lfs_segment.c revision 1.180 1 /* $NetBSD: lfs_segment.c,v 1.180 2006/05/18 23:15:09 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.180 2006/05/18 23:15:09 perseant Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100
101 #include <miscfs/specfs/specdev.h>
102 #include <miscfs/fifofs/fifo.h>
103
104 #include <ufs/ufs/inode.h>
105 #include <ufs/ufs/dir.h>
106 #include <ufs/ufs/ufsmount.h>
107 #include <ufs/ufs/ufs_extern.h>
108
109 #include <ufs/lfs/lfs.h>
110 #include <ufs/lfs/lfs_extern.h>
111
112 #include <uvm/uvm.h>
113 #include <uvm/uvm_extern.h>
114
115 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
116
117 extern int count_lock_queue(void);
118 extern struct simplelock vnode_free_list_slock; /* XXX */
119 extern struct simplelock bqueue_slock; /* XXX */
120
121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
122 static void lfs_super_aiodone(struct buf *);
123 static void lfs_cluster_aiodone(struct buf *);
124 static void lfs_cluster_callback(struct buf *);
125
126 /*
127 * Determine if it's OK to start a partial in this segment, or if we need
128 * to go on to a new segment.
129 */
130 #define LFS_PARTIAL_FITS(fs) \
131 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
132 fragstofsb((fs), (fs)->lfs_frag))
133
134 /*
135 * Figure out whether we should do a checkpoint write or go ahead with
136 * an ordinary write.
137 */
138 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
139 (fs->lfs_nactive > LFS_MAX_ACTIVE || \
140 (flags & SEGM_CKP) || \
141 fs->lfs_nclean < LFS_MAX_ACTIVE)
142
143 int lfs_match_fake(struct lfs *, struct buf *);
144 void lfs_newseg(struct lfs *);
145 /* XXX ondisk32 */
146 void lfs_shellsort(struct buf **, int32_t *, int, int);
147 void lfs_supercallback(struct buf *);
148 void lfs_updatemeta(struct segment *);
149 void lfs_writesuper(struct lfs *, daddr_t);
150 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
151 struct segment *sp, int dirops);
152
153 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
154 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
155 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
156 int lfs_dirvcount = 0; /* # active dirops */
157
158 /* Statistics Counters */
159 int lfs_dostats = 1;
160 struct lfs_stats lfs_stats;
161
162 /* op values to lfs_writevnodes */
163 #define VN_REG 0
164 #define VN_DIROP 1
165 #define VN_EMPTY 2
166 #define VN_CLEAN 3
167
168 /*
169 * XXX KS - Set modification time on the Ifile, so the cleaner can
170 * read the fs mod time off of it. We don't set IN_UPDATE here,
171 * since we don't really need this to be flushed to disk (and in any
172 * case that wouldn't happen to the Ifile until we checkpoint).
173 */
174 void
175 lfs_imtime(struct lfs *fs)
176 {
177 struct timespec ts;
178 struct inode *ip;
179
180 ASSERT_MAYBE_SEGLOCK(fs);
181 nanotime(&ts);
182 ip = VTOI(fs->lfs_ivnode);
183 ip->i_ffs1_mtime = ts.tv_sec;
184 ip->i_ffs1_mtimensec = ts.tv_nsec;
185 }
186
187 /*
188 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
189 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
190 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
191 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
192 */
193
194 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
195
196 int
197 lfs_vflush(struct vnode *vp)
198 {
199 struct inode *ip;
200 struct lfs *fs;
201 struct segment *sp;
202 struct buf *bp, *nbp, *tbp, *tnbp;
203 int error, s;
204 int flushed;
205 int relock;
206
207 ip = VTOI(vp);
208 fs = VFSTOUFS(vp->v_mount)->um_lfs;
209 relock = 0;
210
211 top:
212 ASSERT_NO_SEGLOCK(fs);
213 if (ip->i_flag & IN_CLEANING) {
214 ivndebug(vp,"vflush/in_cleaning");
215 LFS_CLR_UINO(ip, IN_CLEANING);
216 LFS_SET_UINO(ip, IN_MODIFIED);
217
218 /*
219 * Toss any cleaning buffers that have real counterparts
220 * to avoid losing new data.
221 */
222 s = splbio();
223 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
224 nbp = LIST_NEXT(bp, b_vnbufs);
225 if (!LFS_IS_MALLOC_BUF(bp))
226 continue;
227 /*
228 * Look for pages matching the range covered
229 * by cleaning blocks. It's okay if more dirty
230 * pages appear, so long as none disappear out
231 * from under us.
232 */
233 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
234 vp != fs->lfs_ivnode) {
235 struct vm_page *pg;
236 voff_t off;
237
238 simple_lock(&vp->v_interlock);
239 for (off = lblktosize(fs, bp->b_lblkno);
240 off < lblktosize(fs, bp->b_lblkno + 1);
241 off += PAGE_SIZE) {
242 pg = uvm_pagelookup(&vp->v_uobj, off);
243 if (pg == NULL)
244 continue;
245 if ((pg->flags & PG_CLEAN) == 0 ||
246 pmap_is_modified(pg)) {
247 fs->lfs_avail += btofsb(fs,
248 bp->b_bcount);
249 wakeup(&fs->lfs_avail);
250 lfs_freebuf(fs, bp);
251 bp = NULL;
252 simple_unlock(&vp->v_interlock);
253 goto nextbp;
254 }
255 }
256 simple_unlock(&vp->v_interlock);
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 fs->lfs_avail += btofsb(fs,
267 bp->b_bcount);
268 wakeup(&fs->lfs_avail);
269 lfs_freebuf(fs, bp);
270 bp = NULL;
271 break;
272 }
273 }
274 nextbp:
275 ;
276 }
277 splx(s);
278 }
279
280 /* If the node is being written, wait until that is done */
281 simple_lock(&vp->v_interlock);
282 s = splbio();
283 if (WRITEINPROG(vp)) {
284 ivndebug(vp,"vflush/writeinprog");
285 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
286 }
287 splx(s);
288 simple_unlock(&vp->v_interlock);
289
290 /* Protect against VXLOCK deadlock in vinvalbuf() */
291 lfs_seglock(fs, SEGM_SYNC);
292
293 /* If we're supposed to flush a freed inode, just toss it */
294 if (ip->i_lfs_iflags & LFSI_DELETED) {
295 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
296 ip->i_number));
297 s = splbio();
298 /* Drain v_numoutput */
299 simple_lock(&global_v_numoutput_slock);
300 while (vp->v_numoutput > 0) {
301 vp->v_flag |= VBWAIT;
302 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
303 &global_v_numoutput_slock);
304 }
305 simple_unlock(&global_v_numoutput_slock);
306 KASSERT(vp->v_numoutput == 0);
307
308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 nbp = LIST_NEXT(bp, b_vnbufs);
310
311 KASSERT((bp->b_flags & B_GATHERED) == 0);
312 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
313 fs->lfs_avail += btofsb(fs, bp->b_bcount);
314 wakeup(&fs->lfs_avail);
315 }
316 /* Copied from lfs_writeseg */
317 if (bp->b_flags & B_CALL) {
318 biodone(bp);
319 } else {
320 bremfree(bp);
321 LFS_UNLOCK_BUF(bp);
322 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
323 B_GATHERED);
324 bp->b_flags |= B_DONE;
325 reassignbuf(bp, vp);
326 brelse(bp);
327 }
328 }
329 splx(s);
330 LFS_CLR_UINO(ip, IN_CLEANING);
331 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
332 ip->i_flag &= ~IN_ALLMOD;
333 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
334 ip->i_number));
335 lfs_segunlock(fs);
336
337 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
338
339 return 0;
340 }
341
342 fs->lfs_flushvp = vp;
343 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
344 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
345 fs->lfs_flushvp = NULL;
346 KASSERT(fs->lfs_flushvp_fakevref == 0);
347 lfs_segunlock(fs);
348
349 /* Make sure that any pending buffers get written */
350 s = splbio();
351 simple_lock(&global_v_numoutput_slock);
352 while (vp->v_numoutput > 0) {
353 vp->v_flag |= VBWAIT;
354 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
355 &global_v_numoutput_slock);
356 }
357 simple_unlock(&global_v_numoutput_slock);
358 splx(s);
359
360 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
361 KASSERT(vp->v_numoutput == 0);
362
363 return error;
364 }
365 sp = fs->lfs_sp;
366
367 flushed = 0;
368 if (VPISEMPTY(vp)) {
369 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
370 ++flushed;
371 } else if ((ip->i_flag & IN_CLEANING) &&
372 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
373 ivndebug(vp,"vflush/clean");
374 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
375 ++flushed;
376 } else if (lfs_dostats) {
377 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
378 ++lfs_stats.vflush_invoked;
379 ivndebug(vp,"vflush");
380 }
381
382 #ifdef DIAGNOSTIC
383 if (vp->v_flag & VDIROP) {
384 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
385 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
386 }
387 if (vp->v_usecount < 0) {
388 printf("usecount=%ld\n", (long)vp->v_usecount);
389 panic("lfs_vflush: usecount<0");
390 }
391 #endif
392
393 do {
394 do {
395 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
396 relock = lfs_writefile(fs, sp, vp);
397 if (relock) {
398 /*
399 * Might have to wait for the
400 * cleaner to run; but we're
401 * still not done with this vnode.
402 */
403 lfs_writeinode(fs, sp, ip);
404 LFS_SET_UINO(ip, IN_MODIFIED);
405 lfs_writeseg(fs, sp);
406 lfs_segunlock(fs);
407 lfs_segunlock_relock(fs);
408 goto top;
409 }
410 }
411 /*
412 * If we begin a new segment in the middle of writing
413 * the Ifile, it creates an inconsistent checkpoint,
414 * since the Ifile information for the new segment
415 * is not up-to-date. Take care of this here by
416 * sending the Ifile through again in case there
417 * are newly dirtied blocks. But wait, there's more!
418 * This second Ifile write could *also* cross a segment
419 * boundary, if the first one was large. The second
420 * one is guaranteed to be no more than 8 blocks,
421 * though (two segment blocks and supporting indirects)
422 * so the third write *will not* cross the boundary.
