not 0, because it is
397 * artificially incremented by lfs_seglock().
398 */
399 simple_lock(&fs->lfs_interlock);
400 if (fs->lfs_seglock > 1) {
401 while (fs->lfs_iocount > 1)
402 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
403 "lfs_vflush", 0, &fs->lfs_interlock);
404 }
405 simple_unlock(&fs->lfs_interlock);
406
407 lfs_segunlock(fs);
408
409 /* Wait for these buffers to be recovered by aiodoned */
410 s = splbio();
411 simple_lock(&global_v_numoutput_slock);
412 while (vp->v_numoutput > 0) {
413 vp->v_flag |= VBWAIT;
414 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
415 &global_v_numoutput_slock);
416 }
417 simple_unlock(&global_v_numoutput_slock);
418 splx(s);
419
420 CLR_FLUSHING(fs,vp);
421 return (0);
422 }
423
424 int
425 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
426 {
427 struct inode *ip;
428 struct vnode *vp, *nvp;
429 int inodes_written = 0, only_cleaning;
430 int error = 0;
431
432 ASSERT_SEGLOCK(fs);
433 #ifndef LFS_NO_BACKVP_HACK
434 /* BEGIN HACK */
435 #define VN_OFFSET \
436 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
437 #define BACK_VP(VP) \
438 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
439 #define BEG_OF_VLIST \
440 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
441 - VN_OFFSET))
442
443 /* Find last vnode. */
444 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
445 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
446 vp = LIST_NEXT(vp, v_mntvnodes));
447 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
448 nvp = BACK_VP(vp);
449 #else
450 loop:
451 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
452 nvp = LIST_NEXT(vp, v_mntvnodes);
453 #endif
454 /*
455 * If the vnode that we are about to sync is no longer
456 * associated with this mount point, start over.
457 */
458 if (vp->v_mount != mp) {
459 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
460 /*
461 * After this, pages might be busy
462 * due to our own previous putpages.
463 * Start actual segment write here to avoid deadlock.
464 */
465 (void)lfs_writeseg(fs, sp);
466 goto loop;
467 }
468
469 if (vp->v_type == VNON) {
470 continue;
471 }
472
473 ip = VTOI(vp);
474 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
475 (op != VN_DIROP && op != VN_CLEAN &&
476 (vp->v_flag & VDIROP))) {
477 vndebug(vp,"dirop");
478 continue;
479 }
480
481 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
482 vndebug(vp,"empty");
483 continue;
484 }
485
486 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
487 && vp != fs->lfs_flushvp
488 && !(ip->i_flag & IN_CLEANING)) {
489 vndebug(vp,"cleaning");
490 continue;
491 }
492
493 if (lfs_vref(vp)) {
494 vndebug(vp,"vref");
495 continue;
496 }
497
498 only_cleaning = 0;
499 /*
500 * Write the inode/file if dirty and it's not the IFILE.
501 */
502 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
503 only_cleaning =
504 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
505
506 if (ip->i_number != LFS_IFILE_INUM) {
507 error = lfs_writefile(fs, sp, vp);
508 if (error) {
509 lfs_vunref(vp);
510 if (error == EAGAIN) {
511 /*
512 * This error from lfs_putpages
513 * indicates we need to drop
514 * the segment lock and start
515 * over after the cleaner has
516 * had a chance to run.
517 */
518 lfs_writeseg(fs, sp);
519 break;
520 }
521 error = 0; /* XXX not quite right */
522 continue;
523 }
524
525 if (!VPISEMPTY(vp)) {
526 if (WRITEINPROG(vp)) {
527 ivndebug(vp,"writevnodes/write2");
528 } else if (!(ip->i_flag & IN_ALLMOD)) {
529 LFS_SET_UINO(ip, IN_MODIFIED);
530 }
531 }
532 (void) lfs_writeinode(fs, sp, ip);
533 inodes_written++;
534 }
535 }
536
537 if (lfs_clean_vnhead && only_cleaning)
538 lfs_vunref_head(vp);
539 else
540 lfs_vunref(vp);
541 }
542 return error;
543 }
544
545 /*
546 * Do a checkpoint.
547 */
548 int
549 lfs_segwrite(struct mount *mp, int flags)
550 {
551 struct buf *bp;
552 struct inode *ip;
553 struct lfs *fs;
554 struct segment *sp;
555 struct vnode *vp;
556 SEGUSE *segusep;
557 int do_ckp, did_ckp, error, s;
558 unsigned n, segleft, maxseg, sn, i, curseg;
559 int writer_set = 0;
560 int dirty;
561 int redo;
562 int um_error;
563
564 fs = VFSTOUFS(mp)->um_lfs;
565 ASSERT_MAYBE_SEGLOCK(fs);
566
567 if (fs->lfs_ronly)
568 return EROFS;
569
570 lfs_imtime(fs);
571
572 /*
573 * Allocate a segment structure and enough space to hold pointers to
574 * the maximum possible number of buffers which can be described in a
575 * single summary block.
576 */
577 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
578
579 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
580 sp = fs->lfs_sp;
581
582 /*
583 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
584 * in which case we have to flush *all* buffers off of this vnode.
585 * We don't care about other nodes, but write any non-dirop nodes
586 * anyway in anticipation of another getnewvnode().
587 *
588 * If we're cleaning we only write cleaning and ifile blocks, and
589 * no dirops, since otherwise we'd risk corruption in a crash.
590 */
591 if (sp->seg_flags & SEGM_CLEAN)
592 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
593 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
594 do {
595 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
596 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
597 if (!writer_set) {
598 lfs_writer_enter(fs, "lfs writer");
599 writer_set = 1;
600 }
601 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
602 if (um_error == 0)
603 um_error = error;
604 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
605 }
606 if (do_ckp && um_error) {
607 lfs_segunlock_relock(fs);
608 sp = fs->lfs_sp;
609 }
610 } while (do_ckp && um_error != 0);
611 }
612
613 /*
614 * If we are doing a checkpoint, mark everything since the
615 * last checkpoint as no longer ACTIVE.
616 */
617 if (do_ckp) {
618 segleft = fs->lfs_nseg;
619 curseg = 0;
620 for (n = 0; n < fs->lfs_segtabsz; n++) {
621 dirty = 0;
622 if (bread(fs->lfs_ivnode,
623 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
624 panic("lfs_segwrite: ifile read");
625 segusep = (SEGUSE *)bp->b_data;
626 maxseg = min(segleft, fs->lfs_sepb);
627 for (i = 0; i < maxseg; i++) {
628 sn = curseg + i;
629 if (sn != dtosn(fs, fs->lfs_curseg) &&
630 segusep->su_flags & SEGUSE_ACTIVE) {
631 segusep->su_flags &= ~SEGUSE_ACTIVE;
632 --fs->lfs_nactive;
633 ++dirty;
634 }
635 fs->lfs_suflags[fs->lfs_activesb][sn] =
636 segusep->su_flags;
637 if (fs->lfs_version > 1)
638 ++segusep;
639 else
640 segusep = (SEGUSE *)
641 ((SEGUSE_V1 *)segusep + 1);
642 }
643
644 if (dirty)
645 error = LFS_BWRITE_LOG(bp); /* Ifile */
646 else
647 brelse(bp);
648 segleft -= fs->lfs_sepb;
649 curseg += fs->lfs_sepb;
650 }
651 }
652
653 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
654
655 did_ckp = 0;
656 if (do_ckp || fs->lfs_doifile) {
657 vp = fs->lfs_ivnode;
658 vn_lock(vp, LK_EXCLUSIVE);
659 do {
660 #ifdef DEBUG
661 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
662 #endif
663 simple_lock(&fs->lfs_interlock);
664 fs->lfs_flags &= ~LFS_IFDIRTY;
665 simple_unlock(&fs->lfs_interlock);
666
667 ip = VTOI(vp);
668
669 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
670 /*
671 * Ifile has no pages, so we don't need
672 * to check error return here.
673 */
674 lfs_writefile(fs, sp, vp);
675 }
676
677 if (ip->i_flag & IN_ALLMOD)
678 ++did_ckp;
679 redo = lfs_writeinode(fs, sp, ip);
680 redo += lfs_writeseg(fs, sp);
681 simple_lock(&fs->lfs_interlock);
682 redo += (fs->lfs_flags & LFS_IFDIRTY);
683 simple_unlock(&fs->lfs_interlock);
684 } while (redo && do_ckp);
685
686 /*
687 * Unless we are unmounting, the Ifile may continue to have
688 * dirty blocks even after a checkpoint, due to changes to
689 * inodes' atime. If we're checkpointing, it's "impossible"
690 * for other parts of the Ifile to be dirty after the loop
691 * above, since we hold the segment lock.
