Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.179
      1 /*	$NetBSD: lfs_segment.c,v 1.179 2006/05/14 21:32:45 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.179 2006/05/14 21:32:45 elad Exp $");
     71 
     72 #ifdef DEBUG
     73 # define vndebug(vp, str) do {						\
     74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     76 		     VTOI(vp)->i_number, (str), op));			\
     77 } while(0)
     78 #else
     79 # define vndebug(vp, str)
     80 #endif
     81 #define ivndebug(vp, str) \
     82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     83 
     84 #if defined(_KERNEL_OPT)
     85 #include "opt_ddb.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/namei.h>
     91 #include <sys/kernel.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/file.h>
     94 #include <sys/stat.h>
     95 #include <sys/buf.h>
     96 #include <sys/proc.h>
     97 #include <sys/vnode.h>
     98 #include <sys/mount.h>
     99 #include <sys/kauth.h>
    100 
    101 #include <miscfs/specfs/specdev.h>
    102 #include <miscfs/fifofs/fifo.h>
    103 
    104 #include <ufs/ufs/inode.h>
    105 #include <ufs/ufs/dir.h>
    106 #include <ufs/ufs/ufsmount.h>
    107 #include <ufs/ufs/ufs_extern.h>
    108 
    109 #include <ufs/lfs/lfs.h>
    110 #include <ufs/lfs/lfs_extern.h>
    111 
    112 #include <uvm/uvm.h>
    113 #include <uvm/uvm_extern.h>
    114 
    115 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    116 
    117 extern int count_lock_queue(void);
    118 extern struct simplelock vnode_free_list_slock;		/* XXX */
    119 extern struct simplelock bqueue_slock;			/* XXX */
    120 
    121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    122 static void lfs_super_aiodone(struct buf *);
    123 static void lfs_cluster_aiodone(struct buf *);
    124 static void lfs_cluster_callback(struct buf *);
    125 
    126 /*
    127  * Determine if it's OK to start a partial in this segment, or if we need
    128  * to go on to a new segment.
    129  */
    130 #define	LFS_PARTIAL_FITS(fs) \
    131 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    132 	fragstofsb((fs), (fs)->lfs_frag))
    133 
    134 /*
    135  * Figure out whether we should do a checkpoint write or go ahead with
    136  * an ordinary write.
    137  */
    138 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
    139 	(fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
    140 	 (flags & SEGM_CKP) ||						\
    141 	 fs->lfs_nclean < LFS_MAX_ACTIVE)
    142 
    143 int	 lfs_match_fake(struct lfs *, struct buf *);
    144 void	 lfs_newseg(struct lfs *);
    145 /* XXX ondisk32 */
    146 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    147 void	 lfs_supercallback(struct buf *);
    148 void	 lfs_updatemeta(struct segment *);
    149 void	 lfs_writesuper(struct lfs *, daddr_t);
    150 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    151 	    struct segment *sp, int dirops);
    152 
    153 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    154 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    155 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    156 int	lfs_dirvcount = 0;		/* # active dirops */
    157 
    158 /* Statistics Counters */
    159 int lfs_dostats = 1;
    160 struct lfs_stats lfs_stats;
    161 
    162 /* op values to lfs_writevnodes */
    163 #define	VN_REG		0
    164 #define	VN_DIROP	1
    165 #define	VN_EMPTY	2
    166 #define VN_CLEAN	3
    167 
    168 /*
    169  * XXX KS - Set modification time on the Ifile, so the cleaner can
    170  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    171  * since we don't really need this to be flushed to disk (and in any
    172  * case that wouldn't happen to the Ifile until we checkpoint).
    173  */
    174 void
    175 lfs_imtime(struct lfs *fs)
    176 {
    177 	struct timespec ts;
    178 	struct inode *ip;
    179 
    180 	ASSERT_MAYBE_SEGLOCK(fs);
    181 	nanotime(&ts);
    182 	ip = VTOI(fs->lfs_ivnode);
    183 	ip->i_ffs1_mtime = ts.tv_sec;
    184 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    185 }
    186 
    187 /*
    188  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    189  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    190  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    191  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    192  */
    193 
    194 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    195 
    196 int
    197 lfs_vflush(struct vnode *vp)
    198 {
    199 	struct inode *ip;
    200 	struct lfs *fs;
    201 	struct segment *sp;
    202 	struct buf *bp, *nbp, *tbp, *tnbp;
    203 	int error, s;
    204 	int flushed;
    205 	int relock;
    206 
    207 	ip = VTOI(vp);
    208 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    209 	relock = 0;
    210 
    211     top:
    212 	ASSERT_NO_SEGLOCK(fs);
    213 	if (ip->i_flag & IN_CLEANING) {
    214 		ivndebug(vp,"vflush/in_cleaning");
    215 		LFS_CLR_UINO(ip, IN_CLEANING);
    216 		LFS_SET_UINO(ip, IN_MODIFIED);
    217 
    218 		/*
    219 		 * Toss any cleaning buffers that have real counterparts
    220 		 * to avoid losing new data.
    221 		 */
    222 		s = splbio();
    223 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    224 			nbp = LIST_NEXT(bp, b_vnbufs);
    225 			if (!LFS_IS_MALLOC_BUF(bp))
    226 				continue;
    227 			/*
    228 			 * Look for pages matching the range covered
    229 			 * by cleaning blocks.  It's okay if more dirty
    230 			 * pages appear, so long as none disappear out
    231 			 * from under us.
    232 			 */
    233 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    234 			    vp != fs->lfs_ivnode) {
    235 				struct vm_page *pg;
    236 				voff_t off;
    237 
    238 				simple_lock(&vp->v_interlock);
    239 				for (off = lblktosize(fs, bp->b_lblkno);
    240 				     off < lblktosize(fs, bp->b_lblkno + 1);
    241 				     off += PAGE_SIZE) {
    242 					pg = uvm_pagelookup(&vp->v_uobj, off);
    243 					if (pg == NULL)
    244 						continue;
    245 					if ((pg->flags & PG_CLEAN) == 0 ||
    246 					    pmap_is_modified(pg)) {
    247 						fs->lfs_avail += btofsb(fs,
    248 							bp->b_bcount);
    249 						wakeup(&fs->lfs_avail);
    250 						lfs_freebuf(fs, bp);
    251 						bp = NULL;
    252 						simple_unlock(&vp->v_interlock);
    253 						goto nextbp;
    254 					}
    255 				}
    256 				simple_unlock(&vp->v_interlock);
    257 			}
    258 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    259 			    tbp = tnbp)
    260 			{
    261 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    262 				if (tbp->b_vp == bp->b_vp
    263 				   && tbp->b_lblkno == bp->b_lblkno
    264 				   && tbp != bp)
    265 				{
    266 					fs->lfs_avail += btofsb(fs,
    267 						bp->b_bcount);
    268 					wakeup(&fs->lfs_avail);
    269 					lfs_freebuf(fs, bp);
    270 					bp = NULL;
    271 					break;
    272 				}
    273 			}
    274 		    nextbp:
    275 			;
    276 		}
    277 		splx(s);
    278 	}
    279 
    280 	/* If the node is being written, wait until that is done */
    281 	simple_lock(&vp->v_interlock);
    282 	s = splbio();
    283 	if (WRITEINPROG(vp)) {
    284 		ivndebug(vp,"vflush/writeinprog");
    285 		ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
    286 	}
    287 	splx(s);
    288 	simple_unlock(&vp->v_interlock);
    289 
    290 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    291 	lfs_seglock(fs, SEGM_SYNC);
    292 
    293 	/* If we're supposed to flush a freed inode, just toss it */
    294 	if (ip->i_lfs_iflags & LFSI_DELETED) {
    295 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    296 		      ip->i_number));
    297 		s = splbio();
    298 		/* Drain v_numoutput */
    299 		simple_lock(&global_v_numoutput_slock);
    300 		while (vp->v_numoutput > 0) {
    301 			vp->v_flag |= VBWAIT;
    302 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
    303 				&global_v_numoutput_slock);
    304 		}
    305 		simple_unlock(&global_v_numoutput_slock);
    306 		KASSERT(vp->v_numoutput == 0);
    307 
    308 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    309 			nbp = LIST_NEXT(bp, b_vnbufs);
    310 
    311 			KASSERT((bp->b_flags & B_GATHERED) == 0);
    312 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    313 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    314 				wakeup(&fs->lfs_avail);
    315 			}
    316 			/* Copied from lfs_writeseg */
    317 			if (bp->b_flags & B_CALL) {
    318 				biodone(bp);
    319 			} else {
    320 				bremfree(bp);
    321 				LFS_UNLOCK_BUF(bp);
    322 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    323 					 B_GATHERED);
    324 				bp->b_flags |= B_DONE;
    325 				reassignbuf(bp, vp);
    326 				brelse(bp);
    327 			}
    328 		}
    329 		splx(s);
    330 		LFS_CLR_UINO(ip, IN_CLEANING);
    331 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    332 		ip->i_flag &= ~IN_ALLMOD;
    333 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    334 		      ip->i_number));
    335 		lfs_segunlock(fs);
    336 
    337 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    338 
    339 		return 0;
    340 	}
    341 
    342 	fs->lfs_flushvp = vp;
    343 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
    344 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    345 		fs->lfs_flushvp = NULL;
    346 		KASSERT(fs->lfs_flushvp_fakevref == 0);
    347 		lfs_segunlock(fs);
    348 
    349 		/* Make sure that any pending buffers get written */
    350 		s = splbio();
    351 		simple_lock(&global_v_numoutput_slock);
    352 		while (vp->v_numoutput > 0) {
    353 			vp->v_flag |= VBWAIT;
    354 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
    355 				&global_v_numoutput_slock);
    356 		}
    357 		simple_unlock(&global_v_numoutput_slock);
    358 		splx(s);
    359 
    360 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    361 		KASSERT(vp->v_numoutput == 0);
    362 
    363 		return error;
    364 	}
    365 	sp = fs->lfs_sp;
    366 
    367 	flushed = 0;
    368 	if (VPISEMPTY(vp)) {
    369 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    370 		++flushed;
    371 	} else if ((ip->i_flag & IN_CLEANING) &&
    372 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    373 		ivndebug(vp,"vflush/clean");
    374 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    375 		++flushed;
    376 	} else if (lfs_dostats) {
    377 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    378 			++lfs_stats.vflush_invoked;
    379 		ivndebug(vp,"vflush");
    380 	}
    381 
    382 #ifdef DIAGNOSTIC
    383 	if (vp->v_flag & VDIROP) {
    384 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
    385 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
    386 	}
    387 	if (vp->v_usecount < 0) {
    388 		printf("usecount=%ld\n", (long)vp->v_usecount);
    389 		panic("lfs_vflush: usecount<0");
    390 	}
    391 #endif
    392 
    393 	do {
    394 		do {
    395 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    396 				relock = lfs_writefile(fs, sp, vp);
    397 				if (relock) {
    398 					/*
    399 					 * Might have to wait for the
    400 					 * cleaner to run; but we're
    401 					 * still not done with this vnode.
