lfs_segment.c revision 1.172 1 /* $NetBSD: lfs_segment.c,v 1.172 2006/04/07 23:59:28 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.172 2006/04/07 23:59:28 perseant Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99
100 #include <miscfs/specfs/specdev.h>
101 #include <miscfs/fifofs/fifo.h>
102
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/dir.h>
105 #include <ufs/ufs/ufsmount.h>
106 #include <ufs/ufs/ufs_extern.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <uvm/uvm.h>
112 #include <uvm/uvm_extern.h>
113
114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
115
116 extern int count_lock_queue(void);
117 extern struct simplelock vnode_free_list_slock; /* XXX */
118 extern struct simplelock bqueue_slock; /* XXX */
119
120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
121 static void lfs_super_aiodone(struct buf *);
122 static void lfs_cluster_aiodone(struct buf *);
123 static void lfs_cluster_callback(struct buf *);
124
125 /*
126 * Determine if it's OK to start a partial in this segment, or if we need
127 * to go on to a new segment.
128 */
129 #define LFS_PARTIAL_FITS(fs) \
130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
131 fragstofsb((fs), (fs)->lfs_frag))
132
133 /*
134 * Figure out whether we should do a checkpoint write or go ahead with
135 * an ordinary write.
136 */
137 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
138 (fs->lfs_nactive > LFS_MAX_ACTIVE || \
139 (flags & SEGM_CKP) || \
140 fs->lfs_nclean < LFS_MAX_ACTIVE)
141
142 int lfs_match_fake(struct lfs *, struct buf *);
143 void lfs_newseg(struct lfs *);
144 /* XXX ondisk32 */
145 void lfs_shellsort(struct buf **, int32_t *, int, int);
146 void lfs_supercallback(struct buf *);
147 void lfs_updatemeta(struct segment *);
148 void lfs_writesuper(struct lfs *, daddr_t);
149 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
150 struct segment *sp, int dirops);
151
152 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
153 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
154 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
155 int lfs_dirvcount = 0; /* # active dirops */
156
157 /* Statistics Counters */
158 int lfs_dostats = 1;
159 struct lfs_stats lfs_stats;
160
161 /* op values to lfs_writevnodes */
162 #define VN_REG 0
163 #define VN_DIROP 1
164 #define VN_EMPTY 2
165 #define VN_CLEAN 3
166
167 /*
168 * XXX KS - Set modification time on the Ifile, so the cleaner can
169 * read the fs mod time off of it. We don't set IN_UPDATE here,
170 * since we don't really need this to be flushed to disk (and in any
171 * case that wouldn't happen to the Ifile until we checkpoint).
172 */
173 void
174 lfs_imtime(struct lfs *fs)
175 {
176 struct timespec ts;
177 struct inode *ip;
178
179 ASSERT_MAYBE_SEGLOCK(fs);
180 nanotime(&ts);
181 ip = VTOI(fs->lfs_ivnode);
182 ip->i_ffs1_mtime = ts.tv_sec;
183 ip->i_ffs1_mtimensec = ts.tv_nsec;
184 }
185
186 /*
187 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
188 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
189 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
190 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
191 */
192
193 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
194 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
195 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
196
197 int
198 lfs_vflush(struct vnode *vp)
199 {
200 struct inode *ip;
201 struct lfs *fs;
202 struct segment *sp;
203 struct buf *bp, *nbp, *tbp, *tnbp;
204 int error, s;
205 int flushed;
206 int relock;
207
208 ip = VTOI(vp);
209 fs = VFSTOUFS(vp->v_mount)->um_lfs;
210 relock = 0;
211
212 top:
213 ASSERT_NO_SEGLOCK(fs);
214 if (ip->i_flag & IN_CLEANING) {
215 ivndebug(vp,"vflush/in_cleaning");
216 LFS_CLR_UINO(ip, IN_CLEANING);
217 LFS_SET_UINO(ip, IN_MODIFIED);
218
219 /*
220 * Toss any cleaning buffers that have real counterparts
221 * to avoid losing new data.
222 */
223 s = splbio();
224 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
225 nbp = LIST_NEXT(bp, b_vnbufs);
226 if (!LFS_IS_MALLOC_BUF(bp))
227 continue;
228 /*
229 * Look for pages matching the range covered
230 * by cleaning blocks. It's okay if more dirty
231 * pages appear, so long as none disappear out
232 * from under us.
233 */
234 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
235 vp != fs->lfs_ivnode) {
236 struct vm_page *pg;
237 voff_t off;
238
239 simple_lock(&vp->v_interlock);
240 for (off = lblktosize(fs, bp->b_lblkno);
241 off < lblktosize(fs, bp->b_lblkno + 1);
242 off += PAGE_SIZE) {
243 pg = uvm_pagelookup(&vp->v_uobj, off);
244 if (pg == NULL)
245 continue;
246 if ((pg->flags & PG_CLEAN) == 0 ||
247 pmap_is_modified(pg)) {
248 fs->lfs_avail += btofsb(fs,
249 bp->b_bcount);
250 wakeup(&fs->lfs_avail);
251 lfs_freebuf(fs, bp);
252 bp = NULL;
253 goto nextbp;
254 }
255 }
256 simple_unlock(&vp->v_interlock);
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 fs->lfs_avail += btofsb(fs,
267 bp->b_bcount);
268 wakeup(&fs->lfs_avail);
269 lfs_freebuf(fs, bp);
270 bp = NULL;
271 break;
272 }
273 }
274 nextbp:
275 ;
276 }
277 splx(s);
278 }
279
280 /* If the node is being written, wait until that is done */
281 simple_lock(&vp->v_interlock);
282 s = splbio();
283 if (WRITEINPROG(vp)) {
284 ivndebug(vp,"vflush/writeinprog");
285 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
286 }
287 splx(s);
288 simple_unlock(&vp->v_interlock);
289
290 /* Protect against VXLOCK deadlock in vinvalbuf() */
291 lfs_seglock(fs, SEGM_SYNC);
292
293 /* If we're supposed to flush a freed inode, just toss it */
294 /* XXX - seglock, so these buffers can't be gathered, right? */
295 if (ip->i_mode == 0) {
296 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
297 ip->i_number));
298 s = splbio();
299 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
300 nbp = LIST_NEXT(bp, b_vnbufs);
301 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
302 fs->lfs_avail += btofsb(fs, bp->b_bcount);
303 wakeup(&fs->lfs_avail);
304 }
305 /* Copied from lfs_writeseg */
306 if (bp->b_flags & B_CALL) {
307 biodone(bp);
308 } else {
309 bremfree(bp);
310 LFS_UNLOCK_BUF(bp);
311 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
312 B_GATHERED);
313 bp->b_flags |= B_DONE;
314 reassignbuf(bp, vp);
315 brelse(bp);
316 }
317 }
318 splx(s);
319 LFS_CLR_UINO(ip, IN_CLEANING);
320 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
321 ip->i_flag &= ~IN_ALLMOD;
322 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
323 ip->i_number));
324 lfs_segunlock(fs);
325 return 0;
326 }
327
328 SET_FLUSHING(fs,vp);
329 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
330 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
331 CLR_FLUSHING(fs,vp);
332 lfs_segunlock(fs);
333 return error;
334 }
335 sp = fs->lfs_sp;
336
337 flushed = 0;
338 if (VPISEMPTY(vp)) {
339 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
340 ++flushed;
341 } else if ((ip->i_flag & IN_CLEANING) &&
342 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
343 ivndebug(vp,"vflush/clean");
344 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
345 ++flushed;
346 } else if (lfs_dostats) {
347 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
348 ++lfs_stats.vflush_invoked;
349 ivndebug(vp,"vflush");
350 }
351
352 #ifdef DIAGNOSTIC
353 if (vp->v_flag & VDIROP) {
354 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
355 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
356 }
357 if (vp->v_usecount < 0) {
358 printf("usecount=%ld\n", (long)vp->v_usecount);
359 panic("lfs_vflush: usecount<0");
360 }
361 #endif
362
363 do {
364 do {
365 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
366 relock = lfs_writefile(fs, sp, vp);
367 if (relock) {
368 /*
369 * Might have to wait for the
370 * cleaner to run; but we're
371 * still not done with this vnode.
372 */
373 lfs_writeseg(fs, sp);
374 lfs_segunlock(fs);
375 lfs_segunlock_relock(fs);
376 goto top;
377 }
378 }
379 } while (lfs_writeinode(fs, sp, ip));
380 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
381
382 if (lfs_dostats) {
383 ++lfs_stats.nwrites;
384 if (sp->seg_flags & SEGM_SYNC)
385 ++lfs_stats.nsync_writes;
386 if (sp->seg_flags & SEGM_CKP)
387 ++lfs_stats.ncheckpoints;
388 }
389 /*
390 * If we were called from somewhere that has already held the seglock
391 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
392 * the write to complete because we are still locked.
393 * Since lfs_vflush() must return the vnode with no dirty buffers,
394 * we must explicitly wait, if that is the case.
395 *
396 * We compare the iocount against 1, not 0, because it is
397 * artificially incremented by lfs_seglock().