692 */
693 s = splbio();
694 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
695 LFS_CLR_UINO(ip, IN_ALLMOD);
696 }
697 #ifdef DIAGNOSTIC
698 else if (do_ckp) {
699 int do_panic = 0;
700 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
701 if (bp->b_lblkno < fs->lfs_cleansz +
702 fs->lfs_segtabsz &&
703 !(bp->b_flags & B_GATHERED)) {
704 printf("ifile lbn %ld still dirty (flags %lx)\n",
705 (long)bp->b_lblkno,
706 (long)bp->b_flags);
707 ++do_panic;
708 }
709 }
710 if (do_panic)
711 panic("dirty blocks");
712 }
713 #endif
714 splx(s);
715 VOP_UNLOCK(vp, 0);
716 } else {
717 (void) lfs_writeseg(fs, sp);
718 }
719
720 /* Note Ifile no longer needs to be written */
721 fs->lfs_doifile = 0;
722 if (writer_set)
723 lfs_writer_leave(fs);
724
725 /*
726 * If we didn't write the Ifile, we didn't really do anything.
727 * That means that (1) there is a checkpoint on disk and (2)
728 * nothing has changed since it was written.
729 *
730 * Take the flags off of the segment so that lfs_segunlock
731 * doesn't have to write the superblock either.
732 */
733 if (do_ckp && !did_ckp) {
734 sp->seg_flags &= ~SEGM_CKP;
735 }
736
737 if (lfs_dostats) {
738 ++lfs_stats.nwrites;
739 if (sp->seg_flags & SEGM_SYNC)
740 ++lfs_stats.nsync_writes;
741 if (sp->seg_flags & SEGM_CKP)
742 ++lfs_stats.ncheckpoints;
743 }
744 lfs_segunlock(fs);
745 return (0);
746 }
747
748 /*
749 * Write the dirty blocks associated with a vnode.
750 */
751 int
752 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
753 {
754 struct buf *bp;
755 struct finfo *fip;
756 struct inode *ip;
757 IFILE *ifp;
758 int i, frag;
759 int error;
760
761 ASSERT_SEGLOCK(fs);
762 error = 0;
763 ip = VTOI(vp);
764
765 if (sp->seg_bytes_left < fs->lfs_bsize ||
766 sp->sum_bytes_left < sizeof(struct finfo))
767 (void) lfs_writeseg(fs, sp);
768
769 sp->sum_bytes_left -= FINFOSIZE;
770 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
771
772 if (vp->v_flag & VDIROP)
773 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
774
775 fip = sp->fip;
776 fip->fi_nblocks = 0;
777 fip->fi_ino = ip->i_number;
778 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
779 fip->fi_version = ifp->if_version;
780 brelse(bp);
781
782 if (sp->seg_flags & SEGM_CLEAN) {
783 lfs_gather(fs, sp, vp, lfs_match_fake);
784 /*
785 * For a file being flushed, we need to write *all* blocks.
786 * This means writing the cleaning blocks first, and then
787 * immediately following with any non-cleaning blocks.
788 * The same is true of the Ifile since checkpoints assume
789 * that all valid Ifile blocks are written.
790 */
791 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
792 lfs_gather(fs, sp, vp, lfs_match_data);
793 /*
794 * Don't call VOP_PUTPAGES: if we're flushing,
795 * we've already done it, and the Ifile doesn't
796 * use the page cache.
797 */
798 }
799 } else {
800 lfs_gather(fs, sp, vp, lfs_match_data);
801 /*
802 * If we're flushing, we've already called VOP_PUTPAGES
803 * so don't do it again. Otherwise, we want to write
804 * everything we've got.
805 */
806 if (!IS_FLUSHING(fs, vp)) {
807 simple_lock(&vp->v_interlock);
808 error = VOP_PUTPAGES(vp, 0, 0,
809 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
810 }
811 }
812
813 /*
814 * It may not be necessary to write the meta-data blocks at this point,
815 * as the roll-forward recovery code should be able to reconstruct the
816 * list.
817 *
818 * We have to write them anyway, though, under two conditions: (1) the
819 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
820 * checkpointing.
821 *
822 * BUT if we are cleaning, we might have indirect blocks that refer to
823 * new blocks not being written yet, in addition to fragments being
824 * moved out of a cleaned segment. If that is the case, don't
825 * write the indirect blocks, or the finfo will have a small block
826 * in the middle of it!
827 * XXX in this case isn't the inode size wrong too?
828 */
829 frag = 0;
830 if (sp->seg_flags & SEGM_CLEAN) {
831 for (i = 0; i < NDADDR; i++)
832 if (ip->i_lfs_fragsize[i] > 0 &&
833 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
834 ++frag;
835 }
836 #ifdef DIAGNOSTIC
837 if (frag > 1)
838 panic("lfs_writefile: more than one fragment!");
839 #endif
840 if (IS_FLUSHING(fs, vp) ||
841 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
842 lfs_gather(fs, sp, vp, lfs_match_indir);
843 lfs_gather(fs, sp, vp, lfs_match_dindir);
844 lfs_gather(fs, sp, vp, lfs_match_tindir);
845 }
846 fip = sp->fip;
847 if (fip->fi_nblocks != 0) {
848 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
849 sizeof(int32_t) * (fip->fi_nblocks));
850 sp->start_lbp = &sp->fip->fi_blocks[0];
851 } else {
852 sp->sum_bytes_left += FINFOSIZE;
853 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
854 }
855
856 return error;
857 }
858
859 int
860 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
861 {
862 struct buf *bp, *ibp;
863 struct ufs1_dinode *cdp;
864 IFILE *ifp;
865 SEGUSE *sup;
866 daddr_t daddr;
867 int32_t *daddrp; /* XXX ondisk32 */
868 ino_t ino;
869 int error, i, ndx, fsb = 0;
870 int redo_ifile = 0;
871 int gotblk = 0;
872
873 ASSERT_SEGLOCK(fs);
874 if (!(ip->i_flag & IN_ALLMOD))
875 return (0);
876
877 /* Allocate a new inode block if necessary. */
878 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
879 sp->ibp == NULL) {
880 /* Allocate a new segment if necessary. */
881 if (sp->seg_bytes_left < fs->lfs_ibsize ||
882 sp->sum_bytes_left < sizeof(int32_t))
883 (void) lfs_writeseg(fs, sp);
884
885 /* Get next inode block. */
886 daddr = fs->lfs_offset;
887 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
888 sp->ibp = *sp->cbpp++ =
889 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
890 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
891 gotblk++;
892
893 /* Zero out inode numbers */
894 for (i = 0; i < INOPB(fs); ++i)
895 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
896 0;
897
898 ++sp->start_bpp;
899 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
900 /* Set remaining space counters. */
901 sp->seg_bytes_left -= fs->lfs_ibsize;
902 sp->sum_bytes_left -= sizeof(int32_t);
903 ndx = fs->lfs_sumsize / sizeof(int32_t) -
904 sp->ninodes / INOPB(fs) - 1;
905 ((int32_t *)(sp->segsum))[ndx] = daddr;
906 }
907
908 /* Update the inode times and copy the inode onto the inode page. */
909 /* XXX kludge --- don't redirty the ifile just to put times on it */
910 if (ip->i_number != LFS_IFILE_INUM)
911 LFS_ITIMES(ip, NULL, NULL, NULL);
912
913 /*
914 * If this is the Ifile, and we've already written the Ifile in this
915 * partial segment, just overwrite it (it's not on disk yet) and
916 * continue.
917 *
918 * XXX we know that the bp that we get the second time around has
919 * already been gathered.
920 */
921 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
922 *(sp->idp) = *ip->i_din.ffs1_din;
923 ip->i_lfs_osize = ip->i_size;
924 return 0;
925 }
926
927 bp = sp->ibp;
928 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
929 *cdp = *ip->i_din.ffs1_din;
930
931 /*
932 * If we are cleaning, ensure that we don't write UNWRITTEN disk
933 * addresses to disk; possibly change the on-disk record of
934 * the inode size, either by reverting to the previous size
935 * (in the case of cleaning) or by verifying the inode's block
936 * holdings (in the case of files being allocated as they are being
937 * written).
938 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
939 * XXX count on disk wrong by the same amount. We should be
940 * XXX able to "borrow" from lfs_avail and return it after the
941 * XXX Ifile is written. See also in lfs_writeseg.