423 */
424 if (vp == fs->lfs_ivnode) {
425 lfs_writefile(fs, sp, vp);
426 lfs_writefile(fs, sp, vp);
427 }
428 } while (lfs_writeinode(fs, sp, ip));
429 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
430
431 if (lfs_dostats) {
432 ++lfs_stats.nwrites;
433 if (sp->seg_flags & SEGM_SYNC)
434 ++lfs_stats.nsync_writes;
435 if (sp->seg_flags & SEGM_CKP)
436 ++lfs_stats.ncheckpoints;
437 }
438 /*
439 * If we were called from somewhere that has already held the seglock
440 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
441 * the write to complete because we are still locked.
442 * Since lfs_vflush() must return the vnode with no dirty buffers,
443 * we must explicitly wait, if that is the case.
444 *
445 * We compare the iocount against 1, not 0, because it is
446 * artificially incremented by lfs_seglock().
447 */
448 simple_lock(&fs->lfs_interlock);
449 if (fs->lfs_seglock > 1) {
450 while (fs->lfs_iocount > 1)
451 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
452 "lfs_vflush", 0, &fs->lfs_interlock);
453 }
454 simple_unlock(&fs->lfs_interlock);
455
456 lfs_segunlock(fs);
457
458 /* Wait for these buffers to be recovered by aiodoned */
459 s = splbio();
460 simple_lock(&global_v_numoutput_slock);
461 while (vp->v_numoutput > 0) {
462 vp->v_flag |= VBWAIT;
463 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
464 &global_v_numoutput_slock);
465 }
466 simple_unlock(&global_v_numoutput_slock);
467 splx(s);
468
469 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
470 KASSERT(vp->v_numoutput == 0);
471
472 fs->lfs_flushvp = NULL;
473 KASSERT(fs->lfs_flushvp_fakevref == 0);
474
475 return (0);
476 }
477
478 int
479 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
480 {
481 struct inode *ip;
482 struct vnode *vp, *nvp;
483 int inodes_written = 0, only_cleaning;
484 int error = 0;
485
486 ASSERT_SEGLOCK(fs);
487 #ifndef LFS_NO_BACKVP_HACK
488 /* BEGIN HACK */
489 #define VN_OFFSET \
490 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
491 #define BACK_VP(VP) \
492 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
493 #define BEG_OF_VLIST \
494 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
495 - VN_OFFSET))
496
497 /* Find last vnode. */
498 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
499 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
500 vp = LIST_NEXT(vp, v_mntvnodes));
501 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
502 nvp = BACK_VP(vp);
503 #else
504 loop:
505 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
506 nvp = LIST_NEXT(vp, v_mntvnodes);
507 #endif
508 /*
509 * If the vnode that we are about to sync is no longer
510 * associated with this mount point, start over.
511 */
512 if (vp->v_mount != mp) {
513 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
514 /*
515 * After this, pages might be busy
516 * due to our own previous putpages.
517 * Start actual segment write here to avoid deadlock.
518 */
519 (void)lfs_writeseg(fs, sp);
520 goto loop;
521 }
522
523 if (vp->v_type == VNON) {
524 continue;
525 }
526
527 ip = VTOI(vp);
528 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
529 (op != VN_DIROP && op != VN_CLEAN &&
530 (vp->v_flag & VDIROP))) {
531 vndebug(vp,"dirop");
532 continue;
533 }
534
535 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
536 vndebug(vp,"empty");
537 continue;
538 }
539
540 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
541 && vp != fs->lfs_flushvp
542 && !(ip->i_flag & IN_CLEANING)) {
543 vndebug(vp,"cleaning");
544 continue;
545 }
546
547 if (lfs_vref(vp)) {
548 vndebug(vp,"vref");
549 continue;
550 }
551
552 only_cleaning = 0;
553 /*
554 * Write the inode/file if dirty and it's not the IFILE.
555 */
556 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
557 only_cleaning =
558 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
559
560 if (ip->i_number != LFS_IFILE_INUM) {
561 error = lfs_writefile(fs, sp, vp);
562 if (error) {
563 lfs_vunref(vp);
564 if (error == EAGAIN) {
565 /*
566 * This error from lfs_putpages
567 * indicates we need to drop
568 * the segment lock and start
569 * over after the cleaner has
570 * had a chance to run.
571 */
572 lfs_writeinode(fs, sp, ip);
573 lfs_writeseg(fs, sp);
574 if (!VPISEMPTY(vp) &&
575 !WRITEINPROG(vp) &&
576 !(ip->i_flag & IN_ALLMOD))
577 LFS_SET_UINO(ip, IN_MODIFIED);
578 break;
579 }
580 error = 0; /* XXX not quite right */
581 continue;
582 }
583
584 if (!VPISEMPTY(vp)) {
585 if (WRITEINPROG(vp)) {
586 ivndebug(vp,"writevnodes/write2");
587 } else if (!(ip->i_flag & IN_ALLMOD)) {
588 LFS_SET_UINO(ip, IN_MODIFIED);
589 }
590 }
591 (void) lfs_writeinode(fs, sp, ip);
592 inodes_written++;
593 }
594 }
595
596 if (lfs_clean_vnhead && only_cleaning)
597 lfs_vunref_head(vp);
598 else
599 lfs_vunref(vp);
600 }
601 return error;
602 }
603
604 /*
605 * Do a checkpoint.
606 */
607 int
608 lfs_segwrite(struct mount *mp, int flags)
609 {
610 struct buf *bp;
611 struct inode *ip;
612 struct lfs *fs;
613 struct segment *sp;
614 struct vnode *vp;
615 SEGUSE *segusep;
616 int do_ckp, did_ckp, error, s;
617 unsigned n, segleft, maxseg, sn, i, curseg;
618 int writer_set = 0;
619 int dirty;
620 int redo;
621 int um_error;
622
623 fs = VFSTOUFS(mp)->um_lfs;
624 ASSERT_MAYBE_SEGLOCK(fs);
625
626 if (fs->lfs_ronly)
627 return EROFS;
628
629 lfs_imtime(fs);
630
631 /*
632 * Allocate a segment structure and enough space to hold pointers to
633 * the maximum possible number of buffers which can be described in a
634 * single summary block.
635 */
636 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
637
638 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
639 sp = fs->lfs_sp;
640
641 /*
642 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
643 * in which case we have to flush *all* buffers off of this vnode.
644 * We don't care about other nodes, but write any non-dirop nodes
645 * anyway in anticipation of another getnewvnode().
646 *
647 * If we're cleaning we only write cleaning and ifile blocks, and
648 * no dirops, since otherwise we'd risk corruption in a crash.
649 */
650 if (sp->seg_flags & SEGM_CLEAN)
651 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
652 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
653 do {
654 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
655 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
656 if (!writer_set) {
657 lfs_writer_enter(fs, "lfs writer");
658 writer_set = 1;
659 }
660 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
661 if (um_error == 0)
662 um_error = error;
663 /* In case writevnodes errored out */
664 lfs_flush_dirops(fs);
665 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
666 lfs_finalize_fs_seguse(fs);
667 }
668 if (do_ckp && um_error) {
669 lfs_segunlock_relock(fs);
670 sp = fs->lfs_sp;
671 }
672 } while (do_ckp && um_error != 0);
673 }
674
675 /*
676 * If we are doing a checkpoint, mark everything since the
677 * last checkpoint as no longer ACTIVE.
678 */
679 if (do_ckp) {
680 segleft = fs->lfs_nseg;
681 curseg = 0;
682 for (n = 0; n < fs->lfs_segtabsz; n++) {
683 dirty = 0;
684 if (bread(fs->lfs_ivnode,
685 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
686 panic("lfs_segwrite: ifile read");
687 segusep = (SEGUSE *)bp->b_data;
688 maxseg = min(segleft, fs->lfs_sepb);
689 for (i = 0; i < maxseg; i++) {
690 sn = curseg + i;
691 if (sn != dtosn(fs, fs->lfs_curseg) &&
692 segusep->su_flags & SEGUSE_ACTIVE) {
693 segusep->su_flags &= ~SEGUSE_ACTIVE;
694 --fs->lfs_nactive;
695 ++dirty;
696 }
697 fs->lfs_suflags[fs->lfs_activesb][sn] =
698 segusep->su_flags;
699 if (fs->lfs_version > 1)
700 ++segusep;
701 else
702 segusep = (SEGUSE *)
703 ((SEGUSE_V1 *)segusep + 1);
704 }
705
706 if (dirty)
707 error = LFS_BWRITE_LOG(bp); /* Ifile */
708 else
709 brelse(bp);
710 segleft -= fs->lfs_sepb;
711 curseg += fs->lfs_sepb;
712 }
713 }
714
715 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
716
717 did_ckp = 0;
718 if (do_ckp || fs->lfs_doifile) {
719 vp = fs->lfs_ivnode;
720 vn_lock(vp, LK_EXCLUSIVE);
721 do {
722 #ifdef DEBUG
723 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
724 #endif
725 simple_lock(&fs->lfs_interlock);
726 fs->lfs_flags &= ~LFS_IFDIRTY;
727 simple_unlock(&fs->lfs_interlock);
728
729 ip = VTOI(vp);
730
731 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
732 /*
733 * Ifile has no pages, so we don't need
734 * to check error return here.
735 */
736 lfs_writefile(fs, sp, vp);
737 /*
738 * Ensure the Ifile takes the current segment
739 * into account. See comment in lfs_vflush.
740 */
741 lfs_writefile(fs, sp, vp);
742 lfs_writefile(fs, sp, vp);
743 }
744
745 if (ip->i_flag & IN_ALLMOD)
746 ++did_ckp;
747 redo = lfs_writeinode(fs, sp, ip);
748 redo += lfs_writeseg(fs, sp);
749 simple_lock(&fs->lfs_interlock);
750 redo += (fs->lfs_flags & LFS_IFDIRTY);
751 simple_unlock(&fs->lfs_interlock);
752 } while (redo && do_ckp);
753
754 /*
755 * Unless we are unmounting, the Ifile may continue to have
756 * dirty blocks even after a checkpoint, due to changes to
757 * inodes' atime. If we're checkpointing, it's "impossible"
758 * for other parts of the Ifile to be dirty after the loop
759 * above, since we hold the segment lock.