398 */
399 simple_lock(&fs->lfs_interlock);
400 if (fs->lfs_seglock > 1) {
401 while (fs->lfs_iocount > 1)
402 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
403 "lfs_vflush", 0, &fs->lfs_interlock);
404 }
405 simple_unlock(&fs->lfs_interlock);
406
407 lfs_segunlock(fs);
408
409 /* Wait for these buffers to be recovered by aiodoned */
410 s = splbio();
411 simple_lock(&global_v_numoutput_slock);
412 while (vp->v_numoutput > 0) {
413 vp->v_flag |= VBWAIT;
414 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
415 &global_v_numoutput_slock);
416 }
417 simple_unlock(&global_v_numoutput_slock);
418 splx(s);
419
420 CLR_FLUSHING(fs,vp);
421 return (0);
422 }
423
424 int
425 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
426 {
427 struct inode *ip;
428 struct vnode *vp, *nvp;
429 int inodes_written = 0, only_cleaning;
430 int error = 0;
431
432 ASSERT_SEGLOCK(fs);
433 #ifndef LFS_NO_BACKVP_HACK
434 /* BEGIN HACK */
435 #define VN_OFFSET \
436 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
437 #define BACK_VP(VP) \
438 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
439 #define BEG_OF_VLIST \
440 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
441 - VN_OFFSET))
442
443 /* Find last vnode. */
444 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
445 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
446 vp = LIST_NEXT(vp, v_mntvnodes));
447 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
448 nvp = BACK_VP(vp);
449 #else
450 loop:
451 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
452 nvp = LIST_NEXT(vp, v_mntvnodes);
453 #endif
454 /*
455 * If the vnode that we are about to sync is no longer
456 * associated with this mount point, start over.
457 */
458 if (vp->v_mount != mp) {
459 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
460 /*
461 * After this, pages might be busy
462 * due to our own previous putpages.
463 * Start actual segment write here to avoid deadlock.
464 */
465 (void)lfs_writeseg(fs, sp);
466 goto loop;
467 }
468
469 if (vp->v_type == VNON) {
470 continue;
471 }
472
473 ip = VTOI(vp);
474 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
475 (op != VN_DIROP && op != VN_CLEAN &&
476 (vp->v_flag & VDIROP))) {
477 vndebug(vp,"dirop");
478 continue;
479 }
480
481 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
482 vndebug(vp,"empty");
483 continue;
484 }
485
486 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
487 && vp != fs->lfs_flushvp
488 && !(ip->i_flag & IN_CLEANING)) {
489 vndebug(vp,"cleaning");
490 continue;
491 }
492
493 if (lfs_vref(vp)) {
494 vndebug(vp,"vref");
495 continue;
496 }
497
498 only_cleaning = 0;
499 /*
500 * Write the inode/file if dirty and it's not the IFILE.
501 */
502 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
503 only_cleaning =
504 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
505
506 if (ip->i_number != LFS_IFILE_INUM) {
507 error = lfs_writefile(fs, sp, vp);
508 if (error) {
509 lfs_vunref(vp);
510 if (error == EAGAIN) {
511 /*
512 * This error from lfs_putpages
513 * indicates we need to drop
514 * the segment lock and start
515 * over after the cleaner has
516 * had a chance to run.
517 */
518 lfs_writeseg(fs, sp);
519 if (!VPISEMPTY(vp) &&
520 !WRITEINPROG(vp) &&
521 !(ip->i_flag & IN_ALLMOD))
522 LFS_SET_UINO(ip, IN_MODIFIED);
523 break;
524 }
525 error = 0; /* XXX not quite right */
526 continue;
527 }
528
529 if (!VPISEMPTY(vp)) {
530 if (WRITEINPROG(vp)) {
531 ivndebug(vp,"writevnodes/write2");
532 } else if (!(ip->i_flag & IN_ALLMOD)) {
533 LFS_SET_UINO(ip, IN_MODIFIED);
534 }
535 }
536 (void) lfs_writeinode(fs, sp, ip);
537 inodes_written++;
538 }
539 }
540
541 if (lfs_clean_vnhead && only_cleaning)
542 lfs_vunref_head(vp);
543 else
544 lfs_vunref(vp);
545 }
546 return error;
547 }
548
549 /*
550 * Do a checkpoint.
551 */
552 int
553 lfs_segwrite(struct mount *mp, int flags)
554 {
555 struct buf *bp;
556 struct inode *ip;
557 struct lfs *fs;
558 struct segment *sp;
559 struct vnode *vp;
560 SEGUSE *segusep;
561 int do_ckp, did_ckp, error, s;
562 unsigned n, segleft, maxseg, sn, i, curseg;
563 int writer_set = 0;
564 int dirty;
565 int redo;
566 int um_error;
567
568 fs = VFSTOUFS(mp)->um_lfs;
569 ASSERT_MAYBE_SEGLOCK(fs);
570
571 if (fs->lfs_ronly)
572 return EROFS;
573
574 lfs_imtime(fs);
575
576 /*
577 * Allocate a segment structure and enough space to hold pointers to
578 * the maximum possible number of buffers which can be described in a
579 * single summary block.
580 */
581 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
582
583 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
584 sp = fs->lfs_sp;
585
586 /*
587 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
588 * in which case we have to flush *all* buffers off of this vnode.
589 * We don't care about other nodes, but write any non-dirop nodes
590 * anyway in anticipation of another getnewvnode().
591 *
592 * If we're cleaning we only write cleaning and ifile blocks, and
593 * no dirops, since otherwise we'd risk corruption in a crash.
594 */
595 if (sp->seg_flags & SEGM_CLEAN)
596 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
597 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
598 do {
599 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
600 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
601 if (!writer_set) {
602 lfs_writer_enter(fs, "lfs writer");
603 writer_set = 1;
604 }
605 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
606 if (um_error == 0)
607 um_error = error;
608 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
609 }
610 if (do_ckp && um_error) {
611 lfs_segunlock_relock(fs);
612 sp = fs->lfs_sp;
613 }
614 } while (do_ckp && um_error != 0);
615 }
616
617 /*
618 * If we are doing a checkpoint, mark everything since the
619 * last checkpoint as no longer ACTIVE.
620 */
621 if (do_ckp) {
622 segleft = fs->lfs_nseg;
623 curseg = 0;
624 for (n = 0; n < fs->lfs_segtabsz; n++) {
625 dirty = 0;
626 if (bread(fs->lfs_ivnode,
627 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
628 panic("lfs_segwrite: ifile read");
629 segusep = (SEGUSE *)bp->b_data;
630 maxseg = min(segleft, fs->lfs_sepb);
631 for (i = 0; i < maxseg; i++) {
632 sn = curseg + i;
633 if (sn != dtosn(fs, fs->lfs_curseg) &&
634 segusep->su_flags & SEGUSE_ACTIVE) {
635 segusep->su_flags &= ~SEGUSE_ACTIVE;
636 --fs->lfs_nactive;
637 ++dirty;
638 }
639 fs->lfs_suflags[fs->lfs_activesb][sn] =
640 segusep->su_flags;
641 if (fs->lfs_version > 1)
642 ++segusep;
643 else
644 segusep = (SEGUSE *)
645 ((SEGUSE_V1 *)segusep + 1);
646 }
647
648 if (dirty)
649 error = LFS_BWRITE_LOG(bp); /* Ifile */
650 else
651 brelse(bp);
652 segleft -= fs->lfs_sepb;
653 curseg += fs->lfs_sepb;
654 }
655 }
656
657 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
658
659 did_ckp = 0;
660 if (do_ckp || fs->lfs_doifile) {
661 vp = fs->lfs_ivnode;
662 vn_lock(vp, LK_EXCLUSIVE);
663 do {
664 #ifdef DEBUG
665 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
666 #endif
667 simple_lock(&fs->lfs_interlock);
668 fs->lfs_flags &= ~LFS_IFDIRTY;
669 simple_unlock(&fs->lfs_interlock);
670
671 ip = VTOI(vp);
672
673 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
674 /*
675 * Ifile has no pages, so we don't need
676 * to check error return here.
677 */
678 lfs_writefile(fs, sp, vp);
679 }
680
681 if (ip->i_flag & IN_ALLMOD)
682 ++did_ckp;
683 redo = lfs_writeinode(fs, sp, ip);
684 redo += lfs_writeseg(fs, sp);
685 simple_lock(&fs->lfs_interlock);
686 redo += (fs->lfs_flags & LFS_IFDIRTY);
687 simple_unlock(&fs->lfs_interlock);
688 } while (redo && do_ckp);
689
690 /*
691 * Unless we are unmounting, the Ifile may continue to have
692 * dirty blocks even after a checkpoint, due to changes to
693 * inodes' atime. If we're checkpointing, it's "impossible"
694 * for other parts of the Ifile to be dirty after the loop
695 * above, since we hold the segment lock.
696 */
697 s = splbio();
698 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
699 LFS_CLR_UINO(ip, IN_ALLMOD);
700 }
701 #ifdef DIAGNOSTIC
702 else if (do_ckp) {
703 int do_panic = 0;
704 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
705 if (bp->b_lblkno < fs->lfs_cleansz +
706 fs->lfs_segtabsz &&
707 !(bp->b_flags & B_GATHERED)) {
708 printf("ifile lbn %ld still dirty (flags %lx)\n",
709 (long)bp->b_lblkno,
710 (long)bp->b_flags);
711 ++do_panic;
712 }
713 }
714 if (do_panic)
715 panic("dirty blocks");
716 }
717 #endif
718 splx(s);
719 VOP_UNLOCK(vp, 0);
720 } else {
721 (void) lfs_writeseg(fs, sp);
722 }
723
724 /* Note Ifile no longer needs to be written */
725 fs->lfs_doifile = 0;
726 if (writer_set)
727 lfs_writer_leave(fs);
728
729 /*
730 * If we didn't write the Ifile, we didn't really do anything.
731 * That means that (1) there is a checkpoint on disk and (2)
732 * nothing has changed since it was written.
733 *
734 * Take the flags off of the segment so that lfs_segunlock
735 * doesn't have to write the superblock either.
736 */
737 if (do_ckp && !did_ckp) {
738 sp->seg_flags &= ~SEGM_CKP;
739 }
740
741 if (lfs_dostats) {
742 ++lfs_stats.nwrites;
743 if (sp->seg_flags & SEGM_SYNC)
744 ++lfs_stats.nsync_writes;
745 if (sp->seg_flags & SEGM_CKP)
746 ++lfs_stats.ncheckpoints;
747 }
748 lfs_segunlock(fs);
749 return (0);
750 }
751
752 /*
753 * Write the dirty blocks associated with a vnode.