942 */
943
944 /* Check file size based on highest allocated block */
945 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
946 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
947 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
948 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
949 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
950 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
951 }
952 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
953 if (ip->i_flags & IN_CLEANING)
954 cdp->di_size = ip->i_lfs_osize;
955 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
956 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
957 ip->i_ffs1_blocks, fs->lfs_offset));
958 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
959 daddrp++) {
960 if (*daddrp == UNWRITTEN) {
961 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
962 *daddrp = 0;
963 }
964 }
965 } else {
966 /* If all blocks are going to disk, update "size on disk" */
967 ip->i_lfs_osize = ip->i_size;
968 }
969
970 #ifdef DIAGNOSTIC
971 /*
972 * Check dinode held blocks against dinode size.
973 * This should be identical to the check in lfs_vget().
974 */
975 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
976 i < NDADDR; i++) {
977 KASSERT(i >= 0);
978 if ((cdp->di_mode & IFMT) == IFLNK)
979 continue;
980 if (((cdp->di_mode & IFMT) == IFBLK ||
981 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
982 continue;
983 if (cdp->di_db[i] != 0) {
984 # ifdef DEBUG
985 lfs_dump_dinode(cdp);
986 # endif
987 panic("writing inconsistent inode");
988 }
989 }
990 #endif /* DIAGNOSTIC */
991
992 if (ip->i_flag & IN_CLEANING)
993 LFS_CLR_UINO(ip, IN_CLEANING);
994 else {
995 /* XXX IN_ALLMOD */
996 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
997 IN_UPDATE | IN_MODIFY);
998 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
999 LFS_CLR_UINO(ip, IN_MODIFIED);
1000 else
1001 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1002 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1003 ip->i_lfs_effnblks));
1004 }
1005
1006 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
1007 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1008 (sp->ninodes % INOPB(fs));
1009 if (gotblk) {
1010 LFS_LOCK_BUF(bp);
1011 brelse(bp);
1012 }
1013
1014 /* Increment inode count in segment summary block. */
1015 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1016
1017 /* If this page is full, set flag to allocate a new page. */
1018 if (++sp->ninodes % INOPB(fs) == 0)
1019 sp->ibp = NULL;
1020
1021 /*
1022 * If updating the ifile, update the super-block. Update the disk
1023 * address and access times for this inode in the ifile.
1024 */
1025 ino = ip->i_number;
1026 if (ino == LFS_IFILE_INUM) {
1027 daddr = fs->lfs_idaddr;
1028 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
1029 } else {
1030 LFS_IENTRY(ifp, fs, ino, ibp);
1031 daddr = ifp->if_daddr;
1032 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
1033 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1034 }
1035
1036 /*
1037 * The inode's last address should not be in the current partial
1038 * segment, except under exceptional circumstances (lfs_writevnodes
1039 * had to start over, and in the meantime more blocks were written
1040 * to a vnode). Both inodes will be accounted to this segment
1041 * in lfs_writeseg so we need to subtract the earlier version
1042 * here anyway. The segment count can temporarily dip below
1043 * zero here; keep track of how many duplicates we have in
1044 * "dupino" so we don't panic below.
1045 */
1046 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1047 ++sp->ndupino;
1048 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1049 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1050 (long long)daddr, sp->ndupino));
1051 }
1052 /*
1053 * Account the inode: it no longer belongs to its former segment,
1054 * though it will not belong to the new segment until that segment
1055 * is actually written.
1056 */
1057 if (daddr != LFS_UNUSED_DADDR) {
1058 u_int32_t oldsn = dtosn(fs, daddr);
1059 #ifdef DIAGNOSTIC
1060 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1061 #endif
1062 LFS_SEGENTRY(sup, fs, oldsn, bp);
1063 #ifdef DIAGNOSTIC
1064 if (sup->su_nbytes +
1065 sizeof (struct ufs1_dinode) * ndupino
1066 < sizeof (struct ufs1_dinode)) {
1067 printf("lfs_writeinode: negative bytes "
1068 "(segment %" PRIu32 " short by %d, "
1069 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1070 ", daddr=%" PRId64 ", su_nbytes=%u, "
1071 "ndupino=%d)\n",
1072 dtosn(fs, daddr),
1073 (int)sizeof (struct ufs1_dinode) *
1074 (1 - sp->ndupino) - sup->su_nbytes,
1075 oldsn, sp->seg_number, daddr,
1076 (unsigned int)sup->su_nbytes,
1077 sp->ndupino);
1078 panic("lfs_writeinode: negative bytes");
1079 sup->su_nbytes = sizeof (struct ufs1_dinode);
1080 }
1081 #endif
1082 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1083 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1084 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1085 redo_ifile =
1086 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1087 if (redo_ifile) {
1088 simple_lock(&fs->lfs_interlock);
1089 fs->lfs_flags |= LFS_IFDIRTY;
1090 simple_unlock(&fs->lfs_interlock);
1091 }
1092 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1093 }
1094 return (redo_ifile);
1095 }
1096
1097 int
1098 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1099 {
1100 struct lfs *fs;
1101 int vers;
1102 int j, blksinblk;
1103
1104 ASSERT_SEGLOCK(sp->fs);
1105 /*
1106 * If full, finish this segment. We may be doing I/O, so
1107 * release and reacquire the splbio().
1108 */
1109 #ifdef DIAGNOSTIC
1110 if (sp->vp == NULL)
1111 panic ("lfs_gatherblock: Null vp in segment");
1112 #endif
1113 fs = sp->fs;
1114 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1115 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1116 sp->seg_bytes_left < bp->b_bcount) {
1117 if (sptr)
1118 splx(*sptr);
1119 lfs_updatemeta(sp);
1120
1121 vers = sp->fip->fi_version;
1122 (void) lfs_writeseg(fs, sp);
1123
1124 sp->fip->fi_version = vers;
1125 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1126 /* Add the current file to the segment summary. */
1127 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1128 sp->sum_bytes_left -= FINFOSIZE;
1129
1130 if (sptr)
1131 *sptr = splbio();
1132 return (1);
1133 }
1134
1135 if (bp->b_flags & B_GATHERED) {
1136 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1137 " lbn %" PRId64 "\n",
1138 sp->fip->fi_ino, bp->b_lblkno));
1139 return (0);
1140 }
1141
1142 /* Insert into the buffer list, update the FINFO block. */
1143 bp->b_flags |= B_GATHERED;
1144
1145 *sp->cbpp++ = bp;
1146 for (j = 0; j < blksinblk; j++) {
1147 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1148 /* This block's accounting moves from lfs_favail to lfs_avail */
1149 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1150 }
1151
1152 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1153 sp->seg_bytes_left -= bp->b_bcount;
1154 return (0);
1155 }
1156
1157 int
1158 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1159 int (*match)(struct lfs *, struct buf *))
1160 {
1161 struct buf *bp, *nbp;
1162 int s, count = 0;
1163
1164 ASSERT_SEGLOCK(fs);
1165 KASSERT(sp->vp == NULL);
1166 sp->vp = vp;
1167 s = splbio();
1168
1169 #ifndef LFS_NO_BACKBUF_HACK
1170 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1171 # define BUF_OFFSET \
1172 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1173 # define BACK_BUF(BP) \
1174 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1175 # define BEG_OF_LIST \
1176 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1177
1178 loop:
1179 /* Find last buffer. */
1180 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1181 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1182 bp = LIST_NEXT(bp, b_vnbufs))
1183 /* nothing */;
1184 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1185 nbp = BACK_BUF(bp);
1186 #else /* LFS_NO_BACKBUF_HACK */
1187 loop:
1188 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1189 nbp = LIST_NEXT(bp, b_vnbufs);
1190 #endif /* LFS_NO_BACKBUF_HACK */
1191 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1192 #ifdef DEBUG
1193 if (vp == fs->lfs_ivnode &&
1194 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1195 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1196 PRId64 " busy (%x)",
1197 bp->b_lblkno, bp->b_flags));
1198 #endif
1199 continue;
1200 }
1201 if (vp->v_type == VBLK) {
1202 /* For block devices, just write the blocks. */
1203 /* XXX Do we even need to do this? */
1204 /*
1205 * Get the block before bwrite,
1206 * so we don't corrupt the free list
1207 */
1208 bp->b_flags |= B_BUSY;
1209 bremfree(bp);
1210 bwrite(bp);
1211 } else {
1212 #ifdef DIAGNOSTIC
1213 # ifdef LFS_USE_B_INVAL
1214 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1215 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1216 " is B_INVAL\n", bp->b_lblkno));
1217 VOP_PRINT(bp->b_vp);
1218 }
1219 # endif /* LFS_USE_B_INVAL */
1220 if (!(bp->b_flags & B_DELWRI))
1221 panic("lfs_gather: bp not B_DELWRI");
1222 if (!(bp->b_flags & B_LOCKED)) {
1223 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1224 " blk %" PRId64 " not B_LOCKED\n",
1225 bp->b_lblkno,
1226 dbtofsb(fs, bp->b_blkno)));
1227 VOP_PRINT(bp->b_vp);
1228 panic("lfs_gather: bp not B_LOCKED");
1229 }
1230 #endif
1231 if (lfs_gatherblock(sp, bp, &s)) {
1232 goto loop;
1233 }
1234 }
1235 count++;
1236 }
1237 splx(s);
1238 lfs_updatemeta(sp);
1239 KASSERT(sp->vp == vp);
1240 sp->vp = NULL;
1241 return count;
1242 }
1243
1244 #if DEBUG
1245 # define DEBUG_OOFF(n) do { \
1246 if (ooff == 0) { \
1247 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1248 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1249 ", was 0x0 (or %" PRId64 ")\n", \
1250 (n), ip->i_number, lbn, ndaddr, daddr)); \
1251 } \
1252 } while (0)
1253 #else
1254 # define DEBUG_OOFF(n)
1255 #endif
1256
1257 /*
1258 * Change the given block's address to ndaddr, finding its previous
1259 * location using ufs_bmaparray().