    402 					 */
    403 					lfs_writeinode(fs, sp, ip);
    404 					LFS_SET_UINO(ip, IN_MODIFIED);
    405 					lfs_writeseg(fs, sp);
    406 					lfs_segunlock(fs);
    407 					lfs_segunlock_relock(fs);
    408 					goto top;
    409 				}
    410 			}
    411 			/*
    412 			 * If we begin a new segment in the middle of writing
    413 			 * the Ifile, it creates an inconsistent checkpoint,
    414 			 * since the Ifile information for the new segment
    415 			 * is not up-to-date.  Take care of this here by
    416 			 * sending the Ifile through again in case there
    417 			 * are newly dirtied blocks.  But wait, there's more!
    418 			 * This second Ifile write could *also* cross a segment
    419 			 * boundary, if the first one was large.  The second
    420 			 * one is guaranteed to be no more than 8 blocks,
    421 			 * though (two segment blocks and supporting indirects)
    422 			 * so the third write *will not* cross the boundary.
    423 			 */
    424 			if (vp == fs->lfs_ivnode) {
    425 				lfs_writefile(fs, sp, vp);
    426 				lfs_writefile(fs, sp, vp);
    427 			}
    428 		} while (lfs_writeinode(fs, sp, ip));
    429 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    430 
    431 	if (lfs_dostats) {
    432 		++lfs_stats.nwrites;
    433 		if (sp->seg_flags & SEGM_SYNC)
    434 			++lfs_stats.nsync_writes;
    435 		if (sp->seg_flags & SEGM_CKP)
    436 			++lfs_stats.ncheckpoints;
    437 	}
    438 	/*
    439 	 * If we were called from somewhere that has already held the seglock
    440 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    441 	 * the write to complete because we are still locked.
    442 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    443 	 * we must explicitly wait, if that is the case.
    444 	 *
    445 	 * We compare the iocount against 1, not 0, because it is
    446 	 * artificially incremented by lfs_seglock().
    447 	 */
    448 	simple_lock(&fs->lfs_interlock);
    449 	if (fs->lfs_seglock > 1) {
    450 		while (fs->lfs_iocount > 1)
    451 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
    452 				     "lfs_vflush", 0, &fs->lfs_interlock);
    453 	}
    454 	simple_unlock(&fs->lfs_interlock);
    455 
    456 	lfs_segunlock(fs);
    457 
    458 	/* Wait for these buffers to be recovered by aiodoned */
    459 	s = splbio();
    460 	simple_lock(&global_v_numoutput_slock);
    461 	while (vp->v_numoutput > 0) {
    462 		vp->v_flag |= VBWAIT;
    463 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
    464 			&global_v_numoutput_slock);
    465 	}
    466 	simple_unlock(&global_v_numoutput_slock);
    467 	splx(s);
    468 
    469 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    470 	KASSERT(vp->v_numoutput == 0);
    471 
    472 	fs->lfs_flushvp = NULL;
    473 	KASSERT(fs->lfs_flushvp_fakevref == 0);
    474 
    475 	return (0);
    476 }
    477 
    478 int
    479 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    480 {
    481 	struct inode *ip;
    482 	struct vnode *vp, *nvp;
    483 	int inodes_written = 0, only_cleaning;
    484 	int error = 0;
    485 
    486 	ASSERT_SEGLOCK(fs);
    487 #ifndef LFS_NO_BACKVP_HACK
    488 	/* BEGIN HACK */
    489 #define	VN_OFFSET	\
    490 	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    491 #define	BACK_VP(VP)	\
    492 	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    493 #define	BEG_OF_VLIST	\
    494 	((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
    495 	- VN_OFFSET))
    496 
    497 	/* Find last vnode. */
    498  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    499 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    500 	     vp = LIST_NEXT(vp, v_mntvnodes));
    501 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    502 		nvp = BACK_VP(vp);
    503 #else
    504 	loop:
    505 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    506 		nvp = LIST_NEXT(vp, v_mntvnodes);
    507 #endif
    508 		/*
    509 		 * If the vnode that we are about to sync is no longer
    510 		 * associated with this mount point, start over.
    511 		 */
    512 		if (vp->v_mount != mp) {
    513 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    514 			/*
    515 			 * After this, pages might be busy
    516 			 * due to our own previous putpages.
    517 			 * Start actual segment write here to avoid deadlock.
    518 			 */
    519 			(void)lfs_writeseg(fs, sp);
    520 			goto loop;
    521 		}
    522 
    523 		if (vp->v_type == VNON) {
    524 			continue;
    525 		}
    526 
    527 		ip = VTOI(vp);
    528 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    529 		    (op != VN_DIROP && op != VN_CLEAN &&
    530 		    (vp->v_flag & VDIROP))) {
    531 			vndebug(vp,"dirop");
    532 			continue;
    533 		}
    534 
    535 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    536 			vndebug(vp,"empty");
    537 			continue;
    538 		}
    539 
    540 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    541 		   && vp != fs->lfs_flushvp
    542 		   && !(ip->i_flag & IN_CLEANING)) {
    543 			vndebug(vp,"cleaning");
    544 			continue;
    545 		}
    546 
    547 		if (lfs_vref(vp)) {
    548 			vndebug(vp,"vref");
    549 			continue;
    550 		}
    551 
    552 		only_cleaning = 0;
    553 		/*
    554 		 * Write the inode/file if dirty and it's not the IFILE.
    555 		 */
    556 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    557 			only_cleaning =
    558 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    559 
    560 			if (ip->i_number != LFS_IFILE_INUM) {
    561 				error = lfs_writefile(fs, sp, vp);
    562 				if (error) {
    563 					lfs_vunref(vp);
    564 					if (error == EAGAIN) {
    565 						/*
    566 						 * This error from lfs_putpages
    567 						 * indicates we need to drop
    568 						 * the segment lock and start
    569 						 * over after the cleaner has
    570 						 * had a chance to run.
    571 						 */
    572 						lfs_writeinode(fs, sp, ip);
    573 						lfs_writeseg(fs, sp);
    574 						if (!VPISEMPTY(vp) &&
    575 						    !WRITEINPROG(vp) &&
    576 						    !(ip->i_flag & IN_ALLMOD))
    577 							LFS_SET_UINO(ip, IN_MODIFIED);
    578 						break;
    579 					}
    580 					error = 0; /* XXX not quite right */
    581 					continue;
    582 				}
    583 
    584 				if (!VPISEMPTY(vp)) {
    585 					if (WRITEINPROG(vp)) {
    586 						ivndebug(vp,"writevnodes/write2");
    587 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    588 						LFS_SET_UINO(ip, IN_MODIFIED);
    589 					}
    590 				}
    591 				(void) lfs_writeinode(fs, sp, ip);
    592 				inodes_written++;
    593 			}
    594 		}
    595 
    596 		if (lfs_clean_vnhead && only_cleaning)
    597 			lfs_vunref_head(vp);
    598 		else
    599 			lfs_vunref(vp);
    600 	}
    601 	return error;
    602 }
    603 
    604 /*
    605  * Do a checkpoint.
    606  */
    607 int
    608 lfs_segwrite(struct mount *mp, int flags)
    609 {
    610 	struct buf *bp;
    611 	struct inode *ip;
    612 	struct lfs *fs;
    613 	struct segment *sp;
    614 	struct vnode *vp;
    615 	SEGUSE *segusep;
    616 	int do_ckp, did_ckp, error, s;
    617 	unsigned n, segleft, maxseg, sn, i, curseg;
    618 	int writer_set = 0;
    619 	int dirty;
    620 	int redo;
    621 	int um_error;
    622 
    623 	fs = VFSTOUFS(mp)->um_lfs;
    624 	ASSERT_MAYBE_SEGLOCK(fs);
    625 
    626 	if (fs->lfs_ronly)
    627 		return EROFS;
    628 
    629 	lfs_imtime(fs);
    630 
    631 	/*
    632 	 * Allocate a segment structure and enough space to hold pointers to
    633 	 * the maximum possible number of buffers which can be described in a
    634 	 * single summary block.
    635 	 */
    636 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
    637 
    638 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    639 	sp = fs->lfs_sp;
    640 
    641 	/*
    642 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    643 	 * in which case we have to flush *all* buffers off of this vnode.
    644 	 * We don't care about other nodes, but write any non-dirop nodes
    645 	 * anyway in anticipation of another getnewvnode().
    646 	 *
    647 	 * If we're cleaning we only write cleaning and ifile blocks, and
    648 	 * no dirops, since otherwise we'd risk corruption in a crash.
    649 	 */
    650 	if (sp->seg_flags & SEGM_CLEAN)
    651 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    652 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    653 		do {
    654 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
    655 			if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    656 				if (!writer_set) {
    657 					lfs_writer_enter(fs, "lfs writer");
    658 					writer_set = 1;
    659 				}
    660 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
    661 				if (um_error == 0)
    662 					um_error = error;
    663 				/* In case writevnodes errored out */
    664 				lfs_flush_dirops(fs);
    665 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    666 				lfs_finalize_fs_seguse(fs);
    667 			}
    668 			if (do_ckp && um_error) {
    669 				lfs_segunlock_relock(fs);
    670 				sp = fs->lfs_sp;
    671 			}
    672 		} while (do_ckp && um_error != 0);
    673 	}
    674 
    675 	/*
    676 	 * If we are doing a checkpoint, mark everything since the
    677 	 * last checkpoint as no longer ACTIVE.
    678 	 */
    679 	if (do_ckp) {
    680 		segleft = fs->lfs_nseg;
    681 		curseg = 0;
    682 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    683 			dirty = 0;
    684 			if (bread(fs->lfs_ivnode,
    685 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
    686 				panic("lfs_segwrite: ifile read");
    687 			segusep = (SEGUSE *)bp->b_data;
    688 			maxseg = min(segleft, fs->lfs_sepb);
    689 			for (i = 0; i < maxseg; i++) {
    690 				sn = curseg + i;
    691 				if (sn != dtosn(fs, fs->lfs_curseg) &&
    692 				    segusep->su_flags & SEGUSE_ACTIVE) {
    693 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    694 					--fs->lfs_nactive;
    695 					++dirty;
    696 				}
    697 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    698 					segusep->su_flags;
    699 				if (fs->lfs_version > 1)
    700 					++segusep;
    701 				else
    702 					segusep = (SEGUSE *)
    703 						((SEGUSE_V1 *)segusep + 1);
    704 			}
    705 
    706 			if (dirty)
    707 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    708 			else
    709 				brelse(bp);
    710 			segleft -= fs->lfs_sepb;
    711 			curseg += fs->lfs_sepb;
    712 		}
    713 	}
    714 
    715 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
    716 
    717 	did_ckp = 0;
    718 	if (do_ckp || fs->lfs_doifile) {
    719 		vp = fs->lfs_ivnode;
    720 		vn_lock(vp, LK_EXCLUSIVE);
    721 		do {
    722 #ifdef DEBUG
    723 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    724 #endif
    725 			simple_lock(&fs->lfs_interlock);
    726 			fs->lfs_flags &= ~LFS_IFDIRTY;
    727 			simple_unlock(&fs->lfs_interlock);
    728 
    729 			ip = VTOI(vp);
    730 
    731 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    732 				/*
    733 				 * Ifile has no pages, so we don't need
    734 				 * to check error return here.
    735 				 */
    736 				lfs_writefile(fs, sp, vp);
    737 				/*
    738 				 * Ensure the Ifile takes the current segment
    739 				 * into account.  See comment in lfs_vflush.