760 */
761 s = splbio();
762 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
763 LFS_CLR_UINO(ip, IN_ALLMOD);
764 }
765 #ifdef DIAGNOSTIC
766 else if (do_ckp) {
767 int do_panic = 0;
768 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
769 if (bp->b_lblkno < fs->lfs_cleansz +
770 fs->lfs_segtabsz &&
771 !(bp->b_flags & B_GATHERED)) {
772 printf("ifile lbn %ld still dirty (flags %lx)\n",
773 (long)bp->b_lblkno,
774 (long)bp->b_flags);
775 ++do_panic;
776 }
777 }
778 if (do_panic)
779 panic("dirty blocks");
780 }
781 #endif
782 splx(s);
783 VOP_UNLOCK(vp, 0);
784 } else {
785 (void) lfs_writeseg(fs, sp);
786 }
787
788 /* Note Ifile no longer needs to be written */
789 fs->lfs_doifile = 0;
790 if (writer_set)
791 lfs_writer_leave(fs);
792
793 /*
794 * If we didn't write the Ifile, we didn't really do anything.
795 * That means that (1) there is a checkpoint on disk and (2)
796 * nothing has changed since it was written.
797 *
798 * Take the flags off of the segment so that lfs_segunlock
799 * doesn't have to write the superblock either.
800 */
801 if (do_ckp && !did_ckp) {
802 sp->seg_flags &= ~SEGM_CKP;
803 }
804
805 if (lfs_dostats) {
806 ++lfs_stats.nwrites;
807 if (sp->seg_flags & SEGM_SYNC)
808 ++lfs_stats.nsync_writes;
809 if (sp->seg_flags & SEGM_CKP)
810 ++lfs_stats.ncheckpoints;
811 }
812 lfs_segunlock(fs);
813 return (0);
814 }
815
816 /*
817 * Write the dirty blocks associated with a vnode.
818 */
819 int
820 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
821 {
822 struct buf *bp;
823 struct finfo *fip;
824 struct inode *ip;
825 IFILE *ifp;
826 int i, frag, vers;
827 int error;
828
829 ASSERT_SEGLOCK(fs);
830 error = 0;
831 ip = VTOI(vp);
832
833 fip = sp->fip;
834 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
835 vers = ifp->if_version;
836 brelse(bp);
837 lfs_acquire_finfo(fs, ip->i_number, vers);
838
839 if (vp->v_flag & VDIROP)
840 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
841
842 if (sp->seg_flags & SEGM_CLEAN) {
843 lfs_gather(fs, sp, vp, lfs_match_fake);
844 /*
845 * For a file being flushed, we need to write *all* blocks.
846 * This means writing the cleaning blocks first, and then
847 * immediately following with any non-cleaning blocks.
848 * The same is true of the Ifile since checkpoints assume
849 * that all valid Ifile blocks are written.
850 */
851 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
852 lfs_gather(fs, sp, vp, lfs_match_data);
853 /*
854 * Don't call VOP_PUTPAGES: if we're flushing,
855 * we've already done it, and the Ifile doesn't
856 * use the page cache.
857 */
858 }
859 } else {
860 lfs_gather(fs, sp, vp, lfs_match_data);
861 /*
862 * If we're flushing, we've already called VOP_PUTPAGES
863 * so don't do it again. Otherwise, we want to write
864 * everything we've got.
865 */
866 if (!IS_FLUSHING(fs, vp)) {
867 simple_lock(&vp->v_interlock);
868 error = VOP_PUTPAGES(vp, 0, 0,
869 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
870 }
871 }
872
873 /*
874 * It may not be necessary to write the meta-data blocks at this point,
875 * as the roll-forward recovery code should be able to reconstruct the
876 * list.
877 *
878 * We have to write them anyway, though, under two conditions: (1) the
879 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
880 * checkpointing.
881 *
882 * BUT if we are cleaning, we might have indirect blocks that refer to
883 * new blocks not being written yet, in addition to fragments being
884 * moved out of a cleaned segment. If that is the case, don't
885 * write the indirect blocks, or the finfo will have a small block
886 * in the middle of it!
887 * XXX in this case isn't the inode size wrong too?
888 */
889 frag = 0;
890 if (sp->seg_flags & SEGM_CLEAN) {
891 for (i = 0; i < NDADDR; i++)
892 if (ip->i_lfs_fragsize[i] > 0 &&
893 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
894 ++frag;
895 }
896 #ifdef DIAGNOSTIC
897 if (frag > 1)
898 panic("lfs_writefile: more than one fragment!");
899 #endif
900 if (IS_FLUSHING(fs, vp) ||
901 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
902 lfs_gather(fs, sp, vp, lfs_match_indir);
903 lfs_gather(fs, sp, vp, lfs_match_dindir);
904 lfs_gather(fs, sp, vp, lfs_match_tindir);
905 }
906 fip = sp->fip;
907 lfs_release_finfo(fs);
908
909 return error;
910 }
911
912 int
913 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
914 {
915 struct buf *bp, *ibp;
916 struct ufs1_dinode *cdp;
917 IFILE *ifp;
918 SEGUSE *sup;
919 daddr_t daddr;
920 int32_t *daddrp; /* XXX ondisk32 */
921 ino_t ino;
922 int error, i, ndx, fsb = 0;
923 int redo_ifile = 0;
924 int gotblk = 0;
925
926 ASSERT_SEGLOCK(fs);
927 if (!(ip->i_flag & IN_ALLMOD))
928 return (0);
929
930 /* Allocate a new inode block if necessary. */
931 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
932 sp->ibp == NULL) {
933 /* Allocate a new segment if necessary. */
934 if (sp->seg_bytes_left < fs->lfs_ibsize ||
935 sp->sum_bytes_left < sizeof(int32_t))
936 (void) lfs_writeseg(fs, sp);
937
938 /* Get next inode block. */
939 daddr = fs->lfs_offset;
940 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
941 sp->ibp = *sp->cbpp++ =
942 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
943 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
944 gotblk++;
945
946 /* Zero out inode numbers */
947 for (i = 0; i < INOPB(fs); ++i)
948 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
949 0;
950
951 ++sp->start_bpp;
952 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
953 /* Set remaining space counters. */
954 sp->seg_bytes_left -= fs->lfs_ibsize;
955 sp->sum_bytes_left -= sizeof(int32_t);
956 ndx = fs->lfs_sumsize / sizeof(int32_t) -
957 sp->ninodes / INOPB(fs) - 1;
958 ((int32_t *)(sp->segsum))[ndx] = daddr;
959 }
960
961 /* Update the inode times and copy the inode onto the inode page. */
962 /* XXX kludge --- don't redirty the ifile just to put times on it */
963 if (ip->i_number != LFS_IFILE_INUM)
964 LFS_ITIMES(ip, NULL, NULL, NULL);
965
966 /*
967 * If this is the Ifile, and we've already written the Ifile in this
968 * partial segment, just overwrite it (it's not on disk yet) and
969 * continue.
970 *
971 * XXX we know that the bp that we get the second time around has
972 * already been gathered.
973 */
974 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
975 *(sp->idp) = *ip->i_din.ffs1_din;
976 ip->i_lfs_osize = ip->i_size;
977 return 0;
978 }
979
980 bp = sp->ibp;
981 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
982 *cdp = *ip->i_din.ffs1_din;
983
984 /* We can finish the segment accounting for truncations now */
985 lfs_finalize_ino_seguse(fs, ip);
986
987 /*
988 * If we are cleaning, ensure that we don't write UNWRITTEN disk
989 * addresses to disk; possibly change the on-disk record of
990 * the inode size, either by reverting to the previous size
991 * (in the case of cleaning) or by verifying the inode's block
992 * holdings (in the case of files being allocated as they are being
993 * written).
994 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
995 * XXX count on disk wrong by the same amount. We should be
996 * XXX able to "borrow" from lfs_avail and return it after the
997 * XXX Ifile is written. See also in lfs_writeseg.
998 */
999
1000 /* Check file size based on highest allocated block */
1001 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1002 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1003 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1004 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1005 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1006 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1007 }
1008 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1009 if (ip->i_flags & IN_CLEANING)
1010 cdp->di_size = ip->i_lfs_osize;
1011 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1012 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1013 ip->i_ffs1_blocks, fs->lfs_offset));
1014 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1015 daddrp++) {
1016 if (*daddrp == UNWRITTEN) {
1017 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1018 *daddrp = 0;
1019 }
1020 }
1021 } else {
1022 /* If all blocks are going to disk, update "size on disk" */
1023 ip->i_lfs_osize = ip->i_size;
1024 }
1025
1026 #ifdef DIAGNOSTIC
1027 /*
1028 * Check dinode held blocks against dinode size.
1029 * This should be identical to the check in lfs_vget().
1030 */
1031 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1032 i < NDADDR; i++) {
1033 KASSERT(i >= 0);
1034 if ((cdp->di_mode & IFMT) == IFLNK)
1035 continue;
1036 if (((cdp->di_mode & IFMT) == IFBLK ||
1037 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1038 continue;
1039 if (cdp->di_db[i] != 0) {
1040 # ifdef DEBUG
1041 lfs_dump_dinode(cdp);
1042 # endif
1043 panic("writing inconsistent inode");
1044 }
1045 }
1046 #endif /* DIAGNOSTIC */
1047
1048 if (ip->i_flag & IN_CLEANING)
1049 LFS_CLR_UINO(ip, IN_CLEANING);
1050 else {
1051 /* XXX IN_ALLMOD */
1052 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1053 IN_UPDATE | IN_MODIFY);
1054 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1055 LFS_CLR_UINO(ip, IN_MODIFIED);
1056 else
1057 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1058 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1059 ip->i_lfs_effnblks));
1060 }
1061
1062 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
1063 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1064 (sp->ninodes % INOPB(fs));
1065 if (gotblk) {
1066 LFS_LOCK_BUF(bp);
1067 brelse(bp);
1068 }
1069
1070 /* Increment inode count in segment summary block. */
1071 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1072
1073 /* If this page is full, set flag to allocate a new page. */
1074 if (++sp->ninodes % INOPB(fs) == 0)
1075 sp->ibp = NULL;
1076
1077 /*
1078 * If updating the ifile, update the super-block. Update the disk
1079 * address and access times for this inode in the ifile.