754 */
755 int
756 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
757 {
758 struct buf *bp;
759 struct finfo *fip;
760 struct inode *ip;
761 IFILE *ifp;
762 int i, frag;
763 int error;
764
765 ASSERT_SEGLOCK(fs);
766 error = 0;
767 ip = VTOI(vp);
768
769 if (sp->seg_bytes_left < fs->lfs_bsize ||
770 sp->sum_bytes_left < sizeof(struct finfo))
771 (void) lfs_writeseg(fs, sp);
772
773 sp->sum_bytes_left -= FINFOSIZE;
774 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
775
776 if (vp->v_flag & VDIROP)
777 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
778
779 fip = sp->fip;
780 fip->fi_nblocks = 0;
781 fip->fi_ino = ip->i_number;
782 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
783 fip->fi_version = ifp->if_version;
784 brelse(bp);
785
786 if (sp->seg_flags & SEGM_CLEAN) {
787 lfs_gather(fs, sp, vp, lfs_match_fake);
788 /*
789 * For a file being flushed, we need to write *all* blocks.
790 * This means writing the cleaning blocks first, and then
791 * immediately following with any non-cleaning blocks.
792 * The same is true of the Ifile since checkpoints assume
793 * that all valid Ifile blocks are written.
794 */
795 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) {
796 lfs_gather(fs, sp, vp, lfs_match_data);
797 /*
798 * Don't call VOP_PUTPAGES: if we're flushing,
799 * we've already done it, and the Ifile doesn't
800 * use the page cache.
801 */
802 }
803 } else {
804 lfs_gather(fs, sp, vp, lfs_match_data);
805 /*
806 * If we're flushing, we've already called VOP_PUTPAGES
807 * so don't do it again. Otherwise, we want to write
808 * everything we've got.
809 */
810 if (!IS_FLUSHING(fs, vp)) {
811 simple_lock(&vp->v_interlock);
812 error = VOP_PUTPAGES(vp, 0, 0,
813 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
814 }
815 }
816
817 /*
818 * It may not be necessary to write the meta-data blocks at this point,
819 * as the roll-forward recovery code should be able to reconstruct the
820 * list.
821 *
822 * We have to write them anyway, though, under two conditions: (1) the
823 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
824 * checkpointing.
825 *
826 * BUT if we are cleaning, we might have indirect blocks that refer to
827 * new blocks not being written yet, in addition to fragments being
828 * moved out of a cleaned segment. If that is the case, don't
829 * write the indirect blocks, or the finfo will have a small block
830 * in the middle of it!
831 * XXX in this case isn't the inode size wrong too?
832 */
833 frag = 0;
834 if (sp->seg_flags & SEGM_CLEAN) {
835 for (i = 0; i < NDADDR; i++)
836 if (ip->i_lfs_fragsize[i] > 0 &&
837 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
838 ++frag;
839 }
840 #ifdef DIAGNOSTIC
841 if (frag > 1)
842 panic("lfs_writefile: more than one fragment!");
843 #endif
844 if (IS_FLUSHING(fs, vp) ||
845 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
846 lfs_gather(fs, sp, vp, lfs_match_indir);
847 lfs_gather(fs, sp, vp, lfs_match_dindir);
848 lfs_gather(fs, sp, vp, lfs_match_tindir);
849 }
850 fip = sp->fip;
851 if (fip->fi_nblocks != 0) {
852 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
853 sizeof(int32_t) * (fip->fi_nblocks));
854 sp->start_lbp = &sp->fip->fi_blocks[0];
855 } else {
856 sp->sum_bytes_left += FINFOSIZE;
857 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
858 }
859
860 return error;
861 }
862
863 int
864 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
865 {
866 struct buf *bp, *ibp;
867 struct ufs1_dinode *cdp;
868 IFILE *ifp;
869 SEGUSE *sup;
870 daddr_t daddr;
871 int32_t *daddrp; /* XXX ondisk32 */
872 ino_t ino;
873 int error, i, ndx, fsb = 0;
874 int redo_ifile = 0;
875 int gotblk = 0;
876
877 ASSERT_SEGLOCK(fs);
878 if (!(ip->i_flag & IN_ALLMOD))
879 return (0);
880
881 /* Allocate a new inode block if necessary. */
882 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
883 sp->ibp == NULL) {
884 /* Allocate a new segment if necessary. */
885 if (sp->seg_bytes_left < fs->lfs_ibsize ||
886 sp->sum_bytes_left < sizeof(int32_t))
887 (void) lfs_writeseg(fs, sp);
888
889 /* Get next inode block. */
890 daddr = fs->lfs_offset;
891 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
892 sp->ibp = *sp->cbpp++ =
893 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
894 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
895 gotblk++;
896
897 /* Zero out inode numbers */
898 for (i = 0; i < INOPB(fs); ++i)
899 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
900 0;
901
902 ++sp->start_bpp;
903 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
904 /* Set remaining space counters. */
905 sp->seg_bytes_left -= fs->lfs_ibsize;
906 sp->sum_bytes_left -= sizeof(int32_t);
907 ndx = fs->lfs_sumsize / sizeof(int32_t) -
908 sp->ninodes / INOPB(fs) - 1;
909 ((int32_t *)(sp->segsum))[ndx] = daddr;
910 }
911
912 /* Update the inode times and copy the inode onto the inode page. */
913 /* XXX kludge --- don't redirty the ifile just to put times on it */
914 if (ip->i_number != LFS_IFILE_INUM)
915 LFS_ITIMES(ip, NULL, NULL, NULL);
916
917 /*
918 * If this is the Ifile, and we've already written the Ifile in this
919 * partial segment, just overwrite it (it's not on disk yet) and
920 * continue.
921 *
922 * XXX we know that the bp that we get the second time around has
923 * already been gathered.
924 */
925 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
926 *(sp->idp) = *ip->i_din.ffs1_din;
927 ip->i_lfs_osize = ip->i_size;
928 return 0;
929 }
930
931 bp = sp->ibp;
932 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
933 *cdp = *ip->i_din.ffs1_din;
934
935 /*
936 * If we are cleaning, ensure that we don't write UNWRITTEN disk
937 * addresses to disk; possibly change the on-disk record of
938 * the inode size, either by reverting to the previous size
939 * (in the case of cleaning) or by verifying the inode's block
940 * holdings (in the case of files being allocated as they are being
941 * written).
942 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
943 * XXX count on disk wrong by the same amount. We should be
944 * XXX able to "borrow" from lfs_avail and return it after the
945 * XXX Ifile is written. See also in lfs_writeseg.
946 */
947
948 /* Check file size based on highest allocated block */
949 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
950 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
951 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
952 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
953 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
954 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
955 }
956 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
957 if (ip->i_flags & IN_CLEANING)
958 cdp->di_size = ip->i_lfs_osize;
959 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
960 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
961 ip->i_ffs1_blocks, fs->lfs_offset));
962 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
963 daddrp++) {
964 if (*daddrp == UNWRITTEN) {
965 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
966 *daddrp = 0;
967 }
968 }
969 } else {
970 /* If all blocks are going to disk, update "size on disk" */
971 ip->i_lfs_osize = ip->i_size;
972 }
973
974 #ifdef DIAGNOSTIC
975 /*
976 * Check dinode held blocks against dinode size.
977 * This should be identical to the check in lfs_vget().
978 */
979 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
980 i < NDADDR; i++) {
981 KASSERT(i >= 0);
982 if ((cdp->di_mode & IFMT) == IFLNK)
983 continue;
984 if (((cdp->di_mode & IFMT) == IFBLK ||
985 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
986 continue;
987 if (cdp->di_db[i] != 0) {
988 # ifdef DEBUG
989 lfs_dump_dinode(cdp);
990 # endif
991 panic("writing inconsistent inode");
992 }
993 }
994 #endif /* DIAGNOSTIC */
995
996 if (ip->i_flag & IN_CLEANING)
997 LFS_CLR_UINO(ip, IN_CLEANING);
998 else {
999 /* XXX IN_ALLMOD */
1000 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1001 IN_UPDATE | IN_MODIFY);
1002 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1003 LFS_CLR_UINO(ip, IN_MODIFIED);
1004 else
1005 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1006 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1007 ip->i_lfs_effnblks));
1008 }
1009
1010 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
1011 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1012 (sp->ninodes % INOPB(fs));
1013 if (gotblk) {
1014 LFS_LOCK_BUF(bp);
1015 brelse(bp);
1016 }
1017
1018 /* Increment inode count in segment summary block. */
1019 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1020
1021 /* If this page is full, set flag to allocate a new page. */
1022 if (++sp->ninodes % INOPB(fs) == 0)
1023 sp->ibp = NULL;
1024
1025 /*
1026 * If updating the ifile, update the super-block. Update the disk
1027 * address and access times for this inode in the ifile.
1028 */
1029 ino = ip->i_number;
1030 if (ino == LFS_IFILE_INUM) {
1031 daddr = fs->lfs_idaddr;
1032 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
1033 } else {
1034 LFS_IENTRY(ifp, fs, ino, ibp);
1035 daddr = ifp->if_daddr;
1036 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
1037 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1038 }
1039
1040 /*
1041 * The inode's last address should not be in the current partial
1042 * segment, except under exceptional circumstances (lfs_writevnodes
1043 * had to start over, and in the meantime more blocks were written
1044 * to a vnode). Both inodes will be accounted to this segment
1045 * in lfs_writeseg so we need to subtract the earlier version
1046 * here anyway. The segment count can temporarily dip below
1047 * zero here; keep track of how many duplicates we have in
1048 * "dupino" so we don't panic below.