    740 				 */
    741 				lfs_writefile(fs, sp, vp);
    742 				lfs_writefile(fs, sp, vp);
    743 			}
    744 
    745 			if (ip->i_flag & IN_ALLMOD)
    746 				++did_ckp;
    747 			redo = lfs_writeinode(fs, sp, ip);
    748 			redo += lfs_writeseg(fs, sp);
    749 			simple_lock(&fs->lfs_interlock);
    750 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    751 			simple_unlock(&fs->lfs_interlock);
    752 		} while (redo && do_ckp);
    753 
    754 		/*
    755 		 * Unless we are unmounting, the Ifile may continue to have
    756 		 * dirty blocks even after a checkpoint, due to changes to
    757 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    758 		 * for other parts of the Ifile to be dirty after the loop
    759 		 * above, since we hold the segment lock.
    760 		 */
    761 		s = splbio();
    762 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    763 			LFS_CLR_UINO(ip, IN_ALLMOD);
    764 		}
    765 #ifdef DIAGNOSTIC
    766 		else if (do_ckp) {
    767 			int do_panic = 0;
    768 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    769 				if (bp->b_lblkno < fs->lfs_cleansz +
    770 				    fs->lfs_segtabsz &&
    771 				    !(bp->b_flags & B_GATHERED)) {
    772 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    773 						(long)bp->b_lblkno,
    774 						(long)bp->b_flags);
    775 					++do_panic;
    776 				}
    777 			}
    778 			if (do_panic)
    779 				panic("dirty blocks");
    780 		}
    781 #endif
    782 		splx(s);
    783 		VOP_UNLOCK(vp, 0);
    784 	} else {
    785 		(void) lfs_writeseg(fs, sp);
    786 	}
    787 
    788 	/* Note Ifile no longer needs to be written */
    789 	fs->lfs_doifile = 0;
    790 	if (writer_set)
    791 		lfs_writer_leave(fs);
    792 
    793 	/*
    794 	 * If we didn't write the Ifile, we didn't really do anything.
    795 	 * That means that (1) there is a checkpoint on disk and (2)
    796 	 * nothing has changed since it was written.
    797 	 *
    798 	 * Take the flags off of the segment so that lfs_segunlock
    799 	 * doesn't have to write the superblock either.
    800 	 */
    801 	if (do_ckp && !did_ckp) {
    802 		sp->seg_flags &= ~SEGM_CKP;
    803 	}
    804 
    805 	if (lfs_dostats) {
    806 		++lfs_stats.nwrites;
    807 		if (sp->seg_flags & SEGM_SYNC)
    808 			++lfs_stats.nsync_writes;
    809 		if (sp->seg_flags & SEGM_CKP)
    810 			++lfs_stats.ncheckpoints;
    811 	}
    812 	lfs_segunlock(fs);
    813 	return (0);
    814 }
    815 
    816 /*
    817  * Write the dirty blocks associated with a vnode.
    818  */
    819 int
    820 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    821 {
    822 	struct buf *bp;
    823 	struct finfo *fip;
    824 	struct inode *ip;
    825 	IFILE *ifp;
    826 	int i, frag;
    827 	int error;
    828 
    829 	ASSERT_SEGLOCK(fs);
    830 	error = 0;
    831 	ip = VTOI(vp);
    832 
    833 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    834 	    sp->sum_bytes_left < sizeof(struct finfo))
    835 		(void) lfs_writeseg(fs, sp);
    836 
    837 	sp->sum_bytes_left -= FINFOSIZE;
    838 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    839 
    840 	if (vp->v_flag & VDIROP)
    841 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    842 
    843 	fip = sp->fip;
    844 	fip->fi_nblocks = 0;
    845 	fip->fi_ino = ip->i_number;
    846 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    847 	fip->fi_version = ifp->if_version;
    848 	brelse(bp);
    849 
    850 	if (sp->seg_flags & SEGM_CLEAN) {
    851 		lfs_gather(fs, sp, vp, lfs_match_fake);
    852 		/*
    853 		 * For a file being flushed, we need to write *all* blocks.
    854 		 * This means writing the cleaning blocks first, and then
    855 		 * immediately following with any non-cleaning blocks.
    856 		 * The same is true of the Ifile since checkpoints assume
    857 		 * that all valid Ifile blocks are written.
    858 		 */
    859 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
    860 			lfs_gather(fs, sp, vp, lfs_match_data);
    861 			/*
    862 			 * Don't call VOP_PUTPAGES: if we're flushing,
    863 			 * we've already done it, and the Ifile doesn't
    864 			 * use the page cache.
    865 			 */
    866 		}
    867 	} else {
    868 		lfs_gather(fs, sp, vp, lfs_match_data);
    869 		/*
    870 		 * If we're flushing, we've already called VOP_PUTPAGES
    871 		 * so don't do it again.  Otherwise, we want to write
    872 		 * everything we've got.
    873 		 */
    874 		if (!IS_FLUSHING(fs, vp)) {
    875 			simple_lock(&vp->v_interlock);
    876 			error = VOP_PUTPAGES(vp, 0, 0,
    877 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    878 		}
    879 	}
    880 
    881 	/*
    882 	 * It may not be necessary to write the meta-data blocks at this point,
    883 	 * as the roll-forward recovery code should be able to reconstruct the
    884 	 * list.
    885 	 *
    886 	 * We have to write them anyway, though, under two conditions: (1) the
    887 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    888 	 * checkpointing.
    889 	 *
    890 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    891 	 * new blocks not being written yet, in addition to fragments being
    892 	 * moved out of a cleaned segment.  If that is the case, don't
    893 	 * write the indirect blocks, or the finfo will have a small block
    894 	 * in the middle of it!
    895 	 * XXX in this case isn't the inode size wrong too?
    896 	 */
    897 	frag = 0;
    898 	if (sp->seg_flags & SEGM_CLEAN) {
    899 		for (i = 0; i < NDADDR; i++)
    900 			if (ip->i_lfs_fragsize[i] > 0 &&
    901 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    902 				++frag;
    903 	}
    904 #ifdef DIAGNOSTIC
    905 	if (frag > 1)
    906 		panic("lfs_writefile: more than one fragment!");
    907 #endif
    908 	if (IS_FLUSHING(fs, vp) ||
    909 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    910 		lfs_gather(fs, sp, vp, lfs_match_indir);
    911 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    912 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    913 	}
    914 	fip = sp->fip;
    915 	if (fip->fi_nblocks != 0) {
    916 		sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
    917 				   sizeof(int32_t) * (fip->fi_nblocks));
    918 		sp->start_lbp = &sp->fip->fi_blocks[0];
    919 	} else {
    920 		sp->sum_bytes_left += FINFOSIZE;
    921 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    922 	}
    923 
    924 	return error;
    925 }
    926 
    927 int
    928 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    929 {
    930 	struct buf *bp, *ibp;
    931 	struct ufs1_dinode *cdp;
    932 	IFILE *ifp;
    933 	SEGUSE *sup;
    934 	daddr_t daddr;
    935 	int32_t *daddrp;	/* XXX ondisk32 */
    936 	ino_t ino;
    937 	int error, i, ndx, fsb = 0;
    938 	int redo_ifile = 0;
    939 	int gotblk = 0;
    940 
    941 	ASSERT_SEGLOCK(fs);
    942 	if (!(ip->i_flag & IN_ALLMOD))
    943 		return (0);
    944 
    945 	/* Allocate a new inode block if necessary. */
    946 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    947 	    sp->ibp == NULL) {
    948 		/* Allocate a new segment if necessary. */
    949 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    950 		    sp->sum_bytes_left < sizeof(int32_t))
    951 			(void) lfs_writeseg(fs, sp);
    952 
    953 		/* Get next inode block. */
    954 		daddr = fs->lfs_offset;
    955 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    956 		sp->ibp = *sp->cbpp++ =
    957 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
    958 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
    959 		gotblk++;
    960 
    961 		/* Zero out inode numbers */
    962 		for (i = 0; i < INOPB(fs); ++i)
    963 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
    964 			    0;
    965 
    966 		++sp->start_bpp;
    967 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    968 		/* Set remaining space counters. */
    969 		sp->seg_bytes_left -= fs->lfs_ibsize;
    970 		sp->sum_bytes_left -= sizeof(int32_t);
    971 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
    972 			sp->ninodes / INOPB(fs) - 1;
    973 		((int32_t *)(sp->segsum))[ndx] = daddr;
    974 	}
    975 
    976 	/* Update the inode times and copy the inode onto the inode page. */
    977 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    978 	if (ip->i_number != LFS_IFILE_INUM)
    979 		LFS_ITIMES(ip, NULL, NULL, NULL);
    980 
    981 	/*
    982 	 * If this is the Ifile, and we've already written the Ifile in this
    983 	 * partial segment, just overwrite it (it's not on disk yet) and
    984 	 * continue.
    985 	 *
    986 	 * XXX we know that the bp that we get the second time around has
    987 	 * already been gathered.
    988 	 */
    989 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    990 		*(sp->idp) = *ip->i_din.ffs1_din;
    991 		ip->i_lfs_osize = ip->i_size;
    992 		return 0;
    993 	}
    994 
    995 	bp = sp->ibp;
    996 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    997 	*cdp = *ip->i_din.ffs1_din;
    998 
    999 	/* We can finish the segment accounting for truncations now */
   1000 	lfs_finalize_ino_seguse(fs, ip);
   1001 
   1002 	/*
   1003 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
   1004 	 * addresses to disk; possibly change the on-disk record of
   1005 	 * the inode size, either by reverting to the previous size
   1006 	 * (in the case of cleaning) or by verifying the inode's block
   1007 	 * holdings (in the case of files being allocated as they are being
   1008 	 * written).
   1009 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
   1010 	 * XXX count on disk wrong by the same amount.	We should be
   1011 	 * XXX able to "borrow" from lfs_avail and return it after the
   1012 	 * XXX Ifile is written.  See also in lfs_writeseg.
   1013 	 */
   1014 
   1015 	/* Check file size based on highest allocated block */
   1016 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
   1017 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
   1018 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
   1019 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
   1020 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
   1021 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
   1022 	}
   1023 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
   1024 		if (ip->i_flags & IN_CLEANING)
   1025 			cdp->di_size = ip->i_lfs_osize;
   1026 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
   1027 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
   1028 		      ip->i_ffs1_blocks, fs->lfs_offset));
   1029 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
   1030 		     daddrp++) {
   1031 			if (*daddrp == UNWRITTEN) {
   1032 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
   1033 				*daddrp = 0;
   1034 			}
   1035 		}
   1036 	} else {
   1037 		/* If all blocks are going to disk, update "size on disk" */
   1038 		ip->i_lfs_osize = ip->i_size;
   1039 	}
   1040 
   1041 #ifdef DIAGNOSTIC
   1042 	/*
   1043 	 * Check dinode held blocks against dinode size.
   1044 	 * This should be identical to the check in lfs_vget().