1080 */
1081 ino = ip->i_number;
1082 if (ino == LFS_IFILE_INUM) {
1083 daddr = fs->lfs_idaddr;
1084 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
1085 } else {
1086 LFS_IENTRY(ifp, fs, ino, ibp);
1087 daddr = ifp->if_daddr;
1088 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
1089 error = LFS_BWRITE_LOG(ibp); /* Ifile */
1090 }
1091
1092 /*
1093 * The inode's last address should not be in the current partial
1094 * segment, except under exceptional circumstances (lfs_writevnodes
1095 * had to start over, and in the meantime more blocks were written
1096 * to a vnode). Both inodes will be accounted to this segment
1097 * in lfs_writeseg so we need to subtract the earlier version
1098 * here anyway. The segment count can temporarily dip below
1099 * zero here; keep track of how many duplicates we have in
1100 * "dupino" so we don't panic below.
1101 */
1102 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
1103 ++sp->ndupino;
1104 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1105 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1106 (long long)daddr, sp->ndupino));
1107 }
1108 /*
1109 * Account the inode: it no longer belongs to its former segment,
1110 * though it will not belong to the new segment until that segment
1111 * is actually written.
1112 */
1113 if (daddr != LFS_UNUSED_DADDR) {
1114 u_int32_t oldsn = dtosn(fs, daddr);
1115 #ifdef DIAGNOSTIC
1116 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1117 #endif
1118 LFS_SEGENTRY(sup, fs, oldsn, bp);
1119 #ifdef DIAGNOSTIC
1120 if (sup->su_nbytes +
1121 sizeof (struct ufs1_dinode) * ndupino
1122 < sizeof (struct ufs1_dinode)) {
1123 printf("lfs_writeinode: negative bytes "
1124 "(segment %" PRIu32 " short by %d, "
1125 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1126 ", daddr=%" PRId64 ", su_nbytes=%u, "
1127 "ndupino=%d)\n",
1128 dtosn(fs, daddr),
1129 (int)sizeof (struct ufs1_dinode) *
1130 (1 - sp->ndupino) - sup->su_nbytes,
1131 oldsn, sp->seg_number, daddr,
1132 (unsigned int)sup->su_nbytes,
1133 sp->ndupino);
1134 panic("lfs_writeinode: negative bytes");
1135 sup->su_nbytes = sizeof (struct ufs1_dinode);
1136 }
1137 #endif
1138 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1139 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1140 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1141 redo_ifile =
1142 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1143 if (redo_ifile) {
1144 simple_lock(&fs->lfs_interlock);
1145 fs->lfs_flags |= LFS_IFDIRTY;
1146 simple_unlock(&fs->lfs_interlock);
1147 }
1148 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1149 }
1150 return (redo_ifile);
1151 }
1152
1153 int
1154 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1155 {
1156 struct lfs *fs;
1157 int vers;
1158 int j, blksinblk;
1159
1160 ASSERT_SEGLOCK(sp->fs);
1161 /*
1162 * If full, finish this segment. We may be doing I/O, so
1163 * release and reacquire the splbio().
1164 */
1165 #ifdef DIAGNOSTIC
1166 if (sp->vp == NULL)
1167 panic ("lfs_gatherblock: Null vp in segment");
1168 #endif
1169 fs = sp->fs;
1170 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1171 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1172 sp->seg_bytes_left < bp->b_bcount) {
1173 if (sptr)
1174 splx(*sptr);
1175 lfs_updatemeta(sp);
1176
1177 vers = sp->fip->fi_version;
1178 (void) lfs_writeseg(fs, sp);
1179
1180 /* Add the current file to the segment summary. */
1181 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1182
1183 if (sptr)
1184 *sptr = splbio();
1185 return (1);
1186 }
1187
1188 if (bp->b_flags & B_GATHERED) {
1189 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1190 " lbn %" PRId64 "\n",
1191 sp->fip->fi_ino, bp->b_lblkno));
1192 return (0);
1193 }
1194
1195 /* Insert into the buffer list, update the FINFO block. */
1196 bp->b_flags |= B_GATHERED;
1197
1198 *sp->cbpp++ = bp;
1199 for (j = 0; j < blksinblk; j++) {
1200 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1201 /* This block's accounting moves from lfs_favail to lfs_avail */
1202 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1203 }
1204
1205 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1206 sp->seg_bytes_left -= bp->b_bcount;
1207 return (0);
1208 }
1209
1210 int
1211 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1212 int (*match)(struct lfs *, struct buf *))
1213 {
1214 struct buf *bp, *nbp;
1215 int s, count = 0;
1216
1217 ASSERT_SEGLOCK(fs);
1218 if (vp->v_type == VBLK)
1219 return 0;
1220 KASSERT(sp->vp == NULL);
1221 sp->vp = vp;
1222 s = splbio();
1223
1224 #ifndef LFS_NO_BACKBUF_HACK
1225 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1226 # define BUF_OFFSET \
1227 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1228 # define BACK_BUF(BP) \
1229 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1230 # define BEG_OF_LIST \
1231 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1232
1233 loop:
1234 /* Find last buffer. */
1235 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1236 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1237 bp = LIST_NEXT(bp, b_vnbufs))
1238 /* nothing */;
1239 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1240 nbp = BACK_BUF(bp);
1241 #else /* LFS_NO_BACKBUF_HACK */
1242 loop:
1243 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1244 nbp = LIST_NEXT(bp, b_vnbufs);
1245 #endif /* LFS_NO_BACKBUF_HACK */
1246 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1247 #ifdef DEBUG
1248 if (vp == fs->lfs_ivnode &&
1249 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1250 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %"
1251 PRId64 " busy (%x)",
1252 bp->b_lblkno, bp->b_flags));
1253 #endif
1254 continue;
1255 }
1256 #ifdef DIAGNOSTIC
1257 # ifdef LFS_USE_B_INVAL
1258 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1259 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1260 " is B_INVAL\n", bp->b_lblkno));
1261 VOP_PRINT(bp->b_vp);
1262 }
1263 # endif /* LFS_USE_B_INVAL */
1264 if (!(bp->b_flags & B_DELWRI))
1265 panic("lfs_gather: bp not B_DELWRI");
1266 if (!(bp->b_flags & B_LOCKED)) {
1267 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1268 " blk %" PRId64 " not B_LOCKED\n",
1269 bp->b_lblkno,
1270 dbtofsb(fs, bp->b_blkno)));
1271 VOP_PRINT(bp->b_vp);
1272 panic("lfs_gather: bp not B_LOCKED");
1273 }
1274 #endif
1275 if (lfs_gatherblock(sp, bp, &s)) {
1276 goto loop;
1277 }
1278 count++;
1279 }
1280 splx(s);
1281 lfs_updatemeta(sp);
1282 KASSERT(sp->vp == vp);
1283 sp->vp = NULL;
1284 return count;
1285 }
1286
1287 #if DEBUG
1288 # define DEBUG_OOFF(n) do { \
1289 if (ooff == 0) { \
1290 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1291 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1292 ", was 0x0 (or %" PRId64 ")\n", \
1293 (n), ip->i_number, lbn, ndaddr, daddr)); \
1294 } \
1295 } while (0)
1296 #else
1297 # define DEBUG_OOFF(n)
1298 #endif
1299
1300 /*
1301 * Change the given block's address to ndaddr, finding its previous
1302 * location using ufs_bmaparray().
1303 *
1304 * Account for this change in the segment table.
1305 *
1306 * called with sp == NULL by roll-forwarding code.
1307 */
1308 void
1309 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1310 daddr_t lbn, int32_t ndaddr, int size)
1311 {
1312 SEGUSE *sup;
1313 struct buf *bp;
1314 struct indir a[NIADDR + 2], *ap;
1315 struct inode *ip;
1316 daddr_t daddr, ooff;
1317 int num, error;
1318 int bb, osize, obb;
1319
1320 ASSERT_SEGLOCK(fs);
1321 KASSERT(sp == NULL || sp->vp == vp);
1322 ip = VTOI(vp);
1323
1324 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1325 if (error)
1326 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1327
1328 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1329 KASSERT(daddr <= LFS_MAX_DADDR);
1330 if (daddr > 0)
1331 daddr = dbtofsb(fs, daddr);
1332
1333 bb = fragstofsb(fs, numfrags(fs, size));
1334 switch (num) {
1335 case 0:
1336 ooff = ip->i_ffs1_db[lbn];
1337 DEBUG_OOFF(0);
1338 if (ooff == UNWRITTEN)
1339 ip->i_ffs1_blocks += bb;
1340 else {
1341 /* possible fragment truncation or extension */
1342 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1343 ip->i_ffs1_blocks += (bb - obb);
1344 }
1345 ip->i_ffs1_db[lbn] = ndaddr;
1346 break;
1347 case 1:
1348 ooff = ip->i_ffs1_ib[a[0].in_off];
1349 DEBUG_OOFF(1);
1350 if (ooff == UNWRITTEN)
1351 ip->i_ffs1_blocks += bb;
1352 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1353 break;
1354 default:
1355 ap = &a[num - 1];
1356 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1357 panic("lfs_updatemeta: bread bno %" PRId64,
1358 ap->in_lbn);
1359
1360 /* XXX ondisk32 */
1361 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1362 DEBUG_OOFF(num);
1363 if (ooff == UNWRITTEN)
1364 ip->i_ffs1_blocks += bb;
1365 /* XXX ondisk32 */
1366 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1367 (void) VOP_BWRITE(bp);
1368 }
1369
1370 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1371
1372 /* Update hiblk when extending the file */
1373 if (lbn > ip->i_lfs_hiblk)
1374 ip->i_lfs_hiblk = lbn;
1375
1376 /*
1377 * Though we'd rather it couldn't, this *can* happen right now
1378 * if cleaning blocks and regular blocks coexist.
1379 */
1380 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1381
1382 /*
1383 * Update segment usage information, based on old size
1384 * and location.