1260 *
1261 * Account for this change in the segment table.
1262 *
1263 * called with sp == NULL by roll-forwarding code.
1264 */
1265 void
1266 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1267 daddr_t lbn, int32_t ndaddr, int size)
1268 {
1269 SEGUSE *sup;
1270 struct buf *bp;
1271 struct indir a[NIADDR + 2], *ap;
1272 struct inode *ip;
1273 daddr_t daddr, ooff;
1274 int num, error;
1275 int bb, osize, obb;
1276
1277 ASSERT_SEGLOCK(fs);
1278 KASSERT(sp == NULL || sp->vp == vp);
1279 ip = VTOI(vp);
1280
1281 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1282 if (error)
1283 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1284
1285 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1286 KASSERT(daddr <= LFS_MAX_DADDR);
1287 if (daddr > 0)
1288 daddr = dbtofsb(fs, daddr);
1289
1290 bb = fragstofsb(fs, numfrags(fs, size));
1291 switch (num) {
1292 case 0:
1293 ooff = ip->i_ffs1_db[lbn];
1294 DEBUG_OOFF(0);
1295 if (ooff == UNWRITTEN)
1296 ip->i_ffs1_blocks += bb;
1297 else {
1298 /* possible fragment truncation or extension */
1299 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1300 ip->i_ffs1_blocks += (bb - obb);
1301 }
1302 ip->i_ffs1_db[lbn] = ndaddr;
1303 break;
1304 case 1:
1305 ooff = ip->i_ffs1_ib[a[0].in_off];
1306 DEBUG_OOFF(1);
1307 if (ooff == UNWRITTEN)
1308 ip->i_ffs1_blocks += bb;
1309 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1310 break;
1311 default:
1312 ap = &a[num - 1];
1313 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1314 panic("lfs_updatemeta: bread bno %" PRId64,
1315 ap->in_lbn);
1316
1317 /* XXX ondisk32 */
1318 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1319 DEBUG_OOFF(num);
1320 if (ooff == UNWRITTEN)
1321 ip->i_ffs1_blocks += bb;
1322 /* XXX ondisk32 */
1323 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1324 (void) VOP_BWRITE(bp);
1325 }
1326
1327 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1328
1329 /* Update hiblk when extending the file */
1330 if (lbn > ip->i_lfs_hiblk)
1331 ip->i_lfs_hiblk = lbn;
1332
1333 /*
1334 * Though we'd rather it couldn't, this *can* happen right now
1335 * if cleaning blocks and regular blocks coexist.
1336 */
1337 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1338
1339 /*
1340 * Update segment usage information, based on old size
1341 * and location.
1342 */
1343 if (daddr > 0) {
1344 u_int32_t oldsn = dtosn(fs, daddr);
1345 #ifdef DIAGNOSTIC
1346 int ndupino;
1347
1348 if (sp && sp->seg_number == oldsn) {
1349 ndupino = sp->ndupino;
1350 } else {
1351 ndupino = 0;
1352 }
1353 #endif
1354 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1355 if (lbn >= 0 && lbn < NDADDR)
1356 osize = ip->i_lfs_fragsize[lbn];
1357 else
1358 osize = fs->lfs_bsize;
1359 LFS_SEGENTRY(sup, fs, oldsn, bp);
1360 #ifdef DIAGNOSTIC
1361 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1362 < osize) {
1363 printf("lfs_updatemeta: negative bytes "
1364 "(segment %" PRIu32 " short by %" PRId64
1365 ")\n", dtosn(fs, daddr),
1366 (int64_t)osize -
1367 (sizeof (struct ufs1_dinode) * ndupino +
1368 sup->su_nbytes));
1369 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1370 ", addr = 0x%" PRIx64 "\n",
1371 (unsigned long long)ip->i_number, lbn, daddr);
1372 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1373 panic("lfs_updatemeta: negative bytes");
1374 sup->su_nbytes = osize -
1375 sizeof (struct ufs1_dinode) * ndupino;
1376 }
1377 #endif
1378 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1379 " db 0x%" PRIx64 "\n",
1380 dtosn(fs, daddr), osize,
1381 ip->i_number, lbn, daddr));
1382 sup->su_nbytes -= osize;
1383 if (!(bp->b_flags & B_GATHERED)) {
1384 simple_lock(&fs->lfs_interlock);
1385 fs->lfs_flags |= LFS_IFDIRTY;
1386 simple_unlock(&fs->lfs_interlock);
1387 }
1388 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1389 }
1390 /*
1391 * Now that this block has a new address, and its old
1392 * segment no longer owns it, we can forget about its
1393 * old size.
1394 */
1395 if (lbn >= 0 && lbn < NDADDR)
1396 ip->i_lfs_fragsize[lbn] = size;
1397 }
1398
1399 /*
1400 * Update the metadata that points to the blocks listed in the FINFO
1401 * array.
1402 */
1403 void
1404 lfs_updatemeta(struct segment *sp)
1405 {
1406 struct buf *sbp;
1407 struct lfs *fs;
1408 struct vnode *vp;
1409 daddr_t lbn;
1410 int i, nblocks, num;
1411 int bb;
1412 int bytesleft, size;
1413
1414 ASSERT_SEGLOCK(sp->fs);
1415 vp = sp->vp;
1416 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1417 KASSERT(nblocks >= 0);
1418 KASSERT(vp != NULL);
1419 if (nblocks == 0)
1420 return;
1421
1422 /*
1423 * This count may be high due to oversize blocks from lfs_gop_write.
1424 * Correct for this. (XXX we should be able to keep track of these.)
1425 */
1426 fs = sp->fs;
1427 for (i = 0; i < nblocks; i++) {
1428 if (sp->start_bpp[i] == NULL) {
1429 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1430 nblocks = i;
1431 break;
1432 }
1433 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1434 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1435 nblocks -= num - 1;
1436 }
1437
1438 KASSERT(vp->v_type == VREG ||
1439 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1440 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1441
1442 /*
1443 * Sort the blocks.
1444 *
1445 * We have to sort even if the blocks come from the
1446 * cleaner, because there might be other pending blocks on the
1447 * same inode...and if we don't sort, and there are fragments
1448 * present, blocks may be written in the wrong place.
1449 */
1450 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1451
1452 /*
1453 * Record the length of the last block in case it's a fragment.
1454 * If there are indirect blocks present, they sort last. An
1455 * indirect block will be lfs_bsize and its presence indicates
1456 * that you cannot have fragments.
1457 *
1458 * XXX This last is a lie. A cleaned fragment can coexist with
1459 * XXX a later indirect block. This will continue to be
1460 * XXX true until lfs_markv is fixed to do everything with
1461 * XXX fake blocks (including fake inodes and fake indirect blocks).
1462 */
1463 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1464 fs->lfs_bmask) + 1;
1465
1466 /*
1467 * Assign disk addresses, and update references to the logical
1468 * block and the segment usage information.
1469 */
1470 for (i = nblocks; i--; ++sp->start_bpp) {
1471 sbp = *sp->start_bpp;
1472 lbn = *sp->start_lbp;
1473 KASSERT(sbp->b_lblkno == lbn);
1474
1475 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1476
1477 /*
1478 * If we write a frag in the wrong place, the cleaner won't
1479 * be able to correctly identify its size later, and the
1480 * segment will be uncleanable. (Even worse, it will assume
1481 * that the indirect block that actually ends the list
1482 * is of a smaller size!)
1483 */
1484 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1485 panic("lfs_updatemeta: fragment is not last block");
1486
1487 /*
1488 * For each subblock in this possibly oversized block,
1489 * update its address on disk.