1049 */
1050 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1051 ++sp->ndupino;
1052 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1053 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1054 (long long)daddr, sp->ndupino));
1055 }
1056 /*
1057 * Account the inode: it no longer belongs to its former segment,
1058 * though it will not belong to the new segment until that segment
1059 * is actually written.
1060 */
1061 if (daddr != LFS_UNUSED_DADDR) {
1062 u_int32_t oldsn = dtosn(fs, daddr);
1063 #ifdef DIAGNOSTIC
1064 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1065 #endif
1066 LFS_SEGENTRY(sup, fs, oldsn, bp);
1067 #ifdef DIAGNOSTIC
1068 if (sup->su_nbytes +
1069 sizeof (struct ufs1_dinode) * ndupino
1070 < sizeof (struct ufs1_dinode)) {
1071 printf("lfs_writeinode: negative bytes "
1072 "(segment %" PRIu32 " short by %d, "
1073 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1074 ", daddr=%" PRId64 ", su_nbytes=%u, "
1075 "ndupino=%d)\n",
1076 dtosn(fs, daddr),
1077 (int)sizeof (struct ufs1_dinode) *
1078 (1 - sp->ndupino) - sup->su_nbytes,
1079 oldsn, sp->seg_number, daddr,
1080 (unsigned int)sup->su_nbytes,
1081 sp->ndupino);
1082 panic("lfs_writeinode: negative bytes");
1083 sup->su_nbytes = sizeof (struct ufs1_dinode);
1084 }
1085 #endif
1086 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1087 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1088 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1089 redo_ifile =
1090 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1091 if (redo_ifile) {
1092 simple_lock(&fs->lfs_interlock);
1093 fs->lfs_flags |= LFS_IFDIRTY;
1094 simple_unlock(&fs->lfs_interlock);
1095 }
1096 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1097 }
1098 return (redo_ifile);
1099 }
1100
1101 int
1102 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1103 {
1104 struct lfs *fs;
1105 int vers;
1106 int j, blksinblk;
1107
1108 ASSERT_SEGLOCK(sp->fs);
1109 /*
1110 * If full, finish this segment. We may be doing I/O, so
1111 * release and reacquire the splbio().
1112 */
1113 #ifdef DIAGNOSTIC
1114 if (sp->vp == NULL)
1115 panic ("lfs_gatherblock: Null vp in segment");
1116 #endif
1117 fs = sp->fs;
1118 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1119 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1120 sp->seg_bytes_left < bp->b_bcount) {
1121 if (sptr)
1122 splx(*sptr);
1123 lfs_updatemeta(sp);
1124
1125 vers = sp->fip->fi_version;
1126 (void) lfs_writeseg(fs, sp);
1127
1128 sp->fip->fi_version = vers;
1129 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1130 /* Add the current file to the segment summary. */
1131 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1132 sp->sum_bytes_left -= FINFOSIZE;
1133
1134 if (sptr)
1135 *sptr = splbio();
1136 return (1);
1137 }
1138
1139 if (bp->b_flags & B_GATHERED) {
1140 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1141 " lbn %" PRId64 "\n",
1142 sp->fip->fi_ino, bp->b_lblkno));
1143 return (0);
1144 }
1145
1146 /* Insert into the buffer list, update the FINFO block. */
1147 bp->b_flags |= B_GATHERED;
1148
1149 *sp->cbpp++ = bp;
1150 for (j = 0; j < blksinblk; j++) {
1151 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1152 /* This block's accounting moves from lfs_favail to lfs_avail */
1153 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1154 }
1155
1156 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1157 sp->seg_bytes_left -= bp->b_bcount;
1158 return (0);
1159 }
1160
1161 int
1162 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1163 int (*match)(struct lfs *, struct buf *))
1164 {
1165 struct buf *bp, *nbp;
1166 int s, count = 0;
1167
1168 ASSERT_SEGLOCK(fs);
1169 if (vp->v_type == VBLK)
1170 return 0;
1171 KASSERT(sp->vp == NULL);
1172 sp->vp = vp;
1173 s = splbio();
1174
1175 #ifndef LFS_NO_BACKBUF_HACK
1176 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1177 # define BUF_OFFSET \
1178 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1179 # define BACK_BUF(BP) \
1180 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1181 # define BEG_OF_LIST \
1182 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1183
1184 loop:
1185 /* Find last buffer. */
1186 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1187 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1188 bp = LIST_NEXT(bp, b_vnbufs))
1189 /* nothing */;
1190 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1191 nbp = BACK_BUF(bp);
1192 #else /* LFS_NO_BACKBUF_HACK */
1193 loop:
1194 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1195 nbp = LIST_NEXT(bp, b_vnbufs);
1196 #endif /* LFS_NO_BACKBUF_HACK */
1197 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1198 #ifdef DEBUG
1199 if (vp == fs->lfs_ivnode &&
1200 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1201 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1202 PRId64 " busy (%x)",
1203 bp->b_lblkno, bp->b_flags));
1204 #endif
1205 continue;
1206 }
1207 #ifdef DIAGNOSTIC
1208 # ifdef LFS_USE_B_INVAL
1209 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1210 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1211 " is B_INVAL\n", bp->b_lblkno));
1212 VOP_PRINT(bp->b_vp);
1213 }
1214 # endif /* LFS_USE_B_INVAL */
1215 if (!(bp->b_flags & B_DELWRI))
1216 panic("lfs_gather: bp not B_DELWRI");
1217 if (!(bp->b_flags & B_LOCKED)) {
1218 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1219 " blk %" PRId64 " not B_LOCKED\n",
1220 bp->b_lblkno,
1221 dbtofsb(fs, bp->b_blkno)));
1222 VOP_PRINT(bp->b_vp);
1223 panic("lfs_gather: bp not B_LOCKED");
1224 }
1225 #endif
1226 if (lfs_gatherblock(sp, bp, &s)) {
1227 goto loop;
1228 }
1229 count++;
1230 }
1231 splx(s);
1232 lfs_updatemeta(sp);
1233 KASSERT(sp->vp == vp);
1234 sp->vp = NULL;
1235 return count;
1236 }
1237
1238 #if DEBUG
1239 # define DEBUG_OOFF(n) do { \
1240 if (ooff == 0) { \
1241 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1242 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1243 ", was 0x0 (or %" PRId64 ")\n", \
1244 (n), ip->i_number, lbn, ndaddr, daddr)); \
1245 } \
1246 } while (0)
1247 #else
1248 # define DEBUG_OOFF(n)
1249 #endif
1250
1251 /*
1252 * Change the given block's address to ndaddr, finding its previous
1253 * location using ufs_bmaparray().
1254 *
1255 * Account for this change in the segment table.
1256 *
1257 * called with sp == NULL by roll-forwarding code.
1258 */
1259 void
1260 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1261 daddr_t lbn, int32_t ndaddr, int size)
1262 {
1263 SEGUSE *sup;
1264 struct buf *bp;
1265 struct indir a[NIADDR + 2], *ap;
1266 struct inode *ip;
1267 daddr_t daddr, ooff;
1268 int num, error;
1269 int bb, osize, obb;
1270
1271 ASSERT_SEGLOCK(fs);
1272 KASSERT(sp == NULL || sp->vp == vp);
1273 ip = VTOI(vp);
1274
1275 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1276 if (error)
1277 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1278
1279 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1280 KASSERT(daddr <= LFS_MAX_DADDR);
1281 if (daddr > 0)
1282 daddr = dbtofsb(fs, daddr);
1283
1284 bb = fragstofsb(fs, numfrags(fs, size));
1285 switch (num) {
1286 case 0:
1287 ooff = ip->i_ffs1_db[lbn];
1288 DEBUG_OOFF(0);
1289 if (ooff == UNWRITTEN)
1290 ip->i_ffs1_blocks += bb;
1291 else {
1292 /* possible fragment truncation or extension */
1293 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1294 ip->i_ffs1_blocks += (bb - obb);
1295 }
1296 ip->i_ffs1_db[lbn] = ndaddr;
1297 break;
1298 case 1:
1299 ooff = ip->i_ffs1_ib[a[0].in_off];
1300 DEBUG_OOFF(1);
1301 if (ooff == UNWRITTEN)
1302 ip->i_ffs1_blocks += bb;
1303 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1304 break;
1305 default:
1306 ap = &a[num - 1];
1307 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1308 panic("lfs_updatemeta: bread bno %" PRId64,
1309 ap->in_lbn);
1310
1311 /* XXX ondisk32 */
1312 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1313 DEBUG_OOFF(num);
1314 if (ooff == UNWRITTEN)
1315 ip->i_ffs1_blocks += bb;
1316 /* XXX ondisk32 */
1317 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1318 (void) VOP_BWRITE(bp);
1319 }
1320
1321 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1322
1323 /* Update hiblk when extending the file */
1324 if (lbn > ip->i_lfs_hiblk)
1325 ip->i_lfs_hiblk = lbn;
1326
1327 /*
1328 * Though we'd rather it couldn't, this *can* happen right now
1329 * if cleaning blocks and regular blocks coexist.
1330 */
1331 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1332
1333 /*
1334 * Update segment usage information, based on old size
1335 * and location.