1385 */
1386 if (daddr > 0) {
1387 u_int32_t oldsn = dtosn(fs, daddr);
1388 #ifdef DIAGNOSTIC
1389 int ndupino;
1390
1391 if (sp && sp->seg_number == oldsn) {
1392 ndupino = sp->ndupino;
1393 } else {
1394 ndupino = 0;
1395 }
1396 #endif
1397 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1398 if (lbn >= 0 && lbn < NDADDR)
1399 osize = ip->i_lfs_fragsize[lbn];
1400 else
1401 osize = fs->lfs_bsize;
1402 LFS_SEGENTRY(sup, fs, oldsn, bp);
1403 #ifdef DIAGNOSTIC
1404 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1405 < osize) {
1406 printf("lfs_updatemeta: negative bytes "
1407 "(segment %" PRIu32 " short by %" PRId64
1408 ")\n", dtosn(fs, daddr),
1409 (int64_t)osize -
1410 (sizeof (struct ufs1_dinode) * ndupino +
1411 sup->su_nbytes));
1412 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1413 ", addr = 0x%" PRIx64 "\n",
1414 (unsigned long long)ip->i_number, lbn, daddr);
1415 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1416 panic("lfs_updatemeta: negative bytes");
1417 sup->su_nbytes = osize -
1418 sizeof (struct ufs1_dinode) * ndupino;
1419 }
1420 #endif
1421 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1422 " db 0x%" PRIx64 "\n",
1423 dtosn(fs, daddr), osize,
1424 ip->i_number, lbn, daddr));
1425 sup->su_nbytes -= osize;
1426 if (!(bp->b_flags & B_GATHERED)) {
1427 simple_lock(&fs->lfs_interlock);
1428 fs->lfs_flags |= LFS_IFDIRTY;
1429 simple_unlock(&fs->lfs_interlock);
1430 }
1431 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1432 }
1433 /*
1434 * Now that this block has a new address, and its old
1435 * segment no longer owns it, we can forget about its
1436 * old size.
1437 */
1438 if (lbn >= 0 && lbn < NDADDR)
1439 ip->i_lfs_fragsize[lbn] = size;
1440 }
1441
1442 /*
1443 * Update the metadata that points to the blocks listed in the FINFO
1444 * array.
1445 */
1446 void
1447 lfs_updatemeta(struct segment *sp)
1448 {
1449 struct buf *sbp;
1450 struct lfs *fs;
1451 struct vnode *vp;
1452 daddr_t lbn;
1453 int i, nblocks, num;
1454 int bb;
1455 int bytesleft, size;
1456
1457 ASSERT_SEGLOCK(sp->fs);
1458 vp = sp->vp;
1459 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1460 KASSERT(nblocks >= 0);
1461 KASSERT(vp != NULL);
1462 if (nblocks == 0)
1463 return;
1464
1465 /*
1466 * This count may be high due to oversize blocks from lfs_gop_write.
1467 * Correct for this. (XXX we should be able to keep track of these.)
1468 */
1469 fs = sp->fs;
1470 for (i = 0; i < nblocks; i++) {
1471 if (sp->start_bpp[i] == NULL) {
1472 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1473 nblocks = i;
1474 break;
1475 }
1476 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1477 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1478 nblocks -= num - 1;
1479 }
1480
1481 KASSERT(vp->v_type == VREG ||
1482 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1483 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1484
1485 /*
1486 * Sort the blocks.
1487 *
1488 * We have to sort even if the blocks come from the
1489 * cleaner, because there might be other pending blocks on the
1490 * same inode...and if we don't sort, and there are fragments
1491 * present, blocks may be written in the wrong place.
1492 */
1493 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1494
1495 /*
1496 * Record the length of the last block in case it's a fragment.
1497 * If there are indirect blocks present, they sort last. An
1498 * indirect block will be lfs_bsize and its presence indicates
1499 * that you cannot have fragments.
1500 *
1501 * XXX This last is a lie. A cleaned fragment can coexist with
1502 * XXX a later indirect block. This will continue to be
1503 * XXX true until lfs_markv is fixed to do everything with
1504 * XXX fake blocks (including fake inodes and fake indirect blocks).
1505 */
1506 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1507 fs->lfs_bmask) + 1;
1508
1509 /*
1510 * Assign disk addresses, and update references to the logical
1511 * block and the segment usage information.
1512 */
1513 for (i = nblocks; i--; ++sp->start_bpp) {
1514 sbp = *sp->start_bpp;
1515 lbn = *sp->start_lbp;
1516 KASSERT(sbp->b_lblkno == lbn);
1517
1518 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1519
1520 /*
1521 * If we write a frag in the wrong place, the cleaner won't
1522 * be able to correctly identify its size later, and the
1523 * segment will be uncleanable. (Even worse, it will assume
1524 * that the indirect block that actually ends the list
1525 * is of a smaller size!)
1526 */
1527 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1528 panic("lfs_updatemeta: fragment is not last block");
1529
1530 /*
1531 * For each subblock in this possibly oversized block,
1532 * update its address on disk.
1533 */
1534 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1535 KASSERT(vp == sbp->b_vp);
1536 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1537 bytesleft -= fs->lfs_bsize) {
1538 size = MIN(bytesleft, fs->lfs_bsize);
1539 bb = fragstofsb(fs, numfrags(fs, size));
1540 lbn = *sp->start_lbp++;
1541 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1542 size);
1543 fs->lfs_offset += bb;
1544 }
1545
1546 }
1547 }
1548
1549 /*
1550 * Move lfs_offset to a segment earlier than sn.
1551 */
1552 int
1553 lfs_rewind(struct lfs *fs, int newsn)
1554 {
1555 int sn, osn, isdirty;
1556 struct buf *bp;
1557 SEGUSE *sup;
1558
1559 ASSERT_SEGLOCK(fs);
1560
1561 osn = dtosn(fs, fs->lfs_offset);
1562 if (osn < newsn)
1563 return 0;
1564
1565 /* lfs_avail eats the remaining space in this segment */
1566 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1567
1568 /* Find a low-numbered segment */
1569 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1570 LFS_SEGENTRY(sup, fs, sn, bp);
1571 isdirty = sup->su_flags & SEGUSE_DIRTY;
1572 brelse(bp);
1573
1574 if (!isdirty)
1575 break;
1576 }
1577 if (sn == fs->lfs_nseg)
1578 panic("lfs_rewind: no clean segments");
1579 if (sn >= newsn)
1580 return ENOENT;
1581 fs->lfs_nextseg = sn;
1582 lfs_newseg(fs);
1583 fs->lfs_offset = fs->lfs_curseg;
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * Start a new partial segment.
1590 *
1591 * Return 1 when we entered to a new segment.
1592 * Otherwise, return 0.
1593 */
1594 int
1595 lfs_initseg(struct lfs *fs)
1596 {
1597 struct segment *sp = fs->lfs_sp;
1598 SEGSUM *ssp;
1599 struct buf *sbp; /* buffer for SEGSUM */
1600 int repeat = 0; /* return value */
1601
1602 ASSERT_SEGLOCK(fs);
1603 /* Advance to the next segment. */
1604 if (!LFS_PARTIAL_FITS(fs)) {
1605 SEGUSE *sup;
1606 struct buf *bp;
1607
1608 /* lfs_avail eats the remaining space */
1609 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1610 fs->lfs_curseg);
1611 /* Wake up any cleaning procs waiting on this file system. */
1612 wakeup(&lfs_allclean_wakeup);
1613 wakeup(&fs->lfs_nextseg);
1614 lfs_newseg(fs);
1615 repeat = 1;
1616 fs->lfs_offset = fs->lfs_curseg;
1617
1618 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1619 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1620
1621 /*
1622 * If the segment contains a superblock, update the offset
1623 * and summary address to skip over it.
1624 */
1625 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1626 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1627 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1628 sp->seg_bytes_left -= LFS_SBPAD;
1629 }
1630 brelse(bp);
1631 /* Segment zero could also contain the labelpad */
1632 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1633 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1634 fs->lfs_offset +=
1635 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1636 sp->seg_bytes_left -=
1637 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1638 }
1639 } else {
1640 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1641 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1642 (fs->lfs_offset - fs->lfs_curseg));
1643 }
1644 fs->lfs_lastpseg = fs->lfs_offset;
1645
1646 /* Record first address of this partial segment */
1647 if (sp->seg_flags & SEGM_CLEAN) {
1648 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1649 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1650 /* "1" is the artificial inc in lfs_seglock */
1651 simple_lock(&fs->lfs_interlock);
1652 while (fs->lfs_iocount > 1) {
1653 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1654 "lfs_initseg", 0, &fs->lfs_interlock);
1655 }
1656 simple_unlock(&fs->lfs_interlock);
1657 fs->lfs_cleanind = 0;
1658 }
1659 }
1660
1661 sp->fs = fs;
1662 sp->ibp = NULL;
1663 sp->idp = NULL;
1664 sp->ninodes = 0;
1665 sp->ndupino = 0;
1666
1667 sp->cbpp = sp->bpp;
1668
1669 /* Get a new buffer for SEGSUM */
1670 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1671 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1672
1673 /* ... and enter it into the buffer list. */
1674 *sp->cbpp = sbp;
1675 sp->cbpp++;
1676 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1677
1678 sp->start_bpp = sp->cbpp;
1679
1680 /* Set point to SEGSUM, initialize it. */
1681 ssp = sp->segsum = sbp->b_data;
1682 memset(ssp, 0, fs->lfs_sumsize);
1683 ssp->ss_next = fs->lfs_nextseg;
1684 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1685 ssp->ss_magic = SS_MAGIC;
1686
1687 /* Set pointer to first FINFO, initialize it. */
1688 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1689 sp->fip->fi_nblocks = 0;
1690 sp->start_lbp = &sp->fip->fi_blocks[0];
1691 sp->fip->fi_lastlength = 0;
1692
1693 sp->seg_bytes_left -= fs->lfs_sumsize;
1694 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1695
1696 return (repeat);
1697 }
1698
1699 /*
1700 * Remove SEGUSE_INVAL from all segments.
1701 */
1702 void
1703 lfs_unset_inval_all(struct lfs *fs)
1704 {
1705 SEGUSE *sup;
1706 struct buf *bp;
1707 int i;
1708
1709 for (i = 0; i < fs->lfs_nseg; i++) {
1710 LFS_SEGENTRY(sup, fs, i, bp);
1711 if (sup->su_flags & SEGUSE_INVAL) {
1712 sup->su_flags &= ~SEGUSE_INVAL;
1713 VOP_BWRITE(bp);
1714 } else
1715 brelse(bp);
1716 }
1717 }
1718
1719 /*
1720 * Return the next segment to write.