   1045 	 */
   1046 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1047 	     i < NDADDR; i++) {
   1048 		KASSERT(i >= 0);
   1049 		if ((cdp->di_mode & IFMT) == IFLNK)
   1050 			continue;
   1051 		if (((cdp->di_mode & IFMT) == IFBLK ||
   1052 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
   1053 			continue;
   1054 		if (cdp->di_db[i] != 0) {
   1055 # ifdef DEBUG
   1056 			lfs_dump_dinode(cdp);
   1057 # endif
   1058 			panic("writing inconsistent inode");
   1059 		}
   1060 	}
   1061 #endif /* DIAGNOSTIC */
   1062 
   1063 	if (ip->i_flag & IN_CLEANING)
   1064 		LFS_CLR_UINO(ip, IN_CLEANING);
   1065 	else {
   1066 		/* XXX IN_ALLMOD */
   1067 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
   1068 			     IN_UPDATE | IN_MODIFY);
   1069 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
   1070 			LFS_CLR_UINO(ip, IN_MODIFIED);
   1071 		else
   1072 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
   1073 			      "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
   1074 			      ip->i_lfs_effnblks));
   1075 	}
   1076 
   1077 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
   1078 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
   1079 			(sp->ninodes % INOPB(fs));
   1080 	if (gotblk) {
   1081 		LFS_LOCK_BUF(bp);
   1082 		brelse(bp);
   1083 	}
   1084 
   1085 	/* Increment inode count in segment summary block. */
   1086 	++((SEGSUM *)(sp->segsum))->ss_ninos;
   1087 
   1088 	/* If this page is full, set flag to allocate a new page. */
   1089 	if (++sp->ninodes % INOPB(fs) == 0)
   1090 		sp->ibp = NULL;
   1091 
   1092 	/*
   1093 	 * If updating the ifile, update the super-block.  Update the disk
   1094 	 * address and access times for this inode in the ifile.
   1095 	 */
   1096 	ino = ip->i_number;
   1097 	if (ino == LFS_IFILE_INUM) {
   1098 		daddr = fs->lfs_idaddr;
   1099 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
   1100 	} else {
   1101 		LFS_IENTRY(ifp, fs, ino, ibp);
   1102 		daddr = ifp->if_daddr;
   1103 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
   1104 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
   1105 	}
   1106 
   1107 	/*
   1108 	 * The inode's last address should not be in the current partial
   1109 	 * segment, except under exceptional circumstances (lfs_writevnodes
   1110 	 * had to start over, and in the meantime more blocks were written
   1111 	 * to a vnode).	 Both inodes will be accounted to this segment
   1112 	 * in lfs_writeseg so we need to subtract the earlier version
   1113 	 * here anyway.	 The segment count can temporarily dip below
   1114 	 * zero here; keep track of how many duplicates we have in
   1115 	 * "dupino" so we don't panic below.
   1116 	 */
   1117 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
   1118 		++sp->ndupino;
   1119 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
   1120 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
   1121 		      (long long)daddr, sp->ndupino));
   1122 	}
   1123 	/*
   1124 	 * Account the inode: it no longer belongs to its former segment,
   1125 	 * though it will not belong to the new segment until that segment
   1126 	 * is actually written.
   1127 	 */
   1128 	if (daddr != LFS_UNUSED_DADDR) {
   1129 		u_int32_t oldsn = dtosn(fs, daddr);
   1130 #ifdef DIAGNOSTIC
   1131 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1132 #endif
   1133 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1134 #ifdef DIAGNOSTIC
   1135 		if (sup->su_nbytes +
   1136 		    sizeof (struct ufs1_dinode) * ndupino
   1137 		      < sizeof (struct ufs1_dinode)) {
   1138 			printf("lfs_writeinode: negative bytes "
   1139 			       "(segment %" PRIu32 " short by %d, "
   1140 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1141 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1142 			       "ndupino=%d)\n",
   1143 			       dtosn(fs, daddr),
   1144 			       (int)sizeof (struct ufs1_dinode) *
   1145 				   (1 - sp->ndupino) - sup->su_nbytes,
   1146 			       oldsn, sp->seg_number, daddr,
   1147 			       (unsigned int)sup->su_nbytes,
   1148 			       sp->ndupino);
   1149 			panic("lfs_writeinode: negative bytes");
   1150 			sup->su_nbytes = sizeof (struct ufs1_dinode);
   1151 		}
   1152 #endif
   1153 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1154 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
   1155 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
   1156 		redo_ifile =
   1157 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1158 		if (redo_ifile) {
   1159 			simple_lock(&fs->lfs_interlock);
   1160 			fs->lfs_flags |= LFS_IFDIRTY;
   1161 			simple_unlock(&fs->lfs_interlock);
   1162 		}
   1163 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1164 	}
   1165 	return (redo_ifile);
   1166 }
   1167 
   1168 int
   1169 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1170 {
   1171 	struct lfs *fs;
   1172 	int vers;
   1173 	int j, blksinblk;
   1174 
   1175 	ASSERT_SEGLOCK(sp->fs);
   1176 	/*
   1177 	 * If full, finish this segment.  We may be doing I/O, so
   1178 	 * release and reacquire the splbio().
   1179 	 */
   1180 #ifdef DIAGNOSTIC
   1181 	if (sp->vp == NULL)
   1182 		panic ("lfs_gatherblock: Null vp in segment");
   1183 #endif
   1184 	fs = sp->fs;
   1185 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1186 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1187 	    sp->seg_bytes_left < bp->b_bcount) {
   1188 		if (sptr)
   1189 			splx(*sptr);
   1190 		lfs_updatemeta(sp);
   1191 
   1192 		vers = sp->fip->fi_version;
   1193 		(void) lfs_writeseg(fs, sp);
   1194 
   1195 		sp->fip->fi_version = vers;
   1196 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1197 		/* Add the current file to the segment summary. */
   1198 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1199 		sp->sum_bytes_left -= FINFOSIZE;
   1200 
   1201 		if (sptr)
   1202 			*sptr = splbio();
   1203 		return (1);
   1204 	}
   1205 
   1206 	if (bp->b_flags & B_GATHERED) {
   1207 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1208 		      " lbn %" PRId64 "\n",
   1209 		      sp->fip->fi_ino, bp->b_lblkno));
   1210 		return (0);
   1211 	}
   1212 
   1213 	/* Insert into the buffer list, update the FINFO block. */
   1214 	bp->b_flags |= B_GATHERED;
   1215 
   1216 	*sp->cbpp++ = bp;
   1217 	for (j = 0; j < blksinblk; j++) {
   1218 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1219 		/* This block's accounting moves from lfs_favail to lfs_avail */
   1220 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
   1221 	}
   1222 
   1223 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1224 	sp->seg_bytes_left -= bp->b_bcount;
   1225 	return (0);
   1226 }
   1227 
   1228 int
   1229 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1230     int (*match)(struct lfs *, struct buf *))
   1231 {
   1232 	struct buf *bp, *nbp;
   1233 	int s, count = 0;
   1234 
   1235 	ASSERT_SEGLOCK(fs);
   1236 	if (vp->v_type == VBLK)
   1237 		return 0;
   1238 	KASSERT(sp->vp == NULL);
   1239 	sp->vp = vp;
   1240 	s = splbio();
   1241 
   1242 #ifndef LFS_NO_BACKBUF_HACK
   1243 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1244 # define	BUF_OFFSET	\
   1245 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1246 # define	BACK_BUF(BP)	\
   1247 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1248 # define	BEG_OF_LIST	\
   1249 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1250 
   1251 loop:
   1252 	/* Find last buffer. */
   1253 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1254 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1255 	     bp = LIST_NEXT(bp, b_vnbufs))
   1256 		/* nothing */;
   1257 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1258 		nbp = BACK_BUF(bp);
   1259 #else /* LFS_NO_BACKBUF_HACK */
   1260 loop:
   1261 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1262 		nbp = LIST_NEXT(bp, b_vnbufs);
   1263 #endif /* LFS_NO_BACKBUF_HACK */
   1264 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1265 #ifdef DEBUG
   1266 			if (vp == fs->lfs_ivnode &&
   1267 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1268 				DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
   1269 				      PRId64 " busy (%x)",
   1270 				      bp->b_lblkno, bp->b_flags));
   1271 #endif
   1272 			continue;
   1273 		}
   1274 #ifdef DIAGNOSTIC
   1275 # ifdef LFS_USE_B_INVAL
   1276 		if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1277 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1278 			      " is B_INVAL\n", bp->b_lblkno));
   1279 			VOP_PRINT(bp->b_vp);
   1280 		}
   1281 # endif /* LFS_USE_B_INVAL */
   1282 		if (!(bp->b_flags & B_DELWRI))
   1283 			panic("lfs_gather: bp not B_DELWRI");
   1284 		if (!(bp->b_flags & B_LOCKED)) {
   1285 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1286 			      " blk %" PRId64 " not B_LOCKED\n",
   1287 			      bp->b_lblkno,
   1288 			      dbtofsb(fs, bp->b_blkno)));
   1289 			VOP_PRINT(bp->b_vp);
   1290 			panic("lfs_gather: bp not B_LOCKED");
   1291 		}
   1292 #endif
   1293 		if (lfs_gatherblock(sp, bp, &s)) {
   1294 			goto loop;
   1295 		}
   1296 		count++;
   1297 	}
   1298 	splx(s);
   1299 	lfs_updatemeta(sp);
   1300 	KASSERT(sp->vp == vp);
   1301 	sp->vp = NULL;
   1302 	return count;
   1303 }
   1304 
   1305 #if DEBUG
   1306 # define DEBUG_OOFF(n) do {						\
   1307 	if (ooff == 0) {						\
   1308 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1309 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1310 			", was 0x0 (or %" PRId64 ")\n",			\
   1311 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1312 	}								\
   1313 } while (0)
   1314 #else
   1315 # define DEBUG_OOFF(n)
   1316 #endif
   1317 
   1318 /*
   1319  * Change the given block's address to ndaddr, finding its previous
   1320  * location using ufs_bmaparray().
   1321  *
   1322  * Account for this change in the segment table.
   1323  *
   1324  * called with sp == NULL by roll-forwarding code.
   1325  */
   1326 void
   1327 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1328     daddr_t lbn, int32_t ndaddr, int size)
   1329 {
   1330 	SEGUSE *sup;
   1331 	struct buf *bp;
   1332 	struct indir a[NIADDR + 2], *ap;
   1333 	struct inode *ip;
   1334 	daddr_t daddr, ooff;
   1335 	int num, error;
   1336 	int bb, osize, obb;
   1337 
   1338 	ASSERT_SEGLOCK(fs);
   1339 	KASSERT(sp == NULL || sp->vp == vp);
   1340 	ip = VTOI(vp);
   1341 
   1342 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1343 	if (error)
   1344 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
   1345 
   1346 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1347 	KASSERT(daddr <= LFS_MAX_DADDR);
   1348 	if (daddr > 0)
   1349 		daddr = dbtofsb(fs, daddr);
   1350 
   1351 	bb = fragstofsb(fs, numfrags(fs, size));
   1352 	switch (num) {
   1353 	    case 0:
   1354 		    ooff = ip->i_ffs1_db[lbn];
   1355 		    DEBUG_OOFF(0);
   1356 		    if (ooff == UNWRITTEN)
   1357 			    ip->i_ffs1_blocks += bb;
   1358 		    else {
   1359 			    /* possible fragment truncation or extension */
   1360 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1361 			    ip->i_ffs1_blocks += (bb - obb);
   1362 		    }
   1363 		    ip->i_ffs1_db[lbn] = ndaddr;
   1364 		    break;
   1365 	    case 1:
   1366 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1367 		    DEBUG_OOFF(1);
   1368 		    if (ooff == UNWRITTEN)
   1369 			    ip->i_ffs1_blocks += bb;
   1370 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1371 		    break;
   1372 	    default:
   1373 		    ap = &a[num - 1];
   1374 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1375 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1376 				  ap->in_lbn);
   1377 
   1378 		    /* XXX ondisk32 */
   1379 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1380 		    DEBUG_OOFF(num);
   1381 		    if (ooff == UNWRITTEN)
   1382 			    ip->i_ffs1_blocks += bb;
   1383 		    /* XXX ondisk32 */
   1384 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1385 		    (void) VOP_BWRITE(bp);
   1386 	}
   1387 
   1388 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1389 
   1390 	/* Update hiblk when extending the file */
   1391 	if (lbn > ip->i_lfs_hiblk)
   1392 		ip->i_lfs_hiblk = lbn;
   1393 
   1394 	/*
   1395 	 * Though we'd rather it couldn't, this *can* happen right now
   1396 	 * if cleaning blocks and regular blocks coexist.