1336 */
1337 if (daddr > 0) {
1338 u_int32_t oldsn = dtosn(fs, daddr);
1339 #ifdef DIAGNOSTIC
1340 int ndupino;
1341
1342 if (sp && sp->seg_number == oldsn) {
1343 ndupino = sp->ndupino;
1344 } else {
1345 ndupino = 0;
1346 }
1347 #endif
1348 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1349 if (lbn >= 0 && lbn < NDADDR)
1350 osize = ip->i_lfs_fragsize[lbn];
1351 else
1352 osize = fs->lfs_bsize;
1353 LFS_SEGENTRY(sup, fs, oldsn, bp);
1354 #ifdef DIAGNOSTIC
1355 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1356 < osize) {
1357 printf("lfs_updatemeta: negative bytes "
1358 "(segment %" PRIu32 " short by %" PRId64
1359 ")\n", dtosn(fs, daddr),
1360 (int64_t)osize -
1361 (sizeof (struct ufs1_dinode) * ndupino +
1362 sup->su_nbytes));
1363 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1364 ", addr = 0x%" PRIx64 "\n",
1365 (unsigned long long)ip->i_number, lbn, daddr);
1366 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1367 panic("lfs_updatemeta: negative bytes");
1368 sup->su_nbytes = osize -
1369 sizeof (struct ufs1_dinode) * ndupino;
1370 }
1371 #endif
1372 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1373 " db 0x%" PRIx64 "\n",
1374 dtosn(fs, daddr), osize,
1375 ip->i_number, lbn, daddr));
1376 sup->su_nbytes -= osize;
1377 if (!(bp->b_flags & B_GATHERED)) {
1378 simple_lock(&fs->lfs_interlock);
1379 fs->lfs_flags |= LFS_IFDIRTY;
1380 simple_unlock(&fs->lfs_interlock);
1381 }
1382 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1383 }
1384 /*
1385 * Now that this block has a new address, and its old
1386 * segment no longer owns it, we can forget about its
1387 * old size.
1388 */
1389 if (lbn >= 0 && lbn < NDADDR)
1390 ip->i_lfs_fragsize[lbn] = size;
1391 }
1392
1393 /*
1394 * Update the metadata that points to the blocks listed in the FINFO
1395 * array.
1396 */
1397 void
1398 lfs_updatemeta(struct segment *sp)
1399 {
1400 struct buf *sbp;
1401 struct lfs *fs;
1402 struct vnode *vp;
1403 daddr_t lbn;
1404 int i, nblocks, num;
1405 int bb;
1406 int bytesleft, size;
1407
1408 ASSERT_SEGLOCK(sp->fs);
1409 vp = sp->vp;
1410 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1411 KASSERT(nblocks >= 0);
1412 KASSERT(vp != NULL);
1413 if (nblocks == 0)
1414 return;
1415
1416 /*
1417 * This count may be high due to oversize blocks from lfs_gop_write.
1418 * Correct for this. (XXX we should be able to keep track of these.)
1419 */
1420 fs = sp->fs;
1421 for (i = 0; i < nblocks; i++) {
1422 if (sp->start_bpp[i] == NULL) {
1423 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1424 nblocks = i;
1425 break;
1426 }
1427 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1428 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1429 nblocks -= num - 1;
1430 }
1431
1432 KASSERT(vp->v_type == VREG ||
1433 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1434 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1435
1436 /*
1437 * Sort the blocks.
1438 *
1439 * We have to sort even if the blocks come from the
1440 * cleaner, because there might be other pending blocks on the
1441 * same inode...and if we don't sort, and there are fragments
1442 * present, blocks may be written in the wrong place.
1443 */
1444 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1445
1446 /*
1447 * Record the length of the last block in case it's a fragment.
1448 * If there are indirect blocks present, they sort last. An
1449 * indirect block will be lfs_bsize and its presence indicates
1450 * that you cannot have fragments.
1451 *
1452 * XXX This last is a lie. A cleaned fragment can coexist with
1453 * XXX a later indirect block. This will continue to be
1454 * XXX true until lfs_markv is fixed to do everything with
1455 * XXX fake blocks (including fake inodes and fake indirect blocks).
1456 */
1457 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1458 fs->lfs_bmask) + 1;
1459
1460 /*
1461 * Assign disk addresses, and update references to the logical
1462 * block and the segment usage information.
1463 */
1464 for (i = nblocks; i--; ++sp->start_bpp) {
1465 sbp = *sp->start_bpp;
1466 lbn = *sp->start_lbp;
1467 KASSERT(sbp->b_lblkno == lbn);
1468
1469 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1470
1471 /*
1472 * If we write a frag in the wrong place, the cleaner won't
1473 * be able to correctly identify its size later, and the
1474 * segment will be uncleanable. (Even worse, it will assume
1475 * that the indirect block that actually ends the list
1476 * is of a smaller size!)
1477 */
1478 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1479 panic("lfs_updatemeta: fragment is not last block");
1480
1481 /*
1482 * For each subblock in this possibly oversized block,
1483 * update its address on disk.
1484 */
1485 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1486 KASSERT(vp == sbp->b_vp);
1487 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1488 bytesleft -= fs->lfs_bsize) {
1489 size = MIN(bytesleft, fs->lfs_bsize);
1490 bb = fragstofsb(fs, numfrags(fs, size));
1491 lbn = *sp->start_lbp++;
1492 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1493 size);
1494 fs->lfs_offset += bb;
1495 }
1496
1497 }
1498 }
1499
1500 /*
1501 * Move lfs_offset to a segment earlier than sn.
1502 */
1503 int
1504 lfs_rewind(struct lfs *fs, int newsn)
1505 {
1506 int sn, osn, isdirty;
1507 struct buf *bp;
1508 SEGUSE *sup;
1509
1510 ASSERT_SEGLOCK(fs);
1511
1512 osn = dtosn(fs, fs->lfs_offset);
1513 if (osn < newsn)
1514 return 0;
1515
1516 /* lfs_avail eats the remaining space in this segment */
1517 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1518
1519 /* Find a low-numbered segment */
1520 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1521 LFS_SEGENTRY(sup, fs, sn, bp);
1522 isdirty = sup->su_flags & SEGUSE_DIRTY;
1523 brelse(bp);
1524
1525 if (!isdirty)
1526 break;
1527 }
1528 if (sn == fs->lfs_nseg)
1529 panic("lfs_rewind: no clean segments");
1530 if (sn >= newsn)
1531 return ENOENT;
1532 fs->lfs_nextseg = sn;
1533 lfs_newseg(fs);
1534 fs->lfs_offset = fs->lfs_curseg;
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * Start a new partial segment.
1541 *
1542 * Return 1 when we entered to a new segment.
1543 * Otherwise, return 0.
1544 */
1545 int
1546 lfs_initseg(struct lfs *fs)
1547 {
1548 struct segment *sp = fs->lfs_sp;
1549 SEGSUM *ssp;
1550 struct buf *sbp; /* buffer for SEGSUM */
1551 int repeat = 0; /* return value */
1552
1553 ASSERT_SEGLOCK(fs);
1554 /* Advance to the next segment. */
1555 if (!LFS_PARTIAL_FITS(fs)) {
1556 SEGUSE *sup;
1557 struct buf *bp;
1558
1559 /* lfs_avail eats the remaining space */
1560 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1561 fs->lfs_curseg);
1562 /* Wake up any cleaning procs waiting on this file system. */
1563 wakeup(&lfs_allclean_wakeup);
1564 wakeup(&fs->lfs_nextseg);
1565 lfs_newseg(fs);
1566 repeat = 1;
1567 fs->lfs_offset = fs->lfs_curseg;
1568
1569 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1570 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1571
1572 /*
1573 * If the segment contains a superblock, update the offset
1574 * and summary address to skip over it.
1575 */
1576 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1577 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1578 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1579 sp->seg_bytes_left -= LFS_SBPAD;
1580 }
1581 brelse(bp);
1582 /* Segment zero could also contain the labelpad */
1583 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1584 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1585 fs->lfs_offset +=
1586 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1587 sp->seg_bytes_left -=
1588 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1589 }
1590 } else {
1591 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1592 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1593 (fs->lfs_offset - fs->lfs_curseg));
1594 }
1595 fs->lfs_lastpseg = fs->lfs_offset;
1596
1597 /* Record first address of this partial segment */
1598 if (sp->seg_flags & SEGM_CLEAN) {
1599 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1600 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1601 /* "1" is the artificial inc in lfs_seglock */
1602 simple_lock(&fs->lfs_interlock);
1603 while (fs->lfs_iocount > 1) {
1604 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1605 "lfs_initseg", 0, &fs->lfs_interlock);
1606 }
1607 simple_unlock(&fs->lfs_interlock);
1608 fs->lfs_cleanind = 0;
1609 }
1610 }
1611
1612 sp->fs = fs;
1613 sp->ibp = NULL;
1614 sp->idp = NULL;
1615 sp->ninodes = 0;
1616 sp->ndupino = 0;
1617
1618 sp->cbpp = sp->bpp;
1619
1620 /* Get a new buffer for SEGSUM */
1621 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1622 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1623
1624 /* ... and enter it into the buffer list. */
1625 *sp->cbpp = sbp;
1626 sp->cbpp++;
1627 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1628
1629 sp->start_bpp = sp->cbpp;
1630
1631 /* Set point to SEGSUM, initialize it. */
1632 ssp = sp->segsum = sbp->b_data;
1633 memset(ssp, 0, fs->lfs_sumsize);
1634 ssp->ss_next = fs->lfs_nextseg;
1635 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1636 ssp->ss_magic = SS_MAGIC;
1637
1638 /* Set pointer to first FINFO, initialize it. */
1639 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1640 sp->fip->fi_nblocks = 0;
1641 sp->start_lbp = &sp->fip->fi_blocks[0];
1642 sp->fip->fi_lastlength = 0;
1643
1644 sp->seg_bytes_left -= fs->lfs_sumsize;
1645 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1646
1647 return (repeat);
1648 }
1649
1650 /*
1651 * Remove SEGUSE_INVAL from all segments.
1652 */
1653 void
1654 lfs_unset_inval_all(struct lfs *fs)
1655 {
1656 SEGUSE *sup;
1657 struct buf *bp;
1658 int i;
1659
1660 for (i = 0; i < fs->lfs_nseg; i++) {
1661 LFS_SEGENTRY(sup, fs, i, bp);
1662 if (sup->su_flags & SEGUSE_INVAL) {
1663 sup->su_flags &= ~SEGUSE_INVAL;
1664 VOP_BWRITE(bp);
1665 } else
1666 brelse(bp);
1667 }
1668 }
1669
1670 /*
1671 * Return the next segment to write.