1721 */
1722 void
1723 lfs_newseg(struct lfs *fs)
1724 {
1725 CLEANERINFO *cip;
1726 SEGUSE *sup;
1727 struct buf *bp;
1728 int curseg, isdirty, sn, skip_inval;
1729
1730 ASSERT_SEGLOCK(fs);
1731
1732 /* Honor LFCNWRAPSTOP */
1733 simple_lock(&fs->lfs_interlock);
1734 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1735 wakeup(&fs->lfs_nowrap);
1736 ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0,
1737 &fs->lfs_interlock);
1738 }
1739 simple_unlock(&fs->lfs_interlock);
1740
1741 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1742 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1743 dtosn(fs, fs->lfs_nextseg)));
1744 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1745 sup->su_nbytes = 0;
1746 sup->su_nsums = 0;
1747 sup->su_ninos = 0;
1748 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1749
1750 LFS_CLEANERINFO(cip, fs, bp);
1751 --cip->clean;
1752 ++cip->dirty;
1753 fs->lfs_nclean = cip->clean;
1754 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1755
1756 fs->lfs_lastseg = fs->lfs_curseg;
1757 fs->lfs_curseg = fs->lfs_nextseg;
1758 skip_inval = 1;
1759 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1760 sn = (sn + 1) % fs->lfs_nseg;
1761
1762 if (sn == curseg) {
1763 if (skip_inval)
1764 skip_inval = 0;
1765 else
1766 panic("lfs_nextseg: no clean segments");
1767 }
1768 LFS_SEGENTRY(sup, fs, sn, bp);
1769 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1770 /* Check SEGUSE_EMPTY as we go along */
1771 if (isdirty && sup->su_nbytes == 0 &&
1772 !(sup->su_flags & SEGUSE_EMPTY))
1773 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1774 else
1775 brelse(bp);
1776
1777 if (!isdirty)
1778 break;
1779 }
1780 if (skip_inval == 0)
1781 lfs_unset_inval_all(fs);
1782
1783 ++fs->lfs_nactive;
1784 fs->lfs_nextseg = sntod(fs, sn);
1785 if (lfs_dostats) {
1786 ++lfs_stats.segsused;
1787 }
1788 }
1789
1790 static struct buf *
1791 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1792 {
1793 struct lfs_cluster *cl;
1794 struct buf **bpp, *bp;
1795
1796 ASSERT_SEGLOCK(fs);
1797 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1798 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1799 memset(cl, 0, sizeof(*cl));
1800 cl->fs = fs;
1801 cl->bpp = bpp;
1802 cl->bufcount = 0;
1803 cl->bufsize = 0;
1804
1805 /* If this segment is being written synchronously, note that */
1806 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1807 cl->flags |= LFS_CL_SYNC;
1808 cl->seg = fs->lfs_sp;
1809 ++cl->seg->seg_iocount;
1810 }
1811
1812 /* Get an empty buffer header, or maybe one with something on it */
1813 bp = getiobuf();
1814 bp->b_flags = B_BUSY | B_CALL;
1815 bp->b_dev = NODEV;
1816 bp->b_blkno = bp->b_lblkno = addr;
1817 bp->b_iodone = lfs_cluster_callback;
1818 bp->b_private = cl;
1819 bp->b_vp = vp;
1820
1821 return bp;
1822 }
1823
1824 int
1825 lfs_writeseg(struct lfs *fs, struct segment *sp)
1826 {
1827 struct buf **bpp, *bp, *cbp, *newbp;
1828 SEGUSE *sup;
1829 SEGSUM *ssp;
1830 int i, s;
1831 int do_again, nblocks, byteoffset;
1832 size_t el_size;
1833 struct lfs_cluster *cl;
1834 u_short ninos;
1835 struct vnode *devvp;
1836 char *p = NULL;
1837 struct vnode *vp;
1838 int32_t *daddrp; /* XXX ondisk32 */
1839 int changed;
1840 u_int32_t sum;
1841 #ifdef DEBUG
1842 FINFO *fip;
1843 int findex;
1844 #endif
1845
1846 ASSERT_SEGLOCK(fs);
1847 /*
1848 * If there are no buffers other than the segment summary to write
1849 * and it is not a checkpoint, don't do anything. On a checkpoint,
1850 * even if there aren't any buffers, you need to write the superblock.
1851 */
1852 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1853 return (0);
1854
1855 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1856
1857 /* Update the segment usage information. */
1858 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1859
1860 /* Loop through all blocks, except the segment summary. */
1861 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1862 if ((*bpp)->b_vp != devvp) {
1863 sup->su_nbytes += (*bpp)->b_bcount;
1864 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1865 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1866 sp->seg_number, (*bpp)->b_bcount,
1867 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1868 (*bpp)->b_blkno));
1869 }
1870 }
1871
1872 ssp = (SEGSUM *)sp->segsum;
1873
1874 #ifdef DEBUG
1875 /* Check for zero-length FINFO entries. */
1876 fip = (struct finfo *)((caddr_t)ssp + SEGSUM_SIZE(fs));
1877 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
1878 KDASSERT(fip->fi_nblocks > 0);
1879 fip = (FINFO *)((caddr_t)fip + FINFOSIZE +
1880 sizeof(int32_t) * fip->fi_nblocks);
1881 }
1882 #endif /* DEBUG */
1883
1884 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1885 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
1886 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
1887 ssp->ss_ninos));
1888 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
1889 /* sup->su_nbytes += fs->lfs_sumsize; */
1890 if (fs->lfs_version == 1)
1891 sup->su_olastmod = time.tv_sec;
1892 else
1893 sup->su_lastmod = time.tv_sec;
1894 sup->su_ninos += ninos;
1895 ++sup->su_nsums;
1896 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1897
1898 do_again = !(bp->b_flags & B_GATHERED);
1899 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
1900
1901 /*
1902 * Mark blocks B_BUSY, to prevent then from being changed between
1903 * the checksum computation and the actual write.
1904 *
1905 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1906 * there are any, replace them with copies that have UNASSIGNED
1907 * instead.
1908 */
1909 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1910 ++bpp;
1911 bp = *bpp;
1912 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
1913 bp->b_flags |= B_BUSY;
1914 continue;
1915 }
1916
1917 simple_lock(&bp->b_interlock);
1918 s = splbio();
1919 while (bp->b_flags & B_BUSY) {
1920 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
1921 " data summary corruption for ino %d, lbn %"
1922 PRId64 "\n",
1923 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
1924 bp->b_flags |= B_WANTED;
1925 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
1926 &bp->b_interlock);
1927 splx(s);
1928 s = splbio();
1929 }
1930 bp->b_flags |= B_BUSY;
1931 splx(s);
1932 simple_unlock(&bp->b_interlock);
1933
1934 /*
1935 * Check and replace indirect block UNWRITTEN bogosity.
1936 * XXX See comment in lfs_writefile.
1937 */
1938 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1939 VTOI(bp->b_vp)->i_ffs1_blocks !=
1940 VTOI(bp->b_vp)->i_lfs_effnblks) {
1941 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
1942 VTOI(bp->b_vp)->i_number,
1943 VTOI(bp->b_vp)->i_lfs_effnblks,
1944 VTOI(bp->b_vp)->i_ffs1_blocks));
1945 /* Make a copy we'll make changes to */
1946 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1947 bp->b_bcount, LFS_NB_IBLOCK);
1948 newbp->b_blkno = bp->b_blkno;
1949 memcpy(newbp->b_data, bp->b_data,
1950 newbp->b_bcount);
1951
1952 changed = 0;
1953 /* XXX ondisk32 */
1954 for (daddrp = (int32_t *)(newbp->b_data);
1955 daddrp < (int32_t *)(newbp->b_data +
1956 newbp->b_bcount); daddrp++) {
1957 if (*daddrp == UNWRITTEN) {
1958 ++changed;
1959 *daddrp = 0;
1960 }
1961 }
1962 /*
1963 * Get rid of the old buffer. Don't mark it clean,
1964 * though, if it still has dirty data on it.
1965 */
1966 if (changed) {
1967 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
1968 " bp = %p newbp = %p\n", changed, bp,
1969 newbp));
1970 *bpp = newbp;
1971 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1972 if (bp->b_flags & B_CALL) {
1973 DLOG((DLOG_SEG, "lfs_writeseg: "
1974 "indir bp should not be B_CALL\n"));
1975 s = splbio();
1976 biodone(bp);
1977 splx(s);
1978 bp = NULL;
1979 } else {
1980 /* Still on free list, leave it there */
1981 s = splbio();
1982 bp->b_flags &= ~B_BUSY;
1983 if (bp->b_flags & B_WANTED)
1984 wakeup(bp);
1985 splx(s);
1986 /*
1987 * We have to re-decrement lfs_avail
1988 * since this block is going to come
1989 * back around to us in the next
1990 * segment.
1991 */
1992 fs->lfs_avail -=
1993 btofsb(fs, bp->b_bcount);
1994 }
1995 } else {
1996 lfs_freebuf(fs, newbp);
1997 }
1998 }
1999 }
2000 /*
2001 * Compute checksum across data and then across summary; the first
2002 * block (the summary block) is skipped. Set the create time here
2003 * so that it's guaranteed to be later than the inode mod times.
2004 */
2005 sum = 0;
2006 if (fs->lfs_version == 1)
2007 el_size = sizeof(u_long);
2008 else
2009 el_size = sizeof(u_int32_t);
2010 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2011 ++bpp;
2012 /* Loop through gop_write cluster blocks */
2013 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2014 byteoffset += fs->lfs_bsize) {
2015 #ifdef LFS_USE_B_INVAL
2016 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2017 (B_CALL | B_INVAL)) {
2018 if (copyin((caddr_t)(*bpp)->b_saveaddr +
2019 byteoffset, dp, el_size)) {
2020 panic("lfs_writeseg: copyin failed [1]:"
2021 " ino %d blk %" PRId64,
2022 VTOI((*bpp)->b_vp)->i_number,
2023 (*bpp)->b_lblkno);
2024 }
2025 } else
2026 #endif /* LFS_USE_B_INVAL */
2027 {
2028 sum = lfs_cksum_part(
2029 (*bpp)->b_data + byteoffset, el_size, sum);
2030 }
2031 }
2032 }
2033 if (fs->lfs_version == 1)
2034 ssp->ss_ocreate = time.tv_sec;
2035 else {
2036 ssp->ss_create = time.tv_sec;
2037 ssp->ss_serial = ++fs->lfs_serial;
2038 ssp->ss_ident = fs->lfs_ident;
2039 }
2040 ssp->ss_datasum = lfs_cksum_fold(sum);
2041 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2042 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2043
2044 simple_lock(&fs->lfs_interlock);
2045 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2046 btofsb(fs, fs->lfs_sumsize));
2047 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2048 btofsb(fs, fs->lfs_sumsize));
2049 simple_unlock(&fs->lfs_interlock);
2050
2051 /*
2052 * When we simply write the blocks we lose a rotation for every block
2053 * written. To avoid this problem, we cluster the buffers into a
2054 * chunk and write the chunk. MAXPHYS is the largest size I/O
2055 * devices can handle, use that for the size of the chunks.