   1397 	 */
   1398 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1399 
   1400 	/*
   1401 	 * Update segment usage information, based on old size
   1402 	 * and location.
   1403 	 */
   1404 	if (daddr > 0) {
   1405 		u_int32_t oldsn = dtosn(fs, daddr);
   1406 #ifdef DIAGNOSTIC
   1407 		int ndupino;
   1408 
   1409 		if (sp && sp->seg_number == oldsn) {
   1410 			ndupino = sp->ndupino;
   1411 		} else {
   1412 			ndupino = 0;
   1413 		}
   1414 #endif
   1415 		KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
   1416 		if (lbn >= 0 && lbn < NDADDR)
   1417 			osize = ip->i_lfs_fragsize[lbn];
   1418 		else
   1419 			osize = fs->lfs_bsize;
   1420 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1421 #ifdef DIAGNOSTIC
   1422 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
   1423 		    < osize) {
   1424 			printf("lfs_updatemeta: negative bytes "
   1425 			       "(segment %" PRIu32 " short by %" PRId64
   1426 			       ")\n", dtosn(fs, daddr),
   1427 			       (int64_t)osize -
   1428 			       (sizeof (struct ufs1_dinode) * ndupino +
   1429 				sup->su_nbytes));
   1430 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
   1431 			       ", addr = 0x%" PRIx64 "\n",
   1432 			       (unsigned long long)ip->i_number, lbn, daddr);
   1433 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1434 			panic("lfs_updatemeta: negative bytes");
   1435 			sup->su_nbytes = osize -
   1436 			    sizeof (struct ufs1_dinode) * ndupino;
   1437 		}
   1438 #endif
   1439 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1440 		      " db 0x%" PRIx64 "\n",
   1441 		      dtosn(fs, daddr), osize,
   1442 		      ip->i_number, lbn, daddr));
   1443 		sup->su_nbytes -= osize;
   1444 		if (!(bp->b_flags & B_GATHERED)) {
   1445 			simple_lock(&fs->lfs_interlock);
   1446 			fs->lfs_flags |= LFS_IFDIRTY;
   1447 			simple_unlock(&fs->lfs_interlock);
   1448 		}
   1449 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1450 	}
   1451 	/*
   1452 	 * Now that this block has a new address, and its old
   1453 	 * segment no longer owns it, we can forget about its
   1454 	 * old size.
   1455 	 */
   1456 	if (lbn >= 0 && lbn < NDADDR)
   1457 		ip->i_lfs_fragsize[lbn] = size;
   1458 }
   1459 
   1460 /*
   1461  * Update the metadata that points to the blocks listed in the FINFO
   1462  * array.
   1463  */
   1464 void
   1465 lfs_updatemeta(struct segment *sp)
   1466 {
   1467 	struct buf *sbp;
   1468 	struct lfs *fs;
   1469 	struct vnode *vp;
   1470 	daddr_t lbn;
   1471 	int i, nblocks, num;
   1472 	int bb;
   1473 	int bytesleft, size;
   1474 
   1475 	ASSERT_SEGLOCK(sp->fs);
   1476 	vp = sp->vp;
   1477 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1478 	KASSERT(nblocks >= 0);
   1479 	KASSERT(vp != NULL);
   1480 	if (nblocks == 0)
   1481 		return;
   1482 
   1483 	/*
   1484 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1485 	 * Correct for this. (XXX we should be able to keep track of these.)
   1486 	 */
   1487 	fs = sp->fs;
   1488 	for (i = 0; i < nblocks; i++) {
   1489 		if (sp->start_bpp[i] == NULL) {
   1490 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1491 			nblocks = i;
   1492 			break;
   1493 		}
   1494 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1495 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1496 		nblocks -= num - 1;
   1497 	}
   1498 
   1499 	KASSERT(vp->v_type == VREG ||
   1500 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1501 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1502 
   1503 	/*
   1504 	 * Sort the blocks.
   1505 	 *
   1506 	 * We have to sort even if the blocks come from the
   1507 	 * cleaner, because there might be other pending blocks on the
   1508 	 * same inode...and if we don't sort, and there are fragments
   1509 	 * present, blocks may be written in the wrong place.
   1510 	 */
   1511 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1512 
   1513 	/*
   1514 	 * Record the length of the last block in case it's a fragment.
   1515 	 * If there are indirect blocks present, they sort last.  An
   1516 	 * indirect block will be lfs_bsize and its presence indicates
   1517 	 * that you cannot have fragments.
   1518 	 *
   1519 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1520 	 * XXX a later indirect block.	This will continue to be
   1521 	 * XXX true until lfs_markv is fixed to do everything with
   1522 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1523 	 */
   1524 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1525 		fs->lfs_bmask) + 1;
   1526 
   1527 	/*
   1528 	 * Assign disk addresses, and update references to the logical
   1529 	 * block and the segment usage information.
   1530 	 */
   1531 	for (i = nblocks; i--; ++sp->start_bpp) {
   1532 		sbp = *sp->start_bpp;
   1533 		lbn = *sp->start_lbp;
   1534 		KASSERT(sbp->b_lblkno == lbn);
   1535 
   1536 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1537 
   1538 		/*
   1539 		 * If we write a frag in the wrong place, the cleaner won't
   1540 		 * be able to correctly identify its size later, and the
   1541 		 * segment will be uncleanable.	 (Even worse, it will assume
   1542 		 * that the indirect block that actually ends the list
   1543 		 * is of a smaller size!)
   1544 		 */
   1545 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1546 			panic("lfs_updatemeta: fragment is not last block");
   1547 
   1548 		/*
   1549 		 * For each subblock in this possibly oversized block,
   1550 		 * update its address on disk.
   1551 		 */
   1552 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1553 		KASSERT(vp == sbp->b_vp);
   1554 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1555 		     bytesleft -= fs->lfs_bsize) {
   1556 			size = MIN(bytesleft, fs->lfs_bsize);
   1557 			bb = fragstofsb(fs, numfrags(fs, size));
   1558 			lbn = *sp->start_lbp++;
   1559 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1560 			    size);
   1561 			fs->lfs_offset += bb;
   1562 		}
   1563 
   1564 	}
   1565 }
   1566 
   1567 /*
   1568  * Move lfs_offset to a segment earlier than sn.
   1569  */
   1570 int
   1571 lfs_rewind(struct lfs *fs, int newsn)
   1572 {
   1573 	int sn, osn, isdirty;
   1574 	struct buf *bp;
   1575 	SEGUSE *sup;
   1576 
   1577 	ASSERT_SEGLOCK(fs);
   1578 
   1579 	osn = dtosn(fs, fs->lfs_offset);
   1580 	if (osn < newsn)
   1581 		return 0;
   1582 
   1583 	/* lfs_avail eats the remaining space in this segment */
   1584 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
   1585 
   1586 	/* Find a low-numbered segment */
   1587 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
   1588 		LFS_SEGENTRY(sup, fs, sn, bp);
   1589 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1590 		brelse(bp);
   1591 
   1592 		if (!isdirty)
   1593 			break;
   1594 	}
   1595 	if (sn == fs->lfs_nseg)
   1596 		panic("lfs_rewind: no clean segments");
   1597 	if (sn >= newsn)
   1598 		return ENOENT;
   1599 	fs->lfs_nextseg = sn;
   1600 	lfs_newseg(fs);
   1601 	fs->lfs_offset = fs->lfs_curseg;
   1602 
   1603 	return 0;
   1604 }
   1605 
   1606 /*
   1607  * Start a new partial segment.
   1608  *
   1609  * Return 1 when we entered to a new segment.
   1610  * Otherwise, return 0.
   1611  */
   1612 int
   1613 lfs_initseg(struct lfs *fs)
   1614 {
   1615 	struct segment *sp = fs->lfs_sp;
   1616 	SEGSUM *ssp;
   1617 	struct buf *sbp;	/* buffer for SEGSUM */
   1618 	int repeat = 0;		/* return value */
   1619 
   1620 	ASSERT_SEGLOCK(fs);
   1621 	/* Advance to the next segment. */
   1622 	if (!LFS_PARTIAL_FITS(fs)) {
   1623 		SEGUSE *sup;
   1624 		struct buf *bp;
   1625 
   1626 		/* lfs_avail eats the remaining space */
   1627 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1628 						   fs->lfs_curseg);
   1629 		/* Wake up any cleaning procs waiting on this file system. */
   1630 		wakeup(&lfs_allclean_wakeup);
   1631 		wakeup(&fs->lfs_nextseg);
   1632 		lfs_newseg(fs);
   1633 		repeat = 1;
   1634 		fs->lfs_offset = fs->lfs_curseg;
   1635 
   1636 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1637 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1638 
   1639 		/*
   1640 		 * If the segment contains a superblock, update the offset
   1641 		 * and summary address to skip over it.
   1642 		 */
   1643 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1644 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1645 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1646 			sp->seg_bytes_left -= LFS_SBPAD;
   1647 		}
   1648 		brelse(bp);
   1649 		/* Segment zero could also contain the labelpad */
   1650 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1651 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1652 			fs->lfs_offset +=
   1653 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1654 			sp->seg_bytes_left -=
   1655 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1656 		}
   1657 	} else {
   1658 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1659 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1660 				      (fs->lfs_offset - fs->lfs_curseg));
   1661 	}
   1662 	fs->lfs_lastpseg = fs->lfs_offset;
   1663 
   1664 	/* Record first address of this partial segment */
   1665 	if (sp->seg_flags & SEGM_CLEAN) {
   1666 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1667 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1668 			/* "1" is the artificial inc in lfs_seglock */
   1669 			simple_lock(&fs->lfs_interlock);
   1670 			while (fs->lfs_iocount > 1) {
   1671 				ltsleep(&fs->lfs_iocount, PRIBIO + 1,
   1672 				    "lfs_initseg", 0, &fs->lfs_interlock);
   1673 			}
   1674 			simple_unlock(&fs->lfs_interlock);
   1675 			fs->lfs_cleanind = 0;
   1676 		}
   1677 	}
   1678 
   1679 	sp->fs = fs;
   1680 	sp->ibp = NULL;
   1681 	sp->idp = NULL;
   1682 	sp->ninodes = 0;
   1683 	sp->ndupino = 0;
   1684 
   1685 	sp->cbpp = sp->bpp;
   1686 
   1687 	/* Get a new buffer for SEGSUM */
   1688 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1689 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1690 
   1691 	/* ... and enter it into the buffer list. */
   1692 	*sp->cbpp = sbp;
   1693 	sp->cbpp++;
   1694 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1695 
   1696 	sp->start_bpp = sp->cbpp;
   1697 
   1698 	/* Set point to SEGSUM, initialize it. */
   1699 	ssp = sp->segsum = sbp->b_data;
   1700 	memset(ssp, 0, fs->lfs_sumsize);
   1701 	ssp->ss_next = fs->lfs_nextseg;
   1702 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1703 	ssp->ss_magic = SS_MAGIC;
   1704 
   1705 	/* Set pointer to first FINFO, initialize it. */
   1706 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1707 	sp->fip->fi_nblocks = 0;
   1708 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1709 	sp->fip->fi_lastlength = 0;
   1710 
   1711 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1712 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1713 
   1714 	return (repeat);
   1715 }
   1716 
   1717 /*
   1718  * Remove SEGUSE_INVAL from all segments.