1672 */
1673 void
1674 lfs_newseg(struct lfs *fs)
1675 {
1676 CLEANERINFO *cip;
1677 SEGUSE *sup;
1678 struct buf *bp;
1679 int curseg, isdirty, sn, skip_inval;
1680
1681 ASSERT_SEGLOCK(fs);
1682 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1683 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1684 dtosn(fs, fs->lfs_nextseg)));
1685 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1686 sup->su_nbytes = 0;
1687 sup->su_nsums = 0;
1688 sup->su_ninos = 0;
1689 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1690
1691 LFS_CLEANERINFO(cip, fs, bp);
1692 --cip->clean;
1693 ++cip->dirty;
1694 fs->lfs_nclean = cip->clean;
1695 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1696
1697 fs->lfs_lastseg = fs->lfs_curseg;
1698 fs->lfs_curseg = fs->lfs_nextseg;
1699 skip_inval = 1;
1700 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1701 sn = (sn + 1) % fs->lfs_nseg;
1702 if (sn == curseg) {
1703 if (skip_inval)
1704 skip_inval = 0;
1705 else
1706 panic("lfs_nextseg: no clean segments");
1707 }
1708 LFS_SEGENTRY(sup, fs, sn, bp);
1709 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1710 /* Check SEGUSE_EMPTY as we go along */
1711 if (isdirty && sup->su_nbytes == 0 &&
1712 !(sup->su_flags & SEGUSE_EMPTY))
1713 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1714 else
1715 brelse(bp);
1716
1717 if (!isdirty)
1718 break;
1719 }
1720 if (skip_inval == 0)
1721 lfs_unset_inval_all(fs);
1722
1723 ++fs->lfs_nactive;
1724 fs->lfs_nextseg = sntod(fs, sn);
1725 if (lfs_dostats) {
1726 ++lfs_stats.segsused;
1727 }
1728 }
1729
1730 static struct buf *
1731 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1732 {
1733 struct lfs_cluster *cl;
1734 struct buf **bpp, *bp;
1735
1736 ASSERT_SEGLOCK(fs);
1737 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1738 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1739 memset(cl, 0, sizeof(*cl));
1740 cl->fs = fs;
1741 cl->bpp = bpp;
1742 cl->bufcount = 0;
1743 cl->bufsize = 0;
1744
1745 /* If this segment is being written synchronously, note that */
1746 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1747 cl->flags |= LFS_CL_SYNC;
1748 cl->seg = fs->lfs_sp;
1749 ++cl->seg->seg_iocount;
1750 }
1751
1752 /* Get an empty buffer header, or maybe one with something on it */
1753 bp = getiobuf();
1754 bp->b_flags = B_BUSY | B_CALL;
1755 bp->b_dev = NODEV;
1756 bp->b_blkno = bp->b_lblkno = addr;
1757 bp->b_iodone = lfs_cluster_callback;
1758 bp->b_private = cl;
1759 bp->b_vp = vp;
1760
1761 return bp;
1762 }
1763
1764 int
1765 lfs_writeseg(struct lfs *fs, struct segment *sp)
1766 {
1767 struct buf **bpp, *bp, *cbp, *newbp;
1768 SEGUSE *sup;
1769 SEGSUM *ssp;
1770 int i, s;
1771 int do_again, nblocks, byteoffset;
1772 size_t el_size;
1773 struct lfs_cluster *cl;
1774 u_short ninos;
1775 struct vnode *devvp;
1776 char *p = NULL;
1777 struct vnode *vp;
1778 int32_t *daddrp; /* XXX ondisk32 */
1779 int changed;
1780 u_int32_t sum;
1781
1782 ASSERT_SEGLOCK(fs);
1783 /*
1784 * If there are no buffers other than the segment summary to write
1785 * and it is not a checkpoint, don't do anything. On a checkpoint,
1786 * even if there aren't any buffers, you need to write the superblock.
1787 */
1788 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1789 return (0);
1790
1791 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1792
1793 /* Update the segment usage information. */
1794 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1795
1796 /* Loop through all blocks, except the segment summary. */
1797 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1798 if ((*bpp)->b_vp != devvp) {
1799 sup->su_nbytes += (*bpp)->b_bcount;
1800 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1801 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1802 sp->seg_number, (*bpp)->b_bcount,
1803 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1804 (*bpp)->b_blkno));
1805 }
1806 }
1807
1808 ssp = (SEGSUM *)sp->segsum;
1809
1810 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1811 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1812 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1813 ssp->ss_ninos));
1814 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1815 /* sup->su_nbytes += fs->lfs_sumsize; */
1816 if (fs->lfs_version == 1)
1817 sup->su_olastmod = time.tv_sec;
1818 else
1819 sup->su_lastmod = time.tv_sec;
1820 sup->su_ninos += ninos;
1821 ++sup->su_nsums;
1822 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1823
1824 do_again = !(bp->b_flags & B_GATHERED);
1825 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1826
1827 /*
1828 * Mark blocks B_BUSY, to prevent then from being changed between
1829 * the checksum computation and the actual write.
1830 *
1831 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1832 * there are any, replace them with copies that have UNASSIGNED
1833 * instead.
1834 */
1835 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1836 ++bpp;
1837 bp = *bpp;
1838 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1839 bp->b_flags |= B_BUSY;
1840 continue;
1841 }
1842
1843 simple_lock(&bp->b_interlock);
1844 s = splbio();
1845 while (bp->b_flags & B_BUSY) {
1846 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1847 " data summary corruption for ino %d, lbn %"
1848 PRId64 "\n",
1849 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1850 bp->b_flags |= B_WANTED;
1851 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1852 &bp->b_interlock);
1853 splx(s);
1854 s = splbio();
1855 }
1856 bp->b_flags |= B_BUSY;
1857 splx(s);
1858 simple_unlock(&bp->b_interlock);
1859
1860 /*
1861 * Check and replace indirect block UNWRITTEN bogosity.
1862 * XXX See comment in lfs_writefile.
1863 */
1864 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1865 VTOI(bp->b_vp)->i_ffs1_blocks !=
1866 VTOI(bp->b_vp)->i_lfs_effnblks) {
1867 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1868 VTOI(bp->b_vp)->i_number,
1869 VTOI(bp->b_vp)->i_lfs_effnblks,
1870 VTOI(bp->b_vp)->i_ffs1_blocks));
1871 /* Make a copy we'll make changes to */
1872 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1873 bp->b_bcount, LFS_NB_IBLOCK);
1874 newbp->b_blkno = bp->b_blkno;
1875 memcpy(newbp->b_data, bp->b_data,
1876 newbp->b_bcount);
1877
1878 changed = 0;
1879 /* XXX ondisk32 */
1880 for (daddrp = (int32_t *)(newbp->b_data);
1881 daddrp < (int32_t *)(newbp->b_data +
1882 newbp->b_bcount); daddrp++) {
1883 if (*daddrp == UNWRITTEN) {
1884 ++changed;
1885 *daddrp = 0;
1886 }
1887 }
1888 /*
1889 * Get rid of the old buffer. Don't mark it clean,
1890 * though, if it still has dirty data on it.
1891 */
1892 if (changed) {
1893 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1894 " bp = %p newbp = %p\n", changed, bp,
1895 newbp));
1896 *bpp = newbp;
1897 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1898 if (bp->b_flags & B_CALL) {
1899 DLOG((DLOG_SEG, "lfs_writeseg: "
1900 "indir bp should not be B_CALL\n"));
1901 s = splbio();
1902 biodone(bp);
1903 splx(s);
1904 bp = NULL;
1905 } else {
1906 /* Still on free list, leave it there */
1907 s = splbio();
1908 bp->b_flags &= ~B_BUSY;
1909 if (bp->b_flags & B_WANTED)
1910 wakeup(bp);
1911 splx(s);
1912 /*
1913 * We have to re-decrement lfs_avail
1914 * since this block is going to come
1915 * back around to us in the next
1916 * segment.
1917 */
1918 fs->lfs_avail -=
1919 btofsb(fs, bp->b_bcount);
1920 }
1921 } else {
1922 lfs_freebuf(fs, newbp);
1923 }
1924 }
1925 }
1926 /*
1927 * Compute checksum across data and then across summary; the first
1928 * block (the summary block) is skipped. Set the create time here
1929 * so that it's guaranteed to be later than the inode mod times.
1930 */
1931 sum = 0;
1932 if (fs->lfs_version == 1)
1933 el_size = sizeof(u_long);
1934 else
1935 el_size = sizeof(u_int32_t);
1936 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
1937 ++bpp;
1938 /* Loop through gop_write cluster blocks */
1939 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
1940 byteoffset += fs->lfs_bsize) {
1941 #ifdef LFS_USE_B_INVAL
1942 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
1943 (B_CALL | B_INVAL)) {
1944 if (copyin((caddr_t)(*bpp)->b_saveaddr +
1945 byteoffset, dp, el_size)) {
1946 panic("lfs_writeseg: copyin failed [1]:"
1947 " ino %d blk %" PRId64,
1948 VTOI((*bpp)->b_vp)->i_number,
1949 (*bpp)->b_lblkno);
1950 }
1951 } else
1952 #endif /* LFS_USE_B_INVAL */
1953 {
1954 sum = lfs_cksum_part(
1955 (*bpp)->b_data + byteoffset, el_size, sum);
1956 }
1957 }
1958 }
1959 if (fs->lfs_version == 1)
1960 ssp->ss_ocreate = time.tv_sec;
1961 else {
1962 ssp->ss_create = time.tv_sec;
1963 ssp->ss_serial = ++fs->lfs_serial;
1964 ssp->ss_ident = fs->lfs_ident;
1965 }
1966 ssp->ss_datasum = lfs_cksum_fold(sum);
1967 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
1968 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1969
1970 simple_lock(&fs->lfs_interlock);
1971 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1972 btofsb(fs, fs->lfs_sumsize));
1973 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
1974 btofsb(fs, fs->lfs_sumsize));
1975 simple_unlock(&fs->lfs_interlock);
1976
1977 /*
1978 * When we simply write the blocks we lose a rotation for every block
1979 * written. To avoid this problem, we cluster the buffers into a
1980 * chunk and write the chunk. MAXPHYS is the largest size I/O
1981 * devices can handle, use that for the size of the chunks.