2056 *
2057 * Blocks that are already clusters (from GOP_WRITE), however, we
2058 * don't bother to copy into other clusters.
2059 */
2060
2061 #define CHUNKSIZE MAXPHYS
2062
2063 if (devvp == NULL)
2064 panic("devvp is NULL");
2065 for (bpp = sp->bpp, i = nblocks; i;) {
2066 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2067 cl = cbp->b_private;
2068
2069 cbp->b_flags |= B_ASYNC | B_BUSY;
2070 cbp->b_bcount = 0;
2071
2072 #if defined(DEBUG) && defined(DIAGNOSTIC)
2073 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2074 / sizeof(int32_t)) {
2075 panic("lfs_writeseg: real bpp overwrite");
2076 }
2077 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2078 panic("lfs_writeseg: theoretical bpp overwrite");
2079 }
2080 #endif
2081
2082 /*
2083 * Construct the cluster.
2084 */
2085 simple_lock(&fs->lfs_interlock);
2086 ++fs->lfs_iocount;
2087 simple_unlock(&fs->lfs_interlock);
2088 while (i && cbp->b_bcount < CHUNKSIZE) {
2089 bp = *bpp;
2090
2091 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2092 break;
2093 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2094 break;
2095
2096 /* Clusters from GOP_WRITE are expedited */
2097 if (bp->b_bcount > fs->lfs_bsize) {
2098 if (cbp->b_bcount > 0)
2099 /* Put in its own buffer */
2100 break;
2101 else {
2102 cbp->b_data = bp->b_data;
2103 }
2104 } else if (cbp->b_bcount == 0) {
2105 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2106 LFS_NB_CLUSTER);
2107 cl->flags |= LFS_CL_MALLOC;
2108 }
2109 #ifdef DIAGNOSTIC
2110 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2111 btodb(bp->b_bcount - 1))) !=
2112 sp->seg_number) {
2113 printf("blk size %d daddr %" PRIx64
2114 " not in seg %d\n",
2115 bp->b_bcount, bp->b_blkno,
2116 sp->seg_number);
2117 panic("segment overwrite");
2118 }
2119 #endif
2120
2121 #ifdef LFS_USE_B_INVAL
2122 /*
2123 * Fake buffers from the cleaner are marked as B_INVAL.
2124 * We need to copy the data from user space rather than
2125 * from the buffer indicated.
2126 * XXX == what do I do on an error?
2127 */
2128 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2129 (B_CALL|B_INVAL)) {
2130 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2131 panic("lfs_writeseg: "
2132 "copyin failed [2]");
2133 } else
2134 #endif /* LFS_USE_B_INVAL */
2135 if (cl->flags & LFS_CL_MALLOC) {
2136 /* copy data into our cluster. */
2137 memcpy(p, bp->b_data, bp->b_bcount);
2138 p += bp->b_bcount;
2139 }
2140
2141 cbp->b_bcount += bp->b_bcount;
2142 cl->bufsize += bp->b_bcount;
2143
2144 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2145 cl->bpp[cl->bufcount++] = bp;
2146 vp = bp->b_vp;
2147 s = splbio();
2148 reassignbuf(bp, vp);
2149 V_INCR_NUMOUTPUT(vp);
2150 splx(s);
2151
2152 bpp++;
2153 i--;
2154 }
2155 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2156 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2157 else
2158 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2159 s = splbio();
2160 V_INCR_NUMOUTPUT(devvp);
2161 splx(s);
2162 VOP_STRATEGY(devvp, cbp);
2163 curproc->p_stats->p_ru.ru_oublock++;
2164 }
2165
2166 if (lfs_dostats) {
2167 ++lfs_stats.psegwrites;
2168 lfs_stats.blocktot += nblocks - 1;
2169 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2170 ++lfs_stats.psyncwrites;
2171 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2172 ++lfs_stats.pcleanwrites;
2173 lfs_stats.cleanblocks += nblocks - 1;
2174 }
2175 }
2176 return (lfs_initseg(fs) || do_again);
2177 }
2178
2179 void
2180 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2181 {
2182 struct buf *bp;
2183 int s;
2184 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2185
2186 ASSERT_MAYBE_SEGLOCK(fs);
2187 #ifdef DIAGNOSTIC
2188 KASSERT(fs->lfs_magic == LFS_MAGIC);
2189 #endif
2190 /*
2191 * If we can write one superblock while another is in
2192 * progress, we risk not having a complete checkpoint if we crash.
2193 * So, block here if a superblock write is in progress.
2194 */
2195 simple_lock(&fs->lfs_interlock);
2196 s = splbio();
2197 while (fs->lfs_sbactive) {
2198 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2199 &fs->lfs_interlock);
2200 }
2201 fs->lfs_sbactive = daddr;
2202 splx(s);
2203 simple_unlock(&fs->lfs_interlock);
2204
2205 /* Set timestamp of this version of the superblock */
2206 if (fs->lfs_version == 1)
2207 fs->lfs_otstamp = time.tv_sec;
2208 fs->lfs_tstamp = time.tv_sec;
2209
2210 /* Checksum the superblock and copy it into a buffer. */
2211 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2212 bp = lfs_newbuf(fs, devvp,
2213 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2214 memset(bp->b_data + sizeof(struct dlfs), 0,
2215 LFS_SBPAD - sizeof(struct dlfs));
2216 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2217
2218 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2219 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2220 bp->b_iodone = lfs_supercallback;
2221
2222 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2223 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2224 else
2225 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2226 curproc->p_stats->p_ru.ru_oublock++;
2227 s = splbio();
2228 V_INCR_NUMOUTPUT(bp->b_vp);
2229 splx(s);
2230 simple_lock(&fs->lfs_interlock);
2231 ++fs->lfs_iocount;
2232 simple_unlock(&fs->lfs_interlock);
2233 VOP_STRATEGY(devvp, bp);
2234 }
2235
2236 /*
2237 * Logical block number match routines used when traversing the dirty block
2238 * chain.
2239 */
2240 int
2241 lfs_match_fake(struct lfs *fs, struct buf *bp)
2242 {
2243
2244 ASSERT_SEGLOCK(fs);
2245 return LFS_IS_MALLOC_BUF(bp);
2246 }
2247
2248 #if 0
2249 int
2250 lfs_match_real(struct lfs *fs, struct buf *bp)
2251 {
2252
2253 ASSERT_SEGLOCK(fs);
2254 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2255 }
2256 #endif
2257
2258 int
2259 lfs_match_data(struct lfs *fs, struct buf *bp)
2260 {
2261
2262 ASSERT_SEGLOCK(fs);
2263 return (bp->b_lblkno >= 0);
2264 }
2265
2266 int
2267 lfs_match_indir(struct lfs *fs, struct buf *bp)
2268 {
2269 daddr_t lbn;
2270
2271 ASSERT_SEGLOCK(fs);
2272 lbn = bp->b_lblkno;
2273 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2274 }
2275
2276 int
2277 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2278 {
2279 daddr_t lbn;
2280
2281 ASSERT_SEGLOCK(fs);
2282 lbn = bp->b_lblkno;
2283 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2284 }
2285
2286 int
2287 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2288 {
2289 daddr_t lbn;
2290
2291 ASSERT_SEGLOCK(fs);
2292 lbn = bp->b_lblkno;
2293 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2294 }
2295
2296 /*
2297 * XXX - The only buffers that are going to hit these functions are the
2298 * segment write blocks, or the segment summaries, or the superblocks.
2299 *
2300 * All of the above are created by lfs_newbuf, and so do not need to be
2301 * released via brelse.
2302 */
2303 void
2304 lfs_callback(struct buf *bp)
2305 {
2306 struct lfs *fs;
2307
2308 fs = bp->b_private;
2309 ASSERT_NO_SEGLOCK(fs);
2310 lfs_freebuf(fs, bp);
2311 }
2312
2313 static void
2314 lfs_super_aiodone(struct buf *bp)
2315 {
2316 struct lfs *fs;
2317
2318 fs = bp->b_private;
2319 ASSERT_NO_SEGLOCK(fs);
2320 simple_lock(&fs->lfs_interlock);
2321 fs->lfs_sbactive = 0;
2322 if (--fs->lfs_iocount <= 1)
2323 wakeup(&fs->lfs_iocount);
2324 simple_unlock(&fs->lfs_interlock);
2325 wakeup(&fs->lfs_sbactive);
2326 lfs_freebuf(fs, bp);
2327 }
2328
2329 static void
2330 lfs_cluster_aiodone(struct buf *bp)
2331 {
2332 struct lfs_cluster *cl;
2333 struct lfs *fs;
2334 struct buf *tbp, *fbp;
2335 struct vnode *vp, *devvp;
2336 struct inode *ip;
2337 int s, error=0;
2338
2339 if (bp->b_flags & B_ERROR)
2340 error = bp->b_error;
2341
2342 cl = bp->b_private;
2343 fs = cl->fs;
2344 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2345 ASSERT_NO_SEGLOCK(fs);
2346
2347 /* Put the pages back, and release the buffer */
2348 while (cl->bufcount--) {
2349 tbp = cl->bpp[cl->bufcount];
2350 KASSERT(tbp->b_flags & B_BUSY);
2351 if (error) {
2352 tbp->b_flags |= B_ERROR;
2353 tbp->b_error = error;
2354 }
2355
2356 /*
2357 * We're done with tbp. If it has not been re-dirtied since
2358 * the cluster was written, free it. Otherwise, keep it on
2359 * the locked list to be written again.
2360 */
2361 vp = tbp->b_vp;
2362
2363 tbp->b_flags &= ~B_GATHERED;
2364
2365 LFS_BCLEAN_LOG(fs, tbp);
2366
2367 if (!(tbp->b_flags & B_CALL)) {
2368 KASSERT(tbp->b_flags & B_LOCKED);
2369 s = splbio();
2370 simple_lock(&bqueue_slock);
2371 bremfree(tbp);
2372 simple_unlock(&bqueue_slock);
2373 if (vp)
2374 reassignbuf(tbp, vp);
2375 splx(s);
2376 tbp->b_flags |= B_ASYNC; /* for biodone */
2377 }
2378
2379 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2380 LFS_UNLOCK_BUF(tbp);
2381
2382 if (tbp->b_flags & B_DONE) {
2383 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2384 cl->bufcount, (long)tbp->b_flags));
2385 }
2386
2387 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2388 /*
2389 * A buffer from the page daemon.