1490 */
1491 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1492 KASSERT(vp == sbp->b_vp);
1493 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1494 bytesleft -= fs->lfs_bsize) {
1495 size = MIN(bytesleft, fs->lfs_bsize);
1496 bb = fragstofsb(fs, numfrags(fs, size));
1497 lbn = *sp->start_lbp++;
1498 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1499 size);
1500 fs->lfs_offset += bb;
1501 }
1502
1503 }
1504 }
1505
1506 /*
1507 * Move lfs_offset to a segment earlier than sn.
1508 */
1509 int
1510 lfs_rewind(struct lfs *fs, int newsn)
1511 {
1512 int sn, osn, isdirty;
1513 struct buf *bp;
1514 SEGUSE *sup;
1515
1516 ASSERT_SEGLOCK(fs);
1517
1518 osn = dtosn(fs, fs->lfs_offset);
1519 if (osn < newsn)
1520 return 0;
1521
1522 /* lfs_avail eats the remaining space in this segment */
1523 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1524
1525 /* Find a low-numbered segment */
1526 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1527 LFS_SEGENTRY(sup, fs, sn, bp);
1528 isdirty = sup->su_flags & SEGUSE_DIRTY;
1529 brelse(bp);
1530
1531 if (!isdirty)
1532 break;
1533 }
1534 if (sn == fs->lfs_nseg)
1535 panic("lfs_rewind: no clean segments");
1536 if (sn >= newsn)
1537 return ENOENT;
1538 fs->lfs_nextseg = sn;
1539 lfs_newseg(fs);
1540 fs->lfs_offset = fs->lfs_curseg;
1541
1542 return 0;
1543 }
1544
1545 /*
1546 * Start a new partial segment.
1547 *
1548 * Return 1 when we entered to a new segment.
1549 * Otherwise, return 0.
1550 */
1551 int
1552 lfs_initseg(struct lfs *fs)
1553 {
1554 struct segment *sp = fs->lfs_sp;
1555 SEGSUM *ssp;
1556 struct buf *sbp; /* buffer for SEGSUM */
1557 int repeat = 0; /* return value */
1558
1559 ASSERT_SEGLOCK(fs);
1560 /* Advance to the next segment. */
1561 if (!LFS_PARTIAL_FITS(fs)) {
1562 SEGUSE *sup;
1563 struct buf *bp;
1564
1565 /* lfs_avail eats the remaining space */
1566 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1567 fs->lfs_curseg);
1568 /* Wake up any cleaning procs waiting on this file system. */
1569 wakeup(&lfs_allclean_wakeup);
1570 wakeup(&fs->lfs_nextseg);
1571 lfs_newseg(fs);
1572 repeat = 1;
1573 fs->lfs_offset = fs->lfs_curseg;
1574
1575 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1576 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1577
1578 /*
1579 * If the segment contains a superblock, update the offset
1580 * and summary address to skip over it.
1581 */
1582 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1583 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1584 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1585 sp->seg_bytes_left -= LFS_SBPAD;
1586 }
1587 brelse(bp);
1588 /* Segment zero could also contain the labelpad */
1589 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1590 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1591 fs->lfs_offset +=
1592 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1593 sp->seg_bytes_left -=
1594 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1595 }
1596 } else {
1597 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1598 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1599 (fs->lfs_offset - fs->lfs_curseg));
1600 }
1601 fs->lfs_lastpseg = fs->lfs_offset;
1602
1603 /* Record first address of this partial segment */
1604 if (sp->seg_flags & SEGM_CLEAN) {
1605 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1606 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1607 /* "1" is the artificial inc in lfs_seglock */
1608 simple_lock(&fs->lfs_interlock);
1609 while (fs->lfs_iocount > 1) {
1610 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1611 "lfs_initseg", 0, &fs->lfs_interlock);
1612 }
1613 simple_unlock(&fs->lfs_interlock);
1614 fs->lfs_cleanind = 0;
1615 }
1616 }
1617
1618 sp->fs = fs;
1619 sp->ibp = NULL;
1620 sp->idp = NULL;
1621 sp->ninodes = 0;
1622 sp->ndupino = 0;
1623
1624 sp->cbpp = sp->bpp;
1625
1626 /* Get a new buffer for SEGSUM */
1627 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1628 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1629
1630 /* ... and enter it into the buffer list. */
1631 *sp->cbpp = sbp;
1632 sp->cbpp++;
1633 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1634
1635 sp->start_bpp = sp->cbpp;
1636
1637 /* Set point to SEGSUM, initialize it. */
1638 ssp = sp->segsum = sbp->b_data;
1639 memset(ssp, 0, fs->lfs_sumsize);
1640 ssp->ss_next = fs->lfs_nextseg;
1641 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1642 ssp->ss_magic = SS_MAGIC;
1643
1644 /* Set pointer to first FINFO, initialize it. */
1645 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1646 sp->fip->fi_nblocks = 0;
1647 sp->start_lbp = &sp->fip->fi_blocks[0];
1648 sp->fip->fi_lastlength = 0;
1649
1650 sp->seg_bytes_left -= fs->lfs_sumsize;
1651 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1652
1653 return (repeat);
1654 }
1655
1656 /*
1657 * Remove SEGUSE_INVAL from all segments.
1658 */
1659 void
1660 lfs_unset_inval_all(struct lfs *fs)
1661 {
1662 SEGUSE *sup;
1663 struct buf *bp;
1664 int i;
1665
1666 for (i = 0; i < fs->lfs_nseg; i++) {
1667 LFS_SEGENTRY(sup, fs, i, bp);
1668 if (sup->su_flags & SEGUSE_INVAL) {
1669 sup->su_flags &= ~SEGUSE_INVAL;
1670 VOP_BWRITE(bp);
1671 } else
1672 brelse(bp);
1673 }
1674 }
1675
1676 /*
1677 * Return the next segment to write.
1678 */
1679 void
1680 lfs_newseg(struct lfs *fs)
1681 {
1682 CLEANERINFO *cip;
1683 SEGUSE *sup;
1684 struct buf *bp;
1685 int curseg, isdirty, sn, skip_inval;
1686
1687 ASSERT_SEGLOCK(fs);
1688 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1689 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1690 dtosn(fs, fs->lfs_nextseg)));
1691 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1692 sup->su_nbytes = 0;
1693 sup->su_nsums = 0;
1694 sup->su_ninos = 0;
1695 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1696
1697 LFS_CLEANERINFO(cip, fs, bp);
1698 --cip->clean;
1699 ++cip->dirty;
1700 fs->lfs_nclean = cip->clean;
1701 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1702
1703 fs->lfs_lastseg = fs->lfs_curseg;
1704 fs->lfs_curseg = fs->lfs_nextseg;
1705 skip_inval = 1;
1706 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1707 sn = (sn + 1) % fs->lfs_nseg;
1708 if (sn == curseg) {
1709 if (skip_inval)
1710 skip_inval = 0;
1711 else
1712 panic("lfs_nextseg: no clean segments");
1713 }
1714 LFS_SEGENTRY(sup, fs, sn, bp);
1715 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1716 /* Check SEGUSE_EMPTY as we go along */
1717 if (isdirty && sup->su_nbytes == 0 &&
1718 !(sup->su_flags & SEGUSE_EMPTY))
1719 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1720 else
1721 brelse(bp);
1722
1723 if (!isdirty)
1724 break;
1725 }
1726 if (skip_inval == 0)
1727 lfs_unset_inval_all(fs);
1728
1729 ++fs->lfs_nactive;
1730 fs->lfs_nextseg = sntod(fs, sn);
1731 if (lfs_dostats) {
1732 ++lfs_stats.segsused;
1733 }
1734 }
1735
1736 static struct buf *
1737 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1738 {
1739 struct lfs_cluster *cl;
1740 struct buf **bpp, *bp;
1741
1742 ASSERT_SEGLOCK(fs);
1743 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1744 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1745 memset(cl, 0, sizeof(*cl));
1746 cl->fs = fs;
1747 cl->bpp = bpp;
1748 cl->bufcount = 0;
1749 cl->bufsize = 0;
1750
1751 /* If this segment is being written synchronously, note that */
1752 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1753 cl->flags |= LFS_CL_SYNC;
1754 cl->seg = fs->lfs_sp;
1755 ++cl->seg->seg_iocount;
1756 }
1757
1758 /* Get an empty buffer header, or maybe one with something on it */
1759 bp = getiobuf();
1760 bp->b_flags = B_BUSY | B_CALL;
1761 bp->b_dev = NODEV;
1762 bp->b_blkno = bp->b_lblkno = addr;
1763 bp->b_iodone = lfs_cluster_callback;
1764 bp->b_private = cl;
1765 bp->b_vp = vp;
1766
1767 return bp;
1768 }
1769
1770 int
1771 lfs_writeseg(struct lfs *fs, struct segment *sp)
1772 {
1773 struct buf **bpp, *bp, *cbp, *newbp;
1774 SEGUSE *sup;
1775 SEGSUM *ssp;
1776 int i, s;
1777 int do_again, nblocks, byteoffset;
1778 size_t el_size;
1779 struct lfs_cluster *cl;
1780 u_short ninos;
1781 struct vnode *devvp;
1782 char *p = NULL;
1783 struct vnode *vp;
1784 int32_t *daddrp; /* XXX ondisk32 */
1785 int changed;
1786 u_int32_t sum;
1787
1788 ASSERT_SEGLOCK(fs);
1789 /*
1790 * If there are no buffers other than the segment summary to write
1791 * and it is not a checkpoint, don't do anything. On a checkpoint,
1792 * even if there aren't any buffers, you need to write the superblock.