   1719  */
   1720 void
   1721 lfs_unset_inval_all(struct lfs *fs)
   1722 {
   1723 	SEGUSE *sup;
   1724 	struct buf *bp;
   1725 	int i;
   1726 
   1727 	for (i = 0; i < fs->lfs_nseg; i++) {
   1728 		LFS_SEGENTRY(sup, fs, i, bp);
   1729 		if (sup->su_flags & SEGUSE_INVAL) {
   1730 			sup->su_flags &= ~SEGUSE_INVAL;
   1731 			VOP_BWRITE(bp);
   1732 		} else
   1733 			brelse(bp);
   1734 	}
   1735 }
   1736 
   1737 /*
   1738  * Return the next segment to write.
   1739  */
   1740 void
   1741 lfs_newseg(struct lfs *fs)
   1742 {
   1743 	CLEANERINFO *cip;
   1744 	SEGUSE *sup;
   1745 	struct buf *bp;
   1746 	int curseg, isdirty, sn, skip_inval;
   1747 
   1748 	ASSERT_SEGLOCK(fs);
   1749 
   1750 	/* Honor LFCNWRAPSTOP */
   1751 	simple_lock(&fs->lfs_interlock);
   1752 	if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
   1753 		wakeup(&fs->lfs_nowrap);
   1754 		ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
   1755 			&fs->lfs_interlock);
   1756 	}
   1757 	simple_unlock(&fs->lfs_interlock);
   1758 
   1759 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1760 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1761 	      dtosn(fs, fs->lfs_nextseg)));
   1762 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1763 	sup->su_nbytes = 0;
   1764 	sup->su_nsums = 0;
   1765 	sup->su_ninos = 0;
   1766 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1767 
   1768 	LFS_CLEANERINFO(cip, fs, bp);
   1769 	--cip->clean;
   1770 	++cip->dirty;
   1771 	fs->lfs_nclean = cip->clean;
   1772 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1773 
   1774 	fs->lfs_lastseg = fs->lfs_curseg;
   1775 	fs->lfs_curseg = fs->lfs_nextseg;
   1776 	skip_inval = 1;
   1777 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1778 		sn = (sn + 1) % fs->lfs_nseg;
   1779 
   1780 		if (sn == curseg) {
   1781 			if (skip_inval)
   1782 				skip_inval = 0;
   1783 			else
   1784 				panic("lfs_nextseg: no clean segments");
   1785 		}
   1786 		LFS_SEGENTRY(sup, fs, sn, bp);
   1787 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
   1788 		/* Check SEGUSE_EMPTY as we go along */
   1789 		if (isdirty && sup->su_nbytes == 0 &&
   1790 		    !(sup->su_flags & SEGUSE_EMPTY))
   1791 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1792 		else
   1793 			brelse(bp);
   1794 
   1795 		if (!isdirty)
   1796 			break;
   1797 	}
   1798 	if (skip_inval == 0)
   1799 		lfs_unset_inval_all(fs);
   1800 
   1801 	++fs->lfs_nactive;
   1802 	fs->lfs_nextseg = sntod(fs, sn);
   1803 	if (lfs_dostats) {
   1804 		++lfs_stats.segsused;
   1805 	}
   1806 }
   1807 
   1808 static struct buf *
   1809 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1810 {
   1811 	struct lfs_cluster *cl;
   1812 	struct buf **bpp, *bp;
   1813 
   1814 	ASSERT_SEGLOCK(fs);
   1815 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1816 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1817 	memset(cl, 0, sizeof(*cl));
   1818 	cl->fs = fs;
   1819 	cl->bpp = bpp;
   1820 	cl->bufcount = 0;
   1821 	cl->bufsize = 0;
   1822 
   1823 	/* If this segment is being written synchronously, note that */
   1824 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1825 		cl->flags |= LFS_CL_SYNC;
   1826 		cl->seg = fs->lfs_sp;
   1827 		++cl->seg->seg_iocount;
   1828 	}
   1829 
   1830 	/* Get an empty buffer header, or maybe one with something on it */
   1831 	bp = getiobuf();
   1832 	bp->b_flags = B_BUSY | B_CALL;
   1833 	bp->b_dev = NODEV;
   1834 	bp->b_blkno = bp->b_lblkno = addr;
   1835 	bp->b_iodone = lfs_cluster_callback;
   1836 	bp->b_private = cl;
   1837 	bp->b_vp = vp;
   1838 
   1839 	return bp;
   1840 }
   1841 
   1842 int
   1843 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1844 {
   1845 	struct buf **bpp, *bp, *cbp, *newbp;
   1846 	SEGUSE *sup;
   1847 	SEGSUM *ssp;
   1848 	int i, s;
   1849 	int do_again, nblocks, byteoffset;
   1850 	size_t el_size;
   1851 	struct lfs_cluster *cl;
   1852 	u_short ninos;
   1853 	struct vnode *devvp;
   1854 	char *p = NULL;
   1855 	struct vnode *vp;
   1856 	int32_t *daddrp;	/* XXX ondisk32 */
   1857 	int changed;
   1858 	u_int32_t sum;
   1859 
   1860 	ASSERT_SEGLOCK(fs);
   1861 	/*
   1862 	 * If there are no buffers other than the segment summary to write
   1863 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1864 	 * even if there aren't any buffers, you need to write the superblock.
   1865 	 */
   1866 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1867 		return (0);
   1868 
   1869 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1870 
   1871 	/* Update the segment usage information. */
   1872 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1873 
   1874 	/* Loop through all blocks, except the segment summary. */
   1875 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1876 		if ((*bpp)->b_vp != devvp) {
   1877 			sup->su_nbytes += (*bpp)->b_bcount;
   1878 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   1879 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   1880 			      sp->seg_number, (*bpp)->b_bcount,
   1881 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   1882 			      (*bpp)->b_blkno));
   1883 		}
   1884 	}
   1885 
   1886 	ssp = (SEGSUM *)sp->segsum;
   1887 
   1888 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1889 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   1890 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
   1891 	      ssp->ss_ninos));
   1892 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
   1893 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1894 	if (fs->lfs_version == 1)
   1895 		sup->su_olastmod = time.tv_sec;
   1896 	else
   1897 		sup->su_lastmod = time.tv_sec;
   1898 	sup->su_ninos += ninos;
   1899 	++sup->su_nsums;
   1900 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1901 
   1902 	do_again = !(bp->b_flags & B_GATHERED);
   1903 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   1904 
   1905 	/*
   1906 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1907 	 * the checksum computation and the actual write.
   1908 	 *
   1909 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1910 	 * there are any, replace them with copies that have UNASSIGNED
   1911 	 * instead.
   1912 	 */
   1913 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1914 		++bpp;
   1915 		bp = *bpp;
   1916 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
   1917 			bp->b_flags |= B_BUSY;
   1918 			continue;
   1919 		}
   1920 
   1921 		simple_lock(&bp->b_interlock);
   1922 		s = splbio();
   1923 		while (bp->b_flags & B_BUSY) {
   1924 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   1925 			      " data summary corruption for ino %d, lbn %"
   1926 			      PRId64 "\n",
   1927 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   1928 			bp->b_flags |= B_WANTED;
   1929 			ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
   1930 				&bp->b_interlock);
   1931 			splx(s);
   1932 			s = splbio();
   1933 		}
   1934 		bp->b_flags |= B_BUSY;
   1935 		splx(s);
   1936 		simple_unlock(&bp->b_interlock);
   1937 
   1938 		/*
   1939 		 * Check and replace indirect block UNWRITTEN bogosity.
   1940 		 * XXX See comment in lfs_writefile.
   1941 		 */
   1942 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1943 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   1944 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1945 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1946 			      VTOI(bp->b_vp)->i_number,
   1947 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   1948 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   1949 			/* Make a copy we'll make changes to */
   1950 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1951 					   bp->b_bcount, LFS_NB_IBLOCK);
   1952 			newbp->b_blkno = bp->b_blkno;
   1953 			memcpy(newbp->b_data, bp->b_data,
   1954 			       newbp->b_bcount);
   1955 
   1956 			changed = 0;
   1957 			/* XXX ondisk32 */
   1958 			for (daddrp = (int32_t *)(newbp->b_data);
   1959 			     daddrp < (int32_t *)(newbp->b_data +
   1960 						  newbp->b_bcount); daddrp++) {
   1961 				if (*daddrp == UNWRITTEN) {
   1962 					++changed;
   1963 					*daddrp = 0;
   1964 				}
   1965 			}
   1966 			/*
   1967 			 * Get rid of the old buffer.  Don't mark it clean,
   1968 			 * though, if it still has dirty data on it.
   1969 			 */
   1970 			if (changed) {
   1971 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   1972 				      " bp = %p newbp = %p\n", changed, bp,
   1973 				      newbp));
   1974 				*bpp = newbp;
   1975 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1976 				if (bp->b_flags & B_CALL) {
   1977 					DLOG((DLOG_SEG, "lfs_writeseg: "
   1978 					      "indir bp should not be B_CALL\n"));
   1979 					s = splbio();
   1980 					biodone(bp);
   1981 					splx(s);
   1982 					bp = NULL;
   1983 				} else {
   1984 					/* Still on free list, leave it there */
   1985 					s = splbio();
   1986 					bp->b_flags &= ~B_BUSY;
   1987 					if (bp->b_flags & B_WANTED)
   1988 						wakeup(bp);
   1989 					splx(s);
   1990 					/*
   1991 					 * We have to re-decrement lfs_avail
   1992 					 * since this block is going to come
   1993 					 * back around to us in the next
   1994 					 * segment.
   1995 					 */
   1996 					fs->lfs_avail -=
   1997 					    btofsb(fs, bp->b_bcount);
   1998 				}
   1999 			} else {
   2000 				lfs_freebuf(fs, newbp);
   2001 			}
   2002 		}
   2003 	}
   2004 	/*
   2005 	 * Compute checksum across data and then across summary; the first
   2006 	 * block (the summary block) is skipped.  Set the create time here
   2007 	 * so that it's guaranteed to be later than the inode mod times.