2390 * We use the same iodone as it does,
2391 * so we must manually disassociate its
2392 * buffers from the vp.
2393 */
2394 if (tbp->b_vp) {
2395 /* This is just silly */
2396 s = splbio();
2397 brelvp(tbp);
2398 tbp->b_vp = vp;
2399 splx(s);
2400 }
2401 /* Put it back the way it was */
2402 tbp->b_flags |= B_ASYNC;
2403 /* Master buffers have B_AGE */
2404 if (tbp->b_private == tbp)
2405 tbp->b_flags |= B_AGE;
2406 }
2407 s = splbio();
2408 biodone(tbp);
2409
2410 /*
2411 * If this is the last block for this vnode, but
2412 * there are other blocks on its dirty list,
2413 * set IN_MODIFIED/IN_CLEANING depending on what
2414 * sort of block. Only do this for our mount point,
2415 * not for, e.g., inode blocks that are attached to
2416 * the devvp.
2417 * XXX KS - Shouldn't we set *both* if both types
2418 * of blocks are present (traverse the dirty list?)
2419 */
2420 simple_lock(&global_v_numoutput_slock);
2421 if (vp != devvp && vp->v_numoutput == 0 &&
2422 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2423 ip = VTOI(vp);
2424 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2425 ip->i_number));
2426 if (LFS_IS_MALLOC_BUF(fbp))
2427 LFS_SET_UINO(ip, IN_CLEANING);
2428 else
2429 LFS_SET_UINO(ip, IN_MODIFIED);
2430 }
2431 simple_unlock(&global_v_numoutput_slock);
2432 splx(s);
2433 wakeup(vp);
2434 }
2435
2436 /* Fix up the cluster buffer, and release it */
2437 if (cl->flags & LFS_CL_MALLOC)
2438 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2439 putiobuf(bp);
2440
2441 /* Note i/o done */
2442 if (cl->flags & LFS_CL_SYNC) {
2443 if (--cl->seg->seg_iocount == 0)
2444 wakeup(&cl->seg->seg_iocount);
2445 }
2446 simple_lock(&fs->lfs_interlock);
2447 #ifdef DIAGNOSTIC
2448 if (fs->lfs_iocount == 0)
2449 panic("lfs_cluster_aiodone: zero iocount");
2450 #endif
2451 if (--fs->lfs_iocount <= 1)
2452 wakeup(&fs->lfs_iocount);
2453 simple_unlock(&fs->lfs_interlock);
2454
2455 pool_put(&fs->lfs_bpppool, cl->bpp);
2456 cl->bpp = NULL;
2457 pool_put(&fs->lfs_clpool, cl);
2458 }
2459
2460 static void
2461 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2462 {
2463 /* reset b_iodone for when this is a single-buf i/o. */
2464 bp->b_iodone = aiodone;
2465
2466 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2467 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2468 wakeup(&uvm.aiodoned);
2469 simple_unlock(&uvm.aiodoned_lock);
2470 }
2471
2472 static void
2473 lfs_cluster_callback(struct buf *bp)
2474 {
2475
2476 lfs_generic_callback(bp, lfs_cluster_aiodone);
2477 }
2478
2479 void
2480 lfs_supercallback(struct buf *bp)
2481 {
2482
2483 lfs_generic_callback(bp, lfs_super_aiodone);
2484 }
2485
2486 /*
2487 * Shellsort (diminishing increment sort) from Data Structures and
2488 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2489 * see also Knuth Vol. 3, page 84. The increments are selected from
2490 * formula (8), page 95. Roughly O(N^3/2).
2491 */
2492 /*
2493 * This is our own private copy of shellsort because we want to sort
2494 * two parallel arrays (the array of buffer pointers and the array of
2495 * logical block numbers) simultaneously. Note that we cast the array
2496 * of logical block numbers to a unsigned in this routine so that the
2497 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2498 */
2499
2500 void
2501 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2502 {
2503 static int __rsshell_increments[] = { 4, 1, 0 };
2504 int incr, *incrp, t1, t2;
2505 struct buf *bp_temp;
2506
2507 #ifdef DEBUG
2508 incr = 0;
2509 for (t1 = 0; t1 < nmemb; t1++) {
2510 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2511 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2512 /* dump before panic */
2513 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2514 nmemb, size);
2515 incr = 0;
2516 for (t1 = 0; t1 < nmemb; t1++) {
2517 const struct buf *bp = bp_array[t1];
2518
2519 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2520 PRIu64 "\n", t1,
2521 (uint64_t)bp->b_bcount,
2522 (uint64_t)bp->b_lblkno);
2523 printf("lbns:");
2524 for (t2 = 0; t2 * size < bp->b_bcount;
2525 t2++) {
2526 printf(" %" PRId32,
2527 lb_array[incr++]);
2528 }
2529 printf("\n");
2530 }
2531 panic("lfs_shellsort: inconsistent input");
2532 }
2533 }
2534 }
2535 #endif
2536
2537 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2538 for (t1 = incr; t1 < nmemb; ++t1)
2539 for (t2 = t1 - incr; t2 >= 0;)
2540 if ((u_int32_t)bp_array[t2]->b_lblkno >
2541 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2542 bp_temp = bp_array[t2];
2543 bp_array[t2] = bp_array[t2 + incr];
2544 bp_array[t2 + incr] = bp_temp;
2545 t2 -= incr;
2546 } else
2547 break;
2548
2549 /* Reform the list of logical blocks */
2550 incr = 0;
2551 for (t1 = 0; t1 < nmemb; t1++) {
2552 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2553 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2554 }
2555 }
2556 }
2557
2558 /*
2559 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2560 * however, we must press on. Just fake success in that case.
2561 */
2562 int
2563 lfs_vref(struct vnode *vp)
2564 {
2565 int error;
2566 struct lfs *fs;
2567
2568 fs = VTOI(vp)->i_lfs;
2569
2570 ASSERT_MAYBE_SEGLOCK(fs);
2571
2572 /*
2573 * If we return 1 here during a flush, we risk vinvalbuf() not
2574 * being able to flush all of the pages from this vnode, which
2575 * will cause it to panic. So, return 0 if a flush is in progress.
2576 */
2577 error = vget(vp, LK_NOWAIT);
2578 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2579 ++fs->lfs_flushvp_fakevref;
2580 return 0;
2581 }
2582 return error;
2583 }
2584
2585 /*
2586 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2587 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2588 */
2589 void
2590 lfs_vunref(struct vnode *vp)
2591 {
2592 struct lfs *fs;
2593
2594 fs = VTOI(vp)->i_lfs;
2595 ASSERT_MAYBE_SEGLOCK(fs);
2596
2597 /*
2598 * Analogous to lfs_vref, if the node is flushing, fake it.
2599 */
2600 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2601 --fs->lfs_flushvp_fakevref;
2602 return;
2603 }
2604
2605 simple_lock(&vp->v_interlock);
2606 #ifdef DIAGNOSTIC
2607 if (vp->v_usecount <= 0) {
2608 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2609 VTOI(vp)->i_number);
2610 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2611 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2612 panic("lfs_vunref: v_usecount < 0");
2613 }
2614 #endif
2615 vp->v_usecount--;
2616 if (vp->v_usecount > 0) {
2617 simple_unlock(&vp->v_interlock);
2618 return;
2619 }
2620 /*
2621 * insert at tail of LRU list
2622 */
2623 simple_lock(&vnode_free_list_slock);
2624 if (vp->v_holdcnt > 0)
2625 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2626 else
2627 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2628 simple_unlock(&vnode_free_list_slock);
2629 simple_unlock(&vp->v_interlock);
2630 }
2631
2632 /*
2633 * We use this when we have vnodes that were loaded in solely for cleaning.
2634 * There is no reason to believe that these vnodes will be referenced again
2635 * soon, since the cleaning process is unrelated to normal filesystem
2636 * activity. Putting cleaned vnodes at the tail of the list has the effect
2637 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2638 * cleaning at the head of the list, instead.
2639 */
2640 void
2641 lfs_vunref_head(struct vnode *vp)
2642 {
2643
2644 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2645 simple_lock(&vp->v_interlock);
2646 #ifdef DIAGNOSTIC
2647 if (vp->v_usecount == 0) {
2648 panic("lfs_vunref: v_usecount<0");
2649 }
2650 #endif
2651 vp->v_usecount--;
2652 if (vp->v_usecount > 0) {
2653 simple_unlock(&vp->v_interlock);
2654 return;
2655 }
2656 /*
2657 * insert at head of LRU list
2658 */
2659 simple_lock(&vnode_free_list_slock);
2660 if (vp->v_holdcnt > 0)
2661 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2662 else
2663 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2664 simple_unlock(&vnode_free_list_slock);
2665 simple_unlock(&vp->v_interlock);
2666 }
2667
2668
2669 /*
2670 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2671 * point at uninitialized space.
2672 */
2673 void
2674 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2675 {
2676 struct segment *sp = fs->lfs_sp;
2677
2678 if (sp->seg_bytes_left < fs->lfs_bsize ||
2679 sp->sum_bytes_left < sizeof(struct finfo))
2680 (void) lfs_writeseg(fs, fs->lfs_sp);
2681
2682 sp->sum_bytes_left -= FINFOSIZE;
2683 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2684 sp->fip->fi_nblocks = 0;
2685 sp->fip->fi_ino = ino;
2686 sp->fip->fi_version = vers;
2687 }
2688
2689 /*
2690 * Release the FINFO entry, either clearing out an unused entry or
2691 * advancing us to the next available entry.
2692 */
2693 void
2694 lfs_release_finfo(struct lfs *fs)
2695 {
2696 struct segment *sp = fs->lfs_sp;
2697
2698 if (sp->fip->fi_nblocks != 0) {
2699 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2700 sizeof(int32_t) * sp->fip->fi_nblocks);
2701 sp->start_lbp = &sp->fip->fi_blocks[0];
2702 } else {
2703 sp->sum_bytes_left += FINFOSIZE;
2704 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2705 }
2706 }
2707