1793 */
1794 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1795 return (0);
1796
1797 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1798
1799 /* Update the segment usage information. */
1800 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1801
1802 /* Loop through all blocks, except the segment summary. */
1803 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1804 if ((*bpp)->b_vp != devvp) {
1805 sup->su_nbytes += (*bpp)->b_bcount;
1806 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1807 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1808 sp->seg_number, (*bpp)->b_bcount,
1809 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1810 (*bpp)->b_blkno));
1811 }
1812 }
1813
1814 ssp = (SEGSUM *)sp->segsum;
1815
1816 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1817 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1818 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1819 ssp->ss_ninos));
1820 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1821 /* sup->su_nbytes += fs->lfs_sumsize; */
1822 if (fs->lfs_version == 1)
1823 sup->su_olastmod = time.tv_sec;
1824 else
1825 sup->su_lastmod = time.tv_sec;
1826 sup->su_ninos += ninos;
1827 ++sup->su_nsums;
1828 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1829
1830 do_again = !(bp->b_flags & B_GATHERED);
1831 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1832
1833 /*
1834 * Mark blocks B_BUSY, to prevent then from being changed between
1835 * the checksum computation and the actual write.
1836 *
1837 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1838 * there are any, replace them with copies that have UNASSIGNED
1839 * instead.
1840 */
1841 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1842 ++bpp;
1843 bp = *bpp;
1844 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1845 bp->b_flags |= B_BUSY;
1846 continue;
1847 }
1848
1849 simple_lock(&bp->b_interlock);
1850 s = splbio();
1851 while (bp->b_flags & B_BUSY) {
1852 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1853 " data summary corruption for ino %d, lbn %"
1854 PRId64 "\n",
1855 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1856 bp->b_flags |= B_WANTED;
1857 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1858 &bp->b_interlock);
1859 splx(s);
1860 s = splbio();
1861 }
1862 bp->b_flags |= B_BUSY;
1863 splx(s);
1864 simple_unlock(&bp->b_interlock);
1865
1866 /*
1867 * Check and replace indirect block UNWRITTEN bogosity.
1868 * XXX See comment in lfs_writefile.
1869 */
1870 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1871 VTOI(bp->b_vp)->i_ffs1_blocks !=
1872 VTOI(bp->b_vp)->i_lfs_effnblks) {
1873 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1874 VTOI(bp->b_vp)->i_number,
1875 VTOI(bp->b_vp)->i_lfs_effnblks,
1876 VTOI(bp->b_vp)->i_ffs1_blocks));
1877 /* Make a copy we'll make changes to */
1878 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1879 bp->b_bcount, LFS_NB_IBLOCK);
1880 newbp->b_blkno = bp->b_blkno;
1881 memcpy(newbp->b_data, bp->b_data,
1882 newbp->b_bcount);
1883
1884 changed = 0;
1885 /* XXX ondisk32 */
1886 for (daddrp = (int32_t *)(newbp->b_data);
1887 daddrp < (int32_t *)(newbp->b_data +
1888 newbp->b_bcount); daddrp++) {
1889 if (*daddrp == UNWRITTEN) {
1890 ++changed;
1891 *daddrp = 0;
1892 }
1893 }
1894 /*
1895 * Get rid of the old buffer. Don't mark it clean,
1896 * though, if it still has dirty data on it.
1897 */
1898 if (changed) {
1899 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1900 " bp = %p newbp = %p\n", changed, bp,
1901 newbp));
1902 *bpp = newbp;
1903 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1904 if (bp->b_flags & B_CALL) {
1905 DLOG((DLOG_SEG, "lfs_writeseg: "
1906 "indir bp should not be B_CALL\n"));
1907 s = splbio();
1908 biodone(bp);
1909 splx(s);
1910 bp = NULL;
1911 } else {
1912 /* Still on free list, leave it there */
1913 s = splbio();
1914 bp->b_flags &= ~B_BUSY;
1915 if (bp->b_flags & B_WANTED)
1916 wakeup(bp);
1917 splx(s);
1918 /*
1919 * We have to re-decrement lfs_avail
1920 * since this block is going to come
1921 * back around to us in the next
1922 * segment.
1923 */
1924 fs->lfs_avail -=
1925 btofsb(fs, bp->b_bcount);
1926 }
1927 } else {
1928 lfs_freebuf(fs, newbp);
1929 }
1930 }
1931 }
1932 /*
1933 * Compute checksum across data and then across summary; the first
1934 * block (the summary block) is skipped. Set the create time here
1935 * so that it's guaranteed to be later than the inode mod times.
1936 */
1937 sum = 0;
1938 if (fs->lfs_version == 1)
1939 el_size = sizeof(u_long);
1940 else
1941 el_size = sizeof(u_int32_t);
1942 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1943 ++bpp;
1944 /* Loop through gop_write cluster blocks */
1945 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1946 byteoffset += fs->lfs_bsize) {
1947 #ifdef LFS_USE_B_INVAL
1948 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1949 (B_CALL | B_INVAL)) {
1950 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1951 byteoffset, dp, el_size)) {
1952 panic("lfs_writeseg: copyin failed [1]:"
1953 " ino %d blk %" PRId64,
1954 VTOI((*bpp)->b_vp)->i_number,
1955 (*bpp)->b_lblkno);
1956 }
1957 } else
1958 #endif /* LFS_USE_B_INVAL */
1959 {
1960 sum = lfs_cksum_part(
1961 (*bpp)->b_data + byteoffset, el_size, sum);
1962 }
1963 }
1964 }
1965 if (fs->lfs_version == 1)
1966 ssp->ss_ocreate = time.tv_sec;
1967 else {
1968 ssp->ss_create = time.tv_sec;
1969 ssp->ss_serial = ++fs->lfs_serial;
1970 ssp->ss_ident = fs->lfs_ident;
1971 }
1972 ssp->ss_datasum = lfs_cksum_fold(sum);
1973 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
1974 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1975
1976 simple_lock(&fs->lfs_interlock);
1977 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1978 btofsb(fs, fs->lfs_sumsize));
1979 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
1980 btofsb(fs, fs->lfs_sumsize));
1981 simple_unlock(&fs->lfs_interlock);
1982
1983 /*
1984 * When we simply write the blocks we lose a rotation for every block
1985 * written. To avoid this problem, we cluster the buffers into a
1986 * chunk and write the chunk. MAXPHYS is the largest size I/O
1987 * devices can handle, use that for the size of the chunks.
1988 *
1989 * Blocks that are already clusters (from GOP_WRITE), however, we
1990 * don't bother to copy into other clusters.
1991 */
1992
1993 #define CHUNKSIZE MAXPHYS
1994
1995 if (devvp == NULL)
1996 panic("devvp is NULL");
1997 for (bpp = sp->bpp, i = nblocks; i;) {
1998 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1999 cl = cbp->b_private;
2000
2001 cbp->b_flags |= B_ASYNC | B_BUSY;
2002 cbp->b_bcount = 0;
2003
2004 #if defined(DEBUG) && defined(DIAGNOSTIC)
2005 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2006 / sizeof(int32_t)) {
2007 panic("lfs_writeseg: real bpp overwrite");
2008 }
2009 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2010 panic("lfs_writeseg: theoretical bpp overwrite");
2011 }
2012 #endif
2013
2014 /*
2015 * Construct the cluster.