   2008 	 */
   2009 	sum = 0;
   2010 	if (fs->lfs_version == 1)
   2011 		el_size = sizeof(u_long);
   2012 	else
   2013 		el_size = sizeof(u_int32_t);
   2014 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   2015 		++bpp;
   2016 		/* Loop through gop_write cluster blocks */
   2017 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   2018 		     byteoffset += fs->lfs_bsize) {
   2019 #ifdef LFS_USE_B_INVAL
   2020 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
   2021 			    (B_CALL | B_INVAL)) {
   2022 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
   2023 					   byteoffset, dp, el_size)) {
   2024 					panic("lfs_writeseg: copyin failed [1]:"
   2025 						" ino %d blk %" PRId64,
   2026 						VTOI((*bpp)->b_vp)->i_number,
   2027 						(*bpp)->b_lblkno);
   2028 				}
   2029 			} else
   2030 #endif /* LFS_USE_B_INVAL */
   2031 			{
   2032 				sum = lfs_cksum_part(
   2033 				    (*bpp)->b_data + byteoffset, el_size, sum);
   2034 			}
   2035 		}
   2036 	}
   2037 	if (fs->lfs_version == 1)
   2038 		ssp->ss_ocreate = time.tv_sec;
   2039 	else {
   2040 		ssp->ss_create = time.tv_sec;
   2041 		ssp->ss_serial = ++fs->lfs_serial;
   2042 		ssp->ss_ident  = fs->lfs_ident;
   2043 	}
   2044 	ssp->ss_datasum = lfs_cksum_fold(sum);
   2045 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   2046 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   2047 
   2048 	simple_lock(&fs->lfs_interlock);
   2049 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   2050 			  btofsb(fs, fs->lfs_sumsize));
   2051 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
   2052 			  btofsb(fs, fs->lfs_sumsize));
   2053 	simple_unlock(&fs->lfs_interlock);
   2054 
   2055 	/*
   2056 	 * When we simply write the blocks we lose a rotation for every block
   2057 	 * written.  To avoid this problem, we cluster the buffers into a
   2058 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   2059 	 * devices can handle, use that for the size of the chunks.
   2060 	 *
   2061 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   2062 	 * don't bother to copy into other clusters.
   2063 	 */
   2064 
   2065 #define CHUNKSIZE MAXPHYS
   2066 
   2067 	if (devvp == NULL)
   2068 		panic("devvp is NULL");
   2069 	for (bpp = sp->bpp, i = nblocks; i;) {
   2070 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   2071 		cl = cbp->b_private;
   2072 
   2073 		cbp->b_flags |= B_ASYNC | B_BUSY;
   2074 		cbp->b_bcount = 0;
   2075 
   2076 #if defined(DEBUG) && defined(DIAGNOSTIC)
   2077 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   2078 		    / sizeof(int32_t)) {
   2079 			panic("lfs_writeseg: real bpp overwrite");
   2080 		}
   2081 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
   2082 			panic("lfs_writeseg: theoretical bpp overwrite");
   2083 		}
   2084 #endif
   2085 
   2086 		/*
   2087 		 * Construct the cluster.
   2088 		 */
   2089 		simple_lock(&fs->lfs_interlock);
   2090 		++fs->lfs_iocount;
   2091 		simple_unlock(&fs->lfs_interlock);
   2092 		while (i && cbp->b_bcount < CHUNKSIZE) {
   2093 			bp = *bpp;
   2094 
   2095 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   2096 				break;
   2097 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   2098 				break;
   2099 
   2100 			/* Clusters from GOP_WRITE are expedited */
   2101 			if (bp->b_bcount > fs->lfs_bsize) {
   2102 				if (cbp->b_bcount > 0)
   2103 					/* Put in its own buffer */
   2104 					break;
   2105 				else {
   2106 					cbp->b_data = bp->b_data;
   2107 				}
   2108 			} else if (cbp->b_bcount == 0) {
   2109 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   2110 							     LFS_NB_CLUSTER);
   2111 				cl->flags |= LFS_CL_MALLOC;
   2112 			}
   2113 #ifdef DIAGNOSTIC
   2114 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
   2115 					      btodb(bp->b_bcount - 1))) !=
   2116 			    sp->seg_number) {
   2117 				printf("blk size %d daddr %" PRIx64
   2118 				    " not in seg %d\n",
   2119 				    bp->b_bcount, bp->b_blkno,
   2120 				    sp->seg_number);
   2121 				panic("segment overwrite");
   2122 			}
   2123 #endif
   2124 
   2125 #ifdef LFS_USE_B_INVAL
   2126 			/*
   2127 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2128 			 * We need to copy the data from user space rather than
   2129 			 * from the buffer indicated.
   2130 			 * XXX == what do I do on an error?
   2131 			 */
   2132 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
   2133 			    (B_CALL|B_INVAL)) {
   2134 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2135 					panic("lfs_writeseg: "
   2136 					    "copyin failed [2]");
   2137 			} else
   2138 #endif /* LFS_USE_B_INVAL */
   2139 			if (cl->flags & LFS_CL_MALLOC) {
   2140 				/* copy data into our cluster. */
   2141 				memcpy(p, bp->b_data, bp->b_bcount);
   2142 				p += bp->b_bcount;
   2143 			}
   2144 
   2145 			cbp->b_bcount += bp->b_bcount;
   2146 			cl->bufsize += bp->b_bcount;
   2147 
   2148 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   2149 			cl->bpp[cl->bufcount++] = bp;
   2150 			vp = bp->b_vp;
   2151 			s = splbio();
   2152 			reassignbuf(bp, vp);
   2153 			V_INCR_NUMOUTPUT(vp);
   2154 			splx(s);
   2155 
   2156 			bpp++;
   2157 			i--;
   2158 		}
   2159 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2160 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   2161 		else
   2162 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   2163 		s = splbio();
   2164 		V_INCR_NUMOUTPUT(devvp);
   2165 		splx(s);
   2166 		VOP_STRATEGY(devvp, cbp);
   2167 		curproc->p_stats->p_ru.ru_oublock++;
   2168 	}
   2169 
   2170 	if (lfs_dostats) {
   2171 		++lfs_stats.psegwrites;
   2172 		lfs_stats.blocktot += nblocks - 1;
   2173 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2174 			++lfs_stats.psyncwrites;
   2175 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2176 			++lfs_stats.pcleanwrites;
   2177 			lfs_stats.cleanblocks += nblocks - 1;
   2178 		}
   2179 	}
   2180 	return (lfs_initseg(fs) || do_again);
   2181 }
   2182 
   2183 void
   2184 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2185 {
   2186 	struct buf *bp;
   2187 	int s;
   2188 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2189 
   2190 	ASSERT_MAYBE_SEGLOCK(fs);
   2191 #ifdef DIAGNOSTIC
   2192 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   2193 #endif
   2194 	/*
   2195 	 * If we can write one superblock while another is in
   2196 	 * progress, we risk not having a complete checkpoint if we crash.
   2197 	 * So, block here if a superblock write is in progress.
   2198 	 */
   2199 	simple_lock(&fs->lfs_interlock);
   2200 	s = splbio();
   2201 	while (fs->lfs_sbactive) {
   2202 		ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   2203 			&fs->lfs_interlock);
   2204 	}
   2205 	fs->lfs_sbactive = daddr;
   2206 	splx(s);
   2207 	simple_unlock(&fs->lfs_interlock);
   2208 
   2209 	/* Set timestamp of this version of the superblock */
   2210 	if (fs->lfs_version == 1)
   2211 		fs->lfs_otstamp = time.tv_sec;
   2212 	fs->lfs_tstamp = time.tv_sec;
   2213 
   2214 	/* Checksum the superblock and copy it into a buffer. */
   2215 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2216 	bp = lfs_newbuf(fs, devvp,
   2217 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2218 	memset(bp->b_data + sizeof(struct dlfs), 0,
   2219 	    LFS_SBPAD - sizeof(struct dlfs));
   2220 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2221 
   2222 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2223 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2224 	bp->b_iodone = lfs_supercallback;
   2225 
   2226 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2227 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2228 	else
   2229 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2230 	curproc->p_stats->p_ru.ru_oublock++;
   2231 	s = splbio();
   2232 	V_INCR_NUMOUTPUT(bp->b_vp);
   2233 	splx(s);
   2234 	simple_lock(&fs->lfs_interlock);
   2235 	++fs->lfs_iocount;
   2236 	simple_unlock(&fs->lfs_interlock);
   2237 	VOP_STRATEGY(devvp, bp);
   2238 }
   2239 
   2240 /*
   2241  * Logical block number match routines used when traversing the dirty block
   2242  * chain.
   2243  */
   2244 int
   2245 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2246 {
   2247 
   2248 	ASSERT_SEGLOCK(fs);
   2249 	return LFS_IS_MALLOC_BUF(bp);
   2250 }
   2251 
   2252 #if 0
   2253 int
   2254 lfs_match_real(struct lfs *fs, struct buf *bp)
   2255 {
   2256 
   2257 	ASSERT_SEGLOCK(fs);
   2258 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2259 }
   2260 #endif
   2261 
   2262 int
   2263 lfs_match_data(struct lfs *fs, struct buf *bp)
   2264 {
   2265 
   2266 	ASSERT_SEGLOCK(fs);
   2267 	return (bp->b_lblkno >= 0);
   2268 }
   2269 
   2270 int
   2271 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2272 {
   2273 	daddr_t lbn;
   2274 
   2275 	ASSERT_SEGLOCK(fs);
   2276 	lbn = bp->b_lblkno;
   2277 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2278 }
   2279 
   2280 int
   2281 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2282 {
   2283 	daddr_t lbn;
   2284 
   2285 	ASSERT_SEGLOCK(fs);
   2286 	lbn = bp->b_lblkno;
   2287 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2288 }
   2289 
   2290 int
   2291 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2292 {
   2293 	daddr_t lbn;
   2294 
   2295 	ASSERT_SEGLOCK(fs);
   2296 	lbn = bp->b_lblkno;
   2297 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2298 }
   2299 
   2300 /*
   2301  * XXX - The only buffers that are going to hit these functions are the
   2302  * segment write blocks, or the segment summaries, or the superblocks.
   2303  *
   2304  * All of the above are created by lfs_newbuf, and so do not need to be
   2305  * released via brelse.
   2306  */
   2307 void
   2308 lfs_callback(struct buf *bp)
   2309 {
   2310 	struct lfs *fs;
   2311 
   2312 	fs = bp->b_private;
   2313 	ASSERT_NO_SEGLOCK(fs);
   2314 	lfs_freebuf(fs, bp);
   2315 }
   2316 
   2317 static void
   2318 lfs_super_aiodone(struct buf *bp)
   2319 {
   2320 	struct lfs *fs;
   2321 
   2322 	fs = bp->b_private;
   2323 	ASSERT_NO_SEGLOCK(fs);
   2324 	simple_lock(&fs->lfs_interlock);
   2325 	fs->lfs_sbactive = 0;
   2326 	if (--fs->lfs_iocount <= 1)
   2327 		wakeup(&fs->lfs_iocount);
   2328 	simple_unlock(&fs->lfs_interlock);
   2329 	wakeup(&fs->lfs_sbactive);
   2330 	lfs_freebuf(fs, bp);
   2331 }
   2332 
   2333 static void
   2334 lfs_cluster_aiodone(struct buf *bp)
   2335 {
   2336 	struct lfs_cluster *cl;
   2337 	struct lfs *fs;
   2338 	struct buf *tbp, *fbp;
   2339 	struct vnode *vp, *devvp;
   2340 	struct inode *ip;
   2341 	int s, error=0;
   2342 
   2343 	if (bp->b_flags & B_ERROR)
   2344 		error = bp->b_error;
   2345 
   2346 	cl = bp->b_private;
   2347 	fs = cl->fs;
   2348 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2349 	ASSERT_NO_SEGLOCK(fs);
   2350 
   2351 	/* Put the pages back, and release the buffer */
   2352 	while (cl->bufcount--) {
   2353 		tbp = cl->bpp[cl->bufcount];
   2354 		KASSERT(tbp->b_flags & B_BUSY);
   2355 		if (error) {
   2356 			tbp->b_flags |= B_ERROR;
   2357 			tbp->b_error = error;
   2358 		}
   2359 
   2360 		/*
   2361 		 * We're done with tbp.	 If it has not been re-dirtied since
   2362 		 * the cluster was written, free it.  Otherwise, keep it on
   2363 		 * the locked list to be written again.