1982 *
1983 * Blocks that are already clusters (from GOP_WRITE), however, we
1984 * don't bother to copy into other clusters.
1985 */
1986
1987 #define CHUNKSIZE MAXPHYS
1988
1989 if (devvp == NULL)
1990 panic("devvp is NULL");
1991 for (bpp = sp->bpp, i = nblocks; i;) {
1992 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1993 cl = cbp->b_private;
1994
1995 cbp->b_flags |= B_ASYNC | B_BUSY;
1996 cbp->b_bcount = 0;
1997
1998 #if defined(DEBUG) && defined(DIAGNOSTIC)
1999 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2000 / sizeof(int32_t)) {
2001 panic("lfs_writeseg: real bpp overwrite");
2002 }
2003 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2004 panic("lfs_writeseg: theoretical bpp overwrite");
2005 }
2006 #endif
2007
2008 /*
2009 * Construct the cluster.
2010 */
2011 simple_lock(&fs->lfs_interlock);
2012 ++fs->lfs_iocount;
2013 simple_unlock(&fs->lfs_interlock);
2014 while (i && cbp->b_bcount < CHUNKSIZE) {
2015 bp = *bpp;
2016
2017 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2018 break;
2019 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2020 break;
2021
2022 /* Clusters from GOP_WRITE are expedited */
2023 if (bp->b_bcount > fs->lfs_bsize) {
2024 if (cbp->b_bcount > 0)
2025 /* Put in its own buffer */
2026 break;
2027 else {
2028 cbp->b_data = bp->b_data;
2029 }
2030 } else if (cbp->b_bcount == 0) {
2031 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2032 LFS_NB_CLUSTER);
2033 cl->flags |= LFS_CL_MALLOC;
2034 }
2035 #ifdef DIAGNOSTIC
2036 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2037 btodb(bp->b_bcount - 1))) !=
2038 sp->seg_number) {
2039 printf("blk size %d daddr %" PRIx64
2040 " not in seg %d\n",
2041 bp->b_bcount, bp->b_blkno,
2042 sp->seg_number);
2043 panic("segment overwrite");
2044 }
2045 #endif
2046
2047 #ifdef LFS_USE_B_INVAL
2048 /*
2049 * Fake buffers from the cleaner are marked as B_INVAL.
2050 * We need to copy the data from user space rather than
2051 * from the buffer indicated.
2052 * XXX == what do I do on an error?
2053 */
2054 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2055 (B_CALL|B_INVAL)) {
2056 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2057 panic("lfs_writeseg: "
2058 "copyin failed [2]");
2059 } else
2060 #endif /* LFS_USE_B_INVAL */
2061 if (cl->flags & LFS_CL_MALLOC) {
2062 /* copy data into our cluster. */
2063 memcpy(p, bp->b_data, bp->b_bcount);
2064 p += bp->b_bcount;
2065 }
2066
2067 cbp->b_bcount += bp->b_bcount;
2068 cl->bufsize += bp->b_bcount;
2069
2070 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2071 cl->bpp[cl->bufcount++] = bp;
2072 vp = bp->b_vp;
2073 s = splbio();
2074 reassignbuf(bp, vp);
2075 V_INCR_NUMOUTPUT(vp);
2076 splx(s);
2077
2078 bpp++;
2079 i--;
2080 }
2081 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2082 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2083 else
2084 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2085 s = splbio();
2086 V_INCR_NUMOUTPUT(devvp);
2087 splx(s);
2088 VOP_STRATEGY(devvp, cbp);
2089 curproc->p_stats->p_ru.ru_oublock++;
2090 }
2091
2092 if (lfs_dostats) {
2093 ++lfs_stats.psegwrites;
2094 lfs_stats.blocktot += nblocks - 1;
2095 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2096 ++lfs_stats.psyncwrites;
2097 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2098 ++lfs_stats.pcleanwrites;
2099 lfs_stats.cleanblocks += nblocks - 1;
2100 }
2101 }
2102 return (lfs_initseg(fs) || do_again);
2103 }
2104
2105 void
2106 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2107 {
2108 struct buf *bp;
2109 int s;
2110 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2111
2112 ASSERT_MAYBE_SEGLOCK(fs);
2113 #ifdef DIAGNOSTIC
2114 KASSERT(fs->lfs_magic == LFS_MAGIC);
2115 #endif
2116 /*
2117 * If we can write one superblock while another is in
2118 * progress, we risk not having a complete checkpoint if we crash.
2119 * So, block here if a superblock write is in progress.
2120 */
2121 simple_lock(&fs->lfs_interlock);
2122 s = splbio();
2123 while (fs->lfs_sbactive) {
2124 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2125 &fs->lfs_interlock);
2126 }
2127 fs->lfs_sbactive = daddr;
2128 splx(s);
2129 simple_unlock(&fs->lfs_interlock);
2130
2131 /* Set timestamp of this version of the superblock */
2132 if (fs->lfs_version == 1)
2133 fs->lfs_otstamp = time.tv_sec;
2134 fs->lfs_tstamp = time.tv_sec;
2135
2136 /* Checksum the superblock and copy it into a buffer. */
2137 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2138 bp = lfs_newbuf(fs, devvp,
2139 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2140 memset(bp->b_data + sizeof(struct dlfs), 0,
2141 LFS_SBPAD - sizeof(struct dlfs));
2142 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2143
2144 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2145 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2146 bp->b_iodone = lfs_supercallback;
2147
2148 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2149 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2150 else
2151 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2152 curproc->p_stats->p_ru.ru_oublock++;
2153 s = splbio();
2154 V_INCR_NUMOUTPUT(bp->b_vp);
2155 splx(s);
2156 simple_lock(&fs->lfs_interlock);
2157 ++fs->lfs_iocount;
2158 simple_unlock(&fs->lfs_interlock);
2159 VOP_STRATEGY(devvp, bp);
2160 }
2161
2162 /*
2163 * Logical block number match routines used when traversing the dirty block
2164 * chain.
2165 */
2166 int
2167 lfs_match_fake(struct lfs *fs, struct buf *bp)
2168 {
2169
2170 ASSERT_SEGLOCK(fs);
2171 return LFS_IS_MALLOC_BUF(bp);
2172 }
2173
2174 #if 0
2175 int
2176 lfs_match_real(struct lfs *fs, struct buf *bp)
2177 {
2178
2179 ASSERT_SEGLOCK(fs);
2180 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2181 }
2182 #endif
2183
2184 int
2185 lfs_match_data(struct lfs *fs, struct buf *bp)
2186 {
2187
2188 ASSERT_SEGLOCK(fs);
2189 return (bp->b_lblkno >= 0);
2190 }
2191
2192 int
2193 lfs_match_indir(struct lfs *fs, struct buf *bp)
2194 {
2195 daddr_t lbn;
2196
2197 ASSERT_SEGLOCK(fs);
2198 lbn = bp->b_lblkno;
2199 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2200 }
2201
2202 int
2203 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2204 {
2205 daddr_t lbn;
2206
2207 ASSERT_SEGLOCK(fs);
2208 lbn = bp->b_lblkno;
2209 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2210 }
2211
2212 int
2213 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2214 {
2215 daddr_t lbn;
2216
2217 ASSERT_SEGLOCK(fs);
2218 lbn = bp->b_lblkno;
2219 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2220 }
2221
2222 /*
2223 * XXX - The only buffers that are going to hit these functions are the
2224 * segment write blocks, or the segment summaries, or the superblocks.
2225 *
2226 * All of the above are created by lfs_newbuf, and so do not need to be
2227 * released via brelse.
2228 */
2229 void
2230 lfs_callback(struct buf *bp)
2231 {
2232 struct lfs *fs;
2233
2234 fs = bp->b_private;
2235 ASSERT_NO_SEGLOCK(fs);
2236 lfs_freebuf(fs, bp);
2237 }
2238
2239 static void
2240 lfs_super_aiodone(struct buf *bp)
2241 {
2242 struct lfs *fs;
2243
2244 fs = bp->b_private;
2245 ASSERT_NO_SEGLOCK(fs);
2246 simple_lock(&fs->lfs_interlock);
2247 fs->lfs_sbactive = 0;
2248 if (--fs->lfs_iocount <= 1)
2249 wakeup(&fs->lfs_iocount);
2250 simple_unlock(&fs->lfs_interlock);
2251 wakeup(&fs->lfs_sbactive);
2252 lfs_freebuf(fs, bp);
2253 }
2254
2255 static void
2256 lfs_cluster_aiodone(struct buf *bp)
2257 {
2258 struct lfs_cluster *cl;
2259 struct lfs *fs;
2260 struct buf *tbp, *fbp;
2261 struct vnode *vp, *devvp;
2262 struct inode *ip;
2263 int s, error=0;
2264
2265 if (bp->b_flags & B_ERROR)
2266 error = bp->b_error;
2267
2268 cl = bp->b_private;
2269 fs = cl->fs;
2270 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2271 ASSERT_NO_SEGLOCK(fs);
2272
2273 /* Put the pages back, and release the buffer */
2274 while (cl->bufcount--) {
2275 tbp = cl->bpp[cl->bufcount];
2276 KASSERT(tbp->b_flags & B_BUSY);
2277 if (error) {
2278 tbp->b_flags |= B_ERROR;
2279 tbp->b_error = error;
2280 }
2281
2282 /*
2283 * We're done with tbp. If it has not been re-dirtied since
2284 * the cluster was written, free it. Otherwise, keep it on
2285 * the locked list to be written again.