2016 */
2017 simple_lock(&fs->lfs_interlock);
2018 ++fs->lfs_iocount;
2019 simple_unlock(&fs->lfs_interlock);
2020 while (i && cbp->b_bcount < CHUNKSIZE) {
2021 bp = *bpp;
2022
2023 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2024 break;
2025 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2026 break;
2027
2028 /* Clusters from GOP_WRITE are expedited */
2029 if (bp->b_bcount > fs->lfs_bsize) {
2030 if (cbp->b_bcount > 0)
2031 /* Put in its own buffer */
2032 break;
2033 else {
2034 cbp->b_data = bp->b_data;
2035 }
2036 } else if (cbp->b_bcount == 0) {
2037 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2038 LFS_NB_CLUSTER);
2039 cl->flags |= LFS_CL_MALLOC;
2040 }
2041 #ifdef DIAGNOSTIC
2042 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2043 btodb(bp->b_bcount - 1))) !=
2044 sp->seg_number) {
2045 printf("blk size %d daddr %" PRIx64
2046 " not in seg %d\n",
2047 bp->b_bcount, bp->b_blkno,
2048 sp->seg_number);
2049 panic("segment overwrite");
2050 }
2051 #endif
2052
2053 #ifdef LFS_USE_B_INVAL
2054 /*
2055 * Fake buffers from the cleaner are marked as B_INVAL.
2056 * We need to copy the data from user space rather than
2057 * from the buffer indicated.
2058 * XXX == what do I do on an error?
2059 */
2060 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2061 (B_CALL|B_INVAL)) {
2062 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2063 panic("lfs_writeseg: "
2064 "copyin failed [2]");
2065 } else
2066 #endif /* LFS_USE_B_INVAL */
2067 if (cl->flags & LFS_CL_MALLOC) {
2068 /* copy data into our cluster. */
2069 memcpy(p, bp->b_data, bp->b_bcount);
2070 p += bp->b_bcount;
2071 }
2072
2073 cbp->b_bcount += bp->b_bcount;
2074 cl->bufsize += bp->b_bcount;
2075
2076 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2077 cl->bpp[cl->bufcount++] = bp;
2078 vp = bp->b_vp;
2079 s = splbio();
2080 reassignbuf(bp, vp);
2081 V_INCR_NUMOUTPUT(vp);
2082 splx(s);
2083
2084 bpp++;
2085 i--;
2086 }
2087 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2088 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2089 else
2090 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2091 s = splbio();
2092 V_INCR_NUMOUTPUT(devvp);
2093 splx(s);
2094 VOP_STRATEGY(devvp, cbp);
2095 curproc->p_stats->p_ru.ru_oublock++;
2096 }
2097
2098 if (lfs_dostats) {
2099 ++lfs_stats.psegwrites;
2100 lfs_stats.blocktot += nblocks - 1;
2101 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2102 ++lfs_stats.psyncwrites;
2103 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2104 ++lfs_stats.pcleanwrites;
2105 lfs_stats.cleanblocks += nblocks - 1;
2106 }
2107 }
2108 return (lfs_initseg(fs) || do_again);
2109 }
2110
2111 void
2112 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2113 {
2114 struct buf *bp;
2115 int s;
2116 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2117
2118 ASSERT_MAYBE_SEGLOCK(fs);
2119 #ifdef DIAGNOSTIC
2120 KASSERT(fs->lfs_magic == LFS_MAGIC);
2121 #endif
2122 /*
2123 * If we can write one superblock while another is in
2124 * progress, we risk not having a complete checkpoint if we crash.
2125 * So, block here if a superblock write is in progress.
2126 */
2127 simple_lock(&fs->lfs_interlock);
2128 s = splbio();
2129 while (fs->lfs_sbactive) {
2130 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2131 &fs->lfs_interlock);
2132 }
2133 fs->lfs_sbactive = daddr;
2134 splx(s);
2135 simple_unlock(&fs->lfs_interlock);
2136
2137 /* Set timestamp of this version of the superblock */
2138 if (fs->lfs_version == 1)
2139 fs->lfs_otstamp = time.tv_sec;
2140 fs->lfs_tstamp = time.tv_sec;
2141
2142 /* Checksum the superblock and copy it into a buffer. */
2143 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2144 bp = lfs_newbuf(fs, devvp,
2145 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2146 memset(bp->b_data + sizeof(struct dlfs), 0,
2147 LFS_SBPAD - sizeof(struct dlfs));
2148 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2149
2150 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2151 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2152 bp->b_iodone = lfs_supercallback;
2153
2154 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2155 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2156 else
2157 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2158 curproc->p_stats->p_ru.ru_oublock++;
2159 s = splbio();
2160 V_INCR_NUMOUTPUT(bp->b_vp);
2161 splx(s);
2162 simple_lock(&fs->lfs_interlock);
2163 ++fs->lfs_iocount;
2164 simple_unlock(&fs->lfs_interlock);
2165 VOP_STRATEGY(devvp, bp);
2166 }
2167
2168 /*
2169 * Logical block number match routines used when traversing the dirty block
2170 * chain.
2171 */
2172 int
2173 lfs_match_fake(struct lfs *fs, struct buf *bp)
2174 {
2175
2176 ASSERT_SEGLOCK(fs);
2177 return LFS_IS_MALLOC_BUF(bp);
2178 }
2179
2180 #if 0
2181 int
2182 lfs_match_real(struct lfs *fs, struct buf *bp)
2183 {
2184
2185 ASSERT_SEGLOCK(fs);
2186 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2187 }
2188 #endif
2189
2190 int
2191 lfs_match_data(struct lfs *fs, struct buf *bp)
2192 {
2193
2194 ASSERT_SEGLOCK(fs);
2195 return (bp->b_lblkno >= 0);
2196 }
2197
2198 int
2199 lfs_match_indir(struct lfs *fs, struct buf *bp)
2200 {
2201 daddr_t lbn;
2202
2203 ASSERT_SEGLOCK(fs);
2204 lbn = bp->b_lblkno;
2205 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2206 }
2207
2208 int
2209 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2210 {
2211 daddr_t lbn;
2212
2213 ASSERT_SEGLOCK(fs);
2214 lbn = bp->b_lblkno;
2215 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2216 }
2217
2218 int
2219 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2220 {
2221 daddr_t lbn;
2222
2223 ASSERT_SEGLOCK(fs);
2224 lbn = bp->b_lblkno;
2225 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2226 }
2227
2228 /*
2229 * XXX - The only buffers that are going to hit these functions are the
2230 * segment write blocks, or the segment summaries, or the superblocks.
2231 *
2232 * All of the above are created by lfs_newbuf, and so do not need to be
2233 * released via brelse.
2234 */
2235 void
2236 lfs_callback(struct buf *bp)
2237 {
2238 struct lfs *fs;
2239
2240 fs = bp->b_private;
2241 ASSERT_NO_SEGLOCK(fs);
2242 lfs_freebuf(fs, bp);
2243 }
2244
2245 static void
2246 lfs_super_aiodone(struct buf *bp)
2247 {
2248 struct lfs *fs;
2249
2250 fs = bp->b_private;
2251 ASSERT_NO_SEGLOCK(fs);
2252 simple_lock(&fs->lfs_interlock);
2253 fs->lfs_sbactive = 0;
2254 if (--fs->lfs_iocount <= 1)
2255 wakeup(&fs->lfs_iocount);
2256 simple_unlock(&fs->lfs_interlock);
2257 wakeup(&fs->lfs_sbactive);
2258 lfs_freebuf(fs, bp);
2259 }
2260
2261 static void
2262 lfs_cluster_aiodone(struct buf *bp)
2263 {
2264 struct lfs_cluster *cl;
2265 struct lfs *fs;
2266 struct buf *tbp, *fbp;
2267 struct vnode *vp, *devvp;
2268 struct inode *ip;
2269 int s, error=0;
2270
2271 if (bp->b_flags & B_ERROR)
2272 error = bp->b_error;
2273
2274 cl = bp->b_private;
2275 fs = cl->fs;
2276 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2277 ASSERT_NO_SEGLOCK(fs);
2278
2279 /* Put the pages back, and release the buffer */
2280 while (cl->bufcount--) {
2281 tbp = cl->bpp[cl->bufcount];
2282 KASSERT(tbp->b_flags & B_BUSY);
2283 if (error) {
2284 tbp->b_flags |= B_ERROR;
2285 tbp->b_error = error;
2286 }
2287
2288 /*
2289 * We're done with tbp. If it has not been re-dirtied since
2290 * the cluster was written, free it. Otherwise, keep it on
2291 * the locked list to be written again.
2292 */
2293 vp = tbp->b_vp;
2294
2295 tbp->b_flags &= ~B_GATHERED;
2296
2297 LFS_BCLEAN_LOG(fs, tbp);
2298
2299 if (!(tbp->b_flags & B_CALL)) {
2300 KASSERT(tbp->b_flags & B_LOCKED);
2301 s = splbio();
2302 simple_lock(&bqueue_slock);
2303 bremfree(tbp);
2304 simple_unlock(&bqueue_slock);
2305 if (vp)
2306 reassignbuf(tbp, vp);
2307 splx(s);
2308 tbp->b_flags |= B_ASYNC; /* for biodone */
2309 }
2310
2311 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2312 LFS_UNLOCK_BUF(tbp);
2313
2314 if (tbp->b_flags & B_DONE) {
2315 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2316 cl->bufcount, (long)tbp->b_flags));
2317 }
2318
2319 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2320 /*
2321 * A buffer from the page daemon.