   2364 		 */
   2365 		vp = tbp->b_vp;
   2366 
   2367 		tbp->b_flags &= ~B_GATHERED;
   2368 
   2369 		LFS_BCLEAN_LOG(fs, tbp);
   2370 
   2371 		if (!(tbp->b_flags & B_CALL)) {
   2372 			KASSERT(tbp->b_flags & B_LOCKED);
   2373 			s = splbio();
   2374 			simple_lock(&bqueue_slock);
   2375 			bremfree(tbp);
   2376 			simple_unlock(&bqueue_slock);
   2377 			if (vp)
   2378 				reassignbuf(tbp, vp);
   2379 			splx(s);
   2380 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2381 		}
   2382 
   2383 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2384 			LFS_UNLOCK_BUF(tbp);
   2385 
   2386 		if (tbp->b_flags & B_DONE) {
   2387 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2388 				cl->bufcount, (long)tbp->b_flags));
   2389 		}
   2390 
   2391 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
   2392 			/*
   2393 			 * A buffer from the page daemon.
   2394 			 * We use the same iodone as it does,
   2395 			 * so we must manually disassociate its
   2396 			 * buffers from the vp.
   2397 			 */
   2398 			if (tbp->b_vp) {
   2399 				/* This is just silly */
   2400 				s = splbio();
   2401 				brelvp(tbp);
   2402 				tbp->b_vp = vp;
   2403 				splx(s);
   2404 			}
   2405 			/* Put it back the way it was */
   2406 			tbp->b_flags |= B_ASYNC;
   2407 			/* Master buffers have B_AGE */
   2408 			if (tbp->b_private == tbp)
   2409 				tbp->b_flags |= B_AGE;
   2410 		}
   2411 		s = splbio();
   2412 		biodone(tbp);
   2413 
   2414 		/*
   2415 		 * If this is the last block for this vnode, but
   2416 		 * there are other blocks on its dirty list,
   2417 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2418 		 * sort of block.  Only do this for our mount point,
   2419 		 * not for, e.g., inode blocks that are attached to
   2420 		 * the devvp.
   2421 		 * XXX KS - Shouldn't we set *both* if both types
   2422 		 * of blocks are present (traverse the dirty list?)
   2423 		 */
   2424 		simple_lock(&global_v_numoutput_slock);
   2425 		if (vp != devvp && vp->v_numoutput == 0 &&
   2426 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2427 			ip = VTOI(vp);
   2428 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2429 			       ip->i_number));
   2430 			if (LFS_IS_MALLOC_BUF(fbp))
   2431 				LFS_SET_UINO(ip, IN_CLEANING);
   2432 			else
   2433 				LFS_SET_UINO(ip, IN_MODIFIED);
   2434 		}
   2435 		simple_unlock(&global_v_numoutput_slock);
   2436 		splx(s);
   2437 		wakeup(vp);
   2438 	}
   2439 
   2440 	/* Fix up the cluster buffer, and release it */
   2441 	if (cl->flags & LFS_CL_MALLOC)
   2442 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2443 	putiobuf(bp);
   2444 
   2445 	/* Note i/o done */
   2446 	if (cl->flags & LFS_CL_SYNC) {
   2447 		if (--cl->seg->seg_iocount == 0)
   2448 			wakeup(&cl->seg->seg_iocount);
   2449 	}
   2450 	simple_lock(&fs->lfs_interlock);
   2451 #ifdef DIAGNOSTIC
   2452 	if (fs->lfs_iocount == 0)
   2453 		panic("lfs_cluster_aiodone: zero iocount");
   2454 #endif
   2455 	if (--fs->lfs_iocount <= 1)
   2456 		wakeup(&fs->lfs_iocount);
   2457 	simple_unlock(&fs->lfs_interlock);
   2458 
   2459 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2460 	cl->bpp = NULL;
   2461 	pool_put(&fs->lfs_clpool, cl);
   2462 }
   2463 
   2464 static void
   2465 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2466 {
   2467 	/* reset b_iodone for when this is a single-buf i/o. */
   2468 	bp->b_iodone = aiodone;
   2469 
   2470 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
   2471 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2472 	wakeup(&uvm.aiodoned);
   2473 	simple_unlock(&uvm.aiodoned_lock);
   2474 }
   2475 
   2476 static void
   2477 lfs_cluster_callback(struct buf *bp)
   2478 {
   2479 
   2480 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2481 }
   2482 
   2483 void
   2484 lfs_supercallback(struct buf *bp)
   2485 {
   2486 
   2487 	lfs_generic_callback(bp, lfs_super_aiodone);
   2488 }
   2489 
   2490 /*
   2491  * Shellsort (diminishing increment sort) from Data Structures and
   2492  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2493  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2494  * formula (8), page 95.  Roughly O(N^3/2).
   2495  */
   2496 /*
   2497  * This is our own private copy of shellsort because we want to sort
   2498  * two parallel arrays (the array of buffer pointers and the array of
   2499  * logical block numbers) simultaneously.  Note that we cast the array
   2500  * of logical block numbers to a unsigned in this routine so that the
   2501  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2502  */
   2503 
   2504 void
   2505 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2506 {
   2507 	static int __rsshell_increments[] = { 4, 1, 0 };
   2508 	int incr, *incrp, t1, t2;
   2509 	struct buf *bp_temp;
   2510 
   2511 #ifdef DEBUG
   2512 	incr = 0;
   2513 	for (t1 = 0; t1 < nmemb; t1++) {
   2514 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2515 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2516 				/* dump before panic */
   2517 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2518 				    nmemb, size);
   2519 				incr = 0;
   2520 				for (t1 = 0; t1 < nmemb; t1++) {
   2521 					const struct buf *bp = bp_array[t1];
   2522 
   2523 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2524 					    PRIu64 "\n", t1,
   2525 					    (uint64_t)bp->b_bcount,
   2526 					    (uint64_t)bp->b_lblkno);
   2527 					printf("lbns:");
   2528 					for (t2 = 0; t2 * size < bp->b_bcount;
   2529 					    t2++) {
   2530 						printf(" %" PRId32,
   2531 						    lb_array[incr++]);
   2532 					}
   2533 					printf("\n");
   2534 				}
   2535 				panic("lfs_shellsort: inconsistent input");
   2536 			}
   2537 		}
   2538 	}
   2539 #endif
   2540 
   2541 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2542 		for (t1 = incr; t1 < nmemb; ++t1)
   2543 			for (t2 = t1 - incr; t2 >= 0;)
   2544 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2545 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2546 					bp_temp = bp_array[t2];
   2547 					bp_array[t2] = bp_array[t2 + incr];
   2548 					bp_array[t2 + incr] = bp_temp;
   2549 					t2 -= incr;
   2550 				} else
   2551 					break;
   2552 
   2553 	/* Reform the list of logical blocks */
   2554 	incr = 0;
   2555 	for (t1 = 0; t1 < nmemb; t1++) {
   2556 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2557 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2558 		}
   2559 	}
   2560 }
   2561 
   2562 /*
   2563  * Call vget with LK_NOWAIT.  If we are the one who holds VXLOCK/VFREEING,
   2564  * however, we must press on.  Just fake success in that case.
   2565  */
   2566 int
   2567 lfs_vref(struct vnode *vp)
   2568 {
   2569 	int error;
   2570 	struct lfs *fs;
   2571 
   2572 	fs = VTOI(vp)->i_lfs;
   2573 
   2574 	ASSERT_MAYBE_SEGLOCK(fs);
   2575 
   2576 	/*
   2577 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2578 	 * being able to flush all of the pages from this vnode, which
   2579 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2580 	 */
   2581 	error = vget(vp, LK_NOWAIT);
   2582 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2583 		++fs->lfs_flushvp_fakevref;
   2584 		return 0;
   2585 	}
   2586 	return error;
   2587 }
   2588 
   2589 /*
   2590  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2591  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2592  */
   2593 void
   2594 lfs_vunref(struct vnode *vp)
   2595 {
   2596 	struct lfs *fs;
   2597 
   2598 	fs = VTOI(vp)->i_lfs;
   2599 	ASSERT_MAYBE_SEGLOCK(fs);
   2600 
   2601 	/*
   2602 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2603 	 */
   2604 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
   2605 		--fs->lfs_flushvp_fakevref;
   2606 		return;
   2607 	}
   2608 
   2609 	simple_lock(&vp->v_interlock);
   2610 #ifdef DIAGNOSTIC
   2611 	if (vp->v_usecount <= 0) {
   2612 		printf("lfs_vunref: inum is %llu\n", (unsigned long long)
   2613 		    VTOI(vp)->i_number);
   2614 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2615 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2616 		panic("lfs_vunref: v_usecount < 0");
   2617 	}
   2618 #endif
   2619 	vp->v_usecount--;
   2620 	if (vp->v_usecount > 0) {
   2621 		simple_unlock(&vp->v_interlock);
   2622 		return;
   2623 	}
   2624 	/*
   2625 	 * insert at tail of LRU list
   2626 	 */
   2627 	simple_lock(&vnode_free_list_slock);
   2628 	if (vp->v_holdcnt > 0)
   2629 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2630 	else
   2631 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2632 	simple_unlock(&vnode_free_list_slock);
   2633 	simple_unlock(&vp->v_interlock);
   2634 }
   2635 
   2636 /*
   2637  * We use this when we have vnodes that were loaded in solely for cleaning.
   2638  * There is no reason to believe that these vnodes will be referenced again
   2639  * soon, since the cleaning process is unrelated to normal filesystem
   2640  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2641  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2642  * cleaning at the head of the list, instead.
   2643  */
   2644 void
   2645 lfs_vunref_head(struct vnode *vp)
   2646 {
   2647 
   2648 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2649 	simple_lock(&vp->v_interlock);
   2650 #ifdef DIAGNOSTIC
   2651 	if (vp->v_usecount == 0) {
   2652 		panic("lfs_vunref: v_usecount<0");
   2653 	}
   2654 #endif
   2655 	vp->v_usecount--;
   2656 	if (vp->v_usecount > 0) {
   2657 		simple_unlock(&vp->v_interlock);
   2658 		return;
   2659 	}
   2660 	/*
   2661 	 * insert at head of LRU list
   2662 	 */
   2663 	simple_lock(&vnode_free_list_slock);
   2664 	if (vp->v_holdcnt > 0)
   2665 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2666 	else
   2667 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2668 	simple_unlock(&vnode_free_list_slock);
   2669 	simple_unlock(&vp->v_interlock);
   2670 }
   2671 
   2672