2286 */
2287 vp = tbp->b_vp;
2288
2289 tbp->b_flags &= ~B_GATHERED;
2290
2291 LFS_BCLEAN_LOG(fs, tbp);
2292
2293 if (!(tbp->b_flags & B_CALL)) {
2294 KASSERT(tbp->b_flags & B_LOCKED);
2295 s = splbio();
2296 simple_lock(&bqueue_slock);
2297 bremfree(tbp);
2298 simple_unlock(&bqueue_slock);
2299 if (vp)
2300 reassignbuf(tbp, vp);
2301 splx(s);
2302 tbp->b_flags |= B_ASYNC; /* for biodone */
2303 }
2304
2305 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2306 LFS_UNLOCK_BUF(tbp);
2307
2308 if (tbp->b_flags & B_DONE) {
2309 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2310 cl->bufcount, (long)tbp->b_flags));
2311 }
2312
2313 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2314 /*
2315 * A buffer from the page daemon.
2316 * We use the same iodone as it does,
2317 * so we must manually disassociate its
2318 * buffers from the vp.
2319 */
2320 if (tbp->b_vp) {
2321 /* This is just silly */
2322 s = splbio();
2323 brelvp(tbp);
2324 tbp->b_vp = vp;
2325 splx(s);
2326 }
2327 /* Put it back the way it was */
2328 tbp->b_flags |= B_ASYNC;
2329 /* Master buffers have B_AGE */
2330 if (tbp->b_private == tbp)
2331 tbp->b_flags |= B_AGE;
2332 }
2333 s = splbio();
2334 biodone(tbp);
2335
2336 /*
2337 * If this is the last block for this vnode, but
2338 * there are other blocks on its dirty list,
2339 * set IN_MODIFIED/IN_CLEANING depending on what
2340 * sort of block. Only do this for our mount point,
2341 * not for, e.g., inode blocks that are attached to
2342 * the devvp.
2343 * XXX KS - Shouldn't we set *both* if both types
2344 * of blocks are present (traverse the dirty list?)
2345 */
2346 simple_lock(&global_v_numoutput_slock);
2347 if (vp != devvp && vp->v_numoutput == 0 &&
2348 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2349 ip = VTOI(vp);
2350 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2351 ip->i_number));
2352 if (LFS_IS_MALLOC_BUF(fbp))
2353 LFS_SET_UINO(ip, IN_CLEANING);
2354 else
2355 LFS_SET_UINO(ip, IN_MODIFIED);
2356 }
2357 simple_unlock(&global_v_numoutput_slock);
2358 splx(s);
2359 wakeup(vp);
2360 }
2361
2362 /* Fix up the cluster buffer, and release it */
2363 if (cl->flags & LFS_CL_MALLOC)
2364 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2365 putiobuf(bp);
2366
2367 /* Note i/o done */
2368 if (cl->flags & LFS_CL_SYNC) {
2369 if (--cl->seg->seg_iocount == 0)
2370 wakeup(&cl->seg->seg_iocount);
2371 }
2372 simple_lock(&fs->lfs_interlock);
2373 #ifdef DIAGNOSTIC
2374 if (fs->lfs_iocount == 0)
2375 panic("lfs_cluster_aiodone: zero iocount");
2376 #endif
2377 if (--fs->lfs_iocount <= 1)
2378 wakeup(&fs->lfs_iocount);
2379 simple_unlock(&fs->lfs_interlock);
2380
2381 pool_put(&fs->lfs_bpppool, cl->bpp);
2382 cl->bpp = NULL;
2383 pool_put(&fs->lfs_clpool, cl);
2384 }
2385
2386 static void
2387 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2388 {
2389 /* reset b_iodone for when this is a single-buf i/o. */
2390 bp->b_iodone = aiodone;
2391
2392 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2393 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2394 wakeup(&uvm.aiodoned);
2395 simple_unlock(&uvm.aiodoned_lock);
2396 }
2397
2398 static void
2399 lfs_cluster_callback(struct buf *bp)
2400 {
2401
2402 lfs_generic_callback(bp, lfs_cluster_aiodone);
2403 }
2404
2405 void
2406 lfs_supercallback(struct buf *bp)
2407 {
2408
2409 lfs_generic_callback(bp, lfs_super_aiodone);
2410 }
2411
2412 /*
2413 * Shellsort (diminishing increment sort) from Data Structures and
2414 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2415 * see also Knuth Vol. 3, page 84. The increments are selected from
2416 * formula (8), page 95. Roughly O(N^3/2).
2417 */
2418 /*
2419 * This is our own private copy of shellsort because we want to sort
2420 * two parallel arrays (the array of buffer pointers and the array of
2421 * logical block numbers) simultaneously. Note that we cast the array
2422 * of logical block numbers to a unsigned in this routine so that the
2423 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2424 */
2425
2426 void
2427 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2428 {
2429 static int __rsshell_increments[] = { 4, 1, 0 };
2430 int incr, *incrp, t1, t2;
2431 struct buf *bp_temp;
2432
2433 #ifdef DEBUG
2434 incr = 0;
2435 for (t1 = 0; t1 < nmemb; t1++) {
2436 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2437 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2438 /* dump before panic */
2439 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2440 nmemb, size);
2441 incr = 0;
2442 for (t1 = 0; t1 < nmemb; t1++) {
2443 const struct buf *bp = bp_array[t1];
2444
2445 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2446 PRIu64 "\n", t1,
2447 (uint64_t)bp->b_bcount,
2448 (uint64_t)bp->b_lblkno);
2449 printf("lbns:");
2450 for (t2 = 0; t2 * size < bp->b_bcount;
2451 t2++) {
2452 printf(" %" PRId32,
2453 lb_array[incr++]);
2454 }
2455 printf("\n");
2456 }
2457 panic("lfs_shellsort: inconsistent input");
2458 }
2459 }
2460 }
2461 #endif
2462
2463 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2464 for (t1 = incr; t1 < nmemb; ++t1)
2465 for (t2 = t1 - incr; t2 >= 0;)
2466 if ((u_int32_t)bp_array[t2]->b_lblkno >
2467 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2468 bp_temp = bp_array[t2];
2469 bp_array[t2] = bp_array[t2 + incr];
2470 bp_array[t2 + incr] = bp_temp;
2471 t2 -= incr;
2472 } else
2473 break;
2474
2475 /* Reform the list of logical blocks */
2476 incr = 0;
2477 for (t1 = 0; t1 < nmemb; t1++) {
2478 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2479 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2480 }
2481 }
2482 }
2483
2484 /*
2485 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2486 */
2487 int
2488 lfs_vref(struct vnode *vp)
2489 {
2490 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2491 /*
2492 * If we return 1 here during a flush, we risk vinvalbuf() not
2493 * being able to flush all of the pages from this vnode, which
2494 * will cause it to panic. So, return 0 if a flush is in progress.
2495 */
2496 if (vp->v_flag & VXLOCK) {
2497 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2498 return 0;
2499 }
2500 return (1);
2501 }
2502 return (vget(vp, 0));
2503 }
2504
2505 /*
2506 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2507 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2508 */
2509 void
2510 lfs_vunref(struct vnode *vp)
2511 {
2512 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs);
2513 /*
2514 * Analogous to lfs_vref, if the node is flushing, fake it.
2515 */
2516 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2517 return;
2518 }
2519
2520 simple_lock(&vp->v_interlock);
2521 #ifdef DIAGNOSTIC
2522 if (vp->v_usecount <= 0) {
2523 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2524 VTOI(vp)->i_number);
2525 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2526 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2527 panic("lfs_vunref: v_usecount < 0");
2528 }
2529 #endif
2530 vp->v_usecount--;
2531 if (vp->v_usecount > 0) {
2532 simple_unlock(&vp->v_interlock);
2533 return;
2534 }
2535 /*
2536 * insert at tail of LRU list
2537 */
2538 simple_lock(&vnode_free_list_slock);
2539 if (vp->v_holdcnt > 0)
2540 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2541 else
2542 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2543 simple_unlock(&vnode_free_list_slock);
2544 simple_unlock(&vp->v_interlock);
2545 }
2546
2547 /*
2548 * We use this when we have vnodes that were loaded in solely for cleaning.
2549 * There is no reason to believe that these vnodes will be referenced again
2550 * soon, since the cleaning process is unrelated to normal filesystem
2551 * activity. Putting cleaned vnodes at the tail of the list has the effect
2552 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2553 * cleaning at the head of the list, instead.
2554 */
2555 void
2556 lfs_vunref_head(struct vnode *vp)
2557 {
2558
2559 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2560 simple_lock(&vp->v_interlock);
2561 #ifdef DIAGNOSTIC
2562 if (vp->v_usecount == 0) {
2563 panic("lfs_vunref: v_usecount<0");
2564 }
2565 #endif
2566 vp->v_usecount--;
2567 if (vp->v_usecount > 0) {
2568 simple_unlock(&vp->v_interlock);
2569 return;
2570 }
2571 /*
2572 * insert at head of LRU list
2573 */
2574 simple_lock(&vnode_free_list_slock);
2575 if (vp->v_holdcnt > 0)
2576 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2577 else
2578 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2579 simple_unlock(&vnode_free_list_slock);
2580 simple_unlock(&vp->v_interlock);
2581 }
2582
2583