2322 * We use the same iodone as it does,
2323 * so we must manually disassociate its
2324 * buffers from the vp.
2325 */
2326 if (tbp->b_vp) {
2327 /* This is just silly */
2328 s = splbio();
2329 brelvp(tbp);
2330 tbp->b_vp = vp;
2331 splx(s);
2332 }
2333 /* Put it back the way it was */
2334 tbp->b_flags |= B_ASYNC;
2335 /* Master buffers have B_AGE */
2336 if (tbp->b_private == tbp)
2337 tbp->b_flags |= B_AGE;
2338 }
2339 s = splbio();
2340 biodone(tbp);
2341
2342 /*
2343 * If this is the last block for this vnode, but
2344 * there are other blocks on its dirty list,
2345 * set IN_MODIFIED/IN_CLEANING depending on what
2346 * sort of block. Only do this for our mount point,
2347 * not for, e.g., inode blocks that are attached to
2348 * the devvp.
2349 * XXX KS - Shouldn't we set *both* if both types
2350 * of blocks are present (traverse the dirty list?)
2351 */
2352 simple_lock(&global_v_numoutput_slock);
2353 if (vp != devvp && vp->v_numoutput == 0 &&
2354 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2355 ip = VTOI(vp);
2356 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2357 ip->i_number));
2358 if (LFS_IS_MALLOC_BUF(fbp))
2359 LFS_SET_UINO(ip, IN_CLEANING);
2360 else
2361 LFS_SET_UINO(ip, IN_MODIFIED);
2362 }
2363 simple_unlock(&global_v_numoutput_slock);
2364 splx(s);
2365 wakeup(vp);
2366 }
2367
2368 /* Fix up the cluster buffer, and release it */
2369 if (cl->flags & LFS_CL_MALLOC)
2370 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2371 putiobuf(bp);
2372
2373 /* Note i/o done */
2374 if (cl->flags & LFS_CL_SYNC) {
2375 if (--cl->seg->seg_iocount == 0)
2376 wakeup(&cl->seg->seg_iocount);
2377 }
2378 simple_lock(&fs->lfs_interlock);
2379 #ifdef DIAGNOSTIC
2380 if (fs->lfs_iocount == 0)
2381 panic("lfs_cluster_aiodone: zero iocount");
2382 #endif
2383 if (--fs->lfs_iocount <= 1)
2384 wakeup(&fs->lfs_iocount);
2385 simple_unlock(&fs->lfs_interlock);
2386
2387 pool_put(&fs->lfs_bpppool, cl->bpp);
2388 cl->bpp = NULL;
2389 pool_put(&fs->lfs_clpool, cl);
2390 }
2391
2392 static void
2393 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2394 {
2395 /* reset b_iodone for when this is a single-buf i/o. */
2396 bp->b_iodone = aiodone;
2397
2398 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2399 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2400 wakeup(&uvm.aiodoned);
2401 simple_unlock(&uvm.aiodoned_lock);
2402 }
2403
2404 static void
2405 lfs_cluster_callback(struct buf *bp)
2406 {
2407
2408 lfs_generic_callback(bp, lfs_cluster_aiodone);
2409 }
2410
2411 void
2412 lfs_supercallback(struct buf *bp)
2413 {
2414
2415 lfs_generic_callback(bp, lfs_super_aiodone);
2416 }
2417
2418 /*
2419 * Shellsort (diminishing increment sort) from Data Structures and
2420 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2421 * see also Knuth Vol. 3, page 84. The increments are selected from
2422 * formula (8), page 95. Roughly O(N^3/2).
2423 */
2424 /*
2425 * This is our own private copy of shellsort because we want to sort
2426 * two parallel arrays (the array of buffer pointers and the array of
2427 * logical block numbers) simultaneously. Note that we cast the array
2428 * of logical block numbers to a unsigned in this routine so that the
2429 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2430 */
2431
2432 void
2433 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2434 {
2435 static int __rsshell_increments[] = { 4, 1, 0 };
2436 int incr, *incrp, t1, t2;
2437 struct buf *bp_temp;
2438
2439 #ifdef DEBUG
2440 incr = 0;
2441 for (t1 = 0; t1 < nmemb; t1++) {
2442 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2443 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2444 /* dump before panic */
2445 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2446 nmemb, size);
2447 incr = 0;
2448 for (t1 = 0; t1 < nmemb; t1++) {
2449 const struct buf *bp = bp_array[t1];
2450
2451 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2452 PRIu64 "\n", t1,
2453 (uint64_t)bp->b_bcount,
2454 (uint64_t)bp->b_lblkno);
2455 printf("lbns:");
2456 for (t2 = 0; t2 * size < bp->b_bcount;
2457 t2++) {
2458 printf(" %" PRId32,
2459 lb_array[incr++]);
2460 }
2461 printf("\n");
2462 }
2463 panic("lfs_shellsort: inconsistent input");
2464 }
2465 }
2466 }
2467 #endif
2468
2469 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2470 for (t1 = incr; t1 < nmemb; ++t1)
2471 for (t2 = t1 - incr; t2 >= 0;)
2472 if ((u_int32_t)bp_array[t2]->b_lblkno >
2473 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2474 bp_temp = bp_array[t2];
2475 bp_array[t2] = bp_array[t2 + incr];
2476 bp_array[t2 + incr] = bp_temp;
2477 t2 -= incr;
2478 } else
2479 break;
2480
2481 /* Reform the list of logical blocks */
2482 incr = 0;
2483 for (t1 = 0; t1 < nmemb; t1++) {
2484 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2485 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2486 }
2487 }
2488 }
2489
2490 /*
2491 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2492 */
2493 int
2494 lfs_vref(struct vnode *vp)
2495 {
2496 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2497 /*
2498 * If we return 1 here during a flush, we risk vinvalbuf() not
2499 * being able to flush all of the pages from this vnode, which
2500 * will cause it to panic. So, return 0 if a flush is in progress.
2501 */
2502 if (vp->v_flag & VXLOCK) {
2503 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2504 return 0;
2505 }
2506 return (1);
2507 }
2508 return (vget(vp, 0));
2509 }
2510
2511 /*
2512 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2513 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2514 */
2515 void
2516 lfs_vunref(struct vnode *vp)
2517 {
2518 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2519 /*
2520 * Analogous to lfs_vref, if the node is flushing, fake it.
2521 */
2522 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2523 return;
2524 }
2525
2526 simple_lock(&vp->v_interlock);
2527 #ifdef DIAGNOSTIC
2528 if (vp->v_usecount <= 0) {
2529 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2530 VTOI(vp)->i_number);
2531 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2532 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2533 panic("lfs_vunref: v_usecount < 0");
2534 }
2535 #endif
2536 vp->v_usecount--;
2537 if (vp->v_usecount > 0) {
2538 simple_unlock(&vp->v_interlock);
2539 return;
2540 }
2541 /*
2542 * insert at tail of LRU list
2543 */
2544 simple_lock(&vnode_free_list_slock);
2545 if (vp->v_holdcnt > 0)
2546 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2547 else
2548 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2549 simple_unlock(&vnode_free_list_slock);
2550 simple_unlock(&vp->v_interlock);
2551 }
2552
2553 /*
2554 * We use this when we have vnodes that were loaded in solely for cleaning.
2555 * There is no reason to believe that these vnodes will be referenced again
2556 * soon, since the cleaning process is unrelated to normal filesystem
2557 * activity. Putting cleaned vnodes at the tail of the list has the effect
2558 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2559 * cleaning at the head of the list, instead.
2560 */
2561 void
2562 lfs_vunref_head(struct vnode *vp)
2563 {
2564
2565 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2566 simple_lock(&vp->v_interlock);
2567 #ifdef DIAGNOSTIC
2568 if (vp->v_usecount == 0) {
2569 panic("lfs_vunref: v_usecount<0");
2570 }
2571 #endif
2572 vp->v_usecount--;
2573 if (vp->v_usecount > 0) {
2574 simple_unlock(&vp->v_interlock);
2575 return;
2576 }
2577 /*
2578 * insert at head of LRU list
2579 */
2580 simple_lock(&vnode_free_list_slock);
2581 if (vp->v_holdcnt > 0)
2582 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2583 else
2584 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2585 simple_unlock(&vnode_free_list_slock);
2586 simple_unlock(&vp->v_interlock);
2587 }
2588